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Abstract

Almost no economic time series is either weakly or strictly stationary: distributions of economic
variables shift over time. Thus, the present treatment of expectations in economic theories of inter-
temporal optimization is inappropriate. It cannot be proved that conditional expectations based on
the current distribution are minimum mean-square error 1-step ahead predictors when unanticipated
breaks occur, and consequentially, the law of iterated expectations then fails inter-temporally. A
second consequence is that dynamic stochastic general equilibrium models are intrinsically non-
structural.
JEL classifications:C02, C22.
Keywords: Inter-temporal optimization; Conditional expectations; Law of iterated expectations;
Unanticipated breaks

1 Introduction

It is well known that economies experience intermittent unexpected changes (see Stock and Watson,
1996, and Barrell, 2001), some of which have significant effects on the state of, and operations within,
the economic system. The financial crisis leading to the recessions round the world during 2007–2010 is
simply the most recent example. Such changes, or more precisely structural breaks, not only lead to diffi-
culties in economic forecasting (see Clements and Hendry, 2001), but also in the formulation of economic
models of the economy. The latter is not simply a matter of modeling in the face of structural breaks,
but confronts a deeper problem. The mathematical derivations of dynamic stochastic general equilib-
rium (DSGE) models and new Keynesian Phillips curves (NKPCs), both of which incorporate ‘rational
expectations’, fail to recognize that when there are unanticipated changes, conditional expectations are
neither unbiased nor minimum mean-squared error (MMSE) predictors, and that better predictors can
be provided by robust devices. As a consequence, the law of iterated expectations then does not hold as
an inter-temporal relation unless all distributional shifts are perfectly anticipated by all economic agents,
a possibility contradicted by the recent financial crisis. Further, given the prevalence of such changes,
learning about the post-change scenario is both difficult, and itself generates further non-stationarities.

The paper is organized as follows. Section 2 notes the important role that expectations play in many
areas of decision making, especially in financial markets. The relationship between the process that
generates the data we observe (DGP) and models thereof is discussed briefly in section 3, as well as the

∗We are grateful to Jennifer L. Castle, Gunnar Bärdsen, Søren Johansen, Bent Nielsen and Ragnar Nymoen for their valuable
comments on a previous version of the paper.
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effects of unanticipated changes in the DGP. The fact that the conditional expectation is not an unbiased
predictor and need not have minimum mean-squared error whenthere are location shifts is proved in
section 4. It is shown in section 5 that when there are such shifts, the law of iterated expectations does
not hold inter-temporally. Section 6 discusses the implications of these results for models founded on
inter-temporal optimization such as DSGE models, and showsthat on theoretical grounds, these models
cannot be structural. The value of having a modeling methodology that can produce relevant, reliable,
and robust econometric models generally but especially foreconomic policy analysis, is described in
section 7, emphasizing the important role that automatic model selection can play. Conclusions are
provided in section 8.

2 Expectations

Expectations play an important role in most financial markets and many economic theories, including
DSGE models. Central banks use interest rates for inflation ‘targets’ based on expected, or forecast,
levels of inflation and related variables one or two years ahead. Nevertheless, it is unclear how accurate
agents’ expectations of future variables are in practice, including even sophisticated agents. For example,
despite a substantive investment in modeling and forecasting – and a committee of experts to advise it
(the Monetary Policy Committee) – the Bank of England still significantly mis-forecasts CPI inflation
(see Bank of England, 2008, with inflation later rising well outside the range in its ‘fan chart’). Equally,
almost no oil price forecasts for 2008 included a price near the $147 high, nor below the $40 per barrel
that eventuated. Although exchange rates are a key financialprice, Nickell (2009) shows the consensus
forecast systematically mis-forecasting by a large marginover a long time period. Equally, the near
collapse of many of the world’s largest financial institutions in 2008–2009 reveals how inaccurate their
expectations of asset values have proved to be. These examples show that it is very difficult to form
accurate expectations about future events, with the primary cause of such failures being location shifts,
when the means of future distributions differ from those of the current distribution (see Clements and
Hendry, 1998).

0 20 40 60 80 100

50

100

150

Broken trend
(a)

0 20 40 60 80 100
1.0

1.5

2.0
Step shift

(b)

0 20 40 60 80 100
0.0

0.5

1.0 Impulse
(c)

x1,t x2,t 

0 20 40 60 80 100

-2.5

0.0

2.5

Changing all VAR(1) parameters
(d)

x1,t x2,t 

-1 0 1 2 3 4

0

5

Changing collinearity
(e)

