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Abstract

Almost no economic time series is either weakly or stricthtisnary: distributions of economic
variables shift over time. Thus, the present treatment péetations in economic theories of inter-
temporal optimization is inappropriate. It cannot be pobtleat conditional expectations based on
the current distribution are minimum mean-square errdefp-ahead predictors when unanticipated
breaks occur, and consequentially, the law of iterated @afiens then fails inter-temporally. A
second consequence is that dynamic stochastic generdibequi models are intrinsically non-
structural.
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1 Introduction

It is well known that economies experience intermittentxeeted changes (see Stock and Watson,
1996, and Barrell, 2001), some of which have significantotéfen the state of, and operations within,
the economic system. The financial crisis leading to thessdoas round the world during 2007-2010 is
simply the most recent example. Such changes, or more phgsisuctural breaks, not only lead to diffi-
culties in economic forecasting (see Clements and Hen@64 2 but also in the formulation of economic
models of the economy. The latter is not simply a matter of élind in the face of structural breaks,
but confronts a deeper problem. The mathematical derivatid dynamic stochastic general equilib-
rium (DSGE) models and new Keynesian Phillips curves (NKPBsth of which incorporate ‘rational
expectations’, fail to recognize that when there are ungoatied changes, conditional expectations are
neither unbiased nor minimum mean-squared eMIGE) predictors, and that better predictors can
be provided by robust devices. As a consequence, the lawratéid expectations then does not hold as
an inter-temporal relation unless all distributional &hire perfectly anticipated by all economic agents,
a possibility contradicted by the recent financial crisisirtRer, given the prevalence of such changes,
learning about the post-change scenario is both difficol,itself generates further non-stationarities.
The paper is organized as follows. Section 2 notes the irapbrole that expectations play in many
areas of decision making, especially in financial markethe felationship between the process that
generates the data we observe (DGP) and models thereotissél briefly in section 3, as well as the

*We are grateful to Jennifer L. Castle, Gunnar Bardsen,r&#rkansen, Bent Nielsen and Ragnar Nymoen for their vaduabl
comments on a previous version of the paper.



effects of unanticipated changes in the DGP. The fact tatdimditional expectation is not an unbiased
predictor and need not have minimum mean-squared error Wieza are location shifts is proved in

section 4. It is shown in section 5 that when there are sudtsstiie law of iterated expectations does
not hold inter-temporally. Section 6 discusses the imfibces of these results for models founded on
inter-temporal optimization such as DSGE models, and slibatson theoretical grounds, these models
cannot be structural. The value of having a modeling metloggyathat can produce relevant, reliable,

and robust econometric models generally but especiallyeéonomic policy analysis, is described in

section 7, emphasizing the important role that automatideheelection can play. Conclusions are
provided in section 8.

2 Expectations

Expectations play an important role in most financial marketd many economic theories, including
DSGE models. Central banks use interest rates for inflatemgets’ based on expected, or forecast,
levels of inflation and related variables one or two yearadh&levertheless, it is unclear how accurate
agents’ expectations of future variables are in practiududing even sophisticated agents. For example,
despite a substantive investment in modeling and forexastiand a committee of experts to advise it
(the Monetary Policy Committee) — the Bank of England stiinficantly mis-forecasts CPI inflation
(see Bank of England, 2008, with inflation later rising weltside the range in its ‘fan chart’). Equally,
almost no oil price forecasts for 2008 included a price near$tl47 high, nor below the $40 per barrel
that eventuated. Although exchange rates are a key fingoraial, Nickell (2009) shows the consensus
forecast systematically mis-forecasting by a large maayier a long time period. Equally, the near
collapse of many of the world’s largest financial institaian 2008—2009 reveals how inaccurate their
expectations of asset values have proved to be. These eeastpdw that it is very difficult to form
accurate expectations about future events, with the pyimause of such failures being location shifts,
when the means of future distributions differ from thosetaf turrent distribution (see Clements and
Hendry, 1998).
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Figure 1:Six different breaks



