Technical Change, Finance, and Public Policies in an Evolutionary Model of Endogenous Growth and Fluctuations

G. Dosi¹ G. Fagiolo¹ M. Napoletano^{1,3} A. Roventini^{1,2}

Email:gdosi@sssup.it
Paper: http://www.lem.sssup.it/wplem.html

¹Sant'Anna School of Advanced Studies, Pisa (Italy)

²University of Verona (Italy)

³OFCE, Nice (France)

Introduction

The puzzling dichotomy between growth and business cycle theories

- growth literature (Neoclassical and Evolutionary) has serious difficulties to explain short-run macro phenomena
- new Keynesian DSGE literature on business cycles does not address explicitly long-run problems
- Dichotomy between short and long-run issues is also present in models with financial-market imperfections

Consequences:

- Schumpeterian theory of growth never meets Keynesian theory of effective demand and aggregate business cycles
- a peculiar schizophrenia between macro fiscal and monetary policy, if any, for the "short run" and "structural" policies for the long run

Motivations II

Macroeconomic Policy and Agent-Based Models

- Great potential for ABMs in addressing policy-oriented analysis
- The economic crisis as a crisis for economic theory: DSGE vs. complex-system approaches to economics (Kirman, 2010; Colander et al., 2010)

Results

Still a lot of work to do, especially in macroeconomics

Our proposal: a new family of models which

- begins to bridge short- and long-run dynamics.
- allows to assess both the short- and long-run implications of public polices and the related cross-frequency interactions

Related Literature

Introduction

- Schumpeterian and Evolutionary-Growth Models
 - From Nelson & Winter (1982) to the K+S model (2006, 2008, 2010)
- Vintage Keynes (1936) and Cambridge Keynesians
 - From J. Robinson to Kaldor and Harrod
- Post-Walrasian, Empirically-Based Macroeconomics
 - See Colander (2006) and Colander et al. (2008)
- Agent-Based Computational Economics
 - Tesfatsion; Gintis; Dawid, Neugart et al. (EURACE); Delli Gatti, Gallegati and co-authors; and many many others!
- Financial Market Imperfections and Business Cycles
 - Greenwald & Stiglitz (1993,2003), Delli Gatti, Gallegati et al. (2005)

Assessing the Impact of Different Policies

Develop a model able to robustly reproduce an ensemble of microeconomic and macroeconomic "stylized facts"

Results

- Choose specific policy combinations
- Evaluate the long- and short-run impact of policies upon
 - GDP growth rate
 - GDP volatility
 - Unemployment dynamics

The Model

Close antecedents:

 The Keynes+Schumpeter model ("K+S model", 2006, 2008, 2010) on endogenous growth and business cycles

The basic structure of the economy

- Two industries
- F1 consumption-good firms j = 1, 2, ..., F1
- F2 machine-tool firms i = 1, 2, ..., F2
- N consumers/workers
- Banking sector (one bank)
- Public sector
- Discrete time

$$t = 1, 2, ..., T$$

Agents

Capital-good firms:

- perform R&D
- produce heterogeneous capital goods using labor only

Consumption-good firms:

 produce homogeneous consumption goods using machine tools and labor

Consumers/workers:

- inelastically sell labor services to firms
- fully consume their income

The Sequence of Microeconomic Decisions

Model Dynamics:

- capital-good firms perform R&D
- capital-good firms advertise their machines sending "brochures" to consumption-good firms
- consumption-good firms decide how much to produce, choose their supplier for next period machines and order machines
- firms hire workers according to their production plans (wages are advanced), using internal funds and credit provided by the banking sector
- 5) production in both sectors begins
- 6) consumption-good market opens
- 7) entry and exit take place
- 8) consumption-good firms receive the machines they ordered and pay them using internal funds and external credit

Technical Change I

Introduction

- Capital-good firms search for better machines and for more efficient production techniques
 - A_i(t): productivity of machine manufactured by firm i
 - B_i(t): productivity of production technique of firm i
 - $A_i(t)$ and $B_i(t)$ determine the technology of firm i at time t

R&D:

