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Abstract. Agent-based models (ABMs) are gaining increasing traction
in several domains, due to their ability to represent complex systems that
are not easily expressible with classical mathematical models. This ex-
pressivity and richness come at a cost: ABMs can typically be analyzed
only through simulation, making their analysis challenging. Specifically,
when studying the output of ABMs, the analyst is often confronted with
practical questions such as: (i) how many independent replications should
be run? (ii) how many initial time steps should be discarded as a warm-
up? (iii) after the warm-up, how long should the model run? (iv) what
are the right parameter values? Analysts usually resort to rules of thumb
and experimentation, which lack statistical rigor. This is mainly because
addressing these points takes time, and analysts prefer to spend their
limited time improving the model. In this paper, we propose a method-
ology, drawing on the field of Statistical Model Checking, to automate
the process and provide guarantees of statistical rigor for ABMs writ-
ten in NetLogo, one of the most popular ABM platforms. We discuss
MultiVeStA, a tool that dramatically reduces the time and human inter-
vention needed to run statistically rigorous checks on ABM outputs, and
introduce its integration with NetLogo. Using two ABMs from the NetL-
ogo library, we showcase MultiVeStA’s analysis capabilities for NetLogo
ABMs, as well as a novel application to statistically rigorous calibration.
Our tool-chain makes it immediate to perform statistical checks with
NetLogo models, promoting more rigorous and reliable analyses of ABM
outputs.

Keywords: NetLogo, MultiVeStA, Transient analysis, Calibration, Warmup es-
timation, Steady-state analysis
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1 Introduction

You have just finished coding your ABM and are starting to analyze its out-
put. But critical questions arise: How many simulation runs are enough? How

many steps should be discarded as warm-up? Once warm-up is discarded, how

long should the simulation continue? These questions are essential to obtain
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statistically valid results and ensure that outcomes are not driven by a single
low-probability realization. Yet, in practice, there’s often no clear answer. So you
settle on “reasonable” numbers—say, 10 simulations, 50 warm-up steps, and 100
steps for steady-state analysis—largely driven by computational constraints. But
you are left wondering: Was that sufficient? Or did I overdo it, wasting compu-

tational resources?

The main reason why more principled methods are not used is that they
require substantial effort to implement correctly. Statistically rigorous rules are
time-consuming to design and code, and integrating them within the ABM in-
creases the risk of bugs and slows down model development. Modelers often
prefer to spend their limited time enhancing the realism of the model rather
than coming up with bullet-proof statistical guarantees.

In this paper, we present an automated solution to these challenges. Our
approach is simple enough that the modeler can focus solely on the ABM logic,
while outsourcing the statistical analysis to a dedicated framework. The modeler
only needs to define (i) the ABM step function and how to reset the random
seed, and (ii) which model variables should guide the determination of simulation
runs, warm-up length, and steady-state duration. Once this minimal information
is provided, our framework runs the smallest number of simulations needed to
produce statistically valid results, efficiently parallelizing independent runs. It
then returns a complete analysis to the user.

Our method is grounded in the well-established field of Statistical Model
Checking (SMC), which combines statistical inference and computer science to
deliver optimal solutions. SMC is based on two core principles. First, the analyst
should define the properties of interest, and the tool should automatically run
the minimal number of simulations needed to estimate those properties within a
given confidence level. Second, the statistical analysis should be decoupled from
the model implementation. This means the SMC framework can be written in a
separate programming language, with its own syntax, communicating externally
with the ABM.

The specific contribution of this paper is to integrate an SMC tool, Multi-
VeStA, with the most widely used ABM platform, NetLogo. At the same time,
we demonstrate the capabilities of the tool-chain through a set of illustrative
examples and extend standard SMC to issues related to parameter calibration.
Our aim is to raise awareness among agent-based modelers of how SMC can
facilitate statistically rigorous output analysis. We walk the reader through con-
crete applications, similarly to Thiele et al. (2014); Thiele (2014), and show how
SMC can be used to build a more nuanced view of what parameter combinations
best explain real data.

The first SMC method we present is transient analysis, which focuses on
obtaining statistically valid results at specific time points. The SMC tool de-
termines the number of simulation runs required so that the mean value at a
given step lies within a user-specified confidence interval and significance level.
Some parts of the simulation may be more volatile than others: in such cases,
the SMC automatically allocates more simulations to the uncertain periods, re-
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ducing computational burden where possible. Most importantly, these steps are
fully automated.

To illustrate transient analysis, we consider the “Artificial Anasazi” model
introduced by Dean et al. (2000); Axtell et al. (2002) and further explored by
Janssen (2009). We use the NetLogo implementation from Stonedahl & Wilen-
sky (2010). The model simulates population dynamics in northeastern Arizona
between 800–1350 AD. The key determinant of population dynamics is the po-
tential agricultural production, fluctuating with droughts, and pinned down from
real paleoenvironmental data. Our transient analysis reveals that matching simu-
lated and real household data can be inaccurate during periods of rapid growth—
especially when only a single “representative” simulation is considered, as in
Axtell et al. (2002), or even when averaging over 15 runs as in Janssen (2009).
In contrast, our method runs up to 600 simulations during uncertain periods to
ensure statistically reliable results, while saving resources by running only 20
simulations during stable phases.

Building on this, we introduce a statistically rigorous approach to calibra-
tion that goes beyond the traditional search for a single optimal parameter set.
Replicating the 5-parameter calibration exercise of Janssen (2009), we obtain
a parameterization close to, but not identical with, their reported optimum.
Crucially, rather than treating this outcome as a unique solution, our framework
evaluates whether alternative parameter combinations perform significantly bet-
ter or worse. By formally computing p-values for pairwise comparisons, we show
that 14 parameter combinations cannot be statistically distinguished in terms
of fit. This advances standard calibration practices by shifting the focus from
point estimates to confidence sets of plausible parameterizations, in line with
the model confidence set approach of Hansen et al. (2011) and its application to
ABMs by Seri et al. (2021). In doing so, our method provides an automated and
statistically guaranteed procedure for calibrating NetLogo models. Importantly,
this does not only provide a technical improvement, but allows one to achieve
stronger conclusions on the behavior of the model. For instance, our procedure
lets us confirm with robust evidence that harvest-related parameters dominate
demographic ones in explaining historical population dynamics.

We also address two additional challenges: (i) determining the length of the
warm-up period, during which simulation dynamics are dominated by random
initial conditions; and (ii) estimating how many steps are required in the pseudo-
steady state (a phase of fluctuating but stationary behavior) to compute reliable
long-run statistics. Warm-up detection is performed by dividing the simulation
into batches and testing whether variables across batches follow a stable dis-
tribution (e.g., normal). The simulation continues until this condition is met.
Then, steady-state statistics are computed from the post-warm-up data, with
the number of runs determined by user-defined significance level and confidence
intervals.
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To demonstrate these features, we use the “Alpha Birds” model from Rails-
back & Grimm (2012).4 This ABM simulates territorial bird populations with
reproductive suppression driven by dominant alpha birds. In the original appli-
cation, 10 simulations were run for 20 years, after discarding 2 years as warm-up.
Our framework confirms that this approach was adequate for certain outputs,
but not for all. In particular, the model features a sharp transition: when a sur-
vival probability parameter falls below a threshold, extinction becomes likely.
Yet extinction can take longer than 2 years to occur. As a result, the original
warm-up period was insufficient, and the analysis missed a key discontinuity in
model behavior.

