Introduction 00	The Model	Empirical Validation	Source of Business Cycles	Conclusions O

The Econometrics of Agent-Based Macromodels:

Assessing the Source of Business Cycles Employing an Evolutionary, Agent-Based Model

Andrea Roventini^{1,2}

andrea.roventini@univr.it
http://dse.univr.it/

¹Sant'Anna School of Advanced Studies, Pisa (Italy)

²University of Verona, Verona (Italy)

INET-DIME Workshop, Budapest, September 2010

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	The Model	Empirical Validation	Source of Business Cycles	Conclusions
•0	000	000000000000000000000000000000000000000	0000000	0
Motivati	ONS Models and Econd	ometrics		

- Agent-based models (ABMs) seem to be a promising way to develop an alternative microfounded macroeconomics
 - descriptive purposes: replication and explanation of micro and macro stylized facts
 - normative purposes: policy implications
- What is the relationships between ABMs and econometrics and empirical validation in general?
 - useful references: Fagiolo et al, Computational Economics, 2007; Delli Gatti et al 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

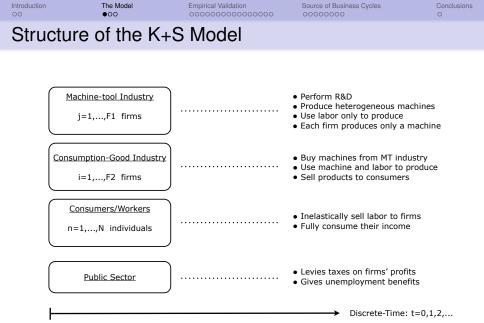
Introduction O●	The Model	Empirical Validation	Source of Business Cycles	Conclusions O
Motivat	ions			

• Endogenous vs. exogenous theories of business cycles

• exogenous theories are dominant, but ...

Explaining the Source of Business Cycles

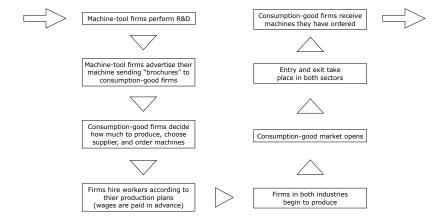
- Zarnowitz (1985) "purely stochastic explanation (of business cycles) have no theoretical content"
- Irving Fisher (1925), business fluctuations cannot be considered like "the cycles superstitious gamblers believe at casinos"
- Heterogenous vs. aggregate sources of shocks
- Propagation mechanisms and the role of microeconomic interaction between agents
- Contributing to this debate assessing the empirical performance of the Keynes+Schumpeter (K+S) model (Dosi, Fagiolo and Roventini, JEDC, forthcoming)


Introduction	The Model	Empirical Validation	Source of Business Cycles	Conclusions O
Motivati	ons			

• Endogenous vs. exogenous theories of business cycles


• exogenous theories are dominant, but ...

Explaining the Source of Business Cycles


- Zarnowitz (1985) "purely stochastic explanation (of business cycles) have no theoretical content"
- Irving Fisher (1925), business fluctuations cannot be considered like "the cycles superstitious gamblers believe at casinos"
- Heterogenous vs. aggregate sources of shocks
- Propagation mechanisms and the role of microeconomic interaction between agents
- Contributing to this debate assessing the empirical performance of the Keynes+Schumpeter (K+S) model (Dosi, Fagiolo and Roventini, JEDC, forthcoming)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

What Happens in a Generic Time Step?

Circulation	Otrata and			
00	000	000000000000000000	0000000	0
Introduction	The Model	Empirical Validation	Source of Business Cycles	Conclusions

Simulation Strategy

- Choose initial conditions and systems parameters
- **2** Generate a simulation run for t = 1, ..., T
- Analyze qualitative and quantitative results
- Redo Steps 1-3 performing a Monte Carlo exercise to
 - Wash away across-simulations variability introduced by stochastic components
 - Negligible across-simulations stochastic variability
 - Limited number of replications as robust proxy for time-series behavior
 - Study how different initial conditions and system parameters affect the statistics of interest
 - Initial conditions do not dramatically affect results
 - Focus on sensitivity analysis of system parameters
- Replication of stylized facts (output validation) as a pre-requisite for policy analysis ("what happens if")

Introduction 00	The Model ○O●	Empirical Validation	Source of Business Cycles	Conclusions O
Simulation	n Strategy			

- Choose initial conditions and systems parameters
- **2** Generate a simulation run for t = 1, ..., T
- Analyze qualitative and quantitative results
- Redo Steps 1-3 performing a Monte Carlo exercise to
 - Wash away across-simulations variability introduced by stochastic components
 - Negligible across-simulations stochastic variability
 - Limited number of replications as robust proxy for time-series behavior

