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Abstract

We revisit the size-volatility relationship in firm growth using administrative data on French manufac-
turing firms. Departing from the log-log linear decay commonly reported by other studies, we find a
two-regime pattern: volatility declines steeply with size for small firms, but flattens for larger ones. We
relate this new fact to the presence of resources misallocation as captured by imperfect correlation be-
tween size and productivity at the firm level. To explain the nexus between these two facts, we develop
a stochastic model where firms face a number of risky business opportunities for which they compete.
Two key features characterize this competition process. First, larger firms are more intensively exposed to
competition dynamics. Second, firms with higher productivity are more likely to see business opportuni-
ties turning into positive, rather than negative, growth episodes. We analytically show that only when the
correlation between firm size and productivity is lower than 1 the model is able to reproduce the volatility
scaling we observed in the data. Simulations suggest that finite sample approximations of our asymptotic
result are satisfactory in a reasonable portion of the parameter space. We conclude showing that in France
industries populated by firms with higher correlation between size and productivity are associated with
steeper average size-volatility decays consistent with the model’s main prediction. Our findings suggest
that the existence of resources misallocation, shaping the size-volatility relation, affects the relevance of
the granularity channel in explaining aggregate fluctuations (Gabaix, 2011).
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1 Introduction

When the distribution of firm sizes is fat-tailed, idiosyncratic fluctuations of the largest firms fail to average out

at the aggregate level, contributing to macroeconomic fluctuations. This transmission mechanism, known as

the granularity channel, has been found to explain approximately one-third of the variation in output growth

in the United States (Gabaix, 2011).1 One key premise underlying this result is that the standard deviation

of a firm’s growth rate is independent of its size. However, the growth volatility of business firms has been

found to log-linearly decay with size with a slope approximately equal to −0.2. In presence of this negative

size-volatility relationship the relevance of the granular argument may be mitigated, a possibility discussed

in Calvino et al. (2018) and recently shown to reduce the explanatory power of the granular channel from

about one-third to at most 15 percent of aggregate fluctuations (Yeh, 2023).2

This paper revisits the size-volatility relationship using sales data encompassing the entire population of

active employers in the French manufacturing sector.3 Contrary to previous findings, our analysis uncovers a

new feature in the size-volatility relationship: the rate at which volatility declines with size in a log-log space

is not constant, but systematically attenuates across the size distribution, from being steep for small firms to

moderate for larger ones.4 We show that the exact shape of this non-linear decay varies over time and more

importantly across industrial sectors, pointing to the presence of underlying structural heterogeneity. This

new feature of the size-volatility relationship has direct implications for the granularity channel. Being an

asymptotic result, the quantitative relevance of the granularity argument depends on the regime that governs

volatility among the largest firms. We show that, in the case of French manufacturing, this regime displays

a very mild decay approximately flattening, thereby mitigating concerns like those raised in Yeh (2023). We

relate the existence of this non-linearity in the size-volatility relation to another well-established empirical

finding in the industrial dynamics literature: the positive but imperfect correlation between firm size and pro-

ductivity. This fact has been interpreted as evidence that resource allocation tends to favor more productive

firms, but does so imperfectly (Bartelsman et al., 2013). In our sample of French firms, this correlation is also

positive and lower than one ś around 0.2 on average ś and it exhibits substantial variation over time and

across industries.

We characterize the size-volatility-productivity nexus by proposing a model in which the industry is con-

ceptualized as an łislands economyž: a setting composed of a fixed pool of firms operating ś without direct

competition ś in a number of independent sub-industries of equal size. The term łislands economyž cap-

tures the idea that firms do not compete directly within their own sub-industries (Sutton, 2001; Klepper and

Thompson, 2006). Firms are heterogeneous in both productivity and size, where size is defined in terms of

the number of sub-industries in which a firm is active. Size evolves over time according to a simple stochastic

process that captures competitive dynamics. At the beginning of each period, firms face a fixed number of

1See also Carvalho and Grassi (2019). Similar evidence has been found studying firms sales in international markets (di Giovanni

and Levchenko, 2012; di Giovanni et al., 2014, 2017, 2018, 2024), mergers and acquisitions (Chan and Qi, 2025), local geographical

markets (Jannati et al., 2020) and and production networks (Acemoglu et al., 2012; Devereux et al., 2023).
2The negative relationship between size and volatility of growth rates is not the only factor possibly affecting the granular channel,

see for example Pastén et al. (2024).
3Garicano et al. (2016) use the same dataset to examine how size-contingent labor regulations affect equilibrium outcomes and

welfare. Relevant to this work, they find that the firm size distribution in France is significantly fat-tailed, closely approximating a

power law, consistently with evidence from other developed economies (Axtell, 2001).
4Simultaneously to the development of this paper the same feature has been highlighted also in Moran (2020).
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new business opportunities for which they compete.5 Each opportunity is risky: it may result in the acquisi-

tion of a new sub-industry or in the loss of one currently held by the firm. This mechanism, which governs

the birth and death of sub-industries and their allocation across firms, drives the dynamics of firm size. Two

key features characterize this competition process. First, larger firms are more likely to grab business oppor-

tunities. Second, firms with higher productivity are more likely to see these opportunities turning into an

increase of the number of sub-industries they are active in, thereby increasing their size.6

We analytically show that when firm size and productivity are perfectly correlated ś i.e. resource allo-

cation systematically favors more productive firms ś the model necessarily yields a log-log linear decay in

growth volatility with respect to a firm’s size, at odds with the empirical evidence we document for France.

By contrast, when the correlation is imperfect,7 the model predicts a marked deviation from this behavior:

volatility continues to decline with size at a constant rate only among small firms, but this decline progres-

sively attenuates and eventually flattens for the largest firms. Moreover, the weaker the correlation, the earlier

the flattening occurs, and the broader the range over which volatility becomes almost size-invariant as pre-

dicted by the Gibrat’s law (Gibrat, 1931). Furthermore, under favorable market conditions ś represented by

an increase in the number of business opportunities ś the volatility gap between small and large firms di-

minishes, as large firms become relatively more volatile. Numerical analyses indicate that, while finite-size

industries exhibit deviations from the asymptotic results in our theorems, these deviations are too small to

affect our qualitative conclusions and vanish quickly as industry size grows. Our model suggests that imper-

fect correlation between size and productivity is associated with more volatile large firms and hence, ceteris

paribus, with a higher relevance of the granularity channel in explaining aggregate fluctuations.

We conclude our investigations by taking the model back to the data and running reduced-form regres-

sions. We show that industries populated by firms with higher correlation between size and productivity are

associated with steeper average size-volatility decays consistent with the model’s main prediction. Moreover

we observe a compression in the volatility gap between small and large firms in industries where reallocation

mechanisms are more intense.

