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Abstract
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• The meaning of probability;

• Kolmogorov’s axioms;

• Random variables;
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• Markov chains;

• Poisson process;

• Wiener process.

• Important distributions;
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I. THE MEANING OF PROBABILITY

This section contains a short outline of the history of probability and a brief account of

the debate on the meaning of probability. The two issues are interwoven. After reading and

studying this section you should be able to

• present the history of probability;

• understand the main interpretations of probability (classical, frequentist, subjectivist,

logical empiricist);

• compute probabilities of events based on the fundamental counting principle and com-

binatorial formulae.

• relate the interpretations to the history of human thought (especially if you already

know something about philosophy).

• discuss some of the early applications of probability to Economics.

A. Early accounts and the birth of mathematical probability

We know that, in the 17th century, probability theory begun with the analysis of games

of chance (a.k.a gambling). However, dice were already in use in ancient civilizations. Just

to limit ourselves to the Mediterranean area (due to the somewhat Eurocentric culture of

this author), dice are found in archaeological sites in Egypt. According to Svetonius (a

Roman historian), in the first century, Emperor Claudius wrote a book on gambling, but

unfortunately nothing of his book remains nowadays.

It is however true that chance has been a part of the life of our ancestors. Always

(and this is true also today), individuals and societies have been faced with unpredictable

events and it is not surprising that this unpredictability has been the subject of many

discussions and speculations especially when compared with better predictable events such

as the astronomical ones.

It is perhaps harder to understand why there had been no mathematical formalizations

of probability theory until the 17th century. There is a remote possibility that, in ancient
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times, other treatises like the one of Claudius were available and also were lost, but, if this

was the case, mathematical probability was perhaps a fringe subject.

A natural place for the development of probabilistic thought could have been Physics.

Real measurements are never exactly in agreement with theory, and the measured values

often fluctuate. Outcomes of physical experiments are a natural candidate for the develop-

ment of a theory of random variables. However, the early developments of Physics did not

take chance into account and the tradition of Physics remains far from probability. Even

today, education in Physics virtually neglects probability theory.

The birth of probability theory was triggered by a letter sent to Blaise Pascal by his

friend Chevalier De Méré on a dice gambling problem. In the 17th century in Europe, there

were people rich enough to travel along the continent and waste their money gambling. De

Méré was one of them. In the summer of 1654, Pascal wrote to Pierre de Fermat in order to

solve De Méré’s problem and out of their correspondence mathematical probability theory

was born.

B. Laplace and the classical definition of probability

In 1812, Pierre Simon de Laplace published his celebrated book Théorie analytique des

probabilités where he gave and discussed a definition of probability. In the meantime, Chris-

tian Huygens had written a first exhaustive book on mathematical probability, based on the

ideas of Pascal and Fermat, De ratiociniis in ludo aleae, published in 1657 and the theory

had been further developed by Jacob Bernoulli in Ars conjectandi published in 1713, seven

years after his death. It is indeed in the 18th century, namely in 1733, that Daniel Bernoulli

published the first paper where probability theory is applied to economics, Specimen theo-

riae novae de mensura sortis, translated into English in Exposition of a new theory on the

measurement of risk, Econometrica, 22, 23-36, 1954. In his 1812 book, Laplace formalizes

the definition of probability which was currently used in the 18th century.

In order to illustrate the classical definition of probability, suppose you consider a dichoto-

mous variable only assuming two values in an experiment. This is the case when tossing a

coin. Now, if you toss the coin you have two possible outcomes: H (for head) and T (for

tails). The probability P(H) of getting H is given by the number of favourable outcomes, 1
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here, divided by the total number of outcomes, 2 here, so that:

P(H) =
# of favourable outcomes

# of possible outcomes
=

1

2
.

The classical definition of probability remains a good guideline to solve probability problems

and to get the correct result in many cases. The task of finding the probability of an event

is reduced to a combinatorial problem. One must enumerate and count all the favourable

cases as well as all the possible cases.

C. The classical definition in practice

In order to use the classical definition, one should be able to list favourable out-

comes as well as the total number of possible outcomes of an experiment. Not al-

ways is this directly possible. Suppose you want to know which is the probabil-

ity of exactly getting two heads in three tosses of a coin. There 8 possible cases:

(TTT, TTH, THT,HTT,HHT,HTH, THH,HHH) of which 3 contain 2 heads. Then the

required probability is 3/8. If you consider 1o tosses of a coin, there are already 1024 pos-

sible cases and listing them all becomes boring. The fundamental counting principle comes

into rescue.

Definition (Fundamental counting principle) for a finite sequence of decisions,

the number of ways to make these decisions is the product of the number of

choices.

Example In the case discussed above there are 3 decisions in a sequence (choos-

ing H or T for three times) and there are 2 choices for every decisions (H or T ).

Thus, the total number of decisions is 23 = 8.

Based on the fundamental counting principle, one gets the number of dispositions, per-

mutations, combinations and combinations without repetition for N objects.

Example (Dispositions with repetition) Suppose you want to choose an object

n times out of N objects. The total number of possible choices is N each time

and, based on the fundamental counting principle, one gets that there are Nn

possible choices.
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Example (Permutations) Now you want to pick an object out of N , remove it

from the list of objects and go on until all the objects are selected. For the first

decision you have N choices, for the second decisions N − 1 and so on until the

Nth decision where you just have 1 choice. As a consequence of the fundamental

counting principle, the total number of possible decisions is N !.

Example (Dispositions without repetition) This time you are interested in se-

lecting n objects out of N with n ≤ N , but you are also interested in the order

of the selected items. The first time you have N choices, the second time N − 1

and so on, until the nth time where you have N − n+ 1 choices left. Then, the

total number of possible decisions is N(N − 1) · · · (N − n+ 1) = N !/n!.

Example (Combinations) You have a list of N objects and you want to select

n objects out of them with n ≤ N , but you do not care about their order. Any

ordered sublist with the desired n objects can be included in (N − n)! lists with

the remaining N − n objects and there are N !/n! of these sublists. Therefore,

this time, the total number of possible decisions (possible way of selecting n

objects out of N irrespective of their order) is N !/(n!(N − n)!). This is a very

useful formula and there is a special symbol for the so-called binomial coefficient:(
N

n

)
=

N !

n!(N − n)!
.

Indeed, these coefficients appear in the expansion of the Nth power of a binomial:

(p+ q)N =
N∑
n=0

(
N

n

)
pnqN−n,

where (
N

0

)
=

(
N

N

)
= 1

as a consequence of the definition 0! := 1.

Example (Combinations with repetition) Suppose you are interested in finding

the nuber of ways of allocating N objects into n boxes, irrespective of the names

of the objects. Let the objects be represented by crosses, ×, and the boxes by the

following symbol: | · · · |. A particular configuration with the first box containing

two objects and the last box empty is represented by | × ×| · · · ||. As a further
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example, consider the case with two boxes and three objects with two objects in

the first box and one object in the second box. This is |××|× |. Now, the total

number of symbols is N + n+ 1 of which 2 are always fixed as the first and the

last symbols must be a |. Of the remaining N+n+1−2 = N+n−1 symbols, N

can be arbitrarily chosen to be crosses. The number of possible choices is then

given by the binomial factor

(
N + n− 1

N

)
.

Example (Tossing coins revisited) Let us consider once again the problem pre-

sented at the beginning of this subsection. This was: what is the probability

of exactly finding two heads out of three tosses of a coin? Now, the problem

can be generalized: what is the probability of exactly finding n heads out of N

tosses of a coin (n ≤ N)? The total number of possible outcomes is 2N as there

are 2 choices the first time, two the second and so on until two choices for the

Nth toss. The number of favourable outcomes is given by the number of ways

of selecting n places out of N and putting a head there and a tail elsewhere.

Therefore

P(exactly n heads) =

(
N

n

)
1

2N
.

D. Circularity of the classical definition

Even if very useful for practical purposes, the classical definition suffers of circularity. In

order to justify this statement, let us re-write the classical definition: the probability of an

event is given by the number of favourable outcomes divided by the total number of possible

outcomes. Now consider a particular outcome. In this case, there is only 1 favourable case,

and if r denotes the total number of outcomes, one has

P(outcome) =
1

r
.

This equation is the same for any outcome and this means that all the outcomes have the

same probability. Therefore, in the classical definition, there seems to be no way of con-

sidering elementary outcomes with different probability and the equiprobability of all the

outcomes is a sort of hidden assumption of the definition. A difficulty with equiprobability

already arises in the case of dichotomous variables, where one of the outcomes could have a

different probability with respect to the other outcome. The usual example is the unbalanced
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coin. If the hidden assumption is made explicit, then one immediately sees the circularity

as probability is used to define itself: the probability of an event is given by the number of

favourable outcomes divided by the total number of possible outcomes assumed equiprobable.

In summary, if the equiprobability of outcomes is not mentioned, it becomes an immediate

consequence of the definition and it becomes impossible to deal with non-equiprobable out-

comes. If, on the contrary, the equiprobability is included in the definition as an assumption,

then the definition becomes circular.

A possible way out from circularity was suggested by J. Bernoulli and adopted by Laplace;

it is the so-called indifference principle. According to this principle, if one has no reason

to assign different probabilities to a set of exhaustive and mutually exclusive events (called

outcomes so far), then these events must be considered as equiprobable. For instance, in the

case of the coin, in the absence of further indication, one has the following set of equations

P(H) = P(T )

and

P(H) + P(T ) = 1

yielding P(H) = P(T ) = 1/2, where the outcomes H and T are exhaustive (all the possible

cases) and mutually exclusive (if one obtains H, one cannot have T at the same time).

The principle of indifference may seem a beautiful solution, but it leads to several prob-

lems and paradoxes identified by J. M. Keynes, by J. von Kries in Die Prinzipien der

Wahrscheinlichkeitsrechnung published in 1886 and by Bertrand in his Calcul des proba-

bilités of 1907. Every economist knows the General theory, but few are aware of A treatise

on probability, a book published by Keynes in 1921 where one can find one of the first at-

tempts to present probability axioms. Let us now see some of the paradoxes connected with

the principle of indifference. Suppose that one does not know anything on a book. There-

fore the probability of the statement this book has a red cover is the same as the probability

of its negation this book has not a red cover. Again here one has a set of exhaustive and

mutually exclusive events, whose probability is 1/2 according to the principle of indifference.

However, as nothing is known on the book, the same considerations can be repeated for the

statements this book has a green cover, this book has a blue cover, etc.. Thus, each of these

events turns out to have probability 1/2, a paradoxical result. This paradox can be avoided

if one further knows that the set of possible cover colours is finite and made up of, say, r
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elements. Then the probability of this book has a red cover becomes 1/r and the probability

of this book has not a red cover becomes 1 − 1/r. Bertrand’s paradoxes are subtler and

they make use of the properties of real numbers. Already with integers, if the set of events

is countable, the indifference principle leads to a distribution where every event has zero

probability as limr→∞ 1/r = 0 but where the sum of these zero probabilities is 1, a puzzling

result which can be dealt with using measure theory. The situation becomes worse if the set

of events is infinite and non-countable. Following Bertrand, let us consider a circle and an

equilateral triangle inscribed in the circle. What is the probability that a randomly selected

chord is longer than the triangle side? Two possible answers are:

1. One of the extreme points of the chord can indifferently lie in any point of the circle.

Let us then assume that it coincides with a vertex of the triangle, say vertex A. Now

the chord direction can be selected by chance and the chord is longer than the side

of the triangle only if its other extreme point lies on the circle arc opposite to vertex

A. The triangle defines three circle arcs of equal length, this means that the required

probability is 1/3.