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Study how different initial conditions and system parameters affect the statistics of interest
 - Initial conditions do not dramatically affect results
 - Focus on sensitivity analysis of system parameters

 Replication of stylized facts (output validation) as a pre-requisite for policy analysis ("what happens if")

Introduction OO	The Model	Empirical Validation	Source of Business Cycles	Conclusions O
Simulation	n Strategy			

- Choose initial conditions and systems parameters
- **2** Generate a simulation run for t = 1, ..., T
- Analyze qualitative and quantitative results
- Redo Steps 1-3 performing a Monte Carlo exercise to
 - Wash away across-simulations variability introduced by stochastic components
 - Negligible across-simulations stochastic variability
 - Limited number of replications as robust proxy for time-series behavior
 - Study how different initial conditions and system parameters affect the statistics of interest
 - Initial conditions do not dramatically affect results
 - Focus on sensitivity analysis of system parameters
- Replication of stylized facts (output validation) as a pre-requisite for policy analysis ("what happens if")

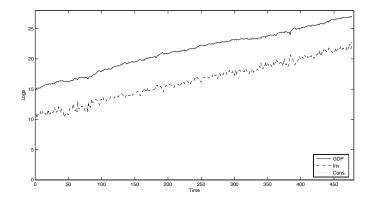
Introduction 00	The Model	Empirical Validation	Source of Business Cycles	Conclusions O

Validating the K+S Model

- ABMs are much more complex than standard, e.g. RBC, macroeconomic models
- The model should then be able at least to match the same macroeconomic stylized facts of standard models
- The model should also be able to match the largest number of microeconomic stylized facts
- This is relevant because standard macroeconomic models are not usually able to match any microeconomic stylized fact

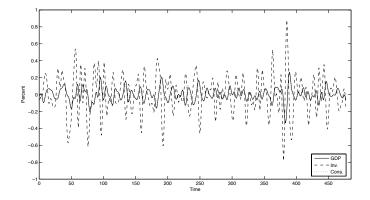
The Mo

Empirical Validation


Source of Business Cycles

Conclusions O

Macroeconomic Stylized Facts


The K+S model is able to account for a rich ensemble of macro stylized facts

- 1) endogenous growth with endogenous business cycles
- 2) investment more volatile than GDP; consumption less volatile than GDP
- 3) relative standard deviations of employment, unemployment rate, real wage and inflation in line with the empirical evidence
- 4) consumption, net investment and change in inventories procyclical and coincident variables
- 5) procyclical employment; countercyclical unemployment
- 6) procyclical productivity
- 7) countercyclical prices; procyclical inflation
- 8) countercyclical mark-ups
- 9) total credit procyclical and coincident
- 10) bankruptcy rates procyclical and lagging
- 11) quasi-Laplace fat-tailed distributions (see Fagiolo, Napoletano and Roventini, 2008, J. of Appl. Econometrics)
- 12) output and consumption appear to be cointegrated

 Conclusions

Bandpassfiltered GDP, Consumption, and Investment

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - の々で

The Model

Empirical Validation

Source of Business Cycles

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions O

GDP, Consumption and Investment Statistics

	Output	Consumption	Investment
Avg. growth rate	0.0254	0.0252	0.0275
	(0.0002)	(0.0002)	(0.0004)
Dickey-Fuller test (logs)	6.7714	9.4807	0.2106
Dickey-Fuller test (Bpf)	-6.2564*	-5.8910*	-6.8640*
Std. Dev. (Bpf)	0.0809	0.0679	0.4685
	(0.0007)	(0.0005)	(0.0266)

Table: Monte Carlo simulation standard errors in parentheses. Asterisks (*): Significant at 95% level

The Model

Empirical Validation

Source of Business Cycles

Conclusions O

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Relative Standard Deviations

Series (x)	$\sigma(\mathbf{x})/\sigma(\mathbf{y})$
Output Consumption Investment Employment Unemployment rate Real wage Inflation	1 0.8389 5.7880 0.8044 0.6654 0.5318 0.1907
Innation	0.1907