1975 1980 1985 1990

10.75

11.00

11.25

11.50 Changing measurements
(f)

Figure 1:Six different breaks

2



The converse is also true: it can be difficult to discern some breaks and harder still to determine
their source. Figure 1 illustrates six different types of break which all occur in practice, alter future
distributions when they do so, and require careful modelingto capture their effects. A trend break (panel
a) can take some time to detect, despite its immense long-runimpact, partly because of the ‘noisiness’ of
economic time series from cycles and shocks, but also because such breaks must perforce be relatively
small. A shift from economic growth at a quarterly rate of 0.5to one of 1.0 would double living standards
in 18 rather than 36 years, yet corresponds to a coefficient change from 0.005 to 0.01 on a linear trend in
a log-linear process, or in the intercept of a model expressed in I(0) variables. A step shift (panel b) is the
first difference of a trend break, and would be equally undetectable for such a small effect as a change in
growth, but could correspond to a general location shift of any magnitude, so is usually detectable, and in
Clements and Hendry (1998) is analytically derived as the main cause of forecast failure. Panel c shows
the first difference of a location shift, which can be conflated with a large shock, albeit that these have
very different implications for impulse-response analyses in the absence of a correct weak exogeneity
specification (as shown in Hendry and Mizon, 2000), and integrates to a location shift inI(1) processes.
Panel d often surprises, as there is no obviously visible break in the data shown, which was generated
by a first-order bivariate vector autoregression (VAR(1)) where every coefficient was changed by 30-40
error standard deviations (σ) , and the intercepts by more than100σ. Thus, some breaks can be very
difficult to detect, even when they are massive (see e.g., Hendry, 2000). Conversely, false perceptions
of breaks can also be induced: panel e shows an apparent breakassociated with forecast failure when
in fact the model in question is constant, and the break is in the collinearity between the conditioning
variables–see Castle, Fawcett and Hendry (2010b). The finalpanel, f, is a much-studied data series where
the measurement of the opportunity cost of holding money wasaltered by legislative fiat, and induced
dramatic forecast failure in models that failed to use the new measure (as shown), whereas models which
shifted to the new measure maintained constant parameters:see e.g., Hendry (2006).

Thus, after a shift in the probability distribution needed to calculate future expectations, agents cannot
immediately ‘know’ the new form. Rather they have a complicated learning task to undertake, involving
a signal extraction problem as to what, if anything, has shifted, when it shifted, what aspects shifted, and
by how much they have shifted, requiring many observations after the break to ascertain. The difficulties
even of learning in a relatively constant environment are well known (see e.g., Evans and Honkapohja,
2001, and Young, 2004). Yet in the time taken to learn, the distribution could well have shifted again, fur-
ther complicating an already difficult task. Since ‘crises’occur with impressive frequency and are rarely
anticipated, any forecasting methods that do not explicitly address breaks are bound to be inadequate,
whether used by economists or economic agents. A powerful justification for using expectations from
models based on economic theory is that conditional expectations minimize the forecast mean-squared
error. However, in the presence of unanticipated location shifts, among others, it is no longer the case
that conditional expectations are unbiased, norMMSE 1-step ahead predictors, as we prove in section 4
after addressing the formulation of conditional expectations in both models and DGPs.1

3 Conditional expectations in models and DGPs

Conditional expectations are the mean of the correspondingconditional distribution of one set of vari-
ablesyt conditional on another set of variableszt, defined relative to the joint distribution of all these
variablesxt = (yt, zt)

′. In addition, for practical applications of conditional distributions, a distinction
has to be made between calculations in the data generation process (DGP) and those in models thereof.

1Given that we all live in a very large world, it is highly likely that there will be a few individuals who claim to foresee any
change: e.g., Nooriel Roubini, who gained the epithet Dr Doom for his views. Some also foresee changes that never eventuate.
Hence ‘unanticipated’ refers to the views of the vast majority of individuals, not necessarily all.
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This latter distinction has been discussed by various authors (seeinter alia Hendry, 1995, Mizon, 1995,
Spanos, 1986) and is relevant in the present context since the conditional expectations of interest are
those of the DGP, which is unknown and so analyses have to be conducted using models as approxima-
tions. In the absence of a meta-DGP that explains all changes, the existence of structural changes entails
that the problems analyzed in this paper occur in the DGP as well as models of aspects of it. Hence,
even in the DGP, conditional expectations, despite remaining constant for periods of time, will change
and thus not provide unbiased or MMSE predictors. A further problem arises with models that do not
provide a good description of the economy. One of the potential contributors to the latter problem lies in
the necessity of omitting some relevant variables (marginalization) and conditioning on others that may
not be weakly exogenous. Further, an economic or econometric model may provide a poor description
of the data we observe and so be non-congruent (seeinter alia Hendry, 1995, Mizon, 1995, Bontemps
and Mizon, 2003). Even a model that does characterize the data well can be subject to structural change,
and that is the focus of this paper.