2. Random selection of a chord is equivalent to random selection of its central point. In

order for the chord to be longer than the triangle side, the distance of its central point

from the centre of the circle must smaller than one-half of the circle radius. Then the

area to which this point must belong is 1/4 of the circle area and the corresponding

probability turns out to be 1/4 instead of 1/3.

There are other possible ways of avoiding or circumventing the circularity of the classical

definition. One is the frequentist approach, where probabilities are identified with measured

frequencies of outcomes in repeated experiments. Another solution is the subjectivist ap-

proach, particularly interesting for economists as probabilities are there defined in terms of

rational bets.

E. Frequentism

The principle of indifference introduces a subjective element in the evaluation of probabil-

ities. If, in the absence of any reason, one can assume equiprobable events, then if there are

specific reasons one can make another assumption. Then probability assignments depend on
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one’s state of knowledge on the investigated system. Empiricists opposed similar views and

tried to focus on the outcomes of real experiments and to define probabilities in terms of

frequencies. Roughly speaking this line of thought can be explained as follows with the ex-

ample of coin tossing. According to frequentists the probability of H can be approximated by

repeatedly tossing a coin, by recording the sequence of outcomes HHTHTTHHTTTH · · · ,

counting the number of H and dividing for the total number of trials

P(H) ∼ # of H

# of trials
.

The ratio on the right hand side of the equation is the empirical frequency of the outcome

H, a useful quantity in descriptive statistics. Now, this ratio is never equal to 1/2 and

the frequentist idea is to extrapolate the sequence of trials to infinity and to define the

probability as

P(H) = lim
# of trials→∞

# of H

# of trials
.

This is the preferred definition of probability in several textbooks introducing probability

and statistics to natural scientists and in particular to physicists. Probability becomes a

sort of measurable quantity that does not depend on one’s state of knowledge, it becomes

objective or, at least, intersubjective. Moreover, Kolmogorov himself was a supporter of the

frequentist point of view and his works on probability theory have been very influential. The

naive version of frequentism presented above cannot be a solution to the problems discussed

before. Indeed, the limit appearing in the definition of probability is not the usual limit de-

fined in calculus for the convergence of a series. There is no formula for the number of heads

out of N trials and nobody can toss a coin for an infinite number of times. Having said that,

one can notice that similar difficulties are present when one wants to define real numbers

as limits of Cauchy sequences of rational numbers following Dedekind. This solution to the

objection presented above has been proposed by Von Mises, who starting from 1919 tried

to develop a rigorous frequentist theory of probability. His first memoir was Grundlagen

der Wahrscheinlichkeitsrechnung published in Mathematischen Zeitschrift. Subsequently,

he published a book, Wahrscheinlichkeit Statistik und Wahrheit. Einführung in die neue

Wahrcheinlichkeitslehere und ihre Anwendungen (Probability, statistics and truth. Intro-

duction to the new probability theory and its applications). There are several difficulties in

Von Mises’ theory, but they can be solved and, in principle, a rigorous frequentist probability

theory can be developed. Another method to circumvent the problems related to infinite
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trials has been explored by the late Kolmogorov, who developed a finitary frequentist theory

of probability connected with his theory of information and computational complexity.

One of the reasons of the success of the frequentist approach was related to the social

success among statisticians and natural scientists of the methods developed by K. Pearson

and R.A. Fisher who were strong supporters of frequentism. These methods deeply influ-

enced the birth of Econometrics, the only branch of Economics (except for Mathematical

Finance) making extensive use of probability theory.

The main objection to frequentism is that most events are not repeatable and in this case,

it is impossible, even in principle, to apply a frequentist definition of probability based on

frequencies simply because these frequencies cannot be measured at all. Von Mises explicitly

excluded these cases from his theory. In other words, given an event that is not repeatable

such as tomorrow it will rain, it is a nonsense to ask for its probability. Notice that virtually

all of Economics falls outside the realm of repeatability. If one were to fully accept this

point of view, most applications of probability and statistics to Economics (including most

of Econometrics) would become meaningless. Incidentally, the success of frequentism could

explain why there are so few probabilistic models in theoretical Economics.

F. Subjectivism

Frequentism wants to eliminate the subjective element present in the indifference princi-

ple. On the contrary, subjectivism accepts this element and amplifies it by defining proba-

bility as the degree of belief that each individual assigns to an event. This event need not

to occur in the future and it is not necessary that the event is repeatable. Being subjec-

tive, the evaluation of probability may differ from individual to individual. However, any

individual must assign his/her probabilities in a coherent way, so that, for instnce, a set

of exhaustive and mutually exclusive events has probabilities summing up to 1. Moreover,

if two individuals share the same knowledge, their probability assignments must coincide.

This point of view is particularly appealing for theoretical Economists as, in subjectivism,

individuals are rational agents and their assignment of probabilities follow what is known

as normative theory in the theory of choice. Indeed, probabilities are related to bets. The

evaluation of probabilities in terms of bets was independently proposed by Frank Plumpton

Ramsey and by the Italian statistician Bruno de Finetti. This is the only case this author
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knows where an Italian scientist who published his results after an Anglo-saxon counterpart

is better known within the scientific community. Ramsey died when he was 26 years old

in 1930, whereas De Finetti died in 1985 at the age of 89. Ramsey published his results

in 1926 in his notes on Truth and probability and De Finetti wrote his essay on the logical

foundations of probabilistic reasoning (Fondamenti logici del ragionamento probabilistico) in

1930. From 1930 to 1985, De Finetti had a lot of time to further develop and publicize his

views and he also published many important papers on statistics and probability, including

an important theorem on exchangeable sequences known as De Finetti’s theorem in the

probabilistic literature.

In particular, De Finetti presented an operational procedure to define probabilities. Sup-

pose that if the event A takes place a rational individual will be given 1 Euro and 0 Euro if

A does not take place. This rational individual is now required to evaluate the probability

of A taking place. To this purpose, he/she has to choose an amount x such that he/she

will lose (1 − x)2 Euros if A occurs and x2 Euros if A does not occur. Now we can define

a (random) variable L representing the loss and depending on whether A takes place. If A

occurs one has L = (1 − x)2, if A does not occur then L = x2. Now, if p = P(A) is the

probability of occurrence for the event A, the expected value of the loss L is

E[L] = p(1− x)2 + (1− p)x2,

so that

E[L] = p− 2px+ x2.

The analysis of this quadratic function of x shows that the expected loss is minimal for

x = p = P(A) and our rational agent must choose x = p in order to minimize his/her loss.

The extensions of this analysis to a finite set of mutually exclusive and exhaustive events is

straightforward. For years, in Rome Bruno De Finetti organized a lottery based on these

ideas to forecast Sunday football (soccer for US readers) match outcomes among his students

and colleagues.

An objection to this line of thought can be based on the results of empirical economics and

psychology. It turns out that human beings are not able to correcly evaluate probabilities

even in simple cases. By the way, this also happens to many students and scholars of

probability trying to solve elementary exercises. Probability is highly counterintuitive and
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even if one can conceive a rational agent who can base his/her choices in the presence of

uncertainty on perfect probabilistic calculations, this is not a human being.

G. Logical empiricism

There is a third way to the solution of the problems posed by probability theory and it

is related to a phylosophical movement known as logical empiricism or logical positivism.

In agreement with subjectivists, for logical empiricists it is meaningful to discuss the prob-

ability of single events. However, like frequentists, logical empiricists believe in objective

probabilities. The early Keynes was following this philosophical movement in trying to

axiomatize probability as a measure of the relation between propositions. In his Tracta-

tus Logico-Philosophicus also Ludwig Wittgenstein suggested a connection between logic

and probability, although his connections with positivism is controversial. Later, Rudolf

Carnap published several paper which were collected in the volume Logical Foundations of

Probability. As with the other approaches, a detailed analysis of the ideas based on logical

empiricism is outside the scope of these notes. Nonetheless, it is useful to explore some

elementary aspects of logical empiricism, because they are very useful for the solutions of

exercises.

1. Boolean lattices

Both propositional logic and the elementary algebra of sets share an algebraic structure

known as Boolean lattice (or Boolean algebra).

Definition (Boolean lattice) A Boolean lattice is an algebraic structure

(B, 0, 1,′ ,+, ·) where B is a set, 0 ∈ B, 1 ∈ B, ′ is a unary operation on B (that

is a function B → B), and +, · are binary operations on B (that is functions

B2 → B) satisfying the following axioms (a, b, c ∈ B):

1. Associative property 1

a+ (b+ c) = (a+ b) + c;

2. Associative property 2

a · (b · c) = (a · b) · c;
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3. Commutative property 1

a+ b = b+ a

4. Commutative property 2

a · b = b · a;

5. Distributive property 1

a · (b+ c) = (a · b) + (a · c);

6. Distributive property 2

a+ (b · c) = (a+ b) · (a+ c);

7. Identity 1

a+ 0 = a;

8. Identity 2

a · 1 = a;

9. Property of the complement 1

a+ a′ = 1;

10. Property of the complement 2

a · a′ = 0.

The presence of constants excludes the possibility that a Boolean lattice is empty. Now,

given a set Ω and the set of its subsets PΩ, one can identify B with PΩ, 0 with ∅, 1 with

Ω, ′ with the complement c, + with the union ∪ and · with the intersection ∩. Direct

inspection shows that (PΩ, ∅,Ω,c ,∪,∩) is a Boolean lattice. In order to find the connection

with propositional logic, one can consider the classes of equivalent propositions. They are a

Boolean lattice where 0 is the class of contradictions, 1 the class of tautologies, ′ corresponds

to the logical connective NOT , + corresponds to OR, and · corresponds to AND.
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2. Logic and probability

In probability theory, one can ask questions of the following kind: What is the probability

of finding a K or a J in the first draw from a deck of 52 cards? If two dice are thrown what

is the probability of an odd number on the first dice and an even number on the second

one? What is the probability of not getting a one when a dice is thrown? Virtually all

(formal or informal) probability theories include the following rules for combining elementary

probabilities:

1. (Probability of mutually exclusive events) If A and B are mutually exclusive

events/propositions then

P(A OR B) = P(A) + P(B);

2. (Probability of independent events) If A and B are independent events/propositions

then

P(A AND B) = P(A)P(B);

3. (Probability of complementary event) If A is an event, the probability that A does not

take place is

P(NOT A) = 1− P(A).

Example (Disjoint events) What is the probability of finding a K or a J in the

first draw from a deck of 52 cards? The two sets of favourable event: 4 K’s and

4 J’s have no common element. Therefore there are 8 favourable cases out of 52,

which means that the sought probability is 8/52 = 2/13 ' 0.15. Using rule 1

(Probability of mutually exclusive events), one gets the same result: 4/52 is the

probability of getting a K and 4/52 is the probability of getting a J, therefore

the answer is 4/52 + 4/52 = 8/52.

Example (Independent events) If two dice are thrown what is the probability of

an odd number on the first dice and an even number on the second one? There

are 3 odd numbers on the first die and 3 even numbers on the second die for a

total of 9 favourable case as a consequence of the fundamental counting principle.

Accordingly, the total number of cases is 36 and the answer is 9/36 = 1/4. Now,
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the probability of an odd number on the first die is 1/2 and the probability of

an odd number on the second die is 1/2. The result of one die does not depend

on the result of the other die, and one gets for the answer 0.5 · 0.5 = 0.25, an

application of rule 2 (Probability of independent events).

Example (Probability of negation) What is the probability of not getting a

one when a dice is thrown? Here there are 5 favourable cases out of 6 and

therefore the sought probability is 5/6 ' 0.83. This is equivalent to subtracting

1/6 (the probability of getting 1) from 1 according to rule 3 (Probability of

complementary event): 1− 1/6 = 5/6.