The rest of the paper is organized as follows. Section 2 introduces SMC,
MultiVeStA, and NetLogo, and explains their integration and query structure.
Section 3 demonstrates transient analysis using the Artificial Anasazi ABM,
including its application to calibration. Section 4 illustrates warm-up and steady-
state analysis with the Alpha Birds model. Section 5 concludes.

2 Preliminaries

2.1 Agent-Based Modeling and NetLogo

NetLogo is a popular platform for agent-based modeling (ABM), a computa-
tional approach to simulate the actions and interactions of autonomous agents
to assess their effects on the system as a whole. It uses its own language, called
NetLogo, too, which is designed to be simple and accessible, making it par-
ticularly useful for both beginners and experts in the field. NetLogo excels at
visualizing and exploring complex systems, allowing users to observe emergent
behaviors resulting from individual agents’ rules. Its flexibility and ease of use
make it ideal for developing, running, and experimenting with agent-based mod-
els in a wide range of fields.

NetLogo is widely regarded as the most common platform for agent-based
modeling. Its extensive Models Library provides a rich repository of pre-built
models from various disciplines, including biology, economics, sociology, and en-
vironmental science. Researchers, educators, and students use NetLogo for aca-
demic studies, teaching complex systems concepts, and simulating real-world
scenarios. The platform’s interactive interface, combined with its ability to run
on standard computers, has contributed to its status as a go-to tool in the ABM
community.

2.2 Statistical Model Checking and MultiVeStA

Statistical Model Checking (SMC) is a family of automated simulation-based
analysis techniques popular in Computer Science (see, e.g., (Agha & Palmskog
2018; Legay et al. 2019)). All SMC proposals base on the idea of automatically

4 This ABM was also used by Thiele et al. (2014) to illustrate their RNetLogo package
that integrated NetLogo and the R programming language.
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performing a sufficient but minimal number of stochastic simulations (and simu-
lation steps) of a model to obtain statistically reliable estimations of given model
properties of interest. Furthermore, following the so-called principle of separation
of concerns, properties to be analysed are not encoded inside the model itself
(i.e., to compute intermediate quantities, or create/modify CSV files), but are
expressed in an external query language, a property specification language. This
is similar to how, in databases, queries of interest are expressed in SQL without
requiring to modify the database definition for any different study. This tends to
keep model specifications cleaner and favor replicability of experiments. In some
sense, statistical model checkers can be seen as libraries of analysis routines that
can be run with “one-click” and that guarantee that the obtained results are
statistically reliable. This makes it easier to engineer well (part of) the analyses
and validation tasks. So-called black-box SMC (e.g., Sen et al. (2004); Younes
(2005); Vandin et al. (2022)) do not make any assumption on the nature of the
stochastic process underlying the studied model. They only assume that the
model can be (stochastically/probabilistically) simulated. For example, Multi-
VeStA (Vandin et al. 2022; Sebastio & Vandin 2013; Gilmore et al. 2017) is a
black-box SMC tool that can be integrated with existing simulators to enrich
them with automated statistical analysis techniques. MultiVeStA has been re-
cently redesigned and extended to target agent-based models (ABM) from the
social sciences (Vandin et al. 2022).

Vandin et al. (2022) have shown that SMC can help in the analysis of ABMs
from the social sciences, promoting the automation of statistically-reliable anal-
ysis, and avoiding errors in the results arising from wrong analysis designs. For
example, Secchi & Seri (2017) performed a study on 55 ABMs published between
2010 and 2013 in high-quality venues from the management and organizational
science. The authors demonstrated how, in most cases, simulation exercises did
not offer acceptable statistical quality, rising doubt on the results and their im-
plications. Similarly, a poor handling of initial warm-up behaviours can distort
results and the interpretation of steady-state behaviours (at equilibrium, see,
e.g., Galán & Izquierdo 2005). Vandin et al. (2022) show that SMC, and in par-
ticular MultiVeStA, can solve these issues automatically, demonstrating it on
two ABMs from the literature. First, they show how to automate analyses per-
formed on a large macroeconomic ABM (Caiani et al. 2019), obtaining higher
statistical reliability than classic analysis setups used by the ABM community,
and scaling down the analysis time from days to hours. This focused on transient

analyses, i.e., analyses done on specific time points in the simulation (each of
the first 400 simulation steps, each corresponding to three months). After this,
the authors moved to steady-state analyses, i.e., analyses done after the system
stabilizes in a steady state. This is a much more complex type of analysis. The
authors show how to identify and solve qualitative and quantitative analysis er-
rors performed on an ABM of a financial market (Kets et al. 2014), focusing on
market selection and price at steady-state.
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2.3 Integrating NetLogo and MultiVeStA

MultiVeStA has been created to allow for easy integration with new simulators.
For example, it has been integrated with Java-, C-, R-, Matlab- and Python-
based simulators 5. In this paper, we present the integration of MultiVeStA
and NetLogo. In order to integrate a new simulator with MultiVeStA, one has
to implement a piece of software, an adaptor, between MultiVeStA and the
simulator. Such adaptor only needs to expose to MultiVeStA 3 basic actions
present in any existing simulator:

1. reset(seed): to reset the simulator to its “initial state”, and update the
random seed used to generate pseudo-random numbers. This is necessary to
reset the model before performing a new simulation, and to allow MultiVeStA
to take care of random-seed generation (with the possibility of controlling
the generated seeds for replicability);

2. next: to perform one step of simulation, where one step may correspond,
e.g., to one time unit (tick) in NetLogo, or more, depending on modeling
needs;

3. eval(obs): to evaluate an observation (obs) in the current simulation state,
where obs can be any feature of the aggregate model, of groups of agents, or
even of individual agents. In particular, in this paper an observation obs can
be any arithmetic expression that can be queried in the NetLogo console.

More in detail, the integration of MultiVeStA and NetLogo has been made
possible using the NetLogo Java APIs 6. These APIs allow MultiVeStA to access
NetLogo programmatically, enabling the support for reset, next and eval. Any
NetLogo model is now natively supported by the tool-chain presented in this
paper, without requiring any modification. This approach is followed, e.g., also
by RNetLogo Thiele et al. (2014); Thiele (2014), which uses such APIs to access
programmatically NetLogo models using the R programming language.