This paper makes three main contributions to the literature. First, it extends the long-standing body

of research on the statistical properties of industrial dynamics initiated by Gibrat (1931), focusing on the

relationship between firm size and growth volatility. Empirical evidence has consistently shown that larger

firms tend to exhibit lower growth volatility compared to smaller firms, with this relationship approximated

by a log-linear decay, typically with a slope close to -0.2. This relationship has been established using sales

data for U.S. publicly traded firms (Stanley et al., 1996; Sutton, 1997; Amaral et al., 1997; Lee et al., 1998; Koren

and Tenreyro, 2013), global data on pharmaceutical firms (Bottazzi and Secchi, 2006b; Riccaboni et al., 2008),

and employment data for manufacturing firms across 20 developed economies (Calvino et al., 2018). Yeh (2023)

provides similar evidence for the U.S. using population-level employment data.8 For the first time, this paper

provides evidence that the size-volatility decay in France is not uniform, but instead features two distinct

5In our framework, a business opportunity denotes the chance to compete for industry shares. As detailed in Section 3, these

opportunities may lead to either positive or negative size changes, depending on the competition’s outcome
6In the remaining of the paper we consider a single period version of this process describing the dynamics of a firm’s size from t

to t+ 1 while holding productivity constant.
7In the remaining of this paper we consider only positive or zero correlations.
8An inverse size-volatility relationship has also been documented at the sectoral (Castaldi and Sapio, 2008) and national (Lee et al.,

1998; Canning et al., 1998; Castaldi and Dosi, 2009) levels.
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regimes. While small firms benefit from diversification effects as they grow, resulting in reduced volatility,

these effects vanish above a certain size threshold.9

Second, this paper contributes to theoretical models of firm growth that explain the existence of system-

atic deviations from Gibrat’s law. Existing models typically represent firms as ensembles of heterogeneous

sub-units. Firms’ size (i.e. the sum of sub-units) evolves via a multiplicative process driven by the ability to

grab business opportunities and transform them into positive shocks. These opportunities are assumed to be

independent and conceptualised as segments of an industry where firms can operate without competitors.

Different types of mechanisms have been proposed to explain the size-volatility relation. Stanley et al. (1996)

and Amaral et al. (1997) model firms as having an internal hierarchical structure, Sutton (2002) as simple

łpartitions of integersž, while Bottazzi and Secchi (2006b) propose a branching process encompassing a di-

versification dynamics driven by economies of scope. Fu et al. (2005), Buldyrev et al. (2007) and Schwarzkopf

et al. (2010) represent three other examples of compositional models where the variance-size relation is ex-

plained assuming that sub-units a firm is composed by are not necessarily of equal size.10 The two works

closest to this paper are Wyart and Bouchaud (2003) and Gabaix (2011). While they differ in the way they

model the statistics of the number of sub-units composing each firm, they can accommodate both the slow

decay of growth volatilities with size and the non-Gaussian distribution of growth rates (Moran et al., 2024).11

However, they cannot account for the two-regime size-volatility relationship observed in this paper. By in-

troducing productivity as a second dimension of firm heterogeneity, our model provides a novel explanation

for the shape of this relationship based on the existence and the strength of the size-productivity correlation.

Our explanation emphasizing the role of productivity heterogeneity also links with a vast body of research

in the industrial dynamics and international trade literatures (see e.g. Hopenhayn, 1992; Melitz and Redding,

2014; Dosi et al., 2017; Carvalho and Grassi, 2019, among many others).

Finally, linking with the modern misallocation literature (see, e.g. Hsieh and Klenow, 2009; Bartelsman

et al., 2013; Garicano et al., 2016; Foster et al., 2001), our results suggest that the strength of the granularity

channel in explaining aggregate fluctuations depends to the degree of allocative efficiency in an economy. Our

contribution is to show that this mechanism operates not only impacting directly firms size, as in Ifergane

(2025), but also distorting the shape of the size-volatility relation.

2 Motivating evidence

In this section, we use administrative data on French firms to produce empirical evidences that motivate our

theoretical explorations in Section 3. First, we reassess the relationship between size and growth volatility

and show that in France it displays significant deviations from the log-log linear decay identified so far in the

related literature. Second, we show that the correlation between size and productivity among French firms ś

found positive but far from 1 ś varies within a year across sectors and displays also noticeable heterogeneity

in the way it evolves over time again across different sectors.

9See Moran et al. (2024) for a similar reasoning. Interestingly they note that also with Compustat data on US publicly traded firms

the volatility decay for the largest firms seems to become extremely slow.
10See also Moran and Riccaboni (2024), Scharfenaker (2022) and Fontanelli (2024) for recent reviews on these models.
11The non-Gaussian nature of the distribution of growth rates of business firm is another notable departure form the Gibrat’s law.

See Stanley et al. (1996) and Bottazzi and Secchi (2006a). The growth rates distribution is scale-invariant as well, as it is tent shaped

(i.e. Laplace) for countries (Lee et al., 1998; Fagiolo et al., 2008) and sectors (Castaldi and Sapio, 2008).
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limited liability simplified other micro total

Legal type

2000 55, 930 637 30, 645 37, 166 124, 378
2019 47, 739 33, 477 3, 809 10, 820 95, 845

average std.dev median n.obs

Total sales (1, 000 euro)

2000 8, 132.5 207, 481.0 792.6 87, 212
2019 10, 737.9 342, 786.6 676.6 85, 025

Multi-factor productivity

2000 26.6 30.8 22.8 87, 212
2019 43.21 83.7 34.2 85, 025

Table 1: Sample composition in terms of legal type (top-panel).

Data and variables definition. Our analysis relies on the FICUS/FARE databases produced by the French

National Institute of Statistics and Economic Studies (INSEE). These datasets provide annual snapshots of the

population of French enterprises (legal units) within the productive system, integrating administrative data

with ad-hoc surveys. We focus on firms in the manufacturing sector (SIC codes 10-33) over the period 2000-

2019,12 excluding those engaged in tobacco manufacturing (SIC code 12) and the production of coke and

petroleum products (SIC code 19). We also exclude individual companies and companies benefiting from a

simplified accounting and tax regime if they remain below certain size thresholds (łMicro-entreprise regimež),

since they potentially introduce mechanical distortions in firm size dynamics.13 Beyond standard limited

liability companies, our sample includes simplified joint-stock companies not imposing any minimum capital

requirement, corporations and various forms of partnerships we classify as łotherž. Table 1 (top-panel) reports

the composition of our sample in the first and last year in terms of the legal type of the entity. The shift in the

composition of legal types mirrors institutional reforms aimed at easing the organization of business activities

through more flexible and less burdensome legal vehicles. In particular, the 2008 łLaw for the Modernisation

of the Economyž was explicitly designed to simplify business creation, remove barriers to corporate forms,

and separate simplified individual businesses from formal corporate entities.