The converse is also true: it can be difficult to discern somealks and harder still to determine
their source. Figure 1 illustrates six different types ofdlk which all occur in practice, alter future
distributions when they do so, and require careful modefingapture their effects. A trend break (panel
a) can take some time to detect, despite its immense longapiact, partly because of the ‘noisiness’ of
economic time series from cycles and shocks, but also becuh breaks must perforce be relatively
small. A shift from economic growth at a quarterly rate of b ®ne of 1.0 would double living standards
in 18 rather than 36 years, yet corresponds to a coefficiemtgdnfrom 0.005 to 0.01 on a linear trend in
alog-linear process, or in the intercept of a model expressk0) variables. A step shift (panel b) is the
first difference of a trend break, and would be equally unttatde for such a small effect as a change in
growth, but could correspond to a general location shifingfrmagnitude, so is usually detectable, and in
Clements and Hendry (1998) is analytically derived as thimwause of forecast failure. Panel ¢ shows
the first difference of a location shift, which can be confllatégth a large shock, albeit that these have
very different implications for impulse-response anadysethe absence of a correct weak exogeneity
specification (as shown in Hendry and Mizon, 2000), and natieg to a location shift if(1) processes.
Panel d often surprises, as there is no obviously visiblakbhe the data shown, which was generated
by a first-order bivariate vector autoregression (VAR (1heve every coefficient was changed by 30-40
error standard deviationg), and the intercepts by more thaf0o. Thus, some breaks can be very
difficult to detect, even when they are massive (see e.g.die@000). Conversely, false perceptions
of breaks can also be induced: panel e shows an apparent dssagiated with forecast failure when
in fact the model in question is constant, and the break ifencollinearity between the conditioning
variables—see Castle, Fawcett and Hendry (2010b). Thepfamel, f, is a much-studied data series where
the measurement of the opportunity cost of holding money aitased by legislative fiat, and induced
dramatic forecast failure in models that failed to use the measure (as shown), whereas models which
shifted to the new measure maintained constant paramstzs.g., Hendry (2006).

Thus, after a shift in the probability distribution needed#lculate future expectations, agents cannot
immediately ‘know’ the new form. Rather they have a compéiddearning task to undertake, involving
a signal extraction problem as to what, if anything, hagatijfwhen it shifted, what aspects shifted, and
by how much they have shifted, requiring many observatidtes the break to ascertain. The difficulties
even of learning in a relatively constant environment aré kreown (see e.g., Evans and Honkapohja,
2001, and Young, 2004). Yet in the time taken to learn, thiiligion could well have shifted again, fur-
ther complicating an already difficult task. Since ‘crisestur with impressive frequency and are rarely
anticipated, any forecasting methods that do not explicitldress breaks are bound to be inadequate,
whether used by economists or economic agents. A powedtifigation for using expectations from
models based on economic theory is that conditional expectaminimize the forecast mean-squared
error. However, in the presence of unanticipated locathifiss among others, it is no longer the case
that conditional expectations are unbiased, MMSE 1-step ahead predictors, as we prove in section 4
after addressing the formulation of conditional expeotatiin both models and DGPs.

3 Conditional expectationsin models and DGPs

Conditional expectations are the mean of the corresponaiinglitional distribution of one set of vari-
ablesy; conditional on another set of variablesg defined relative to the joint distribution of all these
variablesx; = (y:,z:)’. In addition, for practical applications of conditionaktlibutions, a distinction
has to be made between calculations in the data generatoess (DGP) and those in models thereof.

1Given that we all live in a very large world, it is highly likethat there will be a few individuals who claim to foresee any
change: e.g., Nooriel Roubini, who gained the epithet Driddor his views. Some also foresee changes that never eventua
Hence ‘unanticipated’ refers to the views of the vast mgjaf individuals, not necessarily all.



This latter distinction has been discussed by various asitfseenter alia Hendry, 1995, Mizon, 1995,
Spanos, 1986) and is relevant in the present context sircedhditional expectations of interest are
those of the DGP, which is unknown and so analyses have torlmRicted using models as approxima-
tions. In the absence of a meta-DGP that explains all chatigeexistence of structural changes entails
that the problems analyzed in this paper occur in the DGP #saseénodels of aspects of it. Hence,
even in the DGP, conditional expectations, despite remginonstant for periods of time, will change
and thus not provide unbiased or MMSE predictors. A furthreblem arises with models that do not
provide a good description of the economy. One of the pakatintributors to the latter problem lies in
the necessity of omitting some relevant variables (makhgigii@on) and conditioning on others that may
not be weakly exogenous. Further, an economic or econamatidel may provide a poor description
of the data we observe and so be non-congruentifgeealia Hendry, 1995, Mizon, 1995, Bontemps
and Mizon, 2003). Even a model that does characterize tlaeveklt can be subject to structural change,
and that is the focus of this paper.