2.4 MultiVeStA query language and supported analysis

In this section we informally review from an user perspective the analysis capa-
bilities offered by MultiVeStA, and refer to Vandin et al. (2022) for more details.
The analysis of ABMs often builds on stochastic simulations, based on Monte
Carlo methods to estimate model characteristics (see, e.g., Richiardi et al. 2006;
Lee et al. 2015; Fagiolo et al. 2019). In the majority of cases, we can think of (the
output of) an ABM as a collection of discrete-time stochastic processes (Yt)t>0

describing the evolution over time t of variables of interest (e.g., the wealth of
an agent, the average population count of a category of agents, etc.). For easi-
ness of presentation, let us focus on the case in which (Yt)t>0 contains only one
time series of interest (Yt)t>0. I.e., Yt, for each t > 0, is a random variable of
interest defined over the ABM. Figure 1(a) provides a pictorial representation

5 https://github.com/andrea-vandin/MultiVeStA/wiki
6 https://ccl.northwestern.edu/netlogo/2.1/docs/controlling.html
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(a) Transient analy-
sis

(b) Steady-state analysis by Replication and Deletion

(RD)

(c) Steady-state analysis by Batch Means (BM)

Fig. 1: Transient and steady-state analysis in MultiVeStA. Panels (a) and (b)
use n simulations of m steps each. Panel (c) uses one long simulation. Adapted
from Vandin et al. (2022).

of n independent replications of a single variable Yt (one per row) each compris-
ing t = 1, . . . ,m steps (one per column). 7 The outcome of a simulation i can
be represented as yi,1, . . . , yi,m, a sequence of observations (or realizations) of
length m. Clearly, the observations within the same column t are independent
and identically distributed (IID), while those in the same row i are not.

As mentioned in the introduction, and as discussed in detail in Vandin et al.
(2022), MultiVeStA focuses on two typical classes of properties:

– Transient properties : the expected value of a property of a model at a given
time t (or within a time range, or at the occurrence of a specific event); As
depicted in Figure 1 (a), for a given point of interest t this can be expressed
as E[Yt].

– Steady-state properties: the expected value of a property of a model when
it has reached a statistical equilibrium (i.e., at steady state). As depicted in
Figure 1 (b), this can be expressed as E[Y ]=limt→∞ E[Yt].

Examples of transient properties are given in Section 3, where we study the
average number of households alive for each of the 550 time points of interest

7 With the term independent replications we mean runs (or simulations) obtained each
using different random seeds and resetting the simulator status reset to an initial
configuration.
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for the artificial Anasazi model (Dean et al. 2000; Axtell et al. 2002). Here,
a transient analysis is necessary because the model was proposed to replicate
pointwise historical data, without any interest for steady states. In order to
estimate such properties, MultiVeStA offers the method autoIR discussed later.
Instead, an example of steady-state property can be found in Section 4. Here,
we consider a typical ABM in ecology (Railsback & Grimm 2012) developed to
study long-term survival ratios of birds species. Here, steady-state analyses are
necessary because the modeler is interested in steady-state properties. Clearly,
steady-state analyses are meaningful only “around” a statistical equilibrium.
That is, limt→∞ E[Yt] shall exist and be finite. To automatically check when this
assumption holds, Vandin et al. (2022) proposed a diagnostics. For the cases in
which it holds, they proposed two steady-state methods, namely autoRD, based
on the so-called Replication and Deletion (Figure 1 (b)), and autoBM, based on
Batch Means (Figure 1 (c)). Both rely on an algorithm for estimating the end
of the initial warmup period of the simulator, named autoWarmup. This is used
by autoRD and autoBM to discard initial steps of simulation which are affected
too much by the initial conditions, washing out the initial transient phase of the
model. Then, the two approaches differentiate in that autoRD performs several
short simulations, while autoBM performs a long simulation.

MultiVeStA offers an intuitive property specification language, MultiQuaTEx.
Using MultiQuaTEx, one can express both transient and steady-state properties.
In the latter case, one can also just check for the end of the initial warmup period
of the model, necessary for steady-state analysis.

MultiQuaTEx for transient properties AMultiQuaTEx query for transient
analysis can describe one or more random variables evaluated on a model, each
evaluated using the same simulations and with their own confidence interval (CI).
Listing 1.1 depicts a MultiQuaTEx query used in Section 3 to study the evolution
of (i) the number of households (line 5), and (ii) the difference between the
simulated number of households and the historical data (line 6), in the first 570
simulation steps (line 7). Therefore, it considers 1140 random variables, meaning
that each simulation will give one sample for each of the 1140 random variables.
Following the discussion in Section 2 of Vandin et al. (2022), the expected value
of each random variable denoted by a MultiQuaTEx query is estimated as the
mean Y of n samples (coming from n independent replications), with n large
enough but minimal to guarantee that the (1 − α) · 100% CI centred on Y has
size at most δ, for given α and δ.

More specifically, the user has to provide MultiVeStA with a desired statis-
tical significance level α and interval width δ. With this, MultiVeStA uses the
method autoIR which automatically performs the minimum number of indepen-
dent replications that let each point estimate be in a confidence interval of width
at most δ, with statistical confidence 1−α. In particular, MultiVeStA performs
the minimum number of independent replications for each point. It does so by
performing an initial number n of replicas (user-specified, default 20), computes
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1 obsAtStep(step ,obs) = if (s.eval(" steps") == step)

2 then s.eval(obs)

3 else next(obsAtStep(step ,obs))

4 fi ;

5 eval autoIR(E[ obsAtStep(step ," tothouseholds ") ],

6 E[ obsAtStep(step ,"abs(tothouseholds -

histothouseholds)") ],

7 step ,0 ,1,570) ;

Listing 1.1: A transient MultiQuaTEx query

the mean value Y t at each time-step, and calculates the confidence interval as

Y t ± tn−1,1−α

2

√

s2t
n

,

where tn−1,1−α/2 refers to the 1− α/2 quantile of a Student-t distribution with
n− 1 degrees of freedom and s2t is the unbiased estimator of the variance. If the

width of the confidence interval, 2tn−1,1−α/2

√

s2t/n, is smaller than δ for some t,
then the corresponding estimates are stored, and those points are not considered
anymore in future simulations. This means that, even if more simulations are run,
the estimates for these points will ignore future samples. If for some t, instead,
the interval width is larger than δ, further n independent replicas are performed.
The mean value and confidence interval computations are iteratively computed,
considering each time n more simulations. At each iteration, more points may
reach the required confidence interval width, and will therefore be ignored in
future iterations. The algorithm keeps iterating by adding more independent
replicas until all points have confidence intervals smaller than δ. When this
happens, the results are shown (for further detail, see Vandin et al. 2022). Of
course, the procedure can independently estimate more variables within the same
simulations.

We now move our attention to the structure of the query. It starts with a
list of parametric operators that can be used in an eval autoIR command to
specify the properties to be estimated. Lines 1-4 of Listing 1.1 define the para-
metric operator obsAtStep having two parameters, step and obs, respectively
the step and observation of interest. Lines 5-7 instantiate such operator for each
of the 1140 random variables considered, allowing to obtain 1140 corresponding
samples per simulation. As shown in Lines 1-4, in the operator definition we
may use s to denote the current simulation state, the function eval to evaluate
expressions in s (e.g., the current number of performed steps and the observa-
tions obs specified in lines 5-6, or expressions using NetLogo’s query languages),
and the function next to ask the simulator to perform one step of simulation.
More in detail, an operator might be defined by means of:

1. conditional statements (the if-then-else-fi);
2. real-valued observations on the current simulation state (the s.eval in Line 1

and Line 2);
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1 obs(o) = s.eval(o) ;

2 eval autoWarmup(E[obs("count turtles ") ],

3 E[obs("count patches with [count(turtles -here

with [is-alpha ?]) < 2]") ];

4 eval autoBM(E[obs("count turtles ") ],...) ;

5 eval autoRD(E[obs("count turtles ") ],...) ;

Listing 1.2: A steady-state MultiQuaTEx query. Only one of the three eval
commands should be used at a time.