Introd	uctio	n
00		

_

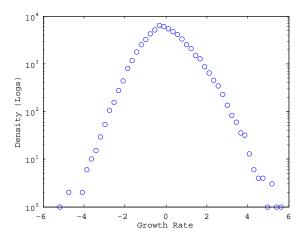
The Model

Empirical Validation

Source of Business Cycles

Conclusions O

Correlation Structure


Series			Outp	out (bpf 6,3	2,12)		
bpf 6,32,12	t-3	t-2	t-1	t	t+1	t+2	t+3
Output	0.177	0.548	0.870	1	0.870	0.548	0.177
Consumption	0.098	0.426	0.756	0.953	0.925	0.685	0.339
Investment	-0.312	-0.265	-0.086	0.184	0.447	0.595	0.576
Net Investment	0.039	0.219	0.401	0.511	0.504	0.385	0.210
Ch. in Invent.	0.118	0.235	0.295	0.257	0.133	-0.020	-0.132
Employment	-0.190	0.080	0.408	0.669	0.756	0.645	0.407
Unempl. Rate	0.208	-0.060	-0.392	-0.6601	-0.755	-0.649	-0.411
Productivity	0.308	0.532	0.711	0.767	0.666	0.438	0.166
Price	0.318	0.270	0.092	-0.164	-0.395	-0.507	-0.469
Inflation	0.084	0.311	0.446	0.402	0.197	-0.063	-0.248
Mark-up	0.160	0.041	-0.099	-0.204	-0.236	-0.197	-0.123

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

roduction	The Model	Empirical Validation	Source of Business Cycles	Conclu
)	000	0000000000000000	0000000	0

GDP Growth-Rate Distribution

Intro

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Empirical Validation

Source of Business Cycles

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions O

Output and Consumption Cointegration

The Model

- Empirical evidence suggests that output and consumption are cointegrated (e.g. Greene, 2007)
- We test for cointegration on the artificial series generated by the model
- Results
 - according to the Engle-Granger methodology, output and consumption are cointegrated
 - the Johansen methodology delivers more mixed results

he Model

Empirical Validation

Source of Business Cycles

Conclusions O

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Microeconomic Stylized Facts

 The K+S model is able to account for a rich ensemble of micro (firm-level) cross-section stylized facts (Dosi, 2007)

- 1) productivity dispersion among firms is large
- 2) inter-firm productivity differentials are persistent over time
- 3) firm size distributions are right skewed (and even more skewed than log-normal distributions)
- firms growth rates can be proxied by fat-tailed quasi-Laplace densities
- investment lumpiness (coexistence of firms investing a lot and investing almost-zero, see Gourio & Kashyap, J. Mon. Econ., 2007)
- bankruptcy rates can be proxied by power-law densities (see Fujiwara, 2004, Di Guilmi et al. 2003)

Introduction 00	The Model	Empirical Validation	Source of Business Cycles	Conclusions O

Firms' Productivity Moments

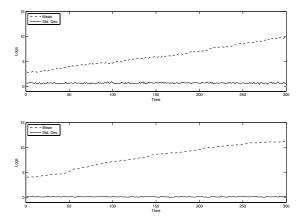


Figure: 1st panel: capital-good firms; 2nd panel: consumption-good firms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Model

Empirical Validation

Source of Business Cycles

Conclusions O

Persistence of Productivity Differentials

Industry	t-1	t-2
Capital-good	0.5433 (0.1821)	0.3700 (0.2140)
Consumption-good	0.5974 (0.2407)	0.3465 (0.2535)

Table: Standard deviations in parentheses

The Model

Empirical Validation

Source of Business Cycles

Conclusions O

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Firm Size Distributions: Are Distributions Log-Normal?

Industry	Jarque-Bera		Lilliefors		Anderson-Darling	
	stat.	p-value	stat.	p-value	stat.	p-value
Capital-good	20.7982	0	0.0464	0	4.4282	0
Consumption-good	3129.7817	0	0.0670	0	191.0805	0

Table: Size distribution are even more skewed than log-normal distribution in line with the empirical evidence

The Model

Empirical Validation

Source of Business Cycles

Conclusions O

Growth-Rate Distributions: Subbotin Estimation

Series b		Subbotin F std. dev.	s std. dev.	
Capital-good firms	0.5285	0.0024	0.4410	0.0189
Consumption-good firms	0.4249	0.0051	0.0289	0.0037
Output	1.4673	0.0122	0.0775	0.0004

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction	The Model	Empirical Validation	Source of Business Cycles	Conclusions
00	000	000000000000000000	0000000	0

Investment Lumpiness

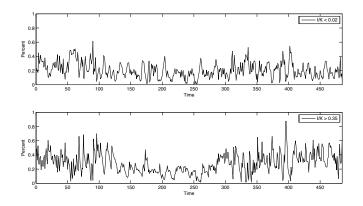


Figure: 1st panel: share of firms with (near) zero investment; 2nd panel: share of firms with investment spikes uction The Model Empirical Validation Source of Business Cycles

Firms' Bankruptcy Rate Distribution

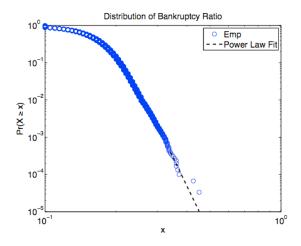


Figure: empirical distribution of bankruptcy rates together with power-law fit

イロト イポト イヨト イヨト

= 900

The Model

Empirical Validation

Source of Business Cycles

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions O

Explaining Business Cycle Dynamics

The K+S model endogenously generate business cycles

What's their source?