Adopting the notation thé|-] is the expectation operator in the DGP, &hd is an expectation with
respect to the model, a simple example illustrates the .igSoasider the DGP in whicly, is generated
by y: = p+ ayi—1 + & with e, ~ IN[0, 1] and|a| < 1, where a theory model also asserts that} is
generated by; = u + ay; 1 + ug with u;, ~ IN[0, 0]. This theory model would describe a data sample
Y} = (y1,...,yr) well, and its conditional expectatiafyr1|Y;] = u + ayr as a predictor oz
would perform well when the DGP remained constant, skige1|Y!] = u + ayr also. However, if
the DGP unexpectedly changed at tiffie- 1 such thaty, = v + ayy_1 + €, for t > T with v # p, then
Elyr41|YE] = v + ayr # p+ ayr = E[yr+1]Y7], so the model now predicts badly.

4 Conditional expectations are not necessarily MMSE predictors

Since the primary causes of forecast failures are locatiditsgsee Clements and Hendry, 1998, 1999),
we prove that the usual claim that the conditional expemaits the unbiased minimum mean-squared
error predictor MMSEP) is false for the case where the means of future distribatidiffer from the
current because unanticipated breaks occur. More prgcigigén an information setX] ;, available
at timet — 1, the conditional expectation about a variableformed at timet — 1 for time ¢ is de-
notedE;_; [z;|X} ,], andV,_1[e;|X} ] denotes the corresponding conditional variance whes the
prediction error defined in (1). The first subscript denokesdistribution over which expectations are
calculated, theé denotes conditioning, the subscript endenotes the period for which the relevant ex-
pectation is formed, anX; ; denotes the conditioning information. This[z;|X} ;] is a potentially
different expectation, as &;[z,.1|X}_;], showing that three time subscripts are clearly needed. The
conditional distribution ofr, is denoted; (z;|X} ;).
Let:
€t = Tt — Et—l [ZL’t | X%—l] (l)

be the error from predicting; by the conditional expectation ef givenX; ; formed att — 1. Then:
Et—l [et | X%—l] = Et—l [l’t | X%—l] — Et—l [.Z‘t | X%—l] =0 (2)

and:
v [0 | XE4] = Ve [ | X1o]

Thus, the usual claim that the conditional expectatiddiSEP seems correct.
However, when distributions shift, so thfa(-) # f,_1 (-), thenE;[-] # E;_1]-] since:

Et,1 [.Tt | thfl] = /xtftl (xt|Xt171) d.Tt.



but:
Ei [z | X{y] = / zufy (24X, day
Although (2) is true, that is unhelpfilx postas the realized average error will be:
Ei [er | Xi_1] = Ei [(we — Eoon [me|Xi4]) | X
=By [z | X{q] — B¢ [Eeon [ X1 | Xi]
— /:ct [, (2 XLy ) — foy (wefX0 )] dirg # 0 3)

whenf, () # f,_1(-). Thus, the conditional expectatidfy_; [z¢|X;_ ;] need not be unbiased for
E; [¢/X}_,], which is therelevantconditional mean at time Also:

2
02 =E [e2| X!, ] =E [(azt B [m | X)) X%_l} . 4)

Hence the conditional expectation is theMSEP of x; att — 1, but need not be atwhere it can be
biased and may not have the minimum variance.

4.1 Staticillustration
Even in the simplest setting with no dynamics, if:
2 ~ IN [p, 2] (5)
wherex; = u; + ¢ then:
E: [2: | thfl] = [t
Ee [z | Xio1] =

so that as in (3) when the mean changess ¢; + s — p¢—1, SO:

Ei[er | Xi_1] = pr — pre—1 = Vg #0 (6)

and from (4):
0% =B [(ue+ e = 1)’ | Xy | = 02+ (Vpu)? > o2 (7)

Consequently, if the underlying process is wide-sensestatienary, the conditional expectation based
on the current distribution is not an unbiased predictohefriext period mean, and could have a large
variance relative to the variance of the process.