Adopting the notation thatE[·] is the expectation operator in the DGP, andE [·] is an expectation with
respect to the model, a simple example illustrates the issue. Consider the DGP in whichyt is generated
by yt = µ + αyt−1 + εt with εt ∼ IN[0, 1] and|α| < 1, where a theory model also asserts that{yt} is
generated byyt = µ+αyt−1 + ut with ut ∼ IN[0, σ2]. This theory model would describe a data sample
Y 1
T = (y1, . . . , yT ) well, and its conditional expectationE [yT+1|Y

1
T ] = µ + αyT as a predictor ofyT+1

would perform well when the DGP remained constant, sinceE[yT+1|Y
1
T ] = µ + αyT also. However, if

the DGP unexpectedly changed at timeT + 1 such thatyt = ν +αyt−1 + εt for t > T with ν 6= µ, then
E[yT+1|Y

1
T ] = ν + αyT 6= µ+ αyT = E [yT+1|Y

1
T ], so the model now predicts badly.

4 Conditional expectations are not necessarily MMSE predictors

Since the primary causes of forecast failures are location shifts (see Clements and Hendry, 1998, 1999),
we prove that the usual claim that the conditional expectation is the unbiased minimum mean-squared
error predictor (MMSEP) is false for the case where the means of future distributions differ from the
current because unanticipated breaks occur. More precisely, given an information set,X1

t−1, available
at time t − 1, the conditional expectation about a variablext formed at timet − 1 for time t is de-
notedEt−1[xt|X

1
t−1], andVt−1[et|X

1
t−1] denotes the corresponding conditional variance whenet is the

prediction error defined in (1). The first subscript denotes the distribution over which expectations are
calculated, the| denotes conditioning, the subscript onxt denotes the period for which the relevant ex-
pectation is formed, andX1

t−1 denotes the conditioning information. Thus,Et[xt|X
1
t−1] is a potentially

different expectation, as isEt[xt+1|X
1
t−1], showing that three time subscripts are clearly needed. The

conditional distribution ofxt is denotedft(xt|X1
t−1).

Let:
et = xt − Et−1

[

xt | X
1
t−1

]

(1)

be the error from predictingxt by the conditional expectation ofxt givenX1
t−1 formed att− 1. Then:

Et−1

[

et | X
1
t−1

]

= Et−1

[

xt | X
1
t−1

]

− Et−1

[

xt | X
1
t−1

]

= 0 (2)

and:
Et−1

[

e2t | X
1
t−1

]

= Vt−1

[

xt | X
1
t−1

]

.

Thus, the usual claim that the conditional expectation isMMSEP seems correct.
However, when distributions shift, so thatft (·) 6= ft−1 (·), thenEt[·] 6= Et−1[·] since:

Et−1

[

xt | X
1
t−1

]

=

∫

xtft−1

(

xt|X
1
t−1

)

dxt.
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but:

Et
[

xt | X
1
t−1

]

=

∫

xtft
(

xt|X
1
t−1

)

dxt

Although (2) is true, that is unhelpfulex postas the realized average error will be:

Et
[

et | X
1
t−1

]

= Et
[(

xt − Et−1

[

xt|X
1
t−1

])

| X1
t−1

]

= Et
[

xt | X
1
t−1

]

− Et
[

Et−1

[

xt|X
1
t−1

]

| X1
t−1

]

=

∫

xt
[

ft
(

xt|X
1
t−1

)

− ft−1

(

xt|X
1
t−1

)]

dxt 6= 0 (3)

when ft (·) 6= ft−1 (·). Thus, the conditional expectationEt−1

[

xt|X
1
t−1

]

need not be unbiased for
Et
[

xt|X
1
t−1

]

, which is therelevantconditional mean at timet. Also:

σ2et = Et
[

e2t | X
1
t−1

]

= Et

[

(

xt − Et−1

[

xt | X
1
t−1

])2
| X1

t−1

]

. (4)

Hence the conditional expectation is theMMSEP of xt at t − 1, but need not be att where it can be
biased and may not have the minimum variance.

4.1 Static illustration

Even in the simplest setting with no dynamics, if:

xt ∼ IN
[

µt, σ
2
x

]

(5)

wherext = µt + εt then:

Et
[

xt | X
1
t−1

]

= µt

Et−1

[

xt | X
1
t−1

]

= µt−1

so that as in (3) when the mean changes,et = εt + µt − µt−1, so:

Et
[

et | X
1
t−1

]

= µt − µt−1 = ∇µt 6= 0 (6)

and from (4):

σ2et = Et

[

(µt + εt − µt−1)
2 | X1

t−1

]

= σ2x + (∇µt)
2 > σ2x (7)

Consequently, if the underlying process is wide-sense non-stationary, the conditional expectation based
on the current distribution is not an unbiased predictor of the next period mean, and could have a large
variance relative to the variance of the process.