H. Where do we stand?

In the previous sections, a short outline of the foundational problems of probability theory

has been presented. Indeed, each solution proposed to cope with the circularity of the clas-

sical definition (the principle of indifference, frequentism, subjectivism, logical empiricism)

has its own shortcomings. To be true, we have not discussed the logical approach, but as you

will see in the next section, even the most successful theory developed by Kolmogorov does

not contain any rule or guidance to assess probabilities, whereas it only contains rules to

appropriately combine them once they are known. This is a problem with logical empiricism

as well.

Understanding the meaning of probability is a difficult problem and it is still unsolved

after centuries of research. Unfortunately, in the last decades, such problems have been left

either to philosophers or to a small number of senior scientists at the end of their scientific

careers. Many philosophers dealing with these problems are very good, but often they are

not active mathematicians and their results are not known outside their circles. One of the

limits of publish-or-perish science is that active scientists are left with virtually no time for

speculation on foundational problems. Younger scientists who wish to devote themselves

to foundations often put their careers at a stake. This situation is more than unfortunate

because probability theory has applications in many fields of science and advances in foun-

dational studies might help in clarifying many problems present in other disciplines incuding

Economics.
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II. KOLMOGOROV’S AXIOMS

In this section, the axiomatic foundation of probability theory will be introduced. After

reading and studying this section you should be able to

• prove simple but relevant theorems starting from the axioms;

• define disjoint events and independent events;

• define conditional probabilities;

• explain some counterintuitive aspects of probability theory.

A. The probability space

Before listing the axioms, it is useful to introduce three mathematical objects on which

the axioms will be based: the probability space Ω, the σ-field F of subsets of Ω and the

probability P. Kolmogorov based its axioms on measure theory, therefore he introduced

probability using a measure space. Indeed, a probability space is an instance of measure

space. First of all one needs the definition of σ-field:

Definition (σ-field): Given a set Ω, a class F of subsets of Ω is a σ-field if:

1. the empty set ∅ is in F ;

2. if a set A is in F then also its complement Ac is in F ;

3. if A1, A2, . . . is a countable collection of sets belonging to F then also their

countable union ∪iAi and their countable intersection ∩iAi are in F .

In other words a σ-field is a collections of subsets of Ω closed with respects to the operations

of complement, countable union and countable intersection. Moreover, it contains the empty

set ∅ and also the set Ω as ∅c = Ω. Then, it is possible to define the probability space as

follows:

Definition (Probability space): A probability space is a triple (Ω,F ,P) where

Ω is a set, F is a σ-field of subsets of Ω and P is a function from Ω to the real

interval [0, 1] such that:
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1. P(A) ≥ 0 for any A in F ;

2. P(Ω) = 1;

3. if A1, A2, . . . is a countable collection of mutually disjoint sets belonging to

F then P (∪iAi) =
∑

i P(Ai).

Remark(Countably additive, non-negative measure) P is an instance of count-

ably additive and non-negative measure. A function µ from a σ-field to R is a

countably additive, non-negative measure if:

1. 0 ≤ µ(A) ≤ ∞ for each set A belonging to the σ-field F ;

2. µ(∅) = 0;

3. if if A1, A2, . . . is a countable collection of mutually disjoint sets belonging

to F then µ (∪iA1) =
∑

i µ(Ai).

B. Elementary consequences of the axioms

In order to show that P satisfies the axioms of countably additive, non-negative measure,

it suffices to show that P(∅) = 0. This is an immediate corollary of the following theorem.

Theorem (Probability of complement) For each A in F one has

P(Ac) = 1− P(A). (1)

Proof. For each set A in F (indeed for each subset of Ω) one has that A∪Ac = Ω

and A ∩ Ac = ∅, therefore as a consequence of the third axiom in (Probability

space), the following chain of equalities holds true

1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac)

hence P(Ac) = 1− P(A).

Corollary (Probability of empty set) P(∅) = 0.

Proof. One has that Ωc = ∅ and P(Ω) = 1 according to the second axiom in

(Probability space). Therefore, one has P(∅) = P(Ωc) = 1 − P(Ω) = 1 − 1 =

0.
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Definition (Events) The sets in F are called events.

The axioms give a rule to compute the probability of the union of mutually disjoint events

when the probability of each event is known. Finding the probability of the complement

is an immediate consequence of the axioms. One still has to find rules to compute the

probability of the union of non-disjoint events as well as the probability of the intersection

of events. Indeed, the two problems are correlated. The following theorem shows how to

compute the probability of the intersection of two events.

Theorem (Probability of union) For each couple of sets A and B in F , one has

P(A ∪B) = P(A) + P(B)− P(A ∩B). (2)

Proof. A ∪B can be written as the union of three disjoint sets:

A ∪B = (A ∩Bc) ∪ (Ac ∩B) ∪ (A ∩B),

so that

P(A ∪B) = P(A ∩Bc) + P(Ac ∩B) + P(A ∩B). (3)

Moreover, one has that A and B can be written as union of the following disjoint

sets

A = (A ∩Bc) ∪ (A ∩B)

and

B = (Ac ∩B) ∪ (A ∩B)

which means that

P(A ∩Bc) = P(A)− P(A ∩B)

and

P(Ac ∩B) = P(B)− P(A ∩B).

Replacing these equations in (3) yields the thesis (2).

This result can be extended to the union of an arbitrary number of events. However, it

is more convenient to present a derivation of the general result after introducing random

variables and indicator functions in the next section.

18



C. Conditional probabilities

As mentioned above, the probability of a generic union of two sets depends on the proba-

bility of the intersection. In Kolmogorov’s theory, the probability of the intersection of two

events is related to conditional probabilities via a definition:

Definition (Conditional probability) For each couple of sets A and B in F , the

conditional probability of A given B is defined as follows

P(A|B) =
P(A ∩B)

P(B)
, (4)

whereas, in other theories, equation (4) is derived as a theorem from a different set of axioms.

Bayes’ rule is an immediate consequence of this definition.

Theorem (Bayes’ rule) If P(A) 6= 0 and P(B) 6= 0, the conditional probabilities

P(A|B) and P(B|A) are related as follows

P(B|A) =
P(A|B)P(B)

P(A)
. (5)

Proof. From the definition of conditional probability in (4), one has

P(A ∩B) = P(A|B)P(B)

and

P(A ∩B) = P(B|A)P(A),

hence

P(B|A)P(A) = P(A|B)P(B)

and the thesis follows.

Given a partition of Ω into a family of mutually disjoint sets {Ei}ni=1, one can derive the

so-called theorem of total probability:

Theorem (Total probability) If {Ei}ni=1 is a family of mutually disjoint events,

Ei ∩ Ej = ∅ for any i 6= j, such that Ω = ∪ni=1Ei then for any A in F

P(A) =
n∑
i=1

P(A|Ei)P(Ei). (6)
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Proof. The following chain of equalities holds true

A = A ∩ Ω = A ∩ (∪ni=1Ei) = ∪ni=1(A ∩ Ei),

then A is written as the union of mutually disjoint sets and

P(A) = P (∪ni=1(A ∩ Ei)) =
n∑
i=1

P(A ∩ Ei) =
n∑
i=1

P(A|Ei)P(Ei)

yielding the thesis.

Combining Bayes’ rule and total probability, the following interesting result follows

Corollary (Bayes’ theorem) If {Ei}ni=1 is a family of mutually disjoint events,

Ei ∩ Ej = ∅ for any i 6= j, such that Ω = ∪ni=1Ei then for any A in F and for

any j

P(Ej|A) =
P(A|Ej)P(Ej)∑n
i=1 P(A|Ei)P(Ei)

. (7)

Proof. Bayes’ rule states that

P(Ej|A) =
P(A|Ej)P(Ej)

P(A)

total probability that

P(A) =
n∑
i=1

P(A|Ei)P(Ei).

The thesis follows by direct substitution of the second equation into the first

one.

Bayes’ theorem has a rather infamous interpretation, where P(Ej|A) is considered as the

probability of the cause Ej given the effect A. However, in general, a causal interpretation

of conditional probabilities is wrong and/or misleading. This error is rather common in

Physics. Conditional probability is an elusive concept and conditioning reflects a logical or

informational relationship between events, not always a causal relationship. The following

classical examples illustrate this point.

Example (Retrodiction) Suppose you have a deck of 52 cards. Two cards are

drawn without replacement and in a sequence. If the first card is a K, what is

the probability that the second card is a K? Almost everybody acquainted with
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elementary probabilities gives the correct answer 3/51. Now, imagine you know

that the second card is a K without having any piece of information on the first

card, then what is the probability of drawing a K at the first draw? The correct

answer is again 3/51. Why?

Example (Monty Hall quiz) You are in front of three closed doors, numbered

from 1 to 3. Two of them are empty and the third one contains a valuable prize,

let say a luxury car. You do not know where the car is. The quiz master (who

perfectly knows where the prize is) asks you to choose one door. You choose door

number 1. Now the quiz master opens door 3 (it is empty) and gives you the pos-

sibility of changing your choice. What is better for you? Changing your mind and

selecting door number 2 or keeping your first decision? It turns out that the prob-

ability of winning when changing is 2/3 whereas if you do not change your choice,

you win only 1 time out of 3. Why? This game has become very important and

popular in experimental psychology and experimental economics. It is very diffi-

cult to give the correct answer at the first attempt. One reason could be that it

is difficult to understand all the details correctly. P.R. Mueser and D. Graberg

give a somewhat redundant description of the game. Their paper, The Monty

Hall Dilemma Revisited: Understanding the Interaction of Problem Definition

and Decision Making (University of Missouri Working Paper 99-06), is on-line:

http://econwpa.wustl.edu:80/eps/exp/papers/9906/9906001.html. Try

to read it and see if you can figure out a way of justifying the solution.

Luckily, as readers of these notes, you may never have been exposed to textbooks on

theoretical physics dealing with quantum mechanics as well as to textbooks on introductory

experimental physics. Therefore, you have better chances of understanding the informational

and subjective meaning of conditional probabilities without having to care of wavefunction

collapses and similar nonsense.

Remark (Numerical values of probabilities) Notice that in Kolmogorov’s ax-

iomatic theory, there is no algorithm, no rule helping in determine the actual

value of probabilities. For this reason, for real world problems one has some free-

dom in order to assign probabilities. One usually uses a heuristic mixture of the
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classical definition and of the subjective definition. The mildly measure theo-

retical notions of the next sections, where random variables and some stochastic

processes are introduced, are very useful as it turns out that all the apparatus

of calculus can be used for studying probabilistic problems.

Remark (Probabilities on a countable space) Let us now assume that the space

Ω is countable and that the σ-field F coincides with the class of all subsets of

Ω: F = PΩ.

Definition (Atoms) The elements {ωi}∞i=1 of Ω are called atoms.

Theorem A probability on Ω is characterized by its values pi = P(ωi) on the

atoms ωi ∈ Ω.

Proof. As we have seen for the total probability theorem, for any event A, one

has that A = A∩Ω = A∩ (∪∞i=1ωi) = ∪ωi∈Aωi, therefore P (A) =
∑

ωi∈A P(ωi) =∑
ωi∈A pi.

Theorem Let Ω be a countable set and {ωi}∞i=1 one of the possible enumerations

of the atoms of Ω. If {pi}∞i=1 is a sequence of real numbers, then there exists

a unique probability measure P such that P(ωi) = pi if and only if pi ≥ 0 and∑∞
i=1 pi = 1.