We extract data on Total Sales (variable CATOTAL) and deflate it using a sector-specific price index at

the industry level to proxy Sijt,
14 the size of firm i with main activity in sector j in year t. We define the

corresponding logarithmic growth rate as git = logSit − logSit−1. We then compute a multi-factor pro-

ductivity index aijt following the methodology described by Levinsohn and Petrin (2003) with the correction

proposed by Ackerberg et al. (2015). We use number of employees (variable EFFSALM), fixed assets (vari-

able IMMOCOR), material costs (variables ACHAMAR, AUTACHA and ACHAMPR), investments (variable

INVCORP) and value added (variable VAHT) to proxy for labor, capital and intermediate inputs, investments

and output.15 Finally ρjt represents the Spearman rank correlation index between size and productivity of

12FICUS/FARE data cover the French economy since 1994. However information about the type of legal unit becomes available

starting in 2000 and we stop before the Covid-19 pandemic.
13These benefits fall under the łmicro-entreprisež regime, which has undergone several revisions to its turnover thresholds since

its introduction in 2003. Major adjustments occurred in 2009, 2018, 2020, and 2023, raising the threshold for commercial activities

from approximately 80K euro to 190K euro. Before 2003 most of these entities were typically organized as individual companies.
14All nominal variables are deflated using the SNA A38 industry specific price deflators provided by INSEE, the French National

Statistical Office.
15Capital is constructed using the perpetual inventory method, where we apply the SNA A38 industry-specific depreciation rates
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firms active in sector j in year t. Our final sample consists of approximately 1.7 million firm-year observations.

Size-volatility relation. To identify the size-volatility relation, we follow a standard approach which we

refer to as the łbins methodologyž. It is a two-step procedure. Within each sector or year, observations are

first sorted by size and grouped into bins, each containing an approximately equal number of observations.

Next, for each bin, we compute the average size and the standard deviation of growth rates for firms in the

bin. The number of bins is chosen ad-hoc to ensure that each one of them includes a sufficient number of

observations to achieve sufficient precision in computing average size and volatility and, at the same time, to

avoid an over-smoothing of the size-volatility relation. In practice, when we consider data for firms active in

the whole manufacturing industry and pooled across years, we use 1000 bins. When we sub-set data by year

or sector (2 digit), we use 500 bins.

An alternative approach, known as the łblocks methodologyž and used for example in Koren and Tenreyro

(2013) and Yeh (2023), identifies the same relation using average sizes and growth volatilities computed for

each firm over rolling time windows (blocks). The key difference between the two approaches is that the

latter allows for within-firm variation in growth volatilities. This within-firm variation may potentially be

relevant for larger and older firms, but less so for smaller and younger ones. However, using blocks instead of

bins, mechanically results in the loss of short-lived firms. These are typically small, more volatile, and hence

important in shaping non-linearities in the size-volatility relationship. This is the main reason we favor bins

over blocks in our investigation. In any case, Yeh (2023) provides indirect evidence that the two procedures

do not give highly different results in the identification of the size-volatility relation and that results are not

altered when using blocks changing the length of the time-window from 3, to 5 and 10 years. This further

reassures in choosing bins over blocks.

Figure 1 reports the size-volatility relation for different years pooling observations across sectors (top

panel) and for different sectors pooling observations across years (bottom panel). Both panels provide evi-

dence supporting the idea that larger firms exhibit less volatile growth trajectories than smaller ones. Further

this result does not appear to be merely an artifact of aggregation, but is likely to reflect a characteristic of

firm growth dynamics. This evidence is perfectly in line with a well-established finding in the literature (see

e.g. Stanley et al., 1996; Bottazzi and Secchi, 2006b; Calvino et al., 2018; Yeh, 2023, among many others).16

However, further inspection of Figure 1 suggests a new noticeable finding. The decline in volatility does

not follow the usual log-log linear pattern across the entire size distribution observed in the literature. Instead,

the relationship appears to follow two distinct regimes. For firms below a certain size threshold, that for

illustrative purposes in all figures we set to 350K euro (light-blue line), volatility steadily declines with size

implying that growth trajectories become significantly more stable as size increases. Above the 350K euro

threshold the size-volatility relation flattens and the stabilizing effect of growing larger seems to diminish

significantly. This is confirmed with simple log-log linear regressions fitted on firms below and above the

threshold. For the former the average slope (dark-violet dashed line) is found to be approximately −0.53 and

−0.49 across years (top panel) and across sectors (bottom panel) respectively. For the latter the two averages

provided by INSEE, the French National Statistical Office.
16Appendix A shows that our result remains qualitatively the same if we replace Total Sales with Value Added as proxy of size

(Appendix A.1) and the standard deviation with the mean absolute deviation as proxy of volatility (Appendix A.2). Further it provides

evidences in support of our decision of removing companies under the simplified łMicro-entreprisež regime (Appendix A.3).
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Figure 1: Kernel regression estimate of the size-volatility relationship across years (top panel) and industrial sectors (bottom panel). The inset in
the top panel zooms in the scaling of variance for largest firms. Kernel regressions are computed on a 32 points regular grid using an Epanenchnikov
kernel and a rule-of-thumb bandwidth selection procedure. Binned relations are built including in the sample non individual firms active in the
manufacturing industry in the time window 2000-2019. We report also a linear fit estimated on bins recording sales lower or equal than 350K (light-
blue solid line) euro. The average of the estimated slopes (dark-violet solid line) is −0.53 and −0.49 for years and sectors respectively while the
estimated slopes (dark-green solid line) pooling observations are −0.51 and −0.52 respectively.

7



drops to −0.05 and −0.08.17

While these estimates are provided for illustrative purposes only and should be interpreted with cau-

tion,18 they are nonetheless informative about three aspects. First, the growth dynamics of both small and

large firms violate Gibrat’s law postulating that firm growth is independent of size. Second, this violation is

more flagrant for small firms yielding slope estimates clustering around −0.5,19 a value clearly outside the

range [−0.24,−0.16] covering values found in the literature. This indicates that small firms benefit from

near-perfect statistical diversification, behaving like aggregations of small sub-units subject to idiosyncratic

shocks (Moran et al., 2024). Large firms, on the contrary, show limits in their capabilities of exploiting the

benefits of diversification when they grow larger. This new feature in the size-volatility relation may affect

the quantitative relevance of the granularity channel. Since the granular hypothesis is an asymptotic result,

it is valid in the limit of large firms. For this reason, what matters is not the size-volatility decay per se, but

the regime in action for the largest firms only. This regime has just been shown to be almost flat for large

sizes in the French manufacturing sectors, limiting the relevance of concerns like those raised in Yeh (2023).

Interestingly, Figure 1 shows that the way this new pattern in the size-volatility relation unfolds differs across

year (cfr. the inset in the top-panel) and even more across industrial sectors, a fact which is at the basis of our

third contribution.