As an alternative predictor, consider another functionGt−1

[

xt|X
1
t−1

]

, and analogously to (1) let:

ηt = xt − Gt−1

[

xt | X
1
t−1

]

. (8)

Then, forHt−1

[

xt|X
1
t−1

]

= Gt−1

[

xt|X
1
t−1

]

− Et−1

[

xt|X
1
t−1

]

:

σ2ηt = Et
[

η2t | X
1
t−1

]

= Et

[

(

xt − Gt−1[xt|X
1
t−1]

)2
| X1

t−1

]

= Et

[

(

xt − Et−1[xt|X
1
t−1]−

{

Gt−1[xt|X
1
t−1]− Et−1[xt | X

1
t−1]

})2
| X1

t−1

]

= Et

[

(

et − Ht−1[xt|X
1
t−1]

)2
| X1

t−1

]

= Et
[

e2t | X
1
t−1

]

+
(

Ht−1[xt|X
1
t−1]

)2
− 2Et

[

etHt−1[xt|X
1
t−1]

]

= σ2et +
(

Ht−1[xt|X
1
t−1]

)2
− 2Et

[

etHt−1[xt|X
1
t−1]

]
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WhenEt 6= Et−1, the bestex postpredictor ofxt in MSE terms need not beEt−1[xt|X
1
t−1] as it is

possible forσ2ηt < σ2et . That cannot occur whenEt = Et−1 as thenet = εt andEt[εtHt−1[xt|X
1
t−1]] = 0,

whereas more generally (6) shows:

Et
[

etHt−1[xt|X
1
t−1] | Xt−1

]

= Et
[

(∇µt + εt)
(

Gt−1[xt|X
1
t−1]− µt−1

)

| X1
t−1

]

= ∇µt
(

Gt−1[xt|X
1
t−1]− µt−1

)

(9)

Again in the special case of (5) let:

Gt−1 [xt | Xt−1] = µt−1 + δ

which might be an intercept-corrected forecast, then:

Ht−1 [xt | Xt−1] = δ

and so:
Et [etHt−1 [xt | Xt−1]] = δ (µt − µt−1) = δ∇µt.

Consequently:
σ2ηt = σ2et + δ2 − 2δ∇µt (10)

soσ2ηt < σ2et if (say) δ > 0 and:
δ − 2∇µt < 0. (11)

Hence, when∇µt > 0 thenσ2ηt < σ2et, provided thatδ > 0 and δ < 2∇µt. Therefore, if the
modification to the conditional mean is in the correct direction, but does not seriously overshoot, then the
it results in a lowerMSE than the conditional mean predictor. Note that when∇µt > 0, thenσ2ηt > σ2εt
whenever the mean adjustment is in the wrong direction, i.e., δ < 0. Alternatively, when∇µt < 0, then
σ2ηt < σ2et provided thatδ < 0 and|δ| < 2|∇µt|. In summary, it follows thatσ2ηt < σ2et whenever∇µt
andδ have the same sign (i.e., the modification is in the correct direction) and|δ| < 2|∇µt| (i.e., the
modification is not too large).

4.2 Dynamic illustration

As a more realistic illustration of these formulae, consider a stationary first-order autoregressive DGP:

yt = γ + ρyt−1 + εt where εt ∼ IN
[

0, σ2ε
]

(12)

with |ρ| < 1 that holds fort = 1, 2, . . . , T − 1. Then expectations are constant over that period, so that:

E [yt] = µ = γ + ρE [yt−1] + E [εt] = γ + ρµ (13)

and henceµ = γ/(1− ρ) is the equilibrium mean of{yt} over that sample. The conditional expectation,
given the history of the process is:

E [yt | yt−1] = γ + ρyt−1 + E [εt | yt−1] = γ + ρyt−1 (14)

and in this setting,E [yt|yt−1] is an unbiased,MMSE predictor ofyt:

yt − E [yt | yt−1] = εt

with:
E [εt] = 0 and V [εt] = σ2ε
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which is the smallest obtainable.
Next, for t = T, T + 1, . . . the structural change is denoted:

yt = γ∗ + ρ∗yt−1 + εt (15)

whereεt ∼ IN
[

0, σ2ε
]

as before (changing that distribution adds to the conclusion) and|ρ∗| < 1 still.
Now expectations must be dated to avoid incorrect calculations, so we writeET−1 [·], ET [·] etc., where
the subscripts denote the pre-break and post-break distributions determined by (12) and (15) respectively.
From (15):

ET [yT ] = γ∗ + ρ∗ET [yT−1] + ET [εT ] = γ∗ + ρ∗µ (16)

which in general is not equal toµ if either parameter differs between (12) and (15).2 Moreover:

ET+1 [yT+1] = γ∗ + ρ∗ET+1 [yT ] + ET+1 [εT+1] = γ∗ + ρ∗ (γ∗ + ρ∗µ) = γ∗ (1 + ρ∗) + (ρ∗)2 µ (17)

which keeps changing, and although it converges onµ∗ = γ∗/(1 − ρ∗), does not equalµ∗ for a number
of periods.