Proof. If 0 ≤ P(ωi) = pi then one has 1 = P(Ω) = P(∪∞i=1ωi) =
∑∞

i=1 P(ωi) =∑n
i=1 pi. Conversely, if the pi satisfy pi ≥ 0 and

∑n
i=1 pi = 1, one can define for

any event A the measure P(A) =
∑

ωi∈A pi. This measure satisfies the axioms of

probability. As for countable additivity, one can observe that
∑
pi is a positive

absolutely convergent series and it is possible to add disjoint partial sums to get

the same result as the total sum.

III. RANDOM VARIABLES

In this section, random variables will be introduced as measurable functions from a prob-

ablity space to the set of real numbers equipped with the structure of positive measurable
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space (R,B, µ) where B is the Borel σ-field, that is the smallest σ-field containing open

subsets of R and µ is a positive measure on R such that µ(R) = 1.

After reading this section, you should be able to:

• properly define random variables;

• define the probability distribution and probability density for a random variable;

• define the expectation of a random variable;

• derive elementary properties of the expectation;

• define the variance of a random variable;

• define the moments of a random variable;

• understand the principles of multivariate analysis;

• define the conditional expectation of a random variable;

• derive the properties of conditional expectation;

• understand the concept of sequences of random variables and the different convergence

definitions;

• understand some important convergence theorems such as the weak and strong laws

of large numbers as well as the central limit theorem.

A. More on σ-fields

In order to define random variables, one first need to define the so-called σ-field generated

by a class of subsets E of a set X . Roughly speaking, this is necessary due to some problems

in measure theory where there is no measure satisfying the proper axioms and for which all

the sets in the class of all subsets of X , denoted by PX , are measurable. Therefore one has

to build measurable classes of subsets of X .

Definition (σ-field generated by E) Given a set X and a class of its subsets E ,

the σ-field generated by E , σ(E), is the smallest σ-field on X containing all sets

of E .
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To prove that this definition is meaningful, it is necessary to show that if {Fi}i∈I is a

family of σ-fields on X , then their intersection ∩i∈IFi (the collection of all sets belonging

to every Fi) is also a σ-field on X . Moreover, one should also notice that for each E there

is at least one σ-field containing all the sets in E and this is indeed PX . As for the first

requirement, one can notice that ∅ is contained in every Fi and then it is also contained

in ∩i∈IFi. Then if A ∈ ∩i∈IFi also its complement Ac must be in the intersection as it

is contained in every Fi. The same applies to a countable union or intersection of sets in

∩i∈IFi. Therefore the definition is meaningful.

Example (σ-field generated by a finite set) Consider the case where X is a finite

set, say a finite set containing 5 objects: X = {a, b, c, d, e}. Now suppose that

the class E is made up of two sets E1 = {a, b, c} and E2 = {b, d, e}. In this

case, the σ-field generated by E can be generated by a direct application of the

axioms. It must include ∅ and X , F1 = Ec
1 = {d, e} and F2 = Ec

2 = {a, c} as well

as all the possible unions and intersections of these sets and their complements,

F3 = E1 ∩ E2 = {b} and F4 = F1 ∪ F2 = Ec
1 ∪ Ec

2 = {a, c, d, e}. Further unions

and intersections create no new sets. In summary, one has

σ(E1, E2) = ∅, E1 = F2 ∪ F3, E2 = F1 ∪ F3, F1, F2, F3, F4 = F1 ∪ F2,X .

F1, F2 and F3 are mutually disjoint sets whose union is X and all the other sets

in σ(E1, E2) are union or intersections of these sets. They are called atoms of

the σ-field.

Definition (Borel σ-field) The Borel σ-field, B(R), on R is the smallest σ-field

generated by the open subsets of R.

The Borel σ-field is generated by an infinite class of subsets of R and the direct procedure

presented above cannot be used to characterize it. The so-called generating class argument

can be used to prove that the Borel σ-field coincides with the σ-field generated by all the

intervals of the kind (−∞, t] where t ∈ R.

Theorem (Generating class argument) Let σ(E) denote the σ-field generated

by the intervals E = (−∞, t] where t ∈ R, then σ(E) = B(R).
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Proof. Let us denote by G the class of open subsets of the real line. First

one proves that E ⊆ σ(G) = B(R), then, this means that σ(G) is one of the

σ-fields entering the definition of σ(E) and one gets σ(E) ⊆ B(R). Indeed,

each interval (−∞, t] can be written as a countable intersection of open sets

(−∞, t] = ∩∞n=1(−∞, t + n−1), then, the intervals (−∞, t] belong to the Borel

σ-algebra, then E ⊆ B(R) and, as a consequence σ(E) ⊆ B(R). To prove that

B(R) ⊆ σ(E), one needs a representation of an open set as union, intersection

or complement of sets in σ(E). As any open set on the real line can be written

as a countable union of open intervals, it suffices to discuss open intervals of the

kind (a, b). They can be written as (a, b) = (−∞, b) ∩ (−∞, a]c and one further

has that (−∞, b) = ∪∞n=1(−∞, b − n−1]. This shows that G ⊆ σ(E) and, thus,

B(R) ⊆ σ(E).

Remark (Non-uniqueness of the characterization) Notice that the characteriza-

tion of the Borel σ-field is not unique.

B. Random variables

Based on the above discussion, it is possible to define measurable functions.

Definition (A\B-measurable function) Let X be a set with its σ-field A and

Y be another set with its σ-field B, then a function or map T : X → Y is

measurable if for each set B ∈ B the inverse image A = {x ∈ X : T (x) ∈ B}

belongs to A.

Remark (Notation for the inverse image) Notice that the inverse image of B

with respect to the function T is often denoted by T−1(B) or even T−1B. One

should be careful not to mix up this notation with the reciprocal of a function!

And a specialization of the above definition leads to the definition of random variable.

Definition (Random variable) A random variable, X, is a F\B(R)-measurable

function where F is the σ-field of the probability space Ω and B(R) is the Borel

σ-field.
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After defining a random variable as a measurable function from Ω to R, one needs a

method to use integrals defined on R in order to compute probabilities. This is provided by

the concept of image measure.

Definition (Image measure) Let µ be a measure on a σ-field A of subsets of

X and let T : X → Y be an A\B-measurable function where B is a σ-field of

subsets of Y . Then

ν(B) := µ(T−1B) (8)

defines a measure on B called the image measure of µ under T .

Remark (Image measure) To convince oneself that the image measure is a

measure, one can use the following facts: T−1(Bc) = (T−1B)c and T−1(∪iBi) =

∪iT−1Bi.

Definition (Distribution) The distribution, PX of a random variable X is the

inverse image of the probability measure P. In other words

PX(B) := P(X−1B), (9)

where B ∈ B(R).

Remark (Distribution) The distribution of a random variable X, denoted by

PX , is a probability measure on the probability space (R,B(R), PX). in other

words, it satisfies all the axioms of Kolmogorov’s theory for Ω replaced by R and

F replaced by B(R). This can be proved following the method outlined above

for proving that the inverse image of a measure is also a measure.

The distribution of a random variable is a measure on R; it is important to distinguish it

from the so-called distribution function a.k.a. cumulative distribution function. As intervals

of the kind (−∞, a] where a ∈ R belong to B(R), one can introduce the following definition:

Definition (Cumulative distribution function) The function

FX(x) = PX{(−∞, x]} = PX(X ≤ x) (10)

is called the cumulative distribution function of the random variable X.
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The cumulative distribution function has the following properties

Theorem (Properties of the cumulative distribution function) Let X be a ran-

dom variable and FX(x) its cumulative distribution function, then

1. FX(x) is increasing with limx→−∞ FX(x) = 0 and limx→+∞ FX(x) = 1;

2. FX(x) is right-continuous.

Proof. 1. is a consequence of the following facts. PX is a non negative measure

and if A ⊆ B then PX(A) ≤ PX(B); one can apply Dominated Convergence to

the sequences (−∞,−n] ↓ ∅ and (−∞, n] ↑ R when n→∞. 2. also follows from

Dominated Convergence applied to the sequence (−∞, x+ n−1] ↓ (−∞, x].

The complementary cumulative distribution function is an important concept in many

applications. It is also known as the survival function, especially for positive random vari-

ables.

Definition (Complementary cumulative distribution function) The function

ΨX(x) = 1− FX(x) = 1− P (X ≤ x) = P (X > x) (11)

is called complementary cumulative distribution function.

David Pollard writes in his book A User’s Guide to Measure Theoretic Probability that

the cumulative distribution function does not play any important role in modern probability

theory, except for the study of order statistics and for a method for building measures on

B(R) as images of Lebesgue measure. If one is interested in applications, it is hard to agree

with Pollard. However, it is useful to present the so-called quantile transformation as it is

the basis of many methods to generate pseudo-random numbers. Later in this section, also

order statistics will be discussed.

Example (Quantile transformation) Suppose that F (x) is a right-continuous

increasing function on R such that limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

Then, there is a probability measure P for which P{(−∞, x]} = F (x). It is
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possible to explicitly construct P by defining the quantile function q(t) = inf{x :

F (x) ≥ t} for t ∈ [0, 1]. The set {x ∈ R : F (x) ≥ t} is of the form [α,+∞)

because of right continuity of F (x) and α = q(t). In general, one has that

F (x) ≥ t if and only if x ≥ q(t) = α.

Notice that equations such as F (q(t)) = t are true only if F (x) is continuous

and strictly increasing. If m denotes the restriction of Lebesgue measure to the

Borel σ-field in (0, 1) one has that

P{(−∞, x]} = m{t : q(t) ≤ x} = m{t : t ≤ F (x)} = F (x);

the first equation is the definition of inverse measure, the second equality is a

consequence of the identity of sets. Then if a random variable ξ is uniformly

distributed in (0,1), its transform q(ξ) has cumulative distribution function F (x).

Many applied scientists are fond of another function: the probability density function.

In order to define it, one has to assume continuity of FX(x). Physicists often mix up the

probability density function with the probability distribution function.

Definition (Probability density function) If FX(x) is a continuous function,

then the probability density function is its first derivative with respect to x:

pX(x) =
dFX(x)

dx
. (12)

The following properties of the probability density function immediately follow from its

definition and from theorems on integrals. They are given without proof.

Theorem (Properties of the probability density function)

The probability density function has the following properties

1. From the probability density function to the cumulative distribution func-

tion

FX(x) =

∫ x

−∞
pX(u) du; (13)

2. Normalization of the probability density function∫ +∞

−∞
pX(u) du = 1; (14)
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3. If B ∈ B(R) then

PX(B) =

∫
B

pX(u) du; (15)

4. Relationship between the probability density function and the complemen-

tary cumulative distribution function 1

pX(x) = −dΨX(x)

dx
; (16)

5. Relationship between the probability density function and the complemen-

tary cumulative distribution function 2

ΨX(x) = 1−
∫ x

−∞
pX(u) du =

∫ +∞

x

pX(u) du. (17)

Using Dirac’s δ function, it is possible to use probability densities also when FX(x) is not

continuous.

Remark (Dirac’s δ function) Let us consider a random variable whose cumu-

lative distribution function is F (x) = θ(x) where θ(x) = 0 for x < 0 and

θ(x) = 1 for x ≥ 1 (incidentally, this function is called Heaviside θ-function

or step function in Physics and Engineering). This is a legitimate cumulative

density function as it is increasing, right-continuous, limx→−∞ θ(x) = 0 and

limx→+∞ θ(x) = 1. However, it is not continuous everywhere. Its derivative

vanishes for all x ∈ R except for x = 0 where the derivative does not exist. It

is however possible to rigorously define a mathematical object (a functional) as

the derivative of θ(x):

δ(x) :=
dθ(x)

dx
;

this object is called Dirac’s delta function. It was formally introduced by physi-

cist P.A.M. Dirac who used it without knowing its rigorous definition. The

functional δ(x) is a map from the class of continuous functions on R to real

numbers and maps every function f(x) to its value in 0. One usually uses the

following notation: ∫ +∞

−∞
f(x)δ(x) dx = f(0).