R&D investment (RD) is a fraction of firm sales (S):

$$RD_i(t) = \upsilon S_i(t-1)$$
 $\upsilon > 0$

 capital-good firms allocate R&D funds between innovation (IN) and imitation (IM):

$$IN_i(t) = \xi RD_i(t)$$
 $IM_i(t) = (1 - \xi)RD_i(t)$ $\xi \epsilon [0, 1]$

Technical Change II

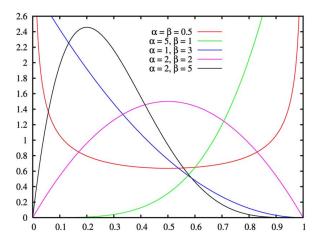
Introduction

Innovation and imitation: two steps procedure

Innovation:

1) firm successfully innovates or not through a draw from a Bernoulli($\theta_1(t)$), where $\theta_1(t)$ depends on $IN_i(t)$:

$$\theta_1(t) = 1 - e^{-o_1 I N_i(t)}$$
 $o_1 > 0$


2) search space: the new technology is obtained multiplying the current technology by $(1 + x_i(t))$, where $x_i(t) \sim Beta$ over the support (x_0, x_1) with $x_0 < 0, x_1 > 0$

Imitation

1) firm successfully imitates or not through a draw from a Bernoulli($\theta_2(t)$), where $\theta_2(t)$ depends on $IM_i(t)$:

$$\theta_2(t) = 1 - e^{-o_2 IM_i(t)}$$
 $o_2 > 0$

 firms are more likely to imitate competitors with similar technologies (Euclidean distance)

Capital-Good Market

Introduction

Capital-good firms:

- if they successfully innovate and/or imitate, they choose to manufacture the machine with the lowest $p_i + c_i^1 b$
 - p_i: machine price;
 - c_i^1 : unit labor cost of production entailed by machine in consumption-good sector;
 - b: payback period parameter
- fix prices applying a mark-up on unit cost of production
- send a "brochure" with the price and the productivity of their machines to both their historical and some potential new customers

Consumption-good firms:

- choose as supplier the capital-good firm producing the machine with the lowest $p_i + c_i^1 b$ according to the information contained in the "brochures"
- send their orders to their supplier according to their investment decisions

Investment

Introduction

Expansion investment

- demand expectations (D^e) determine the desired level of production (Q^d) and the desired capital stock (K^d)
- firm invests (EI) if the desired capital stock is higher than the current capital stock (K):

$$EI = K^d - K$$

Replacement investment

- payback period routine:
 - an incumbent machine is scrapped if

$$\frac{p^*}{c(\tau)-c^*}\leqslant b, \quad b>0$$

- c(τ) unit labor cost of an incumbent machine;
- p*, c* price and unit labor cost of new machines
- also machine older than Λ periods are replaced

Financial Structure

Introduction

- Production and investment decisions of consumption-good firms may be constrained by their financial balances
 - consumption-good firms first rely on their stock of liquid assets and then on more expensive external funds provided by the banking sector
 - credit ceiling: the stock of debt (Deb) of consumption-good firms is limited by their gross cash flows (= sales S):

$$Deb_i(t) \leqslant \kappa S_i(t-1), \quad \kappa \geqslant 1$$

Credit and the Banking Sector

Introduction

Deposits and Credit

- A single bank gathers deposits (from both sectors) and provides credit to firms
- Deposits are equal to total net assets of all firms
- Credit is allocated to firms on a pecking-order base
- Pecking order depends on the ratio between net worth and sales

$$NW_j(t-1)/S_j(t-1)$$

 If a firm does not get credit it exits the market (net worth gets negative)

Credit Supply Scenarios

- Total Credit supply TC(t) is determined according to two different scenarios
 - (1) Fractional-Reserves Scenario: Credit is a multiple of total net-assets of firms, entirely deposited in the bank

Results

(2) Basel Capital-Adequacy Scenario: Credit can be constrained by capital-adequacy requirements (i.e., by the ratio between internal funds and total credit of the bank, set by the regulatory authority)

Consumption-Good Markets

Supply:

• imperfect competition: prices $(p_i) \Rightarrow \text{variable mark-up } (mi_i)$ on unit cost of production (c_i)

$$p_j(t) = (1 + mi_j(t))c_j(t);$$
 $mi_j(t) = mi_j(t-1)\left(1 + \alpha \frac{f_j(t-1) - f_j(t-2)}{f_j(t-2)}\right);$

 f_i : market share of firm j

 firms first produce and then try to sell their production (inventories)