However, atT − 1, it is not known that the break will occur, so agents forming conditional expecta-
tions aboutyT givenyT−1 must perforce use the distribution at that time, leading to:

ET−1 [yT | yT−1] = γ + ρyT−1 + ET−1 [εT | yT−1] = γ + ρyT−1 (18)

Thus, their conditional expectations error is:

yT − ET−1 [yT | yT−1] = γ∗ + ρ∗yT−1 + εT − γ − ρyT−1

= (γ∗ − γ) + (ρ∗ − ρ) yT−1 + εT

= ∇γ +∇ρ yT−1 + εT .

On average (i.e., unconditionally), that error will transpire to be:

ET [yT − ET−1[yT |yT−1]] = (γ∗ − γ) + (ρ∗ − ρ)ET [yT−1] = ∇γ +∇ρµ

so the prediction is biased. Moreover, unless the agents areomniscient and instantly discover their
mistake (somehow ‘learning’ two parameters from the one error), then they will make a similar mistake
in the next period, so the bias persists. For example, if agents keep the in-sample parameter values, but
update the data, so use:

ET−1 [yT+1 | yT ] = γ + ρyT + ET−1 [εT+1 | yT ] = γ + ρyT

this leads to the average error:

ET+1 [yT+1 − ET−1 [yT+1 | yT ]] = ET+1 [(γ
∗ − γ) + (ρ∗ − ρ) yT + εT+1]

= ∇γ +∇ρ (γ∗ + ρ∗µ) .

If expectations were undated, then it is unclear whatE [yT+1] might be, but if any aspect of the
in-sample model’s parameters has shifted, the correct unconditional expectation is never:

E [yT+1] =
γ∗

1− ρ∗
nor E [yT+1] =

γ

1− ρ
.

2If the process remains stationary then it would be possible for the equilibrium to remain constant, but it would need both
of γ∗ andρ∗ to change with0 < γ∗/γ = (1− ρ∗)/(1− ρ) < ∞.
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Now consider the alternative predictor to the conditional mean given byKT−1[yT |yT−1] and analo-
gously to (1) and (8), define:

ψT = yT − KT−1[yT |yT−1].

Let:
JT−1[yT |yT−1] = KT−1[yT |yT−1]− ET−1[yT |yT−1]

and
ut = yT − ET−1[yT |yT−1] = ∇γ +∇ρ yT−1 + εT

so that forET [u2T |yT−1] = ET [u
2
T ] = σ2uT :

σ2ψ
T

= ET
[

ψ2
T | yT−1

]

= ET

[

(yT − KT−1[yT |yT−1])
2 | yT−1

]

= ET

[

(yT − ET−1[yT |yT−1]− {Kt−1[yT |yT−1]− ET−1[yT |yT−1]})
2 | yT−1

]

= ET

[

(uT − JT−1[yT |yT−1])
2 | yT−1

]

= σ2uT + (JT−1[yT |yT−1])
2 − 2ET [uT JT−1[yT |yT−1]] .

When ET 6= ET−1, the bestex postpredictor of yT in MSE terms need not beET−1 [yT | yT−1]
as it is possible forσ2ψT

< σ2uT . That cannot occur whenET = ET−1 as thenσ2uT = σ2ε and
ET [uT JT−1[yT |yT−1]] = ET [εT JT−1[yT |yT−1]] = 0, whereas in general:

ET [(uT JT−1[yT |dyT−1]) | yT−1]

= ET [(∇γ +∇ρ yT−1 + εT ) (KT−1[yT |yT−1]− (γ + ρyT−1)) | yT−1]

= ET [uTKT−1[yT |yT−1] | yT−1]− γ∇γ − (ρ∇γ + γ∇ρ)yT−1 − ρ∇ρy2T−1

6= 0.

In the case of (12) let:
KT−1 [yT | yT−1] = γ + ρyT−1 + δ

which might be an intercept-corrected forecast, then:

JT−1 [yT | yT−1] = δ

and so:
ET [uT JT−1 [yT | yT−1]] = δET [uT | yT−1] = δ(∇γ +∇ρ yT−1).

Hence:
σ2ψ

T

= σ2uT + δ2 − 2δ(∇γ +∇ρ yT−1)

which for example illustrates that an intercept adjusted forecast might have a lower forecast error variance
than the conditional mean sinceσ2ψT

< σ2uT is possible. Noting that(∇γ + ∇ρ yT−1) is the forecast
error of the conditional mean predictor (apart fromεT which has a zero mean) it is clear that this result
is analogous to (10) of the static case.