As an alternative predictor, consider another functian, [:vtIth_l] , and analogously to (1) let:

me=xe— Gy [ | Xy 8
Then, forH;_; [xt‘X%_l] =G [xt‘X%_l] —E;q [xt‘X%_l]:

op, =E [} | X{_1] =E [(l‘t - thl[l‘t|thf1])2 \ XLJ

=E¢[ef | Xi,] + (Htfl[l’t\th_ﬂ)Z — 2B, [eHi—1 [z X} _1]]
= 0'3 + (Ht71[$t|X%_1])2 — 2Et [eth,l[xt\X%_l]]

t



WhenE; # E; 1, the bestex postpredictor ofz; in MSE terms need not b&;_; [z:|X} ;] as it is
possible fora?%S < o2, That cannot occur whelfy = E;_; as there; = ¢; andE;[e;H 1 [2¢|X;_]] = 0,
whereas more generally (6) shows:

Et [eeHi—1[me] Xy 1] | Xeo1] = B¢ [(Vie + €0) (Geor e Xi 1] — pe—1) | Xi4]
= Ve (Geo e X)) — pe—1) 9)

Again in the special case of (5) let:
Gioq [z | Xgo1] = pe—1+ 6
which might be an intercept-corrected forecast, then:

Hiop [z | Xioq] =0

and so:
E [ethfl [l‘t \ thl]] =0 (Mt - /thl) = 0V .
Consequently:
op, =02, + 06 =26V (10)
sooy, < o¢, if (say)d > 0 and:
d—2Vus < 0. (11)

Hence, wherVy; > 0 theno;, < o7, provided thaty > 0 andd < 2Vpu;. Therefore, if the
modification to the conditional mean is in the correct dimttbut does not seriously overshoot, then the
it results in a loweMSE than the conditional mean predictor. Note that wR&m, > 0, theno?, > o2,
whenever the mean adjustment is in the wrong direction,di.€. 0. Alternatively, whenV u; < 0, then
;. < of, provided tha¥ < 0 and|d| < 2|V | In summary, it follows that?, < o7, wheneverv i,
ando have the same sign (i.e., the modification is in the corraeicton) and|é| < 2|V (i.e., the
modification is not too large).

4.2 Dynamicillustration

As a more realistic illustration of these formulae, consiastationary first-order autoregressive DGP:

Y =y + pyi—1 + €, Where e, ~ IN [0, 07] (12)
with |p| < 1 that holds fort = 1,2,...,T — 1. Then expectations are constant over that period, so that:
Elye] ==+ pE[y—1] + Elee] =7+ pp (13)

and hence. = /(1 — p) is the equilibrium mean ofy; } over that sample. The conditional expectation,
given the history of the process is:

Elye | ye—1] =7+ pyr—1 + Eler | ye—1] = v + pye—1 (14)
and in this settingE [y;|y:—1] is an unbiasedyIMSE predictor ofy,:

Yy —Elye | 1] = &

with:
Ele] =0 and V [¢] = o2

6



which is the smallest obtainable.
Next, fort =T, T + 1, ... the structural change is denoted:

ye ="+ p Y1+ e (15)

wheree; ~ IN [0,02] as before (changing that distribution adds to the cona)simd |p*| < 1 still.
Now expectations must be dated to avoid incorrect cal@aratiso we writder_; [-], Er [-] etc., where
the subscripts denote the pre-break and post-break distriis determined by (12) and (15) respectively.
From (15):

Er[yr] ="+ p*Er [yr—1] + Er [er] = 7" + p*p (16)

which in general is not equal {oif either parameter differs between (12) and (B)loreover:

Ersilyrs1]l ="+ p"Eri [yr] + Ersa lersil =7 + 0" (V" +p"'1) =" (1 + p*) + (p")u (17)

which keeps changing, and although it convergegor- v*/(1 — p*), does not equak* for a number
of periods.

However, atl” — 1, it is not known that the break will occur, so agents formiogditional expecta-
tions abouty; givenyr_; must perforce use the distribution at that time, leading to:

Er—ilyr | yr—1]l = v+ pyr—1 + Er—1 ler | yr—1] = v + pyr—1 (18)

Thus, their conditional expectations error is:

yr —Er—1lyr |yr—1l ="+ p"yr—1 +er — v — pyr—1
=V =7+ —pyr1t+er
=Vvy+Vpyr—1+er.