Consumption-Good Markets

Market dynamics:

 market shares evolve according to a "guasi" replicator dynamics:

$$f_j(t) = f_j(t-1) \left(1 + \chi \frac{\overline{E_j}(t) - \overline{E}(t)}{\overline{E}(t)} \right); \quad \chi \geqslant 0$$

 E_i : competitiveness of firm j; E: avg. competitiveness of consumption-good industry:

 firm competitiveness depends on price and unfilled demand (I_i) :

$$E_{i}(t) = -\omega_{1}p_{i}(t) - \omega_{2}I_{i}(t), \quad \omega_{1,2} > 0$$

Exit and Entry

Exit:

(near) zero market share or negative net worth

Entry:

- each entrant replaces a dead firm
- entrants' net worth (NW_e) is a fraction of the average net worth of incumbents (\overline{NW}):

$$NW_e = \lambda_1 \overline{NW}$$
, with $\lambda_1 \sim U[\iota_1, \iota_2]$, $\iota_{1,2} > 0$

Results

- the technology of capital-good firms is obtained applying a coefficient extracted from a Beta distribution to an endogenously evolving technology frontier
- the capital stock of consumption-good entrant (K_e) is a fraction of the capital stock of incumbents (\overline{K}) :

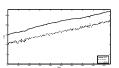
$$K_e = \lambda_2 \overline{K}$$
, with $\lambda_2 \sim U[\iota_3, \iota_4]$, $\iota_{3,4} > 0$

consumption-good firms buy K_e in the next period

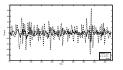
Macro Level

Public sector

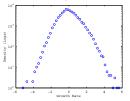
- levies taxes on firms' profits and workers' wages or on profits only
- gives a fraction of the market wage to unemployed workers


Results

Labor Market

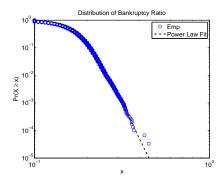

- exogenous labor supply
- wage dynamics determined by avg. productivity, inflation and unemployment
- involuntary unemployment + possibility of labor rationing
- Employment, consumption, investment, inventories and GDP are obtained by aggregating micro quantities

Empirical Validation I: Macroeconomic Stylized Facts


- The K+S model generates self-sustained growth with endogenous business cycles
 - (1) I(1) logs of GDP time series with "right" persistence
 - (2) Investment more volatile than GDP; consumption less volatile than GDP
 - (3) Consumption, net investment and change in inventories procyclical and coincident
 - (4) Unemployment, prices and mark-ups are countercyclical. Productivity and inflation are pro-cyclical
 - (5) Total credit is pro-cyclical and coincident
 - Bankruptcy rates are pro-cyclical and lagging GDP dynamics very closely
 - (7) Quasi-Laplace fat-tailed distributions (see Fagiolo, Napoletano and Roventini, 2008. J. of Appl. Econometrics)

Logs of GDP. Consumption and Investment

BP-Filtered GDP, Consumption and Investment


GDP Growth-Bate Distribution

Empirical Validation II: Microeconomic Stylized Facts

Results

000000000000000

- The K+S model is able to account for a rich ensemble of micro (firm-level) cross-section stylized facts (Dosi, 2007)
 - (1) Productivity dispersion among firms is large
 - Inter-firm productivity differentials are persistent over time
 - (3) Firm size distributions are right-skewed (and even more skewed than log-normal distributions)
 - (4) Firm growth rates can be proxied by fat-tailed quasi-Laplace densities
 - Investment lumpiness (coexistence of firms investing a lot and investing almost-zero, see Gourio & Kayshap, J. Mon. Econ., 2007)
 - Bankruptcy rates can be proxied by power-law densities (see Fujiwara, 2004, Di Guilmi et al. 2003)

Introduction

- Schumpeterian innovation policies affecting
 - opportunities (e.g. expected value of innovation draws)

Results

0000000000000

- firm search capabilities (e.g. R&D productivity)
- appropriability conditions (e.g. patents; imitation)
- Entry and competition policies affecting market structure:
 - competition policies (e.g. antitrust policy)
 - entry and exit (e.g. barrier to entry and/or exit)
- Keynesian demand macro management policies:
 - public expenditures
 - taxes
 - public debt
- Monetary policies:
 - interest rate
 - credit quantity constraints (mandatory reserve reg.)

