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Forecasting Stationary Time Series

There are two main goals to record and to analyze the data of a
time series:

1 to understand the structure of the time series

2 to predict future values of the time series

In this lesson, we consider the second goal:

to predict future values of a time series
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h-step-ahead prediction of a stationary process

Let {xt} be a stationary process. Let h > 0 be an integer.

We consider the problem of predicting the value xT+h in terms of
the values

ΩT = {xT , xT−1...}

up time T .
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h-step-ahead prediction of a stationary process

Let us denote this h-step-ahead forecast at time T by x̂T ,h.

Any function of the random variables xT , xT−1..., can be
considered like an h-step-ahead prediction.
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h-step-ahead prediction of a stationary process

Which is the best?
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h-step-ahead prediction of a stationary process

The accuracy of forecasts is evaluated by some loss function,
L(xT+h, x̂T ,h), that represents the penality or cost when we predict
x̂T ,h but the outcome is xT+h.
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h-step-ahead prediction of a stationary process

A typical loss function is the Mean Square Error (MSE) defined
by

MSE(x̂T ,h) = E [(xt+h − x̂T ,h)2]

We suppose that the forecaster’s objective is to minimize the MSE.
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h-step-ahead prediction of a stationary process

It can be shown that the optimal (minimum MSE) h-step-ahead
forecast of xT+h at time T is the conditional expectation

E [xT+h|ΩT ]
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h-step-ahead prediction of a stationary process

In other terms, if x̂T ,h is any h-step predictor at time T , we have
that

MSE(x̂T ,h) ≥ MSE(E [xT+h|ΩT ])
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Forecasting ARMA processes

Consider a causal ARMA(p, q) process

xt = ν + φ1xt−1 + ...+ φpxt−p + ut + θ1ut−1 + ...+ θqut−q

To simplify the discussion, it is assumed that the actual coefficients

{ν, φ1, ..., φp, θ1, ..., θq}

and current and past realizations of xt and ut are known to the
researcher.
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Forecasting ARMA processes

The process is causal so that it has an MA representation

xt = µ+ ut + ψ1ut−1 + ... = µ+
∞∑
i=0

ψiut−i

with
µ =

ν

1−
∑p

i=0 φi
.
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Forecasting ARMA processes

We also assume that our process is invertible so that it has an AR
representation

xt = γ + π1xt−1 + π2xt−2 + ...+ ut = γ +
∞∑
i=1

πixt−i + ut

with

γ =

(
1 +

∞∑
i=1

πi

)
µ
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Forecasting ARMA processes

The AR and MA representations show that for this process the
information in

{xT , xT−1...}

can be equivalently be represented as

{uT , uT−1...}

since each ut can be computated from the past and present xs ,
s ≤ t and each xt can be obtained from the past and present us ,
s ≤ t.
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Forecasting ARMA processes

Assuming in addition that ut and us are independent and not only
uncorrelated for s 6= t we can now determine the conditional
expectation E [xT+h|ΩT ], that is optimal (minimum MSE)
h-step-ahead forecast of xT+h at time T .
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Forecasting ARMA processes

For istance, for h = 1

x̂T ,1 = E [xT+1|ΩT ] = ν + φ1E [xT |ΩT ] + ...+ φpE [xT+1−p|ΩT ]

+E [uT+1|ΩT ] + θ1E [uT |ΩT ] + ...+ θqE [uT+1−q|ΩT ]

= ν + φ1xT + ...+ φpxT+1−p + θ1uT + ...+ θquT+1−q
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Forecasting ARMA processes

For an arbitrary positive h we get

x̂T ,h = ν+φ1x̂T ,h−1+...+φp x̂T ,h−p+θhuT +...+θquT+h−q if h ≤ q

and
x̂T ,h = ν + φ1x̂T ,h−1 + ...+ φp x̂T ,h−p if h > q

With these formulas, forecast can be computed recursively.
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Forecasting ARMA processes

To illustrate these formulas we consider the MA(3) process

xt = ν + ut + θ1ut−1 + θ2ut−2 + θ3ut−3
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Forecasting ARMA processes