On average (i.e., unconditionally), that error will traimego be:

Erlyr — Er—1lyrlyr—1]l = (V" =) + (0" — p) Ex [yr—1] = Vv + Vpu

so the prediction is biased. Moreover, unless the agentsraréscient and instantly discover their
mistake (somehow ‘learning’ two parameters from the onergrthen they will make a similar mistake
in the next period, so the bias persists. For example, iftagexep the in-sample parameter values, but
update the data, so use:

this leads to the average error:

Ery1 [yre1 — Br—1[yra | yr]] = Eraa [(V° =) + (0" — p) yr + €741]
=Vy+Vp (Y +p'1).

If expectations were undated, then it is unclear wb@jr;] might be, but if any aspect of the
in-sample model’'s parameters has shifted, the correctndiitonal expectation is never:

*

nor E[yr41] = l%p

%If the process remains stationary then it would be possini¢he equilibrium to remain constant, but it would need both
of v* andp* to change witld < v* /v = (1 — p*)/(1 — p) < oo.

5
Elyrii] = -
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Now consider the alternative predictor to the conditionalam given byKr_1[yr|yr—1] and analo-
gously to (1) and (8), define:

Y = yr — Kr—1lyr|yr—1].

Let:

Jr_ilyrlyr—1] = Kr—ilyr|yr—1] — Er—1lyr|yr—1]
and

w =yr — Er_alyr|lyr—1] = Vy+ Vpyr—1 +er
so that forEr[uf|yr—1] = Ep[uf] = 03

012% =Er [¥F | yr—1] = Er [(ZUT — Kr_1lyrlyr-1])? | yT—l]
=Er {(QT — Er_alyrlyr—1] — {Ki1lyrlyr—1] — Er—ilyrlyr—1]})? | yT_1]

=Er [(UT —Jr_1lyrlyr-1])? | yTA]
= op, + (Jroalyrlyr—1))? — 2Ex [urdr_1[yrlyr—1]) -

When Er # Ep_;, the bestex postpredictor of yr in MSE terms need not b&r_; [yr | yr—1]
as it is possible fow7 < o7 . That cannot occur wheB;r = Er_; as theno;, = o? and
ET[uTJT_l[yT|yT_1]] = ET [ﬁTJT_l[yT|Z/T—1H =0, whereas in general:

Er [(urdr—1lyr|dyr—1]) | y7-1]

=Er [(Vy+ Voyr—1 +er) Kroilyrlyr—1] — (v + pyr—1)) | yr—1]

= Er [urKr_1[yrlyr—1] | yr—1] — vVv — (pVy + 7V p)yr—1 — pV oy,
£0.

In the case of (12) let:
Kr-1[yr | yr—1] = v+ pyr-1+46
which might be an intercept-corrected forecast, then:

Jr_ilyr | yr—1] =0

and so:
Er [urdr—1[yr | yr-1]] = 07 [ur | yr—1] = 0(Vy + Vpyr_1).

Hence:
aiT =05, 46> —25(Vy+ Vpyr_1)

which for example illustrates that an intercept adjusteddast might have a lower forecast error variance
than the conditional mean sino%T < UZT is possible. Noting thatVy + Vpyr_1) is the forecast
error of the conditional mean predictor (apart fregnwhich has a zero mean) it is clear that this result
is analogous to (10) of the static case.

Since a biased forecast is unlikely to be the most ratiorailave, we now consider a further impli-
cation of these results.



5 Thelaw of iterated expectations and unanticipated change

When expectation distributions are unaltered the law o&it®l expectations often is written:

E-[Ey [y 2] = Ey[y] (19)

and proved by:

e b=/ ( / W18 ) g ()¢ = | [ 6l 6 )
/yy</2h(y,2)d2> dy:/yyp(y)dyzEy[y]

whereh(y, z) = f(y|z)g(z) = p (y) ¥ (z|y) is the joint distribution ofy, z) and:

/ h(y,2)dz=p(y).
Z

When the variables correspond to a common set at differeéas daiawn from the same distribution,
then (19) becomes:
Eﬂﬁt [Ext+1 [xtJrl | $t]] = Em+1 [J:tJrl] .

The formal derivation is close to that in (19), namely:

Evy [Evopr [Te41 | 24]] Z/ (/ T1f (Teg1]ze) d$t+1> p (2¢) dz
Tt Tt41
:/ / zep1f (p1|ze) p (2¢) gy gy
Tt J Ti41

2/ Tit1 (/ h (-Tt—l—laxt)dl't) dzsq
Tia1 Tt

= / Tip1p (Te41) drpyr = Eppy ) [2041] (20)
Ti41

Thus, if the distributions remain constant, the law of itedaexpectations holds.