- investment instability as in genuine Keynesian theory of fluctuations
- micro interactions between heterogenous firms lead to coordination failures and give rise to business cycles

• What does the model tell in the Frisch-Slutstky framework?

• Let us consider the Blanchard-Quah (BQ) decomposition

The Model

Empirical Validation

Source of Business Cycles

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions O

Explaining Business Cycle Dynamics

The K+S model endogenously generate business cycles

What's their source?

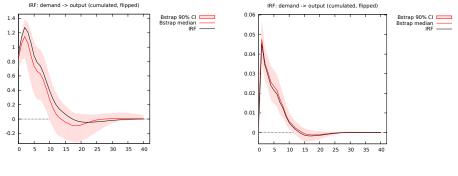
- investment instability as in genuine Keynesian theory of fluctuations
- micro interactions between heterogenous firms lead to coordination failures and give rise to business cycles
- What does the model tell in the Frisch-Slutstky framework?
- Let us consider the Blanchard-Quah (BQ) decomposition

Empirical Validation

Source of Business Cycles

Conclusions O

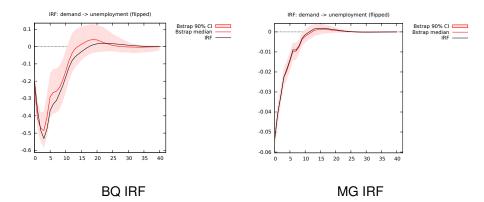
The Blanchard and Quah (1989) Identification Strategy


- Consider a VAR with output and unemployment
- Two sources of shocks: supply and demand

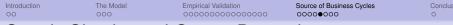
Assumptions:

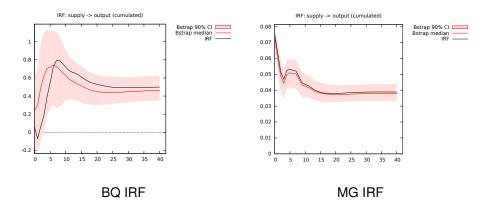
- supply shocks have permanent effects on output
- demand shocks have temporary effects on output
- both shocks have transitory effects on unemployment
- These assumptions allow to identify the VAR and to compute the impulse response functions (IRF)
- We can then compare the empirically observed IRF with the ones generated by our model

Demand Shocks and Output Dynamics Blanchard-Quah (BQ) vs. Model-Generated (MG) Impulse Response Functions (IRF)

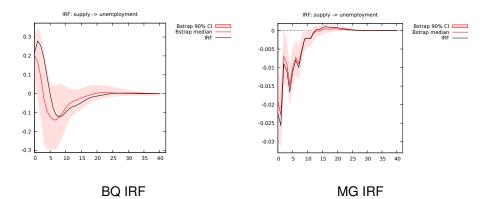

BQ IRF

MG IRF


▲□▶▲□▶▲□▶▲□▶ □ のQ@


Blanchard-Quah (BQ) vs. Model-Generated (MG) Impulse Response Functions (IRF)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Supply Shocks and Output Dynamics Blanchard-Quah (BQ) vs. Model-Generated (MG) Impulse Response Functions (IRF)

Supply Shocks and Unemployment Dynamics Blanchard-Quah (BQ) vs. Model-Generated (MG) Impulse Response Functions (IRF)

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○ ○

The Model

Empirical Validation

Source of Business Cycles

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions O

Explaining Busines Cycles: The K+S vs. RBC Models

• The K+S model builds an artificial world and therefore its "true structure" is known to the analyst

The K+S and RBC models produce the same IRFs, but

- by construction, the K+S model has no aggregate supply shocks
- indeed business cycles endogenously stem from demand instability grounded on micro interactions between heterogenous firms

The M

Empirical Validation

Source of Business Cycles

Understanding the Source of Business Cycles

- Does the Blanchard-Quah methodology let the data speak freely?
- Very strong identification and misleading assumptions underlying the IRFs:
 - aggregate, exogenous shocks
 - only supply shocks have permanent effects
- The K+S model almost matches the IRFs even with multiple persistent demand shocks
- Are the IRFs generated applying the BQ methodology useful to discern between alternative business-cycle theories?
- Exercises in ABM time series suggest that they lead in the wrong direction

The Model

Empirical Validation

Source of Business Cycles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

What Are the Ways Forward?

- The importance of the underlying statistical model
- The general-to-specific LSE approach
- Cointegrated VAR
- Which identification strategies, if any, in an ABM world?