Since a biased forecast is unlikely to be the most rational available, we now consider a further impli-
cation of these results.
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5 The law of iterated expectations and unanticipated change

When expectation distributions are unaltered the law of iterated expectations often is written:

Ez [Ey [y | z]] = Ey [y] (19)

and proved by:

Ez [Ey [y | z]] =

∫

Z

(
∫

Y

yf (y|z) dy

)

g (z) dz =

∫

Z

∫

Y

yf (y|z) g (z)dzdy

=

∫

Y

y

(
∫

Z

h (y, z) dz

)

dy =

∫

Y

yp (y)dy = Ey [y]

whereh(y, z) = f(y|z)g(z) = p (y)ψ (z|y) is the joint distribution of(y, z) and:
∫

Z

h (y, z) dz = p (y) .

When the variables correspond to a common set at different dates drawn from the same distribution,
then (19) becomes:

Ext
[

Ext+1
[xt+1 | xt]

]

= Ext+1
[xt+1] .

The formal derivation is close to that in (19), namely:

Ext
[

Ext+1
[xt+1 | xt]

]

=

∫

xt

(

∫

xt+1

xt+1f (xt+1|xt) dxt+1

)

p (xt) dxt

=

∫

xt

∫

xt+1

xt+1f (xt+1|xt) p (xt) dxtdxt+1

=

∫

xt+1

xt+1

(
∫

xt

h (xt+1, xt)dxt

)

dxt+1

=

∫

xt+1

xt+1p (xt+1) dxt+1 = Ext+1
[xt+1] (20)

Thus, if the distributions remain constant, the law of iterated expectations holds.
However, the law of iterated expectations need not hold whendistributions shift, as the factorization

h (xt+1, xt) = f (xt+1|xt) p (xt) of the joint density is not achieved by the law of iterated expectations.
This problem arises when the distribution shifts betweent andt+ 1 as follows. First, note that:

Ext [xt+1 | It] and Ext [xt+1 | It−1]

are different entities whenIt andIt−1 are information sets att andt − 1 respectively. Similarly when
distributions shift we have:

Ext [xt+1 | It] 6= Ext+1
[xt+1 | It]

the former of these being needed for an unbiased conditionalprediction as shown in the previous section.
Now, however:

Ext
[

Ext+1
[xt+1 | xt]

]

6= Ext+1
[xt+1]
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since:

Ext
[

Ext+1
[xt+1 | xt]

]

=

∫

xt

(

∫

xt+1

xt+1fxt+1
(xt+1|xt) dxt+1

)

pxt (xt) dxt

=

∫

xt

∫

xt+1

xt+1fxt+1
(xt+1|xt) pxt (xt)dxtdxt+1

=

∫

xt+1

xt+1

(
∫

xt

fxt+1
(xt+1|xt) pxt (xt)dxt

)

dxt+1

6=

∫

xt+1

xt+1pxt+1
(xt+1) dxt+1 = Ext+1

[xt+1] (21)

The reason the law of iterated expectations does not hold in this case is thatfxt+1
(xt+1|xt) pxt (xt) 6=

fxt+1
(xt+1|xt) pxt+1

(xt) = ht+1 (xt+1, xt) unlike the situation in (20) where there is no shift in distri-
bution.

Thus, when distributions shift over time as in (5) expectations are affected by their timing:

Ext [xt+1|xt] = µt 6= Ext+1
[xt+1] = µt+1

Ext+1
[xt+1|xt] = µt+1

noting thatxt andxt+1 are independent in this example. Thus in this case we have:

Ext
[(

Ext+1
[xt+1|xt]

)]

= Ext [µt] = µt 6= µt+1 = Ext+1
[xt+1] .

Equally, for the analogous model to (12):

Ext [xt+1|xt] = γ + ρxt 6= Ext+1
[xt+1] = γ∗ + ρ∗µ∗

and

Ext
[(

Ext+1
[xt+1|xt]

)]

= Ext [γ
∗ + ρ∗xt] = γ∗ + ρ∗µ 6= Ext+1

[xt+1] = µt+1

whenµ = γ/(1− ρ) andµ∗ = γ∗/(1− ρ∗). Finally note that with consistent dating it remains true that:

Ext [(Ext [xt+1 | xt])] = Ext [xt+1] = µt.