However, the law of iterated expectations need not hold velnibutions shift, as the factorization
h(xegr1,2) = f (ze1]2e) p (2) Of the joint density is not achieved by the law of iteratedestptions.
This problem arises when the distribution shifts betweandt + 1 as follows. First, note that:

sy [7e11 | Zy] and By, (2441 | Z4-1]

are different entities whef#; andZ;_, are information sets d@tandt — 1 respectively. Similarly when
distributions shift we have:
Ext [J:tJrl ‘ It] 7é ECCH—I [J:tJrl ‘ It]

the former of these being needed for an unbiased conditfpediction as shown in the previous section.
Now, however:

E$t [E$t+1 [-Tt-i—l | xt]] 7é E$t+1 [:Ct-f-l]



since:
Ev, [Evopy [Ter1 | 2] / (/ Tet1fr,44 (l’t+1|xt)dxt+1> P, (71) dzy
Tt41

— / / Ferfrey (T0110) oy (1) Ay
$t+1

:/ Tit1 (/ frip1 (Te1]28) Pay (xt)dl’t> dzii
Ti41 Tt

# Tt41Pxyry (Te1) A1 = Eayyy [e41] (21)

Tt4+1

The reason the law of iterated expectations does not holiisrcase is thaf,, | (i1|z¢) pz, (x¢) #
foir (eg1|Te) Poyyy (T6) = g1 (2441, 2¢) unlike the situation in (20) where there is no shift in distri
bution.

Thus, when distributions shift over time as in (5) expeotagiare affected by their timing:

Eur [Tes1l2e) = pte # Eappy [Te41] = pea
Eapyy [Tt41]7e] = pasa

noting thatz, andx;,; are independent in this example. Thus in this case we have:

Eatt [(E$t+1 [xt+1|xt])] = E:Bt [/.Lt] = Mt 7£ M1 = E$t+1 [xt—f—l] .

Equally, for the analogous model to (12):

Eut [ey1lze] = v+ pat # Eop oy [wep1] =7 + 0"
and

Ext [(Ext+l [$t+1|xt])] = Ext [7* + p*l‘t] = ’Y* + P*M 7é Ext+1 [xtJrl] = Ht+1

whenu = v/(1 — p) andp* = ~* /(1 — p*). Finally note that with consistent dating it remains truatth

Eu, [(Ex [Te41 | me])] = Eg, [w141] = g

More generally, there are two sources of updating from, Bay|x:1|x;—1] t0 E;,, | [i41]|z¢]: new
information is embodied im;_; becomingx;; and shifts in the distribution implied by a change from
E., to E;,,,. Much of the literature (see e.g., Campbell and Shiller,7)@&sumes that the former is an
unanticipated change, written B$xy 1 |z¢] — E [z141|x¢—1], which is an innovationy,, and the relevant
information becomes known one period later. That is nottfube latter, where the new distribution has
to be learned over time—and may have shifted again in the tme&anEven if the distribution, denoted
fir1 (41|t ), became known one period later:

Ext+1 [xtJrl | xt] - Ext [xtJrl ‘ th,l] = Ext+1[$t+1|xt] - Ext+1 [xtJrl‘xt*l]

+ (Ext+1 [xtJrl‘xt*l] - Ext [xtJrl‘xt*l])
=+ /fCt—f—lft—f—l (Tpg1]|Te—1) dopgq — /$t+1ft (@p41|ze—1) Aoy
= v+ (feg1 — e)

where the last line uses (5). In practice, both means need &stimated, a nearly intractable task for
agents—or econometricians—when distributions are sbifti
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The main results of Sections 4 and 5, namely that when disiiis shift the conditional expectation
is not the unbiaseMMSE predictor and the law of iterated expectations does not, mkhn that the
mathematical derivations commonly underlying inter-temab optimization theory are invalid iny
location shifts have occurred. Since such shifts are apggrall too common, we conclude that many
DSGE derivations are invalid as well. Thus DSGE models &ahlito be poor representations of what
we observe in economies, an issue to which we now turn.