Size-productivity correlation. Next we compute the Spearman rank correlation between size and pro-

ductivity, denote it with ρj,t, and look at its empirical distributions across industrial sectors for the usual time

span 2000-2019.20 Figure 2 (top-panel) reports candlestick summaries of these distributions with boxes and

whiskers representing inter-quartile and min-max ranges respectively, and the black line-points the corre-

sponding medians. The same figure (bottom-panel) displays the time evolution of ρj,t for each individual

sector. Visual inspection of these figures suggests three main facts.

First, size-productivity correlations are generally positive, but much smaller than 1. The grand average

(across sectors and years) is about 0.17, with an average (across years) standard deviation (across sectors) of

about 0.09. This correlation between firm size and productivity has recently been emphasized as an indica-

tor of the degree of resource misallocation in the market (see Bartelsman et al., 2013). More specifically, if

resources were allocated entirely at random, the correlation between size and productivity would be zero. At

the other extreme, a perfectly efficient allocation would yield a perfect positive correlation between the two

variables. A positive correlation coefficient below one ś such as the one observed in our data ś indicates that

resource allocation tends to favor more productive firms, but the process remains imperfect and affected by

various distortions (see e.g. Hsieh and Klenow, 2009; Bartelsman et al., 2013; Garicano et al., 2016). The same

literature has shown that the siześproductivity correlation is generally lower, and thus misallocation more

severe, in European countries (including France) compared to the United States.21

17The same figure reports, for comparison, fitted lines estimated pooling observations across years and across sectors (dark-green

solid line). They look very similar.
18It is clear for example that they mechanically depend on the exact value of the size threshold.
19Coefficients of variation for these estimates suggest the existence of more than moderate variation around this mean.
20We use the Spearman rank correlation to overcome the difficulty of defining the Pearson correlation index in case size has an

infinite variance. Nevertheless, all the results we present in this section are unaltered when we employ the Pearson correlation index

instead.
21Bartelsman et al. (2013) employ an Olley-Pakes decomposition of productivity and find that the size-productivity covariance

term of the decomposition explains a smaller portion of productivity in European countries than in United States. The result that

the size-productivity covariance explains a small share of overall productivity has also been confirmed by other studies focusing on
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Figure 2: Top-panel shows candlesticks of the distribution of size-productivity correlations across industrial sectors in different years where boxes
and whiskers represent inter-quartile and min-max range respectively. Black line-points present the time evolution of the median. Bottom-panel
shows heterogeneous time variation across sectors of ρj,t for each industrial sector. The color scheme assigns 2-digit sectors, ranging from 10 to 33,
to a palette that transitions from dark-violet to dark-green. In both panels gold line-points represent the time evolution of the French GDP growth on
a different y-scale.
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Second, again in the top-panel, we observe an apparent time variation in the (median) degree of misal-

location, interestingly with the lowest median correlations observed in in 2008 and 2009, the years of the

Great Recession. To dig deeper in this direction, the same figure reports the time evolution of the French

GDP growth rate (gold line-points) displaying a comovement with ρj,t. The correlation between the two is

found to be about 0.72. This evidence is consistent with a growing body of research showing that alloca-

tive efficiency varies over the course of the business cycle. Foster et al. (2016) find that allocative efficiency

in the U.S. improved during recessions prior to 2008, consistent with the cleansing effect hypothesis,22 but

also that this pattern was reversed during the Great Recession. Bartelsman et al. (2019) report similar find-

ings for a sample of nine European countries (including France), where the Great Recession proved far less

productivity-enhancing than previous downturns. A comparable decline in allocative efficiency during the

Great Recession is also documented for France and Germany by Libert (2017), Domini and Moschella (2022)

and Grebel et al. (2023).

Third, the degree of misallocation and the way it comoves with GDP growth vary across sectors. Within

each year, we observe a non-negligible variation in size-productivity correlations across sectors with an av-

erage min-max range of 0.34 associated with a coefficient of variation larger than 10. Looking at the time

evolution of ρj,t for each individual sector uncovers significant heterogeneity in their trajectories. Corre-

lations with the French GDP growth are always positive with one exception (Rubber and plastic products)

but range from −0.04 to 0.89 with an average across sectors of 0.51. This significant heterogeneity in how

market reallocation responds to macroeconomic fluctuations is again consistent with the existing literature.

In particular, Bartelsman et al. (2019) show that country-industry pairs more exposed to trade experienced

a marked decline in allocative efficiency during the Great Recession. Likewise, Grebel et al. (2023) find that

small firms ś typically more vulnerable to credit constraints ś suffered a larger post-recession drop in alloca-

tive efficiency compared to medium and large firms, especially in France. Firms with higher export intensity

were also disproportionately affected, losing market share to firms with intermediate export intensity.

Summing up, our investigations suggest three main results that will guide our theoretical explorations in

the next section. First, in French manufacturing sectors we observe a size-volatility decay that is not log-log

linear over the entire size distribution, it is steeper for small firms and flattens for large ones. Second, the

correlation between size and productivity is on average positive, but far from being perfect. Third, these two

statistical properties display a noticeable degree of heterogeneity across sectors and over time.

3 A model for the size-volatility relation

In this section we introduce and analyze a simple model that accounts for deviations from the log-log linear

size-volatility relation by linking them to the degree of correlation between firms size and productivity. We

follow the same approach used in Sutton (2001), Klepper and Thompson (2006) and Bottazzi and Secchi (2006a),

developing an łislands modelž of industry competition that highlights structural drivers of the growth rate

France and employing data similar to ours (see e.g. Grebel et al., 2023).
22The łcleansing effectž hypothesis of recession (Caballero and Hammour, 1994, 1996) posits that downturns can enhance produc-

tivity by reallocating resources away from less productive firms toward more efficient ones.
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of firms and of the size-volatility relation.23 Together with the key role of the degree of correlation between

size and productivity, our model puts emphasis on the number of sub-industries a firm is active in and on the

role of market shares reallocation.

Setup

Let us consider an industry populated byN firms indexed by i. Firms are heterogeneous in both size Si,t and

productivity ai. This notation reflects the fact that our model describes the dynamics of a firm’s size from t to

t + 1 while holding productivity constant. At the beginning of the period, each firm’s size and productivity

are drawn from two generic probability distributions, whose cumulative distribution functions (CDFs) are

denoted by Fs and Fa, respectively.
24 Following the logic of island models, we assume that at the beginning

of the period the industry has a total size Mt, divided into a number of independent sub-industries of size

z > 0.25 Each sub-industry belongs to one and only one firm such that a firm’s size is proportional to the

number of sub-industries in which it is active. Larger firms can thus be rationalized as those operating in

more sub-industries in line with existing empirical evidence (Hymer and Pashigian, 1962; Boeri, 1989; Sutton,

2001; Bottazzi and Secchi, 2006b; Crouzet and Mehrotra, 2020).