For this process

x̂T ,1 = ν + θ1uT + θ2uT−1 + θ3uT−2

x̂T ,2 = ν + θ2uT + θ3uT−1

x̂T ,3 = ν + θ3uT

x̂T ,h = ν ∀h ≥ 4
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Forecasting ARMA processes

As the MA(3) process has a memory of only 3 periods, all forecasts
4 or more steps ahead collapse to the intercept (the mean).
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Forecasting ARMA processes

Now, we consider a causal AR(2) process

xt = ν + φ1xt−1 + φ2xt−2 + ut
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Forecasting ARMA processes

For this process

x̂T ,1 = ν + φ1xT + φ2xT−1

x̂T ,2 = ν + φ1x̂T ,1 + φ2xT

x̂T ,3 = ν + φ1x̂T ,2 + φ2x̂T ,1

x̂T ,h = ν + φ1x̂T ,h−1 + φ2x̂T ,h−2 ∀h ≥ 3
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Forecasting ARMA processes

Alternatively, the optimal predictor can be determined using the
AR or MA representation of xt

x̂T ,h = γ +
∞∑
i=1

πi x̂T ,h−i

x̂T ,h = µ+
∞∑
i=h

ψiuT+h−i
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The forecast error

From the formula

x̂T ,h = µ+
∞∑
i=h

ψiuT+h−i

the forecast error is easy to obtain.
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The forecast error

We have

ex ,T+h = xT+h − x̂T ,h =
∑h−1

i=0 ψiuT+h−i
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The forecast error

The forecast is unbiased since the expected error is zero

E [xT+h − x̂T ,h] =
h−1∑
i=0

ψiE [uT+h−i ] = 0
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The forecast error

The variance of the forecast error is

σ2
h = E

(h−1∑
i=0

ψiuT+h−i

)2
 = σ2

u

h−1∑
i=0

ψ2
i
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Interval forecast

We note that if ut ∼ i .i .N(0, σ2), then

xT+h − x̂T ,h
σh

∼ N(0, 1)

where σh is the square root of σ2
h.
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Interval forecast

Denoting by zα the upper α100 percentage point of the standard
normal distribution we get

1− α = P

(
−zα/2 ≤

xT+h − x̂T ,h
σh

≤ zα/2

)
.

Hence, a (1−α)100% interval forecast h periods ahead for xT+h is[
x̂T ,h − zα/2σh, x̂T ,h + zα/2σh

]
.
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Interval forecast

The meaning of this interval is the following. If the forecast
interval is computed repeatedly from a large number of realizations
of the considered stochastic process, then (1− α)100% of the
intervals will contain the actual value (the realization) of the
random variable xT+h.
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Predictability of a stochastic process

Following Granger and Newbold (1976), we define as a measure of
predictability of a stochastic process xt ; t ∈ Z, with finite variance,
the index

R2
x = 1−

var(ex ,T+1)

Var(xt)
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Predictability of a stochastic process

We note that R2
x ∈ [0, 1].

If R2
x = 0 the process xt t ∈ Z is unpredictable;

If R2
x = 1 the process xt t ∈ Z is perfectly predictable.
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Predictability of a stochastic process

Now, we suppose that xt t ∈ Z is an ARMA(p, q) causal and
invertible stochastic process,

xt = ν+φ1xt−1+...+φpxt−p+ut+θ1ut−1+...+θqut−q, ut ∼WN(0, σ2)

The innovation uT+1 is the corresponding one-step forecast
error.Thus we have

R2
x = 1− σ2

Var(xt)
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Predictability of a stochastic process

The index R2
x can be related to the coefficients {ψ1, ψ2, ...} of the

MA representation of xt .
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Predictability of a stochastic process

Since

Var(xt) =

1 +
∞∑
j=1

ψ2
j

σ2,

we obtain

R2
x = 1− 1

1 +
∑∞

j=1 ψ
2
j

=

∑∞
j=1 ψ

2
j

1 +
∑∞

j=1 ψ
2
j

.