3. a next operator
4. arithmetic expressions.

Building on this, we can see that, in Listing 1.1, we check whether we have
reached the step of interest (Line 1), in which case we return the required ob-
servation (Line 2). Otherwise, we perform a step of simulation (Line 3), and
evaluate recursively the operator in the next simulation state.

MultiQuaTEx for steady-state properties and warmup analysis Multi-
QuaTEx also supports the steady-state and warmup analysis capabilities of
MultiVeStA introduced in Vandin et al. (2022). Listing 1.2 provides a steady-

state MultiQuaTEx query used in Section 4 to study at steady-state the average
population of birds, and other properties. Notably, the count, with, etc shown in
the query are keywords of NetLogo’s query language which can be used (similarly
to the transient case) to evaluate complex expressions on the current simulation
state. The structure of the query is simpler than the one for transient analy-
ses, as the progressing of simulation steps is performed implicitly in the analysis
procedure. For this reason, we replace the operator obsAtStep with the simpler
operator obs which just returns the observation of interest in the current simu-
lation step. The query is then completed by one of the three types of supported
steady-state analyses shown in Lines 3-5. In particular, a steady-state query is
composed of two parts:

1. A list of next-free operators,
2. one of the three eval commands in Listing 1.2, provided with a list of oper-

ators to consider.

In particular, autoWarmup performs the warmup estimation procedure from Vandin
et al. (2022) for each of the listed properties. This is because every random vari-
able on a process might have a different warmup period (see the discussion
in Vandin et al. (2022)). Further to estimating the warmup period for each
property, autoBM and autoRD run the batch means or replication and deletion
procedures from Vandin et al. (2022) to estimate each property in the steady
state, discarding the corresponding warmup periods. The estimations performed
by autoBM and autoRD are equipped with (α, δ) confidence intervals as for tran-
sient properties.
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MultiQuaTEx supports two further eval commands: manualBM and manualRD.
These behave similarly to autoBM and autoRD, but take the warmup length as an
input, rather than estimating it. This is useful in case this information is already
known. In Section 4 we use them to replicate analyses from the literature.

3 Transient Analysis and Calibration application:

Artificial Anasazi model

In this section,, we apply our transient analysis techniques to the “Artificial
Anasazi” model originally proposed by Dean et al. (2000) and Axtell et al.
(2002), and further explored by Janssen (2009). For all our applications, we
use the NetLogo implementation provided by Stonedahl & Wilensky (2010).8

The model is meant to reproduce the dynamics of the Kayenta Anasazi popu-
lation dwelling in the Long House Valley in the Black Mesa area of northeast-
ern Arizona (U.S.) between 800 and 1300 AD. The ecological landscape of the
Long House Valley – in particular, the annual fluctuations in potential agricul-
tural production – is closely reconstructed using paleoenvironmental research
data. Such a landscape is populated by artificial agents representing households
that are initialized on nutritional requirements and demographic characteristics
from ethnographic studies. Each household has agent-specific attributes (e.g.,
age, size, composition, amount of maize consumed, maximum amount of maize
that can be stored, use of total potential maize yield) and interacts with oth-
ers according to behavioral rules. More specifically, the rules determine where
the household should locate its maize plantation and dwelling. In each period
t = 800, . . . , 1350, corresponding to a calendar year, every agent performs agri-
cultural activities, harvests, consumes, and can change its plots and/or dwelling
location based on whether its nutritional needs have been met or not. Moreover,
the population evolves over time, since, depending on their nutritional success,
households can reproduce or disappear. At the end of each period, the total
number of households and their location are recorded, such that the artificial
population dynamics can be compared with the real dynamics reconstructed
using archaeological and environmental data.

In this setting, Axtell et al. (2002) show how, after calibrating its parame-
ters, the model can closely reproduce key spatial and demographic features of the
dynamics of Anasazi population. Janssen (2009) deepens the previous analysis
focusing on the total number of households. The author considers five key pa-
rameters (death age, end of fertility age, fission probability, harvest adjustment,
harvest variance) and shows that accurate calibration only partially contributes
to the good fit of the model. Instead, the exogenously given carrying capacity
(that is, the number of locations that have a yield equal or higher than the nu-
trition needs) is the fundamental driver of the success of the model in matching
the data. Hence, harvest-related parameters appear to be more important than
the demographic ones in explaining the model performance.

8 The model is available at https://ccl.northwestern.edu/netlogo/models/

ArtificialAnasazi.
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In establishing the fitness of each combination of parameter values, both
Axtell et al. (2002) and Janssen (2009) use the same methodology. They perform
15 independent replications (simulations) with different random seeds. For each
independent replication, they compute the average distance (over time) of the
model-generated number of households from the empirical time series, using
either the L1 or the L2 norm. Then, the smallest value of average distance,
among the 15 computed, is assigned to the parameter combination as its fitness
measure. The best parameter combination is selected as the one minimizing the
fitness measure over the set of combinations considered. In showing the results,
Axtell et al. (2002) argue that:

“the average run, produced by averaging over 15 distinct runs, looks quite similar”

(to the one they show relative to the best parameter combination). At the same
time, Janssen (2009), simulating the model 100 times using the best combination
of Axtell et al. (2002), notices

“some variation in the results”.

Indeed, the outcomes of the Artificial Anasazi model, similarly to those of the
vast majority of agent-based models, can be profoundly affected by the intrin-
sic stochasticity deriving from the sequence of random draws characterizing its
functioning. As a consequence, on the one hand, any measure of fitness that is
attached to a parameter combination on the basis of a given number of indepen-
dent replications is itself a random variable. Hence, it suffers from estimation
errors that need to be quantified and assessed when making decisions such as
choosing the best parameter combination. At the same time, any assessment of
the concordance between real and artificial data should take into account the
variability that the simulation exercise entails. Neither Axtell et al. (2002) nor
Janssen (2009) deal with these potential problems in their calibration exercises
and concordance assessments. Hence, in what follows we perform two computa-
tional exercises that highlight the potential of the transient analysis capabilities
of MultiVeStA in both performing calibration tasks with statistical guarantees
and in reliably assessing the performance of a given parameterization of the
model. For exposition purposes, we shall consider first the concordance assess-
ment using the best combination individuated by Janssen (2009) and, then, we
shall perform the calibration exercise with statistical guarantees. In this way, we
can first present the main features of transient analysis and, then, explain its
application to calibration of computational models.