While firms face no competition within their own sub-industry, they compete for the allocation of sub-

industries, a process that drives changes in firm size. We model this process through łbusiness opportunitiesž,

defined as chances to compete for and capture shares of the overall industry. At time t, each firm is assigned

a number of business opportunities. These opportunities are all risky in that they may materialize as either

positive or negative growth shocks. As a result, firms may experience no change, an increase, or a decrease

in the number of sub-industries in which they are active. Accordingly, the size of the entire industry may

expand, stay the same or contract depending on the sign of the correlation between size and productivity.

This competitive process captures three distinct dynamics: the assignment of new sub-industries to incum-

bent firms, the loss of existing sub-industries by incumbents, and the reallocation of existing sub-industries

across existing firms.26 The exact characterization of a firm’s growth rate gi,t requires to specify (i) how risky

business opportunities are allocated to firms and (ii) how these market opportunities are transformed into

positive vs. negative growth shocks. We explain how we model these two mechanisms here below.

Market opportunity assignment (hp1) - A given number of business opportunities H is allocated to

the N firms in the assignment phase.27 The positive parameter k captures the intensity of the allocation and

reallocation processes and it measures the degree of industry turbulence. When k is 0, there is no turbulence

at all,28 when k = 1 the equivalent of the whole industry sizeMt is converted in new business opportunities.

More in general the larger k the more intense are the allocation and reallocation processes. The number of

market opportunities assigned to firm i depends on its market share si,t =
Si,t

Mt
and it is denoted as hi(H, si,t).

23Islands models belong to a long tradition of works (among a non- exhaustive list let us cite Ijiri and Simon, 1967; Stanley et al.,

1996; Bottazzi and Secchi, 2006b,a; Fontanelli et al., 2023) that have developed stochastic models of industry evolution.
24Along the paper we consider the minimal requirement that both posses a finite first moment.
25The assumption that sub-industries are independent is in line with empirical evidence showing weak correlation among sub-

industries (see e.g. Bottazzi et al., 2001; Sutton, 2002).
26Unlike in Sutton (2001) and Klepper and Thompson (2006), in our model we consider only incumbent firms, the model does not

allow for entry.
27To simplify the notation, we omit the subscript t from H and N since they are constant in our framework.
28In this case there is no firms size dynamics.
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We assume that the assignment of each market opportunity follows a Bernoulli trial with probability equal

to si,t and, accordingly, the number of new opportunities assigned to a firm, hi(H, si,t), follows a Binomial

distribution with parametersH , and si,t respectively. This assignment mechanismmodels the idea that larger

firms, operating in a higher number of sub-industries compared to small firms, are more exposed to compe-

tition

Market opportunities assigned to a firm can result in either positive or negative shocks. While we do not

explicitly distinguish between entry into a new sub-industry and the reallocation of an existing one, positive

shocks model scenarios in which an incumbent firm enters a new sub-industry or acquires a sub-industry

previously occupied by another firm. Negative shocks, by contrast, capture the loss of a sub-industry by an

incumbent. We model this transformation as follows.

Market opportunity realization (hp2) - Once market opportunities have been assigned to firms, each

of them becomes a micro-shock ϵi in the realization phase on the basis of firms’ relative productivities, as

determined by Fa. The higher (respectively, lower) it is the position of a firm in the productivity ladder, the

higher it is the probability for a market opportunity to become a positive (respectively, negative) micro-shock.

Formally, the micro-shock ϵh = ϵ(Fa) is described as a Bernoulli trial taking positive value z with probability

equal to Fa and negative value −z with the residual probability equal to 1− Fa. This realization mechanism

simply assumes that the probability of a positive or negative growth shock from a market opportunity is

proportional to firms’ relative productivities. Accordingly, more productive firms will expand on average,

while less productive firms will shrink, in line with a large strand of previous models where productivity

determines firm competiteveness and the growth chances of a firm (see e.g. Jovanovic, 1982; Hopenhayn, 1992;

Melitz, 2003; Dosi et al., 2017; Fontanelli et al., 2023). In this set-up a firm’s growth rate and its conditional

variance can be characterized as follows.29

The firm growth rate function - The two mechanisms of market opportunity assignment and shock

realization return a firm growth rate that is equal to the sum of a random number hi(H, si,t) of micro-shocks.

The firm growth rate gi in the model is thus determined as follows:

gi :=
Si,t+1 − Si,t

Si,t
=

∑hi(H,si,t)
h=0 ϵh(Fa(ai))

Si,t
. (1)

This growth rate function implies that a firm growth rate gi in our model is a function of firm market share

si,t and of firm productivity ai.

Conditional growth rate variance - The variance of a firm growth rate conditional on firm size can be

written as

V (gi|Si,t) =
1

S2
i,t

V





h(H,si,t)
∑

h=0

ϵ(Fa(ai))
∣

∣

∣
Si,t



 , (2)

which indicates that, conditional on size, the volatility of the firm growth rate depends the assignment of the

H market opportunities via the function h(H, s), and on the productivity distribution Fa, which accounts for

29The market reallocation induced by the assignment and shock realization mechanisms in our model produces positive (negative)

growth on average when the size-productivity correlation is positive (negative). When the correlation is null instead, aggregate

industry growth is zero. Moreover, the results of the model are preserved when the sign of the micro-shock is swapped (i.e. the micro-

shock is equal to -ϵ(Fa)). In this case, the model generates negative growth in presence of a positive size-productivity correlation as

larger and more productive firms are the ones accounting for largest declines in size.
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heterogeneity in productivity levels ai and determines the type of firm growth shocks via the function ϵ(Fa).

In ourmodel, themechanism driving a firm’s growth rate depends on both its size and productivity. Larger

(smaller) firms, on average, capture a greater (smaller) number of market opportunities during the assignment

phase. These opportunities translate into positive or negative growth rates depending on the firm’s relative

productivity. As a result, the relationship between size and productivity shapes the properties of growth rate

volatility in Equation (2), including its dependence on size. In the remainder of this section, we examine this

dependence under two alternative scenarios.

Scenario I (perfect correlation)

Analytical result. We begin with a preliminary result that considers a scenario in which firms’ productivity

ai is perfectly correlated with size Si,t, that is that is ρ = 1 with ρ = corr(ai, Si,t) and we state the following

proposition.30

Proposition 1. Let H denote the number of market opportunities available in an industry of size Mt. Suppose

that business opportunities are assigned and realized according to hypotheses (hp1) and (hp2), and assume that

firm productivity ai is perfectly correlated with sizeSi,t, i.e. ρ = corr(ai, Si,t) = 1. Then, in the limit asMt →∞

and H → ∞ such that H
Mt

= k < ∞, the standard deviation of firm growth rates,
√

V (gi | Si,t), decays as a

log-linear function of Si,t with a constant slope equal to −0.5.