6 DSGEsareintrinsically non-structural

We have shown above that the existence of unanticipatedyebdaads to difficulties for models based
on inter-temporal optimization and conditional expecdiasi. DSGE models have rational expectations
(RE), construed as the pre-existing conditional expeamtathuilt into them and this presents a problem.
Hall (1978) pointed out an important implication of RE, ndyn#hat e, 1 = 411 — E; [x441|Xy] IS
unpredictable giveiX;, and so when there are structural breaks serious foreqass$ &vill arise. This
presents a problem for economic theory-led models, sucts&Hmodels, whenever there is a structural
change. There are alternative forms of model and ways of himgdhat are less susceptible to these
changes and we discuss some of them in section 7.

There are numerous definitions of structure in the liteeaturd in regular use. For example, ‘struc-
ture’ may be employed to mean no more than that a model istljireased on a theory. Alternatively,
structure can mean an over-identified model for which thiiotisns are not rejected by data evidence
(but see Hendry, Lu and Mizon, 2009, for an analysis of thélgras with this approach). Despite the
existence of many definitions of structure we now use theeoinaf structure defined in Hendry (1995)
to show the limitations of models based on inter-temporéhapation and RE (e.g. DSGE) when there
are unanticipated changes. Thus structure is defined asdd basic features of the economy which
are invariant to changes in the economy. Hence a set of ragessnditions for structure in a model
is that its parameters are invariant to: (a) an extensioh@fsample; (b) interventions in the economy
such as regime shifts; and (c) any extensions of the infeomaet used in the model (see Hendry, 1995,
for more details). An important feature of these conditiethat each is capable of empirical testing.
However, they are only necessary conditions and sincetstalenodels must necessarily correspond to
reality, which is untestable, there are no sufficient coéodg: but if a model fails to satisfy the necessary
conditions, it cannot be structural, whereas a model thas datisfy the necessary conditions still may
not be structural.

In practice, no agent can possibly know even the currentiltlision to compute its conditional ex-
pectation, which instead has to be estimated in some way tinenmformation available to that agent.
That requires a minimum of a sample of observations, fortedlan a model, from which the estimated
conditional expectation is then calculated—and whenibigions are shifting, that task borders on the
impossible. Historically, most of the theory of rationapextations was developed for stationary pro-
cesses, and while learning introduced a form of non-statitpnas in Evans and Honkapohja (2001), the
theory has not been updated to a wide-sense non-statiorwaty, \wartly because it is not obvious what
a rational forecast would be when location shifts occurhay manifestly do. Since their derivations
rely on solving inter-temporal optimization problems, waagng agents form their expectations of the
unknown future events using their current conditional exa@gons, DSGEs must be intrinsically non-
structural when the distributions underlying those exatimns alter. Thus, the Lucas (1976) critique
applies automatically to DSGESs because their very dedmatnecessitate that expectations distributions
never change. Muellbauer (2009) presents a similar catmfuthe use of DSGE with rational expecta-
tions in the particular context of personal sector consiwngnd housing.

Further, a distinction can be drawn between the use of DSGdelndor forecasting and for policy
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analysis. For forecasting, the most important requirentetitat any mean shifts are dealt with, other-
wise there will be forecast failure. If valid, the rationalpectations assumption within DSGE models
would ensure that the forecast would be back on track aftempeniod — a form of robust forecasting. It
is not clear though that the assumptions underlying ratiexjectations are tenable. On the one hand,
the assumption of rational expectations provides a prigtebelt around the theory of DSGE indepen-
dently of empirical evidence, which is neither very conimgcnor scientific. On the other hand, and
more realistically, in the presence of unanticipated stegges or location shifts, rational expectations
are clearly false — otherwise the DSGE would be required ptuca the break prior to it happening, an-
ticipating every possible change. However, economic pditalysis requires more than just capturing
a mean shift. A structural model is required for reliablelgsia, but more realistically, one might seek
an ability to quickly: (a) identify a new regime’s charadséics, and (b) develop a model of that regime.
Precisely how this can be done within the framework of DSGHEet®is unclear, but the modeling strat-
egy outlined in the next section may be more promising in ddwafrintermittent unanticipated location
shifts.

7 Modeling methodology

The problem is a deep one, since if economic agents’ canndthance do not, use conditional ex-

pectations, then the very formulation of their inter-temgbamptimization decisions is incorrect, as is

the assumption of no distributional shifts needed to sdlvediresolution requires seeking to explain

all extant findings by building general empirical modelsngsautomatic techniques to select constant
parametrizations over the full sample. The challenge fonemists is to develop models for forecasting

that are robust to unanticipated changes, allowing thattageay do likewise, leading to models for

economic policy analysis that are structural, yet can adfuthe rapid changes that arise in economies
even when we may not be able to predict them.