Experiment I: Vary Opportunities of Technological Innovation

Description of the experiment

 shift rightward and leftward the mass of the Beta distribution governing new technological draws

Results

 GDP growth rises unemployment fall with increasing technological opportunities

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
low tech. opportunities	0.0195	0.0794	0.1357
	(0.0001)	(0.0008)	(0.0050)
high tech. opportunities	0.0315	0.0828	0.1025
	(0.0002)	(0.0007)	(0.0051)

Experiment II: Vary Firm Search Capabilities (proxied by Firm R&D Productivity)

Description of the experiment

change the parameters affecting capital-good firm R&D productivity

Results

 GDP growth rises, GDP volatility and unemployment fall as the R&D productivity increases

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
low search capabilities	0.0231	0.0825	0.1176
	(0.0002)	(0.0008)	(0.0059)
high search capabilities	0.0268	0.0775	0.1031
	(0.0002)	(8000.0)	(0.0048)

Experiment III: Vary Appropriability Conditions, Patent System

Description of the experiment

- patent length: firms that innovate cannot be imitated for a fixed number of periods
- patent breadth: firms cannot innovate around other firms' technology

Results

- patents reduce average growth rate of GDP and increase unemployment
- if we add patent breadth, GDP growth rate falls further and unemployment rises further

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
patent (length only)	0.0242	0.0761	0.1132
	(0.0002)	(0.0008)	(0.0060)
patent (breadth, too)	0.0163	0.0631	0.1329
	(0.0001)	(0.0007)	(0.0067)

Experiment IV: Vary Entrants' Expected Productivity

Description of the experiment

- technological entry barriers are captured by the probability distribution over the "technological draw" of entrants
- we change the expected productivity of entrants shifting the mass of the Beta distribution

Results

 GDP growth rises, GDP volatility and unemployment fall as the expected productivity of entrants increases

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
low entrant exp. prod.	0.0183	0.0798	0.1402
	(0.0003)	(0.0012)	(0.0084)
high entrant exp. prod.	0.0376	0.0697	0.0853
	(0.0002)	(0.0006)	(0.0047)

Experiment V: Altering Selection Mechanisms

capital-good Industry: Antitrust Policy

Description of the experiment

 capital-good firms with a market share higher than a fixed threshold cannot add new customers

Results

 antitrust policy spurs GDP growth and it reduces both unemployment rate and output volatility

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
weak antitrust	0.0265	0.0698	0.1036
	(0.0002)	(0.0006)	(0.0043)
strong antitrust	0.0273	0.0508	0.0837
	(0.0001)	(0.0005)	(0.0036)

Are Schumpeterian Technology Policies Enough?

- So far we have found that Schumpeterian policies has both long-run and short-run effects
- However, such results are conditional on a "Keynesian machine" well in place
- What happen if we switch that off?
- More generally, do Keynesian fiscal policies have also long-run effects?

Experiment VI: Keynesian Demand Macro Management Policies, Eliminate Public Sector

Description of the experiment:

- we begin eschewing the public sector from our model
- we then "pump up" Schumpeterian policies (high opportunities and high search capabilties)

Results

- Evidence of multiple growth paths: Keynesian policies are necessary to support sustained long-run economic growth
- Schumpeterian policies are not enough to push the economy away from low growth trajectories

Description	Avg. GDP Growth	GDP Std. Dev. (bpf)	Avg. Unempl.
benchmark scenario	0.0252	0.0809	0.1072
	(0.0002)	(0.0007)	(0.0050)
no fiscal policy	0.0035	1.5865	0.8868
	(0.0012)	(0.0319)	(0.0201)
Schumpeter-only	0.0110	1.5511	0.7855
(no fiscal policy)	(0.0018)	(0.0427)	(0.0274)

Experiment VII: Keynesian Demand Policies, Changing Taxes and Unemployment Benefits

Description of the experiment

 we increase both taxes and unemployment benefits by the same amounts vis-à-vis the "canonic" parameterization

Results:

- tuning up fiscal demand management does delock the economy from the low growth trajectory and brings it to the high growth one
- avg. GDP growth almost the same, but Keynesian policies have countercyclical effects dampening cyclical fluctuations and reducing unemployment
- More generally, strong complementarity between "Keynesian" policies affecting demand and "Schumpeterian" policies affecting innovation

Keynesian Demand Macro Management Policies

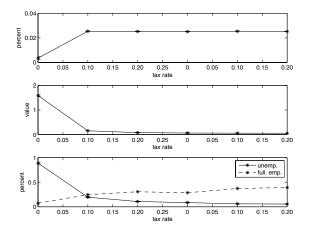


Figure: Results are obtained under balanced budget ratios of expenditures (taxes) to GDP.

Experiment VIII: Monetary Policy, Changing the Interest Rate

Description of the experiment

- we tune the interest rate level in the "canonic" parametrization
- we repeat the same experiment for different levels of firms' mark-up

Results:

- rising (lowering) the interest rate increases (reduces), GDP volatility, the unemployment rate and the likelihood of crises
- Evidence of multiple growth paths: high levels of interest rates lock the economy on a low-growth trajectory
- lower mark-up levels dampen business cycle fluctuations (redistributive effect), but at the same time increase the sensitivity to changes in interest rates (financial dependence effect).

Description	Avg. GDP Growth	GDP Std. Dev. (fd)	GDP Std. Dev. (bpf)	Avg. Unempl.	Prob. of large neg. growth (< -3%)
High Mark-Up					
r=0.00001	0.0277	0.0773	0.0749	0.0382	0.1618
r=0.05	0.0277	0.0750	0.0739	0.0435	0.1488
r=0.1	0.0277	0.0772	0.0760	0.0538	0.1431
r=0.15	0.0288	0.1158	0.0777	0.0488	0.2102
r=0.2	0.0291	0.1796	0.0898	0.0604	0.2799
r=0.35	0.0250	0.2674	0.2056	0.1333	0.3699
r=0.4	0.0144	0.2658	0.3633	0.3549	0.3878
Low Mark-Up					
r=0.00001	0.0274	0.0573	0.0541	0.0191	0.1012
r=0.05	0.0281	0.0540	0.0469	0.0145	0.0908
r=0.1	0.0290	0.0664	0.0505	0.0180	0.1329
r=0.15	0.0298	0.1464	0.0623	0.0217	0.2439
r=0.2	0.0288	0.3015	0.1460	0.0586	0.3885
r=0.35	0.0099	0.2798	0.4164	0.4546	0.4482
r=0.4	0.0010	0.2752	0.4268	0.6346	0.4711

Table: Effects of interest rate for different mark-up levels

Experiment IX: Monetary Policy, Changing Mandatory Reserve Rates

Description of the experiment

- we tune the mandatory reserve rate in the "canonic" parametrization
- we repeat the same experiment for different levels of interest rates and firms' mark-up

Results:

- rising (lowering) the mandatory reserve rate reduces (increases), GDP volatility
- the effects are more significant for lower level of mark-ups and higher level of interest rates
- however, relatively low sensitivity of real variables to changes in reserve requirements

- The misleading dichotomy between growth and business cycle theories (and related policies)
- What we did:
 - develop an agent-based model (K+S model) able to reproduce a great deal of micro and macro stylized facts

 employ the model to design different policies and study both their short- and long-run implications

Summary - Results

- The K+S model robustly reproduces micro and macro regularities and can be successfully exploited to perform policy analyses
- Strong complementarity between Schumpeterian and **Demand policies**
 - innovative opportunities as necessary but not sufficient condition for growth
 - Keynesian fiscal and monetary policies (especially interest rates) do not only stabilize but affect also the long-run.
- Strong redistributive effects
 - Lower mark-ups move the distribution of productivity gains towards wages, thus stabilizing consumption, aggregate demand and output
 - However, at the same time they reduce internal funds thereby increase the sensitivity of firms' balance sheets to changes in interest rates and credit availability.

Future Works

- Extensions of the model:
 - explicitly modelling labor markets
 - banking sector with heterogeneous banks
 - further explore the role of expectations
- Compare different institutional specifications:
 - endogenous vs. exogenous technological frontier
- Performing other policy experiments:
 - further monetary policy effects (e.g. Basel capital requirements)
 - poverty traps and development