Proof. See Appendix B.

Proposition 1 establishes two results. First, when size and productivity are perfectly correlated, the size-

volatility relationship is necessarily log-log linear. Second, the slope of this log-log linear decay is equal to

−0.5. The proof applies the law of total variance involving multiple random variables (Bowsher and Swain,

2012), showing that V (gi | Si,t) can be decomposed into three components: (i) a term capturing the contri-

bution of the assignment of market opportunities to firms h(H, si,t), (ii) a component accounting for hetero-

geneity in firm productivity Fa and proportional to V [Fa|Si,t] conditional on size, and (iii) a residual term.

Under perfect correlation, the second component vanishes, as productivity is entirely determined by size. The

remaining terms are shown to scale as S−1
i,t .

31

The intuition behind Proposition 1 is straightforward. Small firms face a lower probability of being as-

signed business opportunities and thus of competing for sub-industries. Further, when size and productivity

are perfectly correlated, small firms face also a higher likelihood of encountering business opportunities that

translate into negative growth shocks. For large firms it is the opposite. They are more likely assigned busi-

ness opportunities that translate into positive growth shocks with higher probability. In any case in this

scenario, differences in growth rate volatility across firms are driven solely by firm size and more specifically

by the number of sub-industries in which a firm operates. When the number of business opportunities be-

comes large, firm growth benefits from near-perfect statistical diversification: large firms effectively behave

30Throughout this section, we consider the case of a positive correlation between size and productivity. However, in the proofs of

Propositions 1 and 2, we clarify that the results also hold under a negative correlation.
31Note that this proposition could be modified to generate a log-log linear size-volatility relationship with a slower decay, more

in line with empirical evidence, by introducing highly heterogeneous sub-industry sizes, as in Moran et al. (2024). We set aside this

extension for the sake of clarity, given the main focus of the present paper.
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as aggregations of many small sub-units exposed to idiosyncratic growth shocks. In line with the Central

Limit Theorem, this yields a decay slope of −0.5.

Numerical analysis. Although Proposition 1 formally proves that the volatility of growth rates decays log

linearly with size at a rate -0.5 under perfect correlation between productivity and size, we complement this

analytical result with numerical simulations.32 The goal is to assess how closely finite-sample industries

reproduce the theoretical limit. This exercise allows us to verify that the stylized result remains robust under

realistic levels of heterogeneity in firm size and to quantify the speed at which convergence to the limit occurs.

To implement the simulation under the assumptions of Proposition 1, we construct artificial industries

populated byN firms whose sizes are independently drawn from a Pareto distribution with shape parameter

equal to α. In this scenario a firm’s productivity is set equal to its size, imposing perfect correlation of the

corresponding ranks. This guarantees that larger firms have both a higher probability of getting business

opportunities, and that these turn in positive, rather than negative, growth shocks. The total number of avail-

able business opportunities H is set proportional to industry size M =
∑

i Si with k = H/M representing

the industry turbulence parameter.

In each of the Monte Carlo iterations we simulate the growth process as follows. First, each firm draws a

number of business opportunities hi from a Binomial distribution with success probability equal to its relative

sizeSi/M . Second, each opportunity results in a positive or negative growth shock of size z based on the firm’s

relative productivity rank as captured by the corresponding cumulative distribution function. The resulting

growth rate is computed as the sum of the shocks divided by firm size as in Equation (1). For each firm we

compute R different growth rates and their standard deviation is the proxy of growth volatility
√

V [gi|Si].

We then estimate the logarithmic size-volatility relation using both linear (OLS estimator) and non-parametric

regressions (local-linear kernel estimator). This procedure is detailed in Algorithm 1 in Appendix C.

The simulation results reported in Figure 3 confirm that the theoretical benchmark derived in Proposition 1

holds robustly in finite samples. Across all simulated N ∈ (50, 100, 250, 500), we recover a clear log-linear

relationship between firm size and growth rate volatility, with estimated slopes very close to the theoretical

benchmark of −0.5. While smaller industries exhibit slightly more dispersion around the fitted line, the

average decay rate remains remarkably stable, indicating that even relatively sparse economies approximate

well the limiting behavior predicted by the theory.

Figure 4 displays also the convergence of the estimated slope in the size-volatility relation to the theoretical

benchmark of −0.5 as the number of firms active in the industry increases, under three different values of

the Pareto tail exponent α (1.75, 1.5, 1.25). As expected, convergence improves with larger N , but the speed

and precision of convergence depend on the heaviness of the tail. For α = 1.75, slope estimates are already

very close to the theoretical value for moderate values of N ,33 and the confidence intervals shrink quickly.

As α decreases, indicating a fatter tail in the size distribution, the slope converges more slowly and with

greater variability across Monte Carlo simulations. This effect arises from the mechanics of our stochastic

model in the presence of an abnormally large firm. Indeed, the presence of a very large firm implies, ceteris

paribus, a large and highly concentrated industry with a large number of available business opportunities.

The vast majority of these opportunities are allocated to the largest firm, while smaller firms receive either

32To simplify the notation, we omit in this sub-section the index t.
33Recall that, in our set-up, industry sizeM is proportional to N . So the higher the latter, the larger the industry size.
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Figure 3: Local-linear kernel estimates of the size-volatility relation for industries populated with a different number of firms (N ) whose size
is drawn from Pareto distributions with diverse shape parameter together with a 99% asymptotic confidence band (α = 1.75 dark-violet points,
α = 1.5 dark-green points and α = 1.25 light-blue points) and the corresponding −0.5 benchmark (solid black line). Estimates are obtained using
the whole sample of artificial data generated in one single Monte Carlo iteration and is evaluated for the plot trimming the bottom and top 1%.
Bandwidth is least-squares cross-validated. Industry turbulence k is set to 0.1 in all panels.
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Figure 4: Average slope of the size-volatility relation across 100 Monte Carlo iterations for industries populated with a different number of firms
(N ) whose size is drawn from Pareto distributions with diverse shape parameter together with a 99% confidence band. Estimates are obtained using
the whole sample of artificial data generated in one single Monte Carlo iteration and is evaluated for the plot trimming the bottom and top 1%.
Bandwidth is least-squares cross-validated. Industry turbulence k is set to 0.1.

none or only a few over different Monte Carlo iterations. When productivity is perfectly correlated with size,

this leads to a polarized structure: small firms tend to have similar sizes and, on average, alternate between

zero and a low number of business opportunities, resulting in relatively high growth volatility; by contrast,

the largest firm always absorbs a disproportionate share of opportunities, thereby exhibiting extremely low

volatility. This imbalance disrupts the smooth size-volatility relation, occasionally producing abnormally

low slope coefficients. In one such case, the Hirschamn-Herfindal index reaches 0.98, with the largest firm

accounting for 99% of the entire industry. This firm receives on average more than 98% of the business

opportunities, leading to a growth volatility roughly three orders of magnitude smaller than that of the smaller

firms.34 In all cases, however, convergence looks fairly monotonic and stabilizes near −0.5 for N ≥ 500.