3.1 Transient analysis of the best parameter combination by
Janssen (2009)

In our first exercise we consider one variable of interest, the total number of
households, estimated for each t = 800, . . . , 1350. In Figure 2, we present the
outcomes of our analysis under the best combination of parameters by Janssen
(2009). In the top-left panel we present the results of the transient analysis
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Fig. 2: Analysis of the total number of households in the Artificial Anasazi model
under the best combination of parameters by Janssen (2009): death age 38, end
of fertility age 34, fission probability 0.155, harvest adjustment 0.56, harvest
variance 0.4. Top left: MultiVeStA’s transient analysis with significance level
α = 0.01 and width of the confidence interval δ = 10. In black, we provide the
estimation (with confidence intervals dashed), while in grey the real data. Top
right: Same as top-left panel, but we impose the use of exactly 15 independent
replications (as in Janssen (2009)). Bottom: number of replicas used by Multi-
VeStA for the transient analysis in the top-left panel.

obtained setting significance level α = 0.01 and width of the confidence interval
δ = 10, and the real historical data. As one can notice, the resulting point
estimates roughly resemble the single run shown by Janssen (2009) in Figure
10. In particular, one can observe an initial stationary phase, followed by a
steep increase around time 1000. Then, the number of households stabilizes
until time ∼ 1120, when a sharp decrease in population occurs. The number of
households recovers around time 1200 and remains constant until time ∼ 1260,
when the population rapidly decreases until the final collapse. Such a similarity
may indicate that the variability under the proposed parameter settings is quite
low.

To improve the comparison, in the top-right panel we perform the same
estimation exercise fixing, however, the total number of independent replicas
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Table 1: Values of parameter considered.

Parameter Values

Death Age {26, 30, 34, 38}
End of Fertility Age {26, 30, 34, 38}
Fission Probability {0.95, 0.105, 0.115, 0.125, 0.135, 0.145, 0.155, 0.165, 0.175, 0.185}
Harvest Adjustment {0.54, 0.56, 0.58, 0.6}
Harvest Variance {0, 0.2, 0.4, 0.6}

that should be performed for each time step to 15. In this way, we are using a
sample of independent replication of the same size as the one used by Janssen
(2009). As one can notice, a general agreement between the two plots emerges,
indicating that, overall, the model presents a quite stable behavior. However, in
the time span between 1050 and 1150, the estimates obtained fixing the number
of independent replicas to 15 present a confidence interval that is particularly
wide. Therefore, in such a time span, these estimates are not very reliable. Indeed,
comparing them with those in the top-left panel one notices sensible differences.
This may cause erroneous statements in assessing performances. For instance,
from the 15-replications exercise one may conclude that in the interval 1050-
1150 the model’s average number of households is not statistically different from
the historical data. This is because the historical data belong to the (too wide)
confidence intervals of such time points. But this is an artifact of the low number
of independent replicas that the user has set from the outset. Indeed, as shown in
the top-left panel, the statement becomes false for refinements of the estimates
for that period by means of more independent replications. This is made evident
in the bottom panel, where we present the number of independent replicas that
MultiVeStA has performed for the transient analysis for each time point. As one
can notice, for the 1050-1150 time interval, such a number is between 100 and
600. At the same time, MultiVeStA efficiently recognizes when a low number of
independent replicas is enough, for instance in the first 100 periods it constantly
remains below 20 runs.

In summary, MultiVeStA’s transient analysis efficiently and reliably esti-
mates the average number of households in each time step, allowing one to
avoid erroneous conclusions deriving from statistical hypothesis testing based
on an insufficient number of replicas. It also let us better understand the behav-
ior of the model for a given “best” choice of parameter values. In what follows,
we show that the transient analysis of MultiVeStA can help in selecting such a
“best” choice of parameter values. That is, we present a novel application of the
transient analysis: calibrating the model with statistical guarantees.

3.2 Model calibration with statistical guarantees

In the previous application we simply requested MultiVeStA to estimate the
mean and the confidence interval of a given variable of interest at all t. However,
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Table 2: Best combinations of death age (DA), end of fertility age (EFA), harvest
adjustment (HA), harvest variance (HV) with indication of the relative estimated
loss, width of the confidence interval, estimated variance of the loss, and number
of runs used by MultiVeStA to meet the requirements α = 0.1 and δ = 1000. In
red, the best parametrization according to Janssen (2009), while in blue the one
with statistical guarantees obtained using our approach.

Parameters Obtained measures

DA EFA FP HA HV Estim. Loss Width C.I. Estim. Var. Runs p-value

34 30 0.185 0.56 0.4 18002 783.35 1707620 32 0.7285
34 34 0.145 0.56 0.4 18432 973.80 12455019 144 0.1461
34 34 0.165 0.56 0.4 18215 847.01 1996478 32 0.3376
34 34 0.175 0.56 0.4 17926 817.76 870417 16 0.9106
34 34 0.185 0.56 0.4 18265 649.56 1174162 32 0.2109
38 30 0.185 0.56 0.4 18121 807.07 2776238 48 0.4859
38 34 0.155 0.56 0.4 17923 817.87 2851035 48 0.9191
38 34 0.165 0.56 0.4 18467 970.53 2621220 32 0.1192
38 34 0.175 0.56 0.4 18335 886.03 2184662 32 0.2023
38 34 0.185 0.56 0.4 18232 983.16 1258101 16 0.3481
38 38 0.135 0.56 0.4 17889 771.83 1657766 32 1.0000
38 38 0.145 0.56 0.4 18409 951.02 14553463 176 0.1577
38 38 0.155 0.56 0.4 18175 940.52 2461623 32 0.4287
38 38 0.175 0.56 0.4 18373 938.87 1147316 16 0.1768

MultiVeStA allows the user to estimate mean and confidence interval of a given
function of the variable of interest recorded at any interval of time. This can
be used to perform a new application of the transient analysis: calibrating the
model with statistical guarantees.

More specifically, consider the loss of a given combination of parameters θ
computed considering a seed i for the random number generator, it is defined as

Li(θ) =
1350
∑

t=800

∣

∣

∣
ĥi,t(θ)− ht

∣

∣

∣
,

where ĥi,t(θ) is the total number of households generated by the model at time
t with seed i and ht is the historically recorded number of households at the
same date. Notice that this quantity is actually the same one that Axtell et al.
(2002) and Janssen (2009) use to evaluate a single trajectory under the L1 norm
multiplied by a factor of 550 (the total number of steps). Our goal is to compute
the loss of any θ trying to reduce as much as possible the intrinsic stochastic
variability, that is, the effect of the seeds. In other words, we want to properly
estimate such a quantity equipping it with statistical guarantees. To do that,
similarly to what done in the previous sub-section for households, we can es-
timate the loss considering its arithmetic average over a set of n seeds, i.e. n
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independent replicas, where n is decided in such a way that the estimate be-
longs to a confidence interval of width δ with statistical confidence 1− α. That
is, for any θ considered, we want to compute

L(θ;α, δ) =
∑

i∈I(θ;α,δ)

Li(θ)

|I(θ;α, δ)|
,

where I(θ;α, δ) is a set of seeds with cardinality |I(θ;α, δ)| such that the con-
fidence interval of L(θ;α, δ) with statistical significance α has width at least δ.
Hence, we can use the previously described transient analysis, the only change
we have to make is that now MultiVeStA should evaluate the variable of inter-
est (the loss) only at t = 1350. This can be easily done by asking MultiVeStA
through its query system to compute the absolute difference between artificial
and historical data at any t, store its cumulative sum, and statistically evaluate
the cumulative sum only at the final time period. In other words, the query
language of MultiVeStA is expressive enough to state those properties. Notice
that all these steps can be done without changing anything in the model’s code,
simply querying MultiVeStA.