In particular, if f(x) = 1 on R one has that∫ +∞

−∞
δ(x) dx = 1;
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an immediate important consequence is that for c ∈ R∫ +∞

−∞
cδ(x) dx = c;

moreover one has that for a ∈ R∫ +∞

−∞
δ(x− a) dx = 1.

In summary, δ(x) represent the probability density of a random variable assum-

ing the value x = a with probability 1 whereas δ(x−a) is the probability density

of a random variable assuming the value x = a with probability 1. Consider now

a random variable X that assumes the value −1 with probability p and the

value +1 with probability q = 1 − p, based on the previous discussion, one can

represent its probability density function as pX(x) = pδ(x+ 1) + (1− p)δ(x− 1).

One often has to work with more than one random variable. The joint distribution and

the joint cumulative distribution function and probability density function are the objects

generalizing the previous concepts to random vectors.

Definition (Joint distribution) Let X and Y be two random variables defined

on the same probability space. Then T (ω) = (X(ω), Y (ω)) is a random vector

and it is a (measurable) map from Ω to R2. The image measure T(P) on B(R2)

is called the joint distribution of X and Y and it is often denoted by PX,Y .

Definition (Cumulative joint distribution function) The cumulative joint dis-

tribution function FX,Y (x, y) is defined as FX,Y (x, y) = PX,Y (X ≤ x ∩ Y ≤ y).

This relationship is often written as FX,Y (x, y) = PX,Y (X ≤ x, Y ≤ y).

Definition (Joint distribution function) The joint distribution function

pX,Y (x, y) is such that

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
pX,Y (u,w) dw du.

Definition (Marginals) The marginal distribution function FX(x) is defined as

FX(x) = lim
y→+∞

FX,Y (x, y) =

∫ x

−∞

∫ +∞

−∞
pX,Y (u,w) dw du;
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the marginal distribution function FY (y) is defined as

FY (y) = lim
x→+∞

FX,Y (x, y) =

∫ +∞

−∞

∫ y

−∞
pX,Y (u,w) dw du;

the marginal probability density function pX(x) is defined as

pX(x) =

∫ +∞

−∞
pX,Y (x,w) dw;

the marginal probability density function pY (y) is defined as

pY (y) =

∫ +∞

−∞
pX,Y (u, y) du.

The above definitions can be straightforwardly extended to include any number of random

variables. Based on the previous discussion, one can immediately derive joint distribution

functions for independent random variables.

Definition (Independent random variables) Two random variables are indepen-

dent if and only if their joint distribution function is the product of the marginals

FX,Y (x, y) = FX(x)FY (y)

as well as their joint probability density is the product of the marginals

pX,Y (x, y) = pX(x)pY (y)

It turns out that, in principle, the knowledge of the marginals is sufficient to characterize

the joint distribution function.

Remark (Copulas) Let us consider two random variables X and Y and their

joint cumulative distribution function, FX,Y (x, y). A theorem due to Sklar shows

that there exists a function C : [0, 1]2 → [0, 1] called the copula, such that

FX,Y (x, y) = C[FX(x), FY (y)]

where FX(x) and FY (y) are the two marginals. Moreover if the marginal cu-

mulative distribution functions are continuous then the copula is unique. This

result can be extended to an anrbitrary number of random variables. Notice
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that the independence copula is C(u, v) = uv. This result is important as, em-

pirically, marginal cumulative distribution functions are easier to evaluate than

joint probability distributions. Unfortunately, Sklar’s result is not constructive

and, for this reason, there are intense ongoing efforts to study the properties as

well as the applications of several copulas.

Example (Order statistics) Consider a random variable X characterized by

a probability density pX(x). Suppose to draw N real numbers out of the

distribution PX and to order them. What is the probability distribution of

the k-th number xk? The ordering procedure defines a new random variable

Xk, the real number in the k-th position in the list x1, . . . , xk, . . . , xN with

x1 ≤ . . . ≤ xk ≤ . . . ≤ xN . Then

pXk(x) = N

(
N − 1

k − 1

)
pX(x)[FX(x)]k−1[1− FX(x)]N−k.

This result can be justified as follows. Consider a particular draw, the k-th

number can be the first or the second, . . ., or the N -th drawn and this accounts

for the factor N in front of the density. pX(x) gives the probability of getting

the value x, the binomial factor takes into account that one has to choose k− 1

numbers out of N − 1 that are smaller than x and N − k + 1 numbers that

are larger than x. Finally, assuming independent draws, [FX(x)]k−1 = [PX(X ≤

x)]k−1 is the probability that k − 1 numbers are smaller or equal than x and

[1 − F (x)]N−k = [PX(X > x)]N−k is the probability that N − k numbers are

larger than x.

C. Expectation of random variables

It is now time to define the expectation of a random variable, sometimes called the

expected values as well as average or mean. It is, however, better to use the terms average

or mean for the statistical estimate of the expectation.

Definition (Expectation) The expectation or expected value of a random vari-

able X characterized by the distribution PX is the Lebesgue integral

E[X] =

∫
R
xPX(dx); (18)
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It can be proved that one has

E[X] =

∫
R
x dFX(x), (19)

and if the probability density pX(x) exists at least in the generalized sense de-

scribed above based on Dirac’s δ-functions, one has

E[X] =

∫
R
xpX(x) dx =

∫ +∞

−∞
xpX(x) dx. (20)

Here, as in all introductory probability texts, in practice, only definition (20) will be

used. Expectation is a number characterizing the “typical” value of a random variable. The

following properties, whose proof is left to the reader, are an immediate consequence of its

definition.

Theorem (Elementary properties of the expectation)

1. (Multiplication by a scalar) If X is a random variable and a ∈ R, then

E[aX] = aE[X];

2. (Sum of random variables) If X1, X2, . . . , XN are N random variables on

the same probability space, then

E[X1 +X2 + . . .+XN ] = E[X1] + E[X2] + . . .+ E[XN ].

The expectation of a function of a random variable X can be written in terms of the

distribution of X. The result below seems trivial, on the contrary it is an important theorem

not so easy to prove.

Theorem (Fundamental expectation theorem) If h(x) is a Borel measurable

function on R and X is a random variable then

E[h(X)] =

∫
R
h(x)PX(dx); (21)

if pX(x) exists one can write

E[h(X)] =

∫ +∞

−∞
h(x)pX(x) dx. (22)
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Remark (Trasformation of random variables) Given a random variable X, via

a Borel measurable function h(x), one can define the new random variable

Y = h(X) (a measurable function is needed to insure that Y is also F\B(R)-

measurable). Then one has PY (B) = P(Y −1(B)) where B is a Borel set.

C = h−1(B) is still a Borel set given that h(x) is Borel measurable. There-

fore, the inverse function Y −1(B) is Y −1(B) = X−1(h−1(B)) = X−1(C). In

other words one has

PY (B) = PX(C) = PX(h−1(B))

a relationship that can be used to build PY if PX is known. In particular, if

X has a continuous probability density, pX(x), and Y = h(X) where h is a

continuous function then

pY (y) =
∑

x∈h−1(y)

pX(x)

|h′(x)|
,

where h−1(y) is the counter-image of y and h′(x) the first derivative of h(x). For

a bijection

pY (y) =
pX(x)

|h′(x)|
.

Similar inversion formulae exist for functions of several random variables.

Remark (Probability density for the sum of two independent random variables)

An important transformation concerns the sum of two independent random vari-

ables X and Y defined on the same probability space. Let us assume that their

probability density functions, pX(x) and pY (y), exist at least in the generalized

form and let us define Z = X + Y . One then has

pZ(z) =

∫
u∈R

∫
w=z−u

pX,Y (u,w) dudw =∫
u∈R

∫
w∈R

δ(w − z + u)pX(u)pY (w) dudw =

∫
u∈R

pX(u)pY (z − u) du; (23)

as there is no reason to privilege integration over X, one can prove that

pZ(z) =

∫
u∈R

pX(u)pY (z − u) du =

∫
w∈R

pX(z − w)pY (w) dw; (24)
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in other words, the probability density of the sum of two independent random

variable is the convolution of the probability densities of the two random vari-

ables. This result can be extended to the sum of many independent random vari-

ables by repeated application of the rule for two random variables. If X1, . . . , XN

are N independent random variables with generalized probability density, then

if Z =
∑N

i=1Xi, one gets

pZ(z) =∫
uN∈R

· · ·
∫
u1∈R

pXN (uN)pXN−1
(uN−1 − uN) . . . pX1(z − u1) duN . . . du1. (25)

Now an important method will be introduced based on the so-called indicator function

and promoted by Bruno De Finetti.

Definition (Indicator function) Let A be a set A ⊆ X and x an element of X .

Then the indicator function IA(x) is

IA(x) =

1 if x ∈ A

0 otherwise.
(26)

By means of the indicator function one transforms a Boolean algebra into a Boolean ring.

Theorem (Properties of indicator functions) Let A and B be two sets, then one

has

1. (Indicator function of intersection)

IA∩B(x) = IA(x)IB(x);

2. (Indicator function of union)

IA∪B(x) = IA(x) + IB(x)− IA(x)IB(x).

Proof. The two results can be proved by showing that the first and the right-

hand side of the equations always coincide. As for the intersection, IA∩B(x) is

1 if and only if x ∈ A and x ∈ B. In this case both IA(x) and IB(x) are 1

and their product is 1. In all the other possible cases, IA(x)IB(x) vanishes. For
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what concerns the union, its indicator function is one if and only if x ∈ A or

x ∈ B. Now, if x ∈ A and x /∈ B as well as if x /∈ A and x ∈ B, the sum

IA(x) + IB(x) − IA(x)IB(x) is 1 as either IA(x) or IB(x) are 1 and the other

terms vanish. If x ∈ A and x ∈ B, then again the right hand side of the equality

is 1 as IA(x) = 1 and IB(x) = 1. In the remaining case, x /∈ A and x /∈ B, all

the three terms vanish.

Remark (Indicator function and random variables) Let (Ω,F ,P) be a proba-

bility space and let A ⊆ F be an event; the correspondence between A and its

indicator function IA establishes a correspondence between the σ-field F and a

subset of the collection of random variables on Ω. The expectation maps ran-

dom variables into real numbers in such a way that E[IA] = P(A). This can be

directly seen if one uses (R,B(R), PX), the Borel probability space where X is

a random variable and PX is the image measure. Let now B ⊆ B(R) be a Borel

set and let IB(x) be its indicator function. Then, assuming for simplicity the

existence of a (possibly generalized) probability density function pX(x), one has

the following chain of equalities

E[IB(x)] =

∫
R

IB(u)pX(u) du =

∫
B

pX(u) du = PX(B) = P(X−1B).

Remark (Again on the identification between expected value of the indicator

function and the probability of the corresponding set) Consider a probability

space(Ω,F ,P), then if A ⊆ F is an event we can formally write

P(A) =

∫
A

dP(ω); (27)

and as a consequence

E[IA] =

∫
Ω

IA(ω) dP(ω) =

∫
A

dP(ω) = P(A).

In other words, the identification between the expected value of the indicator

function and the probability of the event A becomes a trivial result. In the

following, equation (27) will be used to define conditional expectations.