Scenario II (imperfect correlation)

Analytical result. We now consider the case where firm size and productivity are positively but imperfectly

correlated, that is, 0 ≤ ρ ≤ 1, with ρ = corr(ai, Si,t). In this context, we state the following proposition.

Proposition 2. Let H denote the number of market opportunities andMt the total market size, with

lim
Mt,H→∞

H/Mt = k <∞. Suppose that market opportunities are assigned and realized according to assump-

tions (hp1) and (hp2), and that firm productivity ai is imperfectly correlated with firm size Si,t. Then, in the

limit as Mt, H → ∞, the standard deviation of firm growth rates,
√

V (gi | Si,t), exhibits a non-linear decay

with firm size: for small firms it declines approximately as a power law with exponent −0.5, whereas for large

firms it flattens and converges to a horizontal asymptote. An increase in industry turbulence k shifts upwards the

size-volatility schedule and reduces the volatility gap between small and large firms.

34This case occurs withN = 50, α = 1.75, and k = 0.1 when the random seed is set to 46. Out of 28, 094 business opportunities,
this firm receives on average about 28, 064. The growth volatility of the largest firm is approximately 0.001, while the average for
the 47 smallest firms is 20.42, with a coefficient of variation as low as 2.7.
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Proof. See Appendix B.

Proposition 2 delivers two results. First, when size and productivity are not perfectly correlated, the size-

volatility relationship no longer follows a purely log-linear decay. Instead, it exhibits two distinct regimes:

for small firms, volatility declines approximately log-linearly with size, with a slope of −0.5; for larger firms,

the decline attenuates and eventually flattens, converging to a horizontal asymptote. Second, holding all

else constant, an increase in the intensity of industry turbulence (k) shifts the entire size-volatility relation

upward and simultaneously reduces the volatility gap between small and large firms. The proof follows the

same strategy used in Proposition 1, relying on the law of total variance. However, in this scenario, the second

term in the variance decomposition of V (gi | Si,t) no longer vanishes, thereby introducing a strictly positive

lower bound to firm-level volatility that prevents further decay for sufficiently large firms.

The intuition behind Proposition 2 departs from that of Proposition 1 in an important aspect. In both

scenarios, the assignment mechanism implies that small firms have a lower probability of receiving market

opportunities than large firms, which tend to capture the bulk of available opportunities. This alone explains

the higher volatility of smaller firms, due to limited diversification and infrequent participation in market

reallocation. However, once the assumption of perfect correlation between size and productivity is relaxed, a

key mechanism is altered: large size no longer guarantees high productivity. Large firms may still face prob-

abilities of experiencing positive or negative shocks that are not substantially different from those of smaller

firms, thereby limiting their ability to stabilize growth through scale alone. This residual volatility under-

mines the convergence toward vanishing variance and results in a flattening of the size-volatility relation at

the upper end of the size distribution.

An increase in the intensity of turbulence k shifts the entire size-volatility relation upward by increasing

the number of reallocative shocks per unit of market size. As more market opportunities are distributed across

firms, all firms become more exposed to idiosyncratic fluctuations in their market positions. This effect is par-

ticularly relevant for large firms: under imperfect correlation between size and productivity, their increased

exposure is not matched by a corresponding rise in their ability to convert opportunities into positive growth.

As a consequence, volatility remains elevated even at high sizes, and the flattening of the size-volatility rela-

tion occurs more rapidly. The net result is a narrower volatility gap between small and large firms and a more

turbulent growth environment across the entire size spectrum.

Numerical analysis. We now turn to a numerical analysis of the model under imperfect correlation between

size and productivity to assess how the theoretical predictions of Proposition 2 manifest in finite samples. We

adopt the same simulation framework detailed in Algorithm 1, maintaining the distributional assumptions for

firm size and the assignment-realization mechanisms for market opportunities. The only additional element

we specify is the procedure used to generate firm-level productivity with a target correlation 0 < ρ < 1

with firm size, which governs the degree of alignment between the size and productivity rankings in the

simulation. To introduce partial randomness in the allocation of ranks while preserving the overall structure,

we implement a partial rank perturbation procedure. Starting from the baseline rank order of firm sizes, a

fixed fraction of firms (denoted as łperturbation fractionž, pf ) is randomly selected, and the ranks within this

subset are randomly reshuffled. The remaining firms retain their original ranks. This method preserves the

marginal distribution of ranks, but disrupts their precise alignment with firm size, allowing for controlled
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deviations from perfect rank-size correlation. This procedure is detailed in Algorithm 2 in Appendix C.

The simulation results reported in Figure 5 confirm that the theoretical benchmark derived in Proposi-

tion 2 holds robustly in finite samples. For all simulated N ∈ (50, 100, 250, 500), and with a perturbation

ratio pf of 0.75,35 we observe clear deviations from the log-log linear relationship between firm size and

growth rate volatility. To help in visualizing these deviations, we report, for k = 0.1 only, the log-log linear

benchmark with slope −0.5 (black solid line). Figure 5 show that these deviations depend critically on the

tail parameter α of the firm size distribution. In particular, fatter tails (i.e., lower values of α) magnify the

departure from linearity, making the two-regime structure more apparent: a sharp decline in volatility for

small firms, followed by a clear flattening for larger ones.

To provide a quantitative assessment of these differences, Figure 6 (top panel) reports, for this scenario

as well, the convergence of the average estimated slope as the number of firms in the industry increases,

under three different values of the Pareto tail exponent. We begin by computing averages using the entire

samples generated in each Monte Carlo simulation. Although fitting a linear model to data generated by

an explicitly non-linear process may appear unconventional, we justify this approach on the grounds that

the linear approximation offers a succinct and interpretable summary of deviations from the log-log linear

benchmark.36 As the number of firms N increases, the average slope converges toward asymptotic values of

approximately−0.3,−0.2, and−0.1 for α equal 1.75, 1.5, and 1.25, respectively (dashed lines). This behavior

confirms that sharper differences between volatility regimes for small and large firms emerge when the firm

size distribution becomes more fat-tailed and market concentration is higher.37 We then recompute average

slopes using the same Monte Carlo samples this time trimmed to include only firm sizes between the 5th and

30th percentiles, with the aim of characterizing the size-volatility decay among smaller firms.38 In line with

Proposition 2, we find that these restricted-sample slopes converge toward −0.5 as N increases, regardless

of the value of α.