More generally, there are two sources of updating from, say,Ext [xt+1|xt−1] to Ext+1
[xt+1|xt]: new

information is embodied inxt−1 becomingxt; and shifts in the distribution implied by a change from
Ext to Ext+1

. Much of the literature (see e.g., Campbell and Shiller, 1987) assumes that the former is an
unanticipated change, written asE [xt+1|xt]− E [xt+1|xt−1], which is an innovation,νt, and the relevant
information becomes known one period later. That is not trueof the latter, where the new distribution has
to be learned over time–and may have shifted again in the meantime. Even if the distribution, denoted
ft+1 (xt+1|xt), became known one period later:

Ext+1
[xt+1 | xt]− Ext [xt+1 | xt−1] = Ext+1

[xt+1|xt]− Ext+1
[xt+1|xt−1]

+
(

Ext+1
[xt+1|xt−1]− Ext [xt+1|xt−1]

)

= νt +

∫

xt+1ft+1 (xt+1|xt−1)dxt+1 −

∫

xt+1ft (xt+1|xt−1)dxt

= νt + (µt+1 − µt)

where the last line uses (5). In practice, both means need to be estimated, a nearly intractable task for
agents–or econometricians–when distributions are shifting.
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The main results of Sections 4 and 5, namely that when distributions shift the conditional expectation
is not the unbiasedMMSE predictor and the law of iterated expectations does not hold, mean that the
mathematical derivations commonly underlying inter-temporal optimization theory are invalid ifany
location shifts have occurred. Since such shifts are apparently all too common, we conclude that many
DSGE derivations are invalid as well. Thus DSGE models are likely to be poor representations of what
we observe in economies, an issue to which we now turn.

6 DSGEs are intrinsically non-structural

We have shown above that the existence of unanticipated changes leads to difficulties for models based
on inter-temporal optimization and conditional expectations. DSGE models have rational expectations
(RE), construed as the pre-existing conditional expectation, built into them and this presents a problem.
Hall (1978) pointed out an important implication of RE, namely that et+1 = xt+1 − Et [xt+1|Xt] is
unpredictable givenXt, and so when there are structural breaks serious forecast errors will arise. This
presents a problem for economic theory-led models, such as DSGE models, whenever there is a structural
change. There are alternative forms of model and ways of modeling that are less susceptible to these
changes and we discuss some of them in section 7.

There are numerous definitions of structure in the literature and in regular use. For example, ‘struc-
ture’ may be employed to mean no more than that a model is directly based on a theory. Alternatively,
structure can mean an over-identified model for which the restrictions are not rejected by data evidence
(but see Hendry, Lu and Mizon, 2009, for an analysis of the problems with this approach). Despite the
existence of many definitions of structure we now use the concept of structure defined in Hendry (1995)
to show the limitations of models based on inter-temporal optimization and RE (e.g. DSGE) when there
are unanticipated changes. Thus structure is defined as a setof basic features of the economy which
are invariant to changes in the economy. Hence a set of necessary conditions for structure in a model
is that its parameters are invariant to: (a) an extension of the sample; (b) interventions in the economy
such as regime shifts; and (c) any extensions of the information set used in the model (see Hendry, 1995,
for more details). An important feature of these conditionsis that each is capable of empirical testing.
However, they are only necessary conditions and since structural models must necessarily correspond to
reality, which is untestable, there are no sufficient conditions: but if a model fails to satisfy the necessary
conditions, it cannot be structural, whereas a model that does satisfy the necessary conditions still may
not be structural.

In practice, no agent can possibly know even the current distribution to compute its conditional ex-
pectation, which instead has to be estimated in some way fromthe information available to that agent.
That requires a minimum of a sample of observations, formulated in a model, from which the estimated
conditional expectation is then calculated–and when distributions are shifting, that task borders on the
impossible. Historically, most of the theory of rational expectations was developed for stationary pro-
cesses, and while learning introduced a form of non-stationarity as in Evans and Honkapohja (2001), the
theory has not been updated to a wide-sense non-stationary world, partly because it is not obvious what
a rational forecast would be when location shifts occur, as they manifestly do. Since their derivations
rely on solving inter-temporal optimization problems, assuming agents form their expectations of the
unknown future events using their current conditional expectations, DSGEs must be intrinsically non-
structural when the distributions underlying those expectations alter. Thus, the Lucas (1976) critique
applies automatically to DSGEs because their very derivations necessitate that expectations distributions
never change. Muellbauer (2009) presents a similar critique of the use of DSGE with rational expecta-
tions in the particular context of personal sector consumption and housing.

Further, a distinction can be drawn between the use of DSGE models for forecasting and for policy
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analysis. For forecasting, the most important requirementis that any mean shifts are dealt with, other-
wise there will be forecast failure. If valid, the rational expectations assumption within DSGE models
would ensure that the forecast would be back on track after one period – a form of robust forecasting. It
is not clear though that the assumptions underlying rational expectations are tenable. On the one hand,
the assumption of rational expectations provides a protective belt around the theory of DSGE indepen-
dently of empirical evidence, which is neither very convincing nor scientific. On the other hand, and
more realistically, in the presence of unanticipated step changes or location shifts, rational expectations
are clearly false – otherwise the DSGE would be required to capture the break prior to it happening, an-
ticipating every possible change. However, economic policy analysis requires more than just capturing
a mean shift. A structural model is required for reliable analysis, but more realistically, one might seek
an ability to quickly: (a) identify a new regime’s characteristics, and (b) develop a model of that regime.
Precisely how this can be done within the framework of DSGE models is unclear, but the modeling strat-
egy outlined in the next section may be more promising in a world of intermittent unanticipated location
shifts.