There are alternative ways of developing empirically welldided and policy-relevant models to the
economic theory-led modeling by DSGE. The latter startéwitlosely specified empirical implemen-
tation of a theory, and only introduces modifications of aitimh nature, such aad hocstickiness to
deal with mis-specified dynamics. Such simple-to-genermadieting is fraught with difficulties as has
been explained by numerous authors (for recent contribsiseenter alia Hendry, 1995, Mizon, 1995,
Johansen, 2006, Juselius and Johansen, 2006, and Spa®®)s, @Bneral models designed to embrace
a range of theories, different functional forms, and prevadgood characterization of the data, including
possible regime changes, are essential — no current tkeaméestructural in the sense of being invari-
ant to all relevant regime change. Attention can then be fgai@lid conditioning and marginalization,
which is essential, particularly when models are being ldg@esl for policy analysis. Equally, it pro-
vides a framework to distinguish behaviorally relevantayics from proxy dynamics that often arise
to accommodate regime change and expectations. The cHdite general unrestricted model (GUM)
is very important, and involves much human input based oermxpce, economic theory, institutional
knowledge, the purpose for which the modeling is being damel, the known properties of the data,
including its quality. Once the GUM has been specified, thpnask is that of selecting a model from
the large number of possible sub-models that are embeddbéd BUM, such that the final selection is
coherent with the data characteristics (congruent), ahigaes this parsimoniously at least as well as the
alternative models within the GUM (encompassing). By faog®n selecting variables rather than mod-
els, recent developments in the automation of this seleqtiocess have produced remarkable results,
extending to handling potentially more candidate varialtein observations, and jointly selecting vari-
ables, functional forms, multiple breaks, and data comtation. Hendry and Johansen (2010) show that
if the theory variables are not selected over when the themgel is a complete and correct representa-
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tion of the data evidence, then the distributions of the ipatar estimates after selection, possibly over
more candidate variables than observations,idaetical to those obtained by direct estimation of the
theory model. Thus, the search costs are essentially zeneGsely, if the theory model is incomplete
or incorrect, but a sufficiently general GUM nests the DGénth viable representation of that DGP will
be retained after selection even when the theory variabéesaintained. Finally, if the theory is incom-
plete and the GUM does not nest the DGP, selection can diifede far better model, avoiding serious
non-constancies and providing smalMBEs for the parameters of interest in the correct specification
(see Castle and Hendry, 2010). Consequently, selectionida®a near Pareto optimal approach for all
these realistic settings. For general discussions of the@@ments of the new approach to automatic
model selection, sdater alia, Castle, Doornik and Hendry (2010a, 2009). The resultsisfitinge body

of research are embodied in the software packagiemetricgsee Doornik, 2009). Hendry and Mizon
(2010) provide an example of this approach to modeling inctiv@ext of a re-examination of Tobin’s
model of the demand for food in the USA (Tobin, 1950) usingaemrded data set.

8 Conclusions

Expectations of future events are important in many areasimian behavior especially economic. How-
ever, almost no economic time series is stationary, eitlegkly or strictly: distributions shift. Thus, the
present treatment of expectations in economic theoriest@i-temporal optimization is inappropriate—it
cannot be proved that conditional expectations based otemmmoraneous distributions are minimum
mean-square error 1-step predictors when unanticipateakbroccur, and the law of iterated expec-
tations then also does not hold inter-temporally. One aqunsece is that dynamic stochastic general
equilibrium models are intrinsically non-structural, amdst fail the Lucas critique since their deriva-
tions depend on constant expectations distributions. ofigh no model is perfect, choosing amongst
the available models on the basis of economic theory coberer matter how inconsistent the result
is with empirical evidence, has little to recommend it fooeamic policy and forecasting. Modeling is
an evolutionary process, and it is important to have cetérat enable selection to lead to models that
will survive challenges from all sources of informationtheer than models that become extinct following
successive failures to accurately capture the unfoldingvehts in the economy. To offset the negative
results on expectations, we have briefly described a mapsigthodology that offers exciting prospects,
and has an excellent record to date.
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