We call the sequence {ψj} ψ-weights; they represent the
dependence structure of the series.
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Predictability of a stochastic process

A series with small ψ-weights (with a few structure) will be less
predictable than one with large ψ-weights (a series with more
structure).Thus, this predictability measure provides a synthetic
evaluation of the dependence structure of a stationary time series.
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Predictability of a stochastic process

In general, we can define a measure of predictability relative to a
h-steps forecast by

R2
x (h) = 1−

Var(ex ,T+h)

Var(xt)
= 1−

1 +
∑h−1

j=1 ψ
2
j

1 +
∑∞

j=1 ψ
2
j

=

∑∞
j=h ψ

2
j

1 +
∑∞

j=1 ψ
2
j

.

This predictability index is utilised by Hong and Billings (1999) and
for h = 1 coincides with the index proposed in Granger and
Newbold (1976).
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Evaluating the performance of forecasting methods

Suppose that
x̂T+h = g(xT , xT−1, ...; θ̂),

is a forecasting methods used to forecast xT+h for
h = 1, 2, ...,N.How good is the forecast?
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Evaluating the performance of forecasting methods

After we have observed the real values xT+h, h = 1, 2, ...,N, we
can calculate the forecast errors

ex ,T+h = xT+h − x̂T+h h = 1, 2, ...,N
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Evaluating the performance of forecasting methods

Various accuracy measures, based on these errors, have been used
to evaluate the performance of forecasting methods. We will
present three performance measures
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Evaluating the performance of forecasting methods

mean squared error (MSE)

root mean squared error (RMSE)

mean absolute percent error (MAPE)
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Evaluating the performance of forecasting methods

The most common measure is the mean squared error (MSE). It is
defined as

MSE =
1

N

N∑
h=1

e2
x ,T+h
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Evaluating the performance of forecasting methods

A widely used measure of overall accuracy of a forecasting method
is the root mean squared error (RMSE). The RMSE statistic is
defined as follows

RMSE =

√∑N
h=1 e

2
x ,T+h

N
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Evaluating the performance of forecasting methods

Another common criterion used in comparing performance of
forecast models is the mean absolute percent error (MAPE).The
MAPE statistic is defined as follows

MAPE =
100

N

N∑
h=1

∣∣∣∣ex ,T+h

xT+h

∣∣∣∣
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Evaluating the performance of forecasting methods

The MSE, RMSE, and MAPE measure the magnitude of the
forecast errors. Better models will show smaller values for these
statistics.
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Evaluating the performance of forecasting methods

Each of these measurements has different advantages and
limitations. Often the square root of MSE (RMSE) is used so as to
preserve the units. RMSE, however, does not provide information
about the relative magnitude of the forecast error. Hence, using
more than one performance measure is always recommended.
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The reliability of ARMA time series forecasts

Some example of forecasts:

”I think there is a world market for about five computers” -
Founder of IBM in 1947

”There is no reason for any individual to have a computer in
their home” - President Digital Equipment in 1977

”Stock prices have reached what looks like a permanently high
plateau” - Yale Professor of Economics in September 1929
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The reliability of ARMA time series forecasts

It’s not easy to make good forecasts!
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The reliability of ARMA time series forecasts

However, these are judgmental forecasts.In this lecture we are
interested to the ARMA time series forecasts.
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The reliability of ARMA time series forecasts

Are the ARMA time series forecasts reliable?
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The reliability of ARMA time series forecasts

A reliable ARMA time series forecast requires that the future is not
too different from the past.

In other terms, it requires that xT+h will be drawn from the same
DGP that generated the previous observations.
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The reliability of ARMA time series forecasts
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The reliability of ARMA time series forecasts

If the future is too different from the past the ARMA model will
produce biased forecasts.

In particular, if a structural break will occur between T and T + h,
then xT+h will be drawn from a different DGP from that has
generated the previous observations.
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The reliability of ARMA time series forecasts
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The reliability of ARMA time series forecasts

The ARMA model is mis-specified for new DGP and then
any forecast, based on this model, is wrong.

Umberto Triacca Lesson 16: Forecasting Stationary Time Series



Advantages of ARMA models

Advantages:

1 constitutes a flexible class of models;

2 provide unconditional forecasts;

3 models are parsimonious with respect to coefficients;
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Disadvantages of ARMA models

Disadvantages:

1 requires large number of observations for model identification
(at least 50 and preferably 100 observations should be
available to build a proper model);

2 need a long series of data without structural change;

3 the amount of subjective input at the identification stage
make them somewhat more of an art than a science
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