The procedure just described is repeated for any combination of the parame-
ters reported in Table 1, with the caveat of discarding those combinations where
end of fertility age is larger than death age. We run the MultiVeStA transient
analysis for all the 1600 parameter combinations setting α = 0.1 and δ = 100.
Then, the minimization principle used by Axtell et al. (2002) and Janssen (2009)
would suggest to select the one with lowest loss. However, the estimated values
suffer of estimation error, hence, one is not sure whether selecting the one with
smallest estimated value is, indeed, the best combination. To account for that, we
take the minimum estimated loss as a reference point and discard all the param-
eter combinations whose estimated loss is significantly larger that the minimum
loss according to Welch’s t-test (Welch 1947) for difference of means with 1− α
confidence level, 90% in our case (we used α = 0.1). The remaining parameter
combinations are those that cannot be considered significantly different from the
one with lowest estimated loss and they are shown, together with some technical
details provided by MultiVeStA and the p-value of the Welch’s t-test, in Table
2. As one can notice, the best combination of the parameters highlighted by our
exercise is {38, 38, 0.135, 0.56, 0.4} (in blue in the table). Notably, this does not
coincide with the one individuated by Janssen (2009) (in red in the table). This
aligns perfectly with our argument regarding the statistical error associated with
estimating loss: given a certain confidence level and estimation precision, there
may be parameter combinations whose differences in loss are not statistically sig-
nificant. Discarding these to focus solely on a single combination may therefore
be misleading and result in information loss. For example, identifying patterns
within the set of parameter configurations that are not significantly different
from the best-performing one can provide insights into the relative importance
of different parameters in replicating real data.

Indeed, inspecting the values reported in Table 2 validates the argument
made by Janssen (2009) regarding the relatively greater importance of harvest-



Statistical Model Checking of NetLogo Models 17

Fig. 3: Estimated mean number of households at each time step for the 14 best
combinations shown in Table 2 together with historical data The trajectory
relative to best parameter combination of Janssen (2009) is in red, while the one
according to our estimation is in green.

related variables compared to demographic ones in replicating historical popula-
tion data. All the best parameter combinations include a harvest adjustment of
0.56 and a harvest variance of 0.4, while the other parameters exhibit some vari-
ation. This suggests that harvest-related parameters must take specific values
for the model to closely match historical data, whereas demographic parameters
appear to be less critical.

In Figure 3, we present the time series of the mean number of households
resulting from the 14 parameter combinations listed in Table 2. One can observe
that the trajectories are remarkably close at each time step. The largest differ-
ences appear between the years 1000 and 1100, a period already identified in
previous analyses as one where the model exhibits greater volatility.9

The calibration procedure with statistical guarantees, as performed here us-
ing MultiVeStA’s transient analysis, can be refined by reducing α and δ. Doing so
narrows the set of best parameter combinations, thereby increasing the precision
of the results. However, this refinement also requires greater computational re-
sources, whether in terms of processing power or time. To address this trade-off,
we propose a sequential approach: start with relatively large values of α and δ,
then iteratively reduce them—applying each refinement to the resulting subset
of best combinations—until either a single best combination is identified or the
maximum resource allocation is reached. This method allows for a meaningful
balance between accuracy and computational cost in the calibration process.

9 For readers interested in exploring the trajectories in relation to their specific pa-
rameter combinations, Figure 8 in Appendix A displays the 14 trajectories divided
into four panels, with the corresponding parameterizations indicated.
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By leveraging MultiVeStA’s transient analysis, we evaluated a comprehen-
sive set of parameter combinations, explicitly accounting for the uncertainty in
loss estimation. Rather than selecting a single “best” configuration, our proce-
dure identifies a set of statistically indistinguishable parameter combinations.
This is in line with the philosophy of the Model Confidence Set approach pro-
posed by Hansen et al. (2011) and recently applied to model calibration by Seri
et al. (2021). Indeed, our method acknowledges that, given estimation uncer-
tainty, multiple specifications may perform equivalently well, and that prema-
turely narrowing the choice may lead to information loss. This perspective not
only highlights the relative importance of certain parameters (such as the dom-
inant role of harvest-related variables in the Artificial Anasazi model) but also
enables an iterative and resource-aware refinement of the calibration process.

4 Warmup and steady state analysis: Alpha birds model

We now move our attention towards the steady state analysis capabilities of
MultiVeStA. We aim to achieve statistically reliable results by: (i) identifying
the minimal number of independent replications; (ii) determining the duration
of the warm-up and of the post-warm-up simulation.

To exemplify MultiVeStA’s capabilities, we consider the “Alpha birds” model,
which is an ABM of a territorial bird species whose long-term survival crucially
depends on its reproductive characteristics (Railsback & Grimm 2012). This
model has several advantages. On one hand, it is a typical ABM in ecology, fea-
turing a simplified representation of population dynamics and social behaviors.
On the other hand, its steady state features, as will be clarified below, make it
an ideal test case for our tools that automatically determine if the steady state
has been reached. In addition, this model has already been used by Thiele et al.
(2014) to illustrate the features of the RNetLogo package, suggesting that it is
a good baseline model that can be approached by various techniques. Interest-
ingly, in the Discussion section of Thiele et al. (2014), the authors raise the issue
that it is often unclear how many independent replications are needed to reliably
estimate model properties. They say that

“Very likely, just 10 iterations, as used here, will often not be enough.”

As explained in Section 2.2, this is one of the issues addressed by both our
transient and steady state analyses.

The model represents a simplified depiction of the dynamics of a territorial
bird species that lives in groups and exhibits reproductive suppression. In this
system, the alpha couple in each group suppresses the reproduction of subor-
dinate mature birds. A crucial behavior in this context is the decision-making
process of subordinate birds regarding when to leave their territory for scouting
forays. During these forays, they search for available alpha positions elsewhere.
If they fail to find such a position, they return to their home territory. However,
scouting forays come with an increased risk of mortality due to raptors.
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The model serves as a virtual laboratory for developing a theory on the
decision-making process of scouting forays. Different submodels of the foray de-
cision can be implemented, and the resulting outcomes of the full model can
be compared to real-world patterns observed in nature. In Railsback & Grimm
(2012), the authors utilize patterns generated by a specific version of the model,
and the task they propose is to identify the particular submodel they employed.
In this article, as in Thiele et al. (2014), we adopt the simplest version of the
model, where the probability that subordinates undertake a scouting foray re-
mains constant.