7 Modeling methodology

The problem is a deep one, since if economic agents’ cannot, and hence do not, use conditional ex-
pectations, then the very formulation of their inter-temporal optimization decisions is incorrect, as is
the assumption of no distributional shifts needed to solve it. A resolution requires seeking to explain
all extant findings by building general empirical models using automatic techniques to select constant
parametrizations over the full sample. The challenge for economists is to develop models for forecasting
that are robust to unanticipated changes, allowing that agents may do likewise, leading to models for
economic policy analysis that are structural, yet can adjust to the rapid changes that arise in economies
even when we may not be able to predict them.

There are alternative ways of developing empirically well founded and policy-relevant models to the
economic theory-led modeling by DSGE. The latter starts with a closely specified empirical implemen-
tation of a theory, and only introduces modifications of a limited nature, such asad hocstickiness to
deal with mis-specified dynamics. Such simple-to-general modeling is fraught with difficulties as has
been explained by numerous authors (for recent contributions seeinter alia Hendry, 1995, Mizon, 1995,
Johansen, 2006, Juselius and Johansen, 2006, and Spanos, 1995). General models designed to embrace
a range of theories, different functional forms, and provide a good characterization of the data, including
possible regime changes, are essential – no current theories are structural in the sense of being invari-
ant to all relevant regime change. Attention can then be paidto valid conditioning and marginalization,
which is essential, particularly when models are being developed for policy analysis. Equally, it pro-
vides a framework to distinguish behaviorally relevant dynamics from proxy dynamics that often arise
to accommodate regime change and expectations. The choice of the general unrestricted model (GUM)
is very important, and involves much human input based on experience, economic theory, institutional
knowledge, the purpose for which the modeling is being done,and the known properties of the data,
including its quality. Once the GUM has been specified, the major task is that of selecting a model from
the large number of possible sub-models that are embedded inthe GUM, such that the final selection is
coherent with the data characteristics (congruent), and achieves this parsimoniously at least as well as the
alternative models within the GUM (encompassing). By focusing on selecting variables rather than mod-
els, recent developments in the automation of this selection process have produced remarkable results,
extending to handling potentially more candidate variables than observations, and jointly selecting vari-
ables, functional forms, multiple breaks, and data contamination. Hendry and Johansen (2010) show that
if the theory variables are not selected over when the theorymodel is a complete and correct representa-
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tion of the data evidence, then the distributions of the parameter estimates after selection, possibly over
more candidate variables than observations, areidentical to those obtained by direct estimation of the
theory model. Thus, the search costs are essentially zero. Conversely, if the theory model is incomplete
or incorrect, but a sufficiently general GUM nests the DGP, then a viable representation of that DGP will
be retained after selection even when the theory variables are maintained. Finally, if the theory is incom-
plete and the GUM does not nest the DGP, selection can still deliver a far better model, avoiding serious
non-constancies and providing smallerMSEs for the parameters of interest in the correct specification
(see Castle and Hendry, 2010). Consequently, selection provides a near Pareto optimal approach for all
these realistic settings. For general discussions of the achievements of the new approach to automatic
model selection, seeinter alia, Castle, Doornik and Hendry (2010a, 2009). The results of this large body
of research are embodied in the software packageAutometrics(see Doornik, 2009). Hendry and Mizon
(2010) provide an example of this approach to modeling in thecontext of a re-examination of Tobin’s
model of the demand for food in the USA (Tobin, 1950) using an extended data set.

8 Conclusions

Expectations of future events are important in many areas ofhuman behavior especially economic. How-
ever, almost no economic time series is stationary, either weakly or strictly: distributions shift. Thus, the
present treatment of expectations in economic theories of inter-temporal optimization is inappropriate–it
cannot be proved that conditional expectations based on contemporaneous distributions are minimum
mean-square error 1-step predictors when unanticipated breaks occur, and the law of iterated expec-
tations then also does not hold inter-temporally. One consequence is that dynamic stochastic general
equilibrium models are intrinsically non-structural, andmust fail the Lucas critique since their deriva-
tions depend on constant expectations distributions. Although no model is perfect, choosing amongst
the available models on the basis of economic theory coherence, no matter how inconsistent the result
is with empirical evidence, has little to recommend it for economic policy and forecasting. Modeling is
an evolutionary process, and it is important to have criteria that enable selection to lead to models that
will survive challenges from all sources of information, rather than models that become extinct following
successive failures to accurately capture the unfolding ofevents in the economy. To offset the negative
results on expectations, we have briefly described a modeling methodology that offers exciting prospects,
and has an excellent record to date.
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