Next, we explore the effect of breaking the perfect correlation between size and productivity on the size-

volatility relation. In the bottom panel of Figure 6 we manipulate the perturbation fraction pf to reduce the

correlation from 1 to 0.9, 0.75 and 0.5 for the industries displayed in the two top-panels of the same figure. We

show that even a relatively minor decrease in correlation induces an apparent deviation of the size-volatility

from the log-log linear benchmark identified in Proposition 1 with a lower bound for the volatility that scales-

up with the perturbation factor. This evidence is once again in line with our theoretical predictions and

provides a justification to use our strategy to measure the extent to which the size-volatility relation deviates

from the log-log linear benchmark also when we manipulate the size-productivity correlation.

Finally, comparing the curves in the top panels of Figure 5, we observe that increasing the intensity of

industry turbulence k from 0.1 to 0.2 and 0.5 systematically shifts the size-volatility relation upward and

compresses the volatility gap between small and large firms, in line with Proposition 2. A higher intensity of

turbulence implies a higher horizontal asymptote for the growth volatility of large firms.39

35The perturbation ratio is approximately equal to one minus the correlation between size and productivity. Setting pf = 0.75
implies a rank correlation of about 0.25, a value not far to what found for EU countries.

36When we take the model to data in Section 4, we exploit this idea.
37In these simulations, the average Herfindahl-Hirschman index across Monte Carlo iterations is 0.43, 0.61, and 0.83 for α equal

1.75, 1.5, and 1.25, respectively.
38The choice of the 5th and 30th percentiles, while ad hoc, is consistent with the illustrative purpose of the exercise.
39In the proof of Proposition 2 we show that the asymptote is proportional to k2.
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Figure 5: Local-linear kernel estimates of the size-volatility relation for industries populated with a different number of firms (N ) whose size is
drawn from Pareto distributions with diverse shape parameter. Perturbation fraction pf is set to 0.75 and the intensity of industry turbulence k to
0.1, 0.2 and 0.5 in all panels (α = 1.75 dark-violet points and α = 1.25 light-blue points). We report a 99% asymptotic confidence band and, for
k = 0.1, the corresponding −0.5 benchmark (solid black line). Estimates are obtained using the whole sample of artificial data generated in one
single Monte Carlo iteration and is evaluated for the plot trimming the bottom and top 1%. Bandwidth is least-squares cross-validated.
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Figure 6: Top panel reports the average slope of the size-volatility relation across 100 Monte Carlo iterations together with a 99% confidence
band estimated on entire samples in each Monte Carlo iteration (dashed line) and on trimmed samples including sizes between the 5th and 30th

percentile only (solid lines). Bottom panel reports local-linear kernel estimates of the size-volatility relation for different values of the size-productivity
correlation as measured by the perturbation-factor pf . Industries are populated with 500 firms with k = 0.2 and α = 1.75 (dark-violet points) and
α = 1.25 (light-blue points).
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average std.dev min max n.obs

rj,t
30 bins −0.133 0.058 −0.334 0.029 440
50 bins −0.135 0.053 −0.304 0.065 440

ρj,t
mfp 0.698 0.115 0.325 0.876 440
lp 0.287 0.107 0.050 0.596 440

kj,t
proxy.1 0.127 0.047 0.049 0.560 440
proxy.2 0.120 0.056 0.032 0.918 440
proxy.3 0.040 0.046 0.000 0.501 440

number of firms 3721.3 4583.7 258.0 25626.0 440

Table 2: Descriptive statistics of different proxies for the three main variables used in estimations and for the number of firms active in each industry-
year pair. rj,t is the estimated slope of the size-volatility relation using 30 or 50 bins, ρj,t the Spearman rank correlation index between size and
productivity, where the latter is either a multi-factor productivity or a labor productivity index and, kj,t the turbulence index that we measure with
the sum of the absolute values of the firm-level difference in size divided by the industry size (proxy.1), with the sum of the firm-level differences in
market shares (proxy.2) and with the industry aggregate growth rate (proxy.3).

4 Model meets data: reduced-form regression analysis

Our theoretical framework predicts a within-industry size-volatility relationship that departs from log-log

linearity. In particular, it shows that the emergence of two distinct regimes: an approximately log-log linear

decline in volatility among smaller firms, and a flattening pattern among larger ones depending on the de-

gree of correlation between firm size and productivity. Conditional on this correlation, the extent of market

turbulence within the industry, captured in the model by the parameter k, further shapes the pattern. In this

section, we examine the extent to which these theoretical predictions are supported by the data using simple

reduced-form regression models.

We reconsider the French administrative data used in Section 2 to motivate our work. We proxy Si,t,

the size of a firm i in year t, with its annual Total Sales (expressed in 1, 000 euro), estimate its productivity

ai following the methodology described by Levinsohn and Petrin (2003) with the correction proposed by

Ackerberg et al. (2015) and compute for each year t and 2-digit industry j in the Manufacturing sector the

Spearman rank correlation index between the two, denoted as ρj,t. Next, we build for each industry-year pair

three different proxies of the industry turbulence parameter kj,t. First we consider the sum of the absolute

values of the firm-level difference in size between t+1 and in t divided by the industry size
∑

∀i∈j |Si,t+1−Si,t|∑
∀i∈j Si,t−1

(proxy.1). Second, we compute the sum of the firm-level differences in market shares between t + 1 and

in t as in
∑

∀i∈j |si,t+1 − si,t|, where si,t are firms’ market shares (proxy.2). Third, we simply compute the

industry aggregate growth rate as | logSj,t+1 − logSj,t|, where Sj,t represents the size of industry j in year

t (proxy.3).40 Finally, we estimate for each industry-year the slope of a log-log linear relation between size

and growth volatility, denoted rj,t.
41 In light of our motivating evidence (cfr. in particular the right-panel in

Figure 1) these estimated slopes represent in our context an approximate but informative and interpretable

index summarizing the extent to which we observe deviations from the log-log linear benchmark. In Table 2

40We employ the absolute value in all these proxies because we are interested in the amount of reallocation due to changes in

sectoral production, rather than in the sign of its growth.
41In the baseline specification we set the number of bins to 30 in each year-industry. We check that our results remain stable and

significant when changing the number of bins.
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Dependent variable rj,t (30 bins)
(1) (2) (3) (4)

ρj,t
mfp -0.109*** -0.097** -0.105**

(0.038) (0.038) (0.042)

lp -0.083*

(0.047)

kj,t
proxy.1 0.288** 0.281**

(0.135) (0.133)

proxy.2 0.176**

(0.081)

proxy.3 0.098

(0.079)

Xj,t controls Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 440 440 440 440

Adjusted R-squared 0.473 0.470 0.462 0.443

Table 3: Estimates of the regression (3) using French industry-year data. The slope of the size-volatility relation rj,t is estimated using the bin

methodology with 30 bins for each 2-digit industry and year pair. ρj,t represents the Spearman rank correlation between size and productivity