Thus, a crucial parameter of the model is the scouting probability. There is
another important parameter, which is the overall survival probability of any
bird. Thiele et al. (2014) explore the response of the model to variations in these
two parameters. They focus on three key quantities as key outputs:

– Abundance, i.e., the total number of birds in all territories;
– Variation, i.e., the standard deviation of the total number of birds over time;
– Vacancy, i.e., the fraction of territories with at least one vacant alpha bird.

In their main exercise, the authors explore a range of survival probability be-
tween 95% and 100%, and a range of scouting probability between 0% and 50%.
They consider the mean of the three key outputs across 10 independent repli-
cations. Moreover, they run the model for 264 time steps, representing months.
These correspond to 22 years. The authors discard the first two years, and then
measure Abundance, Variation and Vacancy every 11th month of a year, namely
at the 20 time steps 35, 47, 59, ..., 263.

In the following, we show how MultiVeStA enables to automatically replicate
the calibration experiments performed in Thiele et al. (2014), but we first check
if 10 independent replications are indeed sufficient for this analysis, and then if
a 2-year warm-up is sufficiently long to wash out the initial warm-up.

4.1 Number of independent replications

We replicate the same analysis of Thiele et al. (2014) using the manualRD feature
of MultiVeStA, obtaining the values of Abundance, Variation and Vacancy at
the same time steps as listed above (35, 47, 59, ..., 263). MultiVeStA estimations
are equipped with confidence intervals. We request that the confidence intervals
are bound to a maximum width of: δ = 5 for Abundance; δ = 1 for Variation;
and δ = 0.04 for Vacancy. We choose different values of δ because these three
variables vary on three different orders of magnitude. Therefore, if we chose the
same value, we would have too much precision for the largest variable and too
little precision for the smallest. The results do not depend on the specific values
of δ, which are chosen to be around 10% of the median value of each variable.

As discussed, confidence intervals are computed iteratively by performing
blocks of n independent replications. Here we set n = 10. In this way, the min-
imum number of replications is 10, as in Thiele et al. (2014). If 10 replications
are not enough for a property, 10 more replications will be performed, and we
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Fig. 4: Minimal number of independent replications needed to obtain statistically
valid results given the required δ. We compute the number of replications for
Abundance, Variation and Vacancy, for 121 combinations of the scouting and
survival probability parameters. We color in black the parameter combinations
for which 10 replications, as used by Thiele et al. (2014), are sufficient.

proceed this way until we identify the minimal amount of independent replica-
tions that are needed to obtain statistically valid results with confidence intervals
respecting the required δ.

Figure 4 shows how many independent replications are needed for estimat-
ing each of Abundance, Variation and Vacancy, for each of the 121 considered
parametrization. As we can see, for values of survival probability that lie close
to the extremes of the considered interval (around 95% and 100%), typically
the 10 independent replications considered by Thiele et al. (2014) are sufficient.
Instead, for intermediate values of survival probability, namely between 97% and
97.5%, the modeler needs to run many more simulations in order to obtain sta-
tistically valid results. For instance, for survival probability equal to 97% and
scouting probability equal to 25%, the analyst needs to run 90 replications to
have statistically valid results for Abundance, 100 replications for Variation, and
110 replications for Vacancy. It is also interesting to look at the region of the
parameter space where scouting probability is zero, i.e., birds never venture in
scouting forays. In this region, many independent replications are needed for
values of survival probability between 97% and 99%. For instance, for survival
probability equal to 99%, 350 replications are needed to have statistically valid
results for Variation.

This exercise demonstrates that, for many parameter combinations, running
10 simulations for each property for each parametrization as done in Thiele et al.
(2014) is not enough to obtain statistically reliable estimations.

To understand why many more independent replications are needed in certain
parts of the parameter space, in Figure 5 we plot the values of Abundance,
Variation and Vacancy for all the combinations of parameter values in Figure
4. We plot these values both when considering only 10 replications (left), as in
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Fig. 5: Values of Abundance, Variation and Variation for the same parameter
combinations shown in Figure 4. We show these values both considering 10
simulations only, or letting MultiVesta determine how many independent repli-
cations are needed (N independent replications).

Thiele et al. (2014), and when considering N independent replications (right),
as automatically determined by MultiVeStA.

We first look at the three variables for 10 replications only (left column).
We see that Abundance is always very close to zero for all values of survival
probability smaller than 97%, suggesting that when survival probability is small
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Fig. 6: Replication of calibration experiment in Thiele et al. (2014). For each
of the 121 parameter combinations, we plot a red triangle when Abundance lies
between 115 and 135, a blue plus when Variation is between 10 and 15, and a red
cross when Vacancy is between 0.15 and 0.30. The axes are inverted with respect
to the previous figures for consistency with Figure 1 in Thiele et al. (2014).

the bird population tends to turn extinct. Abundance instead reaches higher
values, up to 400 birds, for higher survival probability, especially in combination
with small scouting probability (recall that scouting forays have higher inherent
risk). The situation for Vacancy is specular, as high values for Abundance imply
few vacant territories. In the case of Variation, the situation is a bit different,
with highest values where Abundance is highest, but lowest values for survival
probability equal to 97.5%, where Abundance and Vacancy substantially change.
Overall, these results suggest that the area of the parameter space where most
independent replications are needed coincides with the transitions of our key
metrics.

It is also interesting to compare the cases of 10 and N independent replica-
tions (left to right). We see that there are no major differences between the two
cases, but the results of Variation and Vacancy tend to be noisier in the case
of 10 independent replications. For instance, for values of survival probability
equal to 96.5% and 97%, there are sizable fluctuations across values of scout-
ing probability with 10 replications, while the results are much more consistent
with N replications. This suggests that, even when results do not qualitatively
change, appropriately choosing the number of independent replications makes it
possible to estimate the output of the model as a function of the parameters in
a smoother way.

To check the implications of our results, we replicate the first experiment
performed in Thiele et al. (2014). The authors were interested in showcasing some
calibration methods and, as a first approach, tested a full factorial design with
the 121 parameter combinations that we have been considering. In this design,
acceptable values for model outputs were between 115 and 135 for Abundance,
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Fig. 7: Results with a 2-year warm-up vs. an automatically determined warm-up.

10 and 15 for Variation, and 0.15 and 0.30 for Vacancy. The idea was to check
if any parameter combinations would make the model produce an output that
was within all three ranges. If taken to characterize a real-world ecosystem,
this calibration procedure would find under which parameters the model best
describes empirical data. The key result was that no parameter combination
fulfilled all three requirements.

The left panel of Figure 6 replicates the calibration results in Thiele et al.
(2014). There are some small differences due to different random seeds, but
the overall patterns are very similar. The right panel shows the calibration re-
sults when MultiVeStA automatically determines the number of independent
replications. We see that there are some small differences, for instance green
crosses appear for 8 parameter combinations when scouting probability is equal
to 97.5%, whereas green crosses only appear 4 times when running 10 simula-
tions only. Similarly, focusing on 98% survival probability, under 10 replications
there are four values of scouting probability for which variation lies between 10
and 15, while under N replications there are only two such values. Importantly,
with N replications it never happens that any two conditions are fulfilled at a
time, while this happens for three values of scouting probability when survival
probability is 98%.