Based on the above considerations De Finetti suggested to use the same symbol of a set

and for its indicator function and to use the same symbol for the probability of a set and
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the expectation of its indicator function. Here, these suggestions are not followed, but it is

useful to be aware of them. However, the identification between expectations of indicator

functions and probabilities of the corresponding sets can now be exploited to generalize a

theorem which was presented in the previous section.

Theorem (Inclusion-exclusion formula) Let A1, . . . , AN be N events, then the

probability of their union is given by

P(∪Ni=1Ai) =
N∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj) +
∑
i<j<k

P(Ai ∩ Aj ∩ Ak)

± . . .+ (−1)N+1P(A1 ∩ . . . ∩ AN). (28)

Proof. Formula (28) is a direct consequence of the analogous formula for indi-

cator functions. This can be derived by repeated application of the formula for

the union of two sets using the associative property of unions:

I∪Ni=1Ai
=

N∑
i=1

IAi−
∑
i<j

IAiIAj +
∑
i<j<k

IAiIAjIAk± . . .+(−1)N+1IA1 . . . IAN . (29)

Taking the expectation of both sides and recalling its identification with the

probability immediately leads to (28).

A celebrated application of the inclusion-exclusion formula is to the so-called matching

problem.

Example (The matching problem). At a dance N girls and their N boyfriends

are paired at random. What is the probability of the event B “no girl dances

with her boyfriend”? Consider the event Ai defined as “girl i dances with

her boyfriend”. The event ∪Ni=1Ai means “at least one girl dances with her

boyfriend”, therefore P(B) = 1 − P(∪Ni=1). In order to apply equation (28)

one first has to compute the probabilities P(Ai), P(Ai ∩ Aj), etc.. Now, one

has that P(Ai) = (N − 1)!/N ! = 1/N . Indeed, there are N ! possible out-

comes as girls as well as boyfriends can be numbered from 1 to N and there

are N ! possible permutations of boyfriends. Now if girl i dances with her

boyfriend, there are still (N − 1)! permutations for the other pairs. Similarly,
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P(Ai ∩Aj) = (N − 2)!/N ! = 1/N(N − 1). These results can also be justified as

follows. The probability that girl i matches with her boyfriend is 1/N as there

are N possible dance partners and only one is her boyfriend. The second result

is a consequence of the definition of conditional probabilities

P(Ai ∪ Aj) = P(Ai)P(Aj|Ai)

and, as before, PiAi) = 1/N whereas P (Aj|Ai) = 1/(N − 1) as girl i is already

paired with her boyfriend. Both lines of reasoning lead to

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik) =
1

N(N − 1) . . . (N − k + 1)
.

Notice that this result does not depend on the particular value of the indices,

therefore, to apply (28), it is enough to count the number of terms in the sums

on the right-hand side and they are

(
N

k

)
when the intersection of k sets is

considered. Now, one has that(
N

k

)
=
N(N − 1) . . . (N − k + 1)

k!
,

and finally

P(∪Ni=1) = N
1

N
− N(N − 1)

2

1

N(N − 1)
± . . .+ (−1)N+1 1

N !

= 1− 1

2!
+

1

3!
± . . .+ (−1)N+1 1

N !
. (30)

If N is large enough the answer to the original question is

P(B) = 1− P(∪Ni=1) ' 1− e−1.

The expectation as well as the fundamental expectation theorem allow to define the

moments of a distribution.

Definition (Moments of a distribution) Let X be a random variable and PX its

distribution, the k-th moment of the distribution (k ∈ N) is

µk = E[Xk]. (31)

If the expectation gives a typical value of a random variable X, the variance characterizes

its deviations from this typical value.
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Definition (Variance) The variance of a random variable X is

var(X) = E[(X − E[X])2]. (32)

The variance is also called second central moment as it is the second moment of the random

variable Y = X − E[X] centred around zero expectation. The following properties of the

variance are immediate consequences of the definition. Their proof is left as an exercise to

the reader.

Theorem (Properties of variance) If X is a random variable and a ∈ R one has

1. (multiplication by a constant)

var(aX) = a2var(X)

2. (variance and moments)

var(X) = E[X2]− E2[X] = µ2 − µ2
1.

Definition (Uncorrelated random variables) Two random variables X and Y

defined on the same probability space are uncorrelated if

E[XY ] = E[X]E[Y ] (33)

Theorem (Independence and absence of correlations) If X and Y are two inde-

pendent random variables then they are uncorrelated.

Proof. The proof will be presented for two random variables with joint proba-

bility density function pX,Y (x, y) = pX(x)pY (y). One has the following chain of

equalities

E[XY ] =

∫
R

∫
R
xypX,Y (x, y) dx dy =

∫
R

∫
R
xypX(x)pY (y) dx dy =(∫

R
xpX(x) dx

)(∫
R
ypY (y) dy

)
= E[X]E[Y ],

thanks to theorems of Fubini-Tonelli type for multiple integrals.

Notice that, in general, the converse is not true. Uncorrelated random variables

are not independent.
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Definition (Covariance) Given two random variables defined on the same prob-

ability space their covariance is

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]. (34)

The following theorem is a consequence of the definition. The proof is left to the reader.

Theorem (Covariance) If X and Y are two random variables on the same prob-

ability space then

cov(X, Y ) = E[XY ]− E[X]E[Y ].

An immediate corollary if this theorem is that the covariance of two uncorrelated random

variables vanishes.

Corollary (Covariance of uncorrelated random variables) Two random variables

X and Y on the same probablity space are uncorrelated if and only if cov(X, Y ) =

0.

D. Conditional expectation

The concept of conditional expectation is very important in modern probability theory as

it is used to define important classes of stochastic processes (random variables as a function

of time).

Definition (Conditional probability space) Given a probability space (Ω,F ,P)

and an event C, the conditional probability of any event A given C can be used

to define a new probability space with P replaced by PC , where for any A ∈ F

PC(A) = P(A|C) =
P(A ∩ C)

P (C)
.

The new probability space is (Ω,F ,PC). Given a random variable X defined

on the original probability space, it becomes natural to define a new random

variable X|C whose probability distribution PX|C is the image measure with

respect to PC ; for any borel set B ∈ B(R) one has

PX|C(B) = PC(X−1B) =
P(X−1B ∩ C)

P(C)
,
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and one can define the conditional distribution function as well as the conditional

probability density function

FX|C(x) = PX|C(X|C ≤ x) =
P(X−1[X ≤ x] ∩ C)

P(C)
,

and

pX|C(x) =
dFX|C(x)

dx
.

Example (Conditional probability put into practice) Consider a random vari-

able X on a probability space (Ω,F ,P) and a Borel set B ⊆ B(R). Define

C = X−1(B), then one can use the previous definitions to get

FX|C(x) = FX(x|B) = FX(x|x ∈ B) =
PX [(X ≤ x) ∩B]

PX(B)

and the conditional cumulative probability distribution function can be written

as a ratio of two integrals.

Definition (Conditional expectation) The expectation of a random variable X

defined on a probability space (Ω,F ,P) has been defined via the image measure

PX as

E[X] =

∫
R
xPX(dx),

but one has that PX(dx) = P(X−1dx), let us denote by dω the inverse image of

dx then

E[X] =

∫
Ω

X(ω)P(dω).

In the same way, one can define the conditional expectation

E[X|C] =

∫
Ω

X(ω)PC(dω) =

∫
C

X(ω)PC(dω) =
1

P(C)

∫
C

X(ω)P(dω).

Remark (Conditional expectation of the indicator function) Given an event A

and its indicator function IA, not surprisingly one has

E[IA|C] =
1

P(C)

∫
C

IA(ω)P(dω) =
1

P(C)
P(A ∩ C) = P(A|C).

In other words, the conditional expectation of IA given C coincides with the

probability of A given C.
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Definition (Conditional expectation with respect to a σ-field) Let (Ω,F ,P) be

a probability space and consider a partition of Ω into an exhaustive class of

mutually disjoint sets Ci. Further consider the smallest σ-field G ⊂ F generated

by the partition. Let X be a random variable on the probability space and

assign to each ω ∈ Ci the value E[X|Ci]. This is a function from Ω to R and it

is measurable with respect to the σ-field G as well as with respect to F which

contains G. Then this function is a random variable. It is denoted by the symbol

E[X|G] and can be defined as

E[X|G] =
∑
i

E[X|Ci]ICi(ω). (35)

In this way, one also defines a new measure PG such that PG(G) = P(G) if G ⊆ G

and a corresponding probability space (Ω,G,PG). Notice that any G ⊆ G can

be written as G = ∪i∈ICi for some set of indices I and one has

P(G)E[X|G] =

∫
G

X(ω)P(dω) =
∑
i∈I

∫
Ci

X(ω)P(dω) =
∑
i∈I

P(Ci)E[X|Ci].

Indeed, using the definition of (Ω,G,PG), one also has that

P(G)E[X|G] =

∫
G

X(ω)P(dω) =

∫
G

E[X|G]PG(dω). (36)

The latter chain of equalities means that from E[X|G] by integration with respect

to an event G ⊆ G one gets E[X|G]. For this reason it is possible to call (35) the

expectation conditioned to the σ-field G and not only the expectation conditioned

to the partition. An important property of E[X|F ] is that its average coincides

with the unconditional average of the random variable X, that is

E[E[X|G]] = E[X]. (37)

This result is an immediate consequence of the definition (35). One has the

following chain of equalities (recalling that {Ci} is a partition of Ω):

E[E[X|G]] = E

[∑
i

E[X|Ci]ICi

]
=
∑
i

E[X|Ci]E[ICi ] =
∑
i

E[X|Ci]P(Ci) =

P(Ci)

P(Ci)

∑
i

∫
Ci

X(ω)P(dω) =
∑
i

∫
Ci

X(ω)P(dω) =

∫
Ω

X(ω)P(dω) = E[X].
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It is possible to extend the above construction to a generic σ-field G ⊂ F by

using equation (36) and defining E[X|G] as the random variable G(ω) such that∫
G

G(ω)PG(dω) =

∫
G

X(ω)P(dω)

for any event G ⊆ G. Based on a theorem due to Radon and Nikodym one can

show that such a random variable exists and is uniquely determined except for

a set of measure zero. Notice that, by definition, if X is G measurable then

E[X|G] = X.

Example (Conditional expectation with respect to a random variable) Consider

two random variables X and Y on a probability space (Ω,F ,P), let X ⊂ F be

the σ-field generated by the inverse images of Borel sets. One can now define

the conditional average with respect to X as follows∫
X−1B

E[Y |X ]PX (dω) =

∫
X−1B

Y (ω)P(dω)

for any Borel set B ⊆ B(R). Now, it is possible to show that the function defined

above is constant for any point X−1(a) for a ∈ R and, therefore, it is a function of

the random variable X. The symbol E[Y |X] is normally used for the expectation

of Y conditioned to X. One can also show that E[Y |X](ω) = E[Y |X = a] for

ω = X−1(a).

The following theorem lists some important properties of conditional expectations which

will be given without proof.

Theorem (Some properties of conditional expectation) Conditional expectation

has the following properties

1. (Average of conditional expectation) E[E[X|G]] = E[X];

2. If X is G-measurable then E[X|G] = X;

3. (Linearity) E[aX + bY |G] = aE[X|G] + bE[Y |G];

4. (Positivity) If X ≥ 0 then E[X|G] ≥ 0;

5. (Tower property) If H is a sub-σ-field of G then E[E[X|G]|H] = E[X|H];

43



6. (Taking out what is known) If Z is G-measurable and bounded then

E[ZX|G] = ZE[X|G].

7. (Independence) If H is independent of σ(σ(X),G) then E[X|σ(H,G)] =

E[X|G]. In particular, if X is independent of G on has that E[X|G] = E[X].

Before ending this section, the reader must be warned that this introductory section on

conditional probabilities and conditional expectation is not fully rigorous. The reference list

contains textbook where the interested student can find a complete treatment of conditional

expectations.

IV. INTRODUCTION TO STOCHASTIC PROCESSES

As mentioned in the previous section, in order to fully appreciate the importance of con-

ditional expectation, one has first to define the concept of stochastic process. Unfortunately,

it is impossible to reasonably discuss stochastic processes without reference to measure the-

oretic concepts. Here, stochastic processes in discrete time will be first introduced. Later,

a non rigorous discussion of two important stochastic processes in continuous time will be

presented. After reading this section you should be able to

• Define a stocastic process;

• Define martingales in discrete time and derive some of their properties;

• Define the simple random walk.

A. Finite dimensional distributions

Definition (Stochastic process) A family of ranom variables depending on the

parameter t ∈ T , where T is an arbitrary set is called random function. One

can write the symbol Xt or X(t) to denote the family, but it is necessary to

keep in mind that this is an application from T × Ω to R and one should write

X(t, ω). If T is a subset of real numbers and t is interpreted as time, then one

uses the term stochastic process to denote the random function X(t). If T is

made up of integer numbers one can call the corresponding stochastic process
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as discrete stochastic process or as a random sequence or a sequence of random

variables. A stochastic process is usually described in terms of finite dimensional

distributions. For each k-tuple (t1, . . . , tk), of distinct elements of T , the random

vector (X(t1), . . . , X(tk)) has over Rk some joint finite dimensional distribution

µX(t1),...,X(tk)

µX(t1),...,X(tk)(H) = P [(X(t1), . . . , X(tk)) ∈ H] (38)

for any Borel set H ⊆ B(Rk). Two consistency conditions follow from (38).

The first consistency condition is a symmetry requirement. Suppose that

H = H1 × . . . × Hk can be written as cartesian product of Hi ∈ B(R), as

(X(t1), . . . , X(tk)) ∈ H1 × . . . ×Hk this must be true also for any permutation

(π1, . . . , πk) of the indices and (X(tπ1), . . . , X(tπk)) ∈ Hπ1× . . .×Hπk is the same

event. Therefore, for any permutation of the indices one must have that

µX(t1),...,X(tk)(H1 × . . .×Hk) = µX(tπ1 ),...,X(tπk )(Hπ1 × . . .×Hπk). (39)

The second consistency condition is the relationship between µX(t1),...,X(tk−1) and

µX(t1),...,X(tk):

µX(t1),...,X(tk−1)(H1 × . . .×Hk−1) = µX(t1),...,X(tk)(H1 × . . .×Hk−1 × R); (40)

indeed, (X(t1), . . . , X(tk−1)) ∈ H1×. . .×Hk−1 if and only if (X(t1), . . . , X(tk)) ∈

H1 × . . .×Hk−1 × R.

Finite dimensional distributions coming from a stochastic process obey the two

consistency conditions (39) and (40). Conversely, by means of Kolmogorov’s

constructive existence theorem, one can show that given measures satisfying

the two consistency conditions, there exists a stochastic process having these

measures as finite dimensional distributions. Kolmogorov’s existence theorem

can be used to prove the existence of a given stochastic process, if one can write

explicitly the finite dimensional distributions and prove that they satisfy the two

consistency conditions.

B. Discrete stochastic processes

Let now T coincide with the set of natural numbers N. The value X(t = n, ω) of the

stocastic process at time (or step) t = n will be denoted by Xn(ω) or, simply, by Xn.
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Definition (Filtered space) A filtered probability space is a quadruple

(Ω,F , {Fn},P) where (Ω,F ,P) is a usual probability space and {Fn : n ≥ 0} is

a filtration - an increasing family of sub-σ-fields of F :

F0 ⊆ F1 ⊆ . . . ⊆ F .

The σ-field F∞ is defined as

F∞ = σ (∪∞i=0Fi) ⊆ F .

Usually {Fn} is the natural filtration, that is Fn is the σ-field generated by the

random variables X0, . . . , Xn: Fn = σ(X0, . . . , Xn) and the information about

ω that one has at step n (or better, just after step n) consists of the values

X0(ω), . . . , Xn(ω).

Definition (Adapted process) A process X = (Xn : n ≥ 0) is called adapted

to the filtration {Fn} if, for each n, Xn is Fn-measurable. Recalling property 2

of conditional averages this means that E[Xn|Fn] = Xn or, in other words, that

the value of Xn is known at step n.

Definition (Martingale, submartingale, supermartingale) A process X = (Xn :

n ≥ 0) on a filtered probability space (Ω,F , {Fn},P) is called a martingale if

1. X is adapted;

2. E[|Xn|] <∞ ∀n;

3. E[Xn|Fn−1] = Xn−1 (n ≥ 1).

The martingale is a rigorous statement of the intuitive concept of fair game. If,

the first two properties are satisfied, but E[Xn|Fn−1] ≤ Xn−1 for n ≥ 1, one has

a supermartingale and if E[Xn|Fn−1] ≥ Xn−1 for n ≥ 1, one has a submartingale.

If the random variable X0 is L1(Ω,F0,P), then X is a martingale (repectively

supermartingale, submartingale) if and only if (X −X0 : Xn −X0, n ∈ Z+) is a

martingale (supermartingale, submartingale). For this reason, it is sufficient to

study martingales (supermartingales, submartingales) with X0 = 0.
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Theorem (Consequence of the tower property) If X = (Xn : n ≥ 0) is a

martingale then E[Xn|Fm] = Xm for m < n− 1.

Proof. Fm ⊆ Fi is a sub-σ-field of Fi for m + 1 ≤ i ≤ n− 1 therefore repeated

applications of the tower properties show that

E[Xn|Fm] = E[Xn|Fn−1|Fm] = E[Xn−1|Fm] = . . .E[Xm+1|Fm] = Xm.

Example (Sum of independent random variables with zero mean: Random

walk) Consider a sequence of independent random variables X1, X2, . . . with

E(|Xk|) <∞, ∀k and E(Xk) = 0, ∀k. Define

Sn =
n∑
k=1

Xk, S0 = 0; (41)

The stochastic process S is called a random walk and it has independent in-

crements by construction. Let us define the filtration Fn = σ(X1, . . . , Xn),

F0 = (∅,Ω). Then, for n ≥ 1, one has

E[Sn|Fn−1] = E[Sn−1|Fn−1] + E[Xn|Fn−1] = Sn−1 + E[Xn] = Sn−1,

where the first equality is a consequence of the linearity of the conditional expec-

tation, and the second equality uses property 2 and property 7 (independence);

finally, the last equality is a consequance of the definition of S. In other words,

the above chain of equalities shows that the sum of independent random variables

with zero mean is a martingale.

Example (Product of non-negative independent random variables with mean 1)

Consider a sequence of independent non-negative random variables X1, X2, . . .

with E(Xk) = 1, ∀k. Let us consider the same filtration as in the previous

example and the process

Mn = X1X2 . . . Xn, M0 = 1;

then for n ≥ 1, one has

E[Mn|Fn−1] = E[Mn−1Xn|Fn−1] = Mn−1E[Xn] = Mn−1,
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where the first equality is based on the definition of the process, the second is a

consequence of property 6 (taking out what is known) and property 7 (indepen-

dence); finally, the third and last equality again follows from the definition of the

process. In other words, the above chain of equalities shows that the product of

independent random variables with mean 1 is a martingale.

These two examples are quite important both in finance and in economic theory. The

random walk is used as a simple model of price fluctuations in financial markets. This idea

was introduced by L. Bachelier in his PhD thesis published in 1900. Multiplicative models

have been used to describe the growth of firms at least since Gibrat’s work published in the

1930’s.

A process with independent increments with zero mean is a martingale. The converse is

not true; however, one can prove that a martingale has uncorrelated increments.

Theorem (A martingale has uncorrelated increments) Let the process S be a

martingale with respect to the filtration {Fn}, then S has uncorrelated incre-

ments.

Proof. Consider the increments Xn = Sn−Sn−1 and Xn+1 = Sn+1−Sn, one has

to show that E[Xn+1Xn] = 0. Indeed, one has the following chain of equalities

E[Xn+1Xn] = E[(Sn+1−Sn)(Sn−Sn−1)] = E[E[(Sn+1−Sn)(Sn−Sn−1)]|Fn−1]] =

E[(Sn+1 − Sn)E[(Sn − Sn−1)|Fn−1]] = 0,

where the second equality is a consequence of the fact that (Sn+1−Sn)(Sn−Sn−1)

is Fn−1-measurable, the third equality uses the property “taking out what is

known” and the last equality uses the fact that S is a martingale and that the

expected value of a constant (0 in this case) is the constant itself.

Example (The efficient market hypothesis) In discrete time, the efficient market

hypothesis can be stated as a (sub)martingale hypothesis on the price process.

Suppose there is a market with two assets: a risky asset (a share paying div-

idends) and a risk-free asset (a zero-coupon bond). let rA(t, t + 1) denote the

return of the risky asset in a period and rF (t, t + 1) denote the return of the
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risk-free asset in the same period. At the beginning of the period the return of

the risk-free asset is known, whereas the return of the risky asset is

rA(t, t+ 1) =
PA(t+ 1) +DA(t, t+ 1)− PA(t)

PA(t)
,

where PA(t) represents the price of the risky asset at time t and DA(t, t + 1)

is the dividend paid by the risky asset A in the period, but it is not known

at the beginning of the period as PA(t) as well as DA(t, t + 1) are stochastic

processes. However, given the information available at time t, the beginning of

the period, if the expected return of the risky asset were systematically higher

that the return of the risk-free asset, in principle one could borrow money at

the risk-free rate and use it to invest in the risky asset in order to get a gain

at the end of the period. Analogously, if the expected return of the risky asset

were systematically lower than the risk free return, in principle one could sell

short the risky asset, invest the money in the riskless asset in order to get a

gain at the end of the period. Both these schemes would violate the principle

of no-arbitrage that in a market there is “no free lunch”. Therefore, one is led

to impose that the expected return on the risky asset be equal to the risk-free

return:

E[rA(t, t+ 1)|I(t)] = rF (t, t+ 1), (42)

where I(t) represents the information available at the beginning of the period.

In order to better understand the implications of equation (42) on the price

process PA(t), assume that the risky asset pays no dividend in the period and

that the risk-free rate is a constant, rF , then one gets (if rF > 0):

E[PA(t+ 1)|I(t)] = (1 + rF )PA(t) ≥ PA(t),

and (if rF = 0)

E[PA(t+ 1)|I(t)] = PA(t);

this means that either the price process is a submartingale or it is a martingale

with respect to the filtration represented by I(t). Notice that, in a real market,

I(t) is usually larger than the natural filtration used in probability theory which

is only based on the past history of the process. A consequence of the martingale
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property is that serial correlations between increments of the price process as

well as returns are ruled out. Empirical analyses on stock shares or stock indices

fluctuations show that this is the case. However, uncorrelated increments does

not mean that the increments are independent and, indeed, independence is also

ruled out by empirical analyses.

V. MARKOV CHAINS

The purpose of this section is

VI. POISSON PROCESS

The purpose of this section is

VII. WIENER PROCESS

The purpose of this section is

Appendix A: Some important distributions

The purpose of this section is to present some important distributions that are widely

used in the applications. The main focus is on discrete distributions. Every complete

introductory textbook on probability theory contains a list of important distributions and

their main properties.

Discrete distributions

Consider a countable sample space Ω and use F = PΩ as its σ-field as done above in

the remark on probabilities on a countable space. Now, given a random variable X on a

countable sample space, its image T ′ = {X(ω) : ω ∈ Ω} is either finite or countably infinite

and the usual definition of distribution

PX(A) = P(ω : X(ω) ∈ A)) = P(X−1A) = P(X ∈ A)
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defines a probability measure on T ′ equipped with the σ-field PT ′ of all subsets of T ′. T ′ is

at most countable and, therefore, the distribution is completely determined by the numbers

pX,j = P(X = j) =
∑

{ωi:X(ωi)=j}

pi.

The family (pX,j : j ∈ T ′) is also called the distribution or the law of X. One has that

PX(A) =
∑

j∈A pX,j. If PX is a known distribution, for instance the Poisson distribution,

one can say that X is a Poisson random variable.

Remark (Expected value for a discrete random variable) Let X be a random

variable on a countable probability space (Ω,F = PΩ,P), then the expected

value of X is given by

E[X] =
∑
i

X(ωi)pi =
∑
j∈T ′

jpX,j =
∑
j∈T ′

jP(X = j), (43)

provided either the series is absolutely convergent or X ≥ 0. In the latter case

one can also have E[X] = +∞.

An important class of inequalities follow from the next theorem.

Theorem (Basic inequality) Let h : R→ [0,∞) be a non-negative function and

let X be a random variable. Then

P({ω : h(X(ω)) ≥ a}) ≤ E[h(X)]

a
, (44)

for any positive constant a.

Proof. Let Y = h(X) and consider the set

A = {Y −1[a,∞)} = {ω : h(X(ω)) ≥ a} = {h(X) ≥ a};

then h(X) ≥ aIA. Now, given two positive random variables Y and Z on the

same probability space and such that Y ≥ Z, using the properties of integrals,

one can show that E[Y ] ≥ E[Z]. Using Y = h(X) and Z = aIA one has

E[h(X)] ≥ E[aIA] = aE[IA] = aP(A) = aP({ω : h(X(ω)) ≥ a}).
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This theorem has the so-called Markov’s inequality as its immediate corollary, where

h(X) = |X|:

Corollary (Markov’s inequality) If X is a random variable, then

P({|X| ≥ a}) ≤ E[|X|]
a

. (45)

Corollary (Chebyshev’s inequality 1) Consider a random variable X, then for

any positive constant a one has

P({|X| ≥ a}) ≤ E[X2]

a2
. (46)

Proof. Also this inequality follows from (44). It is sufficient to notice that the

set {|X| ≥ a} coincides with the set {X2 ≥ a2} and use h(X) = X2:

P({|X| ≥ a}) = P({X2 ≥ a2}) ≤ E[X2]

a2
.

Corollary (Chebyshev’s inequality 2) If Y = |X−E[X]| replaces X in (46), one

gets

P({|X − E[X]| ≥ a}) ≤ var(X)

a2
; (47)

this inequality is also called Bienaymé-Chebyshev inequality.

Coming back to discrete distributions, in principle any sequence of non-negative terms

summing to 1 is allowed. In practice, there are some sequences that recur in the description

of natural phenomena. They will be described in the following.

Example (The Poisson distribution) The Poisson distribution of parameter λ >

0 is defined as

pX,n = P(X = n) = e−λ
λn

n!
; n ≥ 0 (48)

The expected value is λ:

E[X] =
∞∑
j=0

jP(X = j) =
∞∑
j=0

j
λj

j!
e−λ = λ

∞∑
j=1

λj−1

(j − 1)!
e−λ = λeλe−λ = λ.
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Example (The Bernoulli distribution) X has the Bernoulli distribution if X

assumes only two values 0 and 1. Usually {X = 1} corresponds to success and

P({X = 1}) = p whereas {X = 0} corresponds to failure and P({X = 0}) =

q = 1−p. The expected value of X is E[X] = 1 ·p+ (1−p) ·0 = p. The variance

of X is given by var(X) = E[X2]− E2[X] = p− p2 = p(1− p) = pq.

Example (Binomial distribution) X has the binomial distribution if, for given

n, X can only assume the values {0, 1, . . . , n} with

P({X = k}) =

(
n

k

)
pk(1− p)n−k (49)

where p ∈ [0, 1] and n are the two parameters of the distribution. Suppose

one performs n times an experiment following Bernoulli’s distribution and let

Y1, . . . , Yn be the corresponding Bernoulli random variables. The random walk

X =
∑n

i=1 Yi has the binomial distribution and

E[X] = E

[
n∑
i=1

Yi

]
=

n∑
i=1

E[Yi] = np.

The variance of X can be computed by noting that the Yi are independent

and identically distributed random variables. Therefore, E[YiYj] = 0 for i 6= j.

Therefore one has

var(X) = n var(Yi) = npq.

Both results can be also directly obtained by computing sums such as

E[X] =
n∑
i=0

iP(X = i) =
n∑
i=0

i

(
n

i

)
pi(1− p)n−i,

but this is more painful.

Example (The hypergeometric distribution) A typical model for the binomial

distribution is called sampling with replacement from an urn. Suppose that in

a box there are r red balls and b black balls and that a success corresponds to

extracting a black ball. After an extraction, the color of the ball is recorded and

then it is returned to the box, the box is mixed and a new ball is extracted and

so on. If this experiment is repeated n times, p = b/(r + b), X is the number of

successes, one shows that P(X = j) follows the binomial distribution.
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If the same experiment is performed without replacing the ball, then one gets

the hypergeometric distribution. Again consider an urn with r red balls and

b black balls and let N = r + b be the total number of balls. Let n be the

number of trials or samples taken from the urn. Then the probability of getting

j black balls out of n can be computed according to the classical definition of

probability. n balls are drawn without replacement from the box. The total

number of possible cases is given by the number of possible choices of n objects

out of N . This is the binomial coefficient

(
N

n

)
. Again, success is a black ball. If

the total number of favourable cases is j, one has first to select j black balls out of

b and then n−j red balls out of N−b. Therefore the number of favourable cases

is

(
b

j

)(
N − b
n− j

)
. As a consequence, a random variable has the hypergeometric

distribution of parameters (N, b, n) if

P(X = j) =

(
b

j

)(
N − b
n− j

)
(
N

n

) , (50)

for 0 < n < N . If N and b are large the hypergeometric distribution can be

approximated by the binomial distribution of parameter p = b/N when the

total number of trials is small, n << N . Indeed, in this case, removing a few

balls from the urn does not change much its composition. The expected value

of a hypergeometric random variable is E[X] = nb/N = np. Its variance is

var(X) = n p(1− p)N−n
N−1

.

Example (Geometric distribution) Let us consider a sequence of independent

Bernoulli trials. Instead of fixing the number of trials n, one is now interested in

achieving a certain given number of successes. If this number is one, the random

variable X denoting the number of trials needed to have one success follows the

so-called geometric distribution

P(X = j) = (1− p)j−1p. (51)

The expected value of a random variable following the geometric distribution is

E[X] =
∞∑
j=1

jP(X = j) =
∞∑
J=1

j(1− p)j−1p = p
∞∑
j=1

jqj−1 = p
d

dq

(
1

1− q

)
=

1

p
.

The variance is var(X) = (1− p)/p2.
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Example (Negative binomial distribution) Now suppose to go on with Bernoulli

trials until the r-th success takes place. If one consider a single sequence of these

trials, with r successes and j failures, its probability is pr(1− p)j. The number

of such sequences can be determined by observing that the last element of each

sequence must be a success. Then, one has to choose j failures out of r + j − 1

positions in the sequence and if the failures define the random variable X

P(X = j) =

(
j + r − 1

j

)
pr(1− p)j. (52)

This is the Pascal (or negative binomial) distribution. If one is interested in the

total number of trials necessary to see r successes, then one can define a new

random variable Y = X + r. As the total number of trials to see one success

follows the geometric distribution, and trials are independent, the total number

of trials to see r successes is a sum of r independent and identically distributed

geometric random variables, {Zi}ri=1, of parameter p: Y =
∑r

i=1 Zi. One has

that E[Y ] = r/p and E[X] = E[Y ]− r = r(1− p)/p.

Continuous distributions

Appendix B: Elements of measure theory

Include a discussion of dominated convergence.
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Else, Italian translation Chance, Raffaello Cortina Editore, Milano, 2005.
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[2] P. Billingsley, Probability and Measure, Third Edition, Wiley, New York, 1995.

This is a standard reference for contemporary measure-theoretic probability theory. It includes

a discussion of Kolmogorov’s existence theorem and its application to the Wiener process.

[3] N. Bouleau, Processus stochastiques et applications, Hermann, Paris, 2000.
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A nice introductory textbook on stochastic processes written for engineers in the rigorous

tradition of French math texbooks. It is available only in French.

[4] C. Conti, Probabilità e valore nelle scienze sociali, Mazzotta Editore, Milano, 1975.

This book, available only in Italian, discusses the history of probabilistic concepts in the social
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A recent textbook written for beginners and for a short course on probability theory. It does
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of probability theory.

[11] C.M. Monti and G. Pierobon, Teoria della probabilità, Decibel Editore, Padova and Zanichelli

Editore, Bologna, 2000.

This is a textbook for Italian engineers. It contains many exercises and examples.

[12] D. Pollard, A User’s Guide to Measure Theoretic Probability, Cambridge University Press,

2002.
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This is an advanced textbook on measure-theoretic probability. Read this first and Billingsley’s

treatise will have no more misteries for you.

[13] R. Schilling, Measures, Integrals and Martingales, Cambrige University Press, Cambridge,

2005.

Everything you need on measure theory and more! A contemporary treatise you can read

before or together with Billingsley’s book.

[14] G. Shafer and V. Vovk, Probability and Finance. It’s only a game, Wiley, New York, 2001.

If you forget about the title, you will have in your hands a book where the authors try to

reconstruct probability theory based on a game-theoretic approach. The approach mediates

between the frequentist and the subjectivist points of view and many classical results are

recovered in the game-theoretic framework. Chapter 2 (on the historical context) is very

interesting.

[15] M.R. Spiegel, Real Variables, McGraw Hill, New York, 1969.

A classical elementary introduction to measure theory, Lebesgue integration and Fourier series.

[16] D.W. Stroock, An introduction to Markov Processes, Springer Verlag, Berlin, 2000.

There are plenty of books devoted to Markov processes. Stroock himself is fond of the book by

Karlin and Taylor (S. Karlin and H. Taylor, A First Course in Stochastic Processes, Academic

Press, New York, 1975). Stroock’s book contains a review of results on Markov processes and

discusses reversible Markov processes and their application to Monte Carlo simulations.

[17] N.N. Taleb, The Black Swan, Penguin Books, London, 2008.

This is not the best, but the most successful of the writings by N.N. Taleb. The book contains a

criticism of classical probability theory as well as of the way in which it is used in mathematical

finance. According to Taleb, probability theory deals with a sort of tamed, predictable chance,

whereas the events in human history are essentially unpredictable.

[18] A.D. Ventsel, Kurs teorii sluciajnych prozessov, Italian translation Teoria dei processi stocas-

tici, Editori Riuniti, Roma, 1983.

This is a book of the Russian school on stochastic processes. It contains an overview of many

methods used in the theory. The book was written based on the lectures made by the author

in 1969 at Moscow University.

[19] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge, 1991.

This textbook is a recommended introduction to measure-theoretic probability. Even if it has
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introductory character, it contains rigorous proofs of the strong law of large numbers, a topic

usually discussed only in advanced textbooks or monographs. Moreover, here, the student can

learn most of martingale theory for discrete stochastic processes and then read one of the good

treatises on stochastic integrals with profit.
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