In conclusion, we confirm the main result in Thiele et al. (2014), namely that
no parameter combination allow for all three requirements being satisfied at the
same time. However, our results showcase that to reach such specific statements
it is important to get statistically reliable results, especially in the transition
regions of the parameter space.
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4.2 Warmup analysis

As discussed above, Thiele et al. (2014) discard an initial 2-year warm-up. Here,
we use MultiVeStA to test if such a warm-up is sufficiently long for the model
to reach the steady state.10 In case the warm-up was too short, we could check
the robustness of the results.

Figure 7 focuses on Abundance and Vacancy, for all values of survival prob-
ability and three selected values of scouting probability.11 In each panel, we
compare the results from manualRD (also shown in Figure 5) with the corre-
sponding results from autoRD, which ensure that the steady state has been
reached.

Our key result is that, for autoRD there is a sharp transition in Abundance
and Vacancy at survival probability equal to 0.97. When survival probability
is smaller than 0.97, they take value 0 and 1, respectively, but when survival
probability is larger than 0.97, Abundance takes positive value and Vacancy is
close to 0. By contrast, for manualRD the transition is much smoother.

This suggests that the smooth transitions that can also be seen in Figure 5
are really driven by warm-ups. However, in the long run, either the bird species
survives, or it collapses.

5 Discussion

This paper contributes to the ABM literature and community in two comple-
mentary ways. On the one hand, it advances methodology by integrating Multi-
VeStA, a statistical model checking framework, with NetLogo, one of the most
widely used ABM platform. On the other hand, through concrete applications,
it demonstrates how this integration enables more reliable and nuanced analyses
of ABM outputs.

From a methodological standpoint, the integration provides NetLogo users
with automated statistical tools that can determine the number of simulations,
the length of warm-up periods, and the appropriate duration of steady-state
runs with statistical guarantees. In so doing, we aim at advancing along the path
traced by Thiele et al. (2014); Thiele (2014) and Vandin et al. (2022) (among
others) and addressing a long-standing limitation in the agent-based modeling

10 Because it can take very long to achieve statistical guarantees for reaching the steady
state, we save simulation time by considering the values of model variables at each
time step, instead of the 11-th month of each year.

11 These values are the ones for which the algorithm always converges, identifying the
warm-up. For some parameter values, MultiVeStA cannot detect the reaching of the
steady state because it takes very long time to reach a steady state in which the birds
species is extinct. Indeed, as birds do not migrate to new territories, when one of
the alpha animals in a territory dies, the territory is bound to face local extinction.
However, this process may take very long time, and at some point we hit memory
limits.
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community: the difficulty of moving beyond qualitative or anecdotal insights to-
ward reproducible, quantitative, and statistically robust evaluations of model be-
havior. Indeed, our integration represents a significant improvement over the ad
hoc rules of thumb typically employed, lowering the barrier to conducting rigor-
ous and reproducible simulation studies. Although the integration requires some
familiarity with property specification and statistical settings, it substantially
reduces the effort previously needed to implement statistically sound analyses,
freeing modelers to focus on substantive modeling questions.

To showcase the potentialities of the integration, we propose two applica-
tions, one that relies upon MultiVeStA’s transient analysis and one that lever-
ages MultiVeStA’s steady state analysis. These applications highlight how the
resources provided by MultiVeStA are able to enhance the reliability and inter-
pretability of NetLogo-based agent-based models.

By applying the transient analysis techniques to the calibration of the Ar-
tificial Anasazi model, we demonstrated that widely used calibration strategies
based on a small fixed number of replications may lead to inaccurate conclusions.
MultiVeStA ’s adaptive allocation of simulations provided a richer picture, show-
ing that several parameter combinations can be statistically indistinguishable in
their ability to reproduce historical data. This finding reinforces the importance
of acknowledging uncertainty in calibration exercises and cautions against the
search for a single “best” parameter set. The method also confirmed the cen-
tral role of harvest-related parameters in shaping population dynamics, thereby
giving stronger statistical support to earlier (more qualitative) observations.

In the case of the Alpha Birds model, MultiVeStA proved effective in de-
tecting inadequacies in previous analysis practices. The assumption of a fixed
two-year warm-up period used in earlier studies was shown to be insufficient to
capture critical transitions in population dynamics. Our results, instead, revealed
sharp shifts in the model behavior near parameter thresholds, which would have
been obscured without statistically guided warm-up and steady-state analysis.
Moreover, the finding that the number of required replications varies dramat-
ically across regions of the parameter space underscores the risks of adopting
uniform rules of thumb for simulation design.

At the same time, some limitations remain. The computational burden of
large-scale analyses is non-trivial, and although MultiVeStA supports paralleliza-
tion, scaling to highly complex or computationally intensive models may pose
challenges. Additionally, while the integration is seamless at the technical level,
non-expert users may still face a learning curve in specifying properties and in-
terpreting statistical outputs. Broader adoption will likely depend on developing
more intuitive interfaces and community best practices.

Future research should therefore proceed along two main directions. On the
methodological side, an important challenge is to extend the framework to cases
of non-ergodicity, where models do not converge to a single stationary distri-
bution and standard steady-state assumptions fail. Many social and economic
ABMs exhibit path dependence, multiple equilibria, or lock-in effects, and devel-
oping tools to statistically analyze such dynamics would greatly expand the scope
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of rigorous ABM evaluation. Another possible methodological advancement may
regard the investigation of recent statistical model checking techniques that go

beyond means Budde et al. (2025) by allowing to estimate higher-order mo-
ments, quantiles and more. On the application side, efforts should focus on the
efficient analysis of large-scale models, where the number of agents, parameters,
or required simulations is substantial. Techniques such as adaptive sampling and
surrogate modeling could help balance statistical reliability with computational
feasibility, making it possible to apply our approach to models used for real-
world policy or large-scale ecological management. Another important avenue
concerns advancing calibration and validation practices. While this paper has
shown that leveraging MultiVeStA’s transient analysis one can identify sets of
statistically indistinguishable parameter combinations, future work should build
systematic workflows for calibrating models against empirical data and validat-
ing their predictions under uncertainty.

In conclusion, the integration of MultiVeStA with NetLogo provides both a
methodological advance and a practical tool for ABM research. The case studies
demonstrate that rigorous statistical analysis is not a mere technical enhance-
ment. Indeed, taken together, the two applications show how, embedding sta-
tistical rigor in the analysis of ABMs, one uncovers insights that may otherwise
remain hidden, such as the non-uniqueness of calibrated solutions or the presence
of discontinuities in model dynamics. By ensuring that conclusions are based on
statistically sound evidence and by making statistical rigor accessible within a
widely used modeling environment, our integration aims at making ABM studies
more transparent, reproducible, and impactful.
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A Best parameter combinations of the Artificial Anasazi

model, disaggregation of estimated trajectories

In Figure 8, we divide into four plots the estimated trajectories of the best
combinations according to the procedure previously described.

Fig. 8: Estimated trajectories of the 14 best combinations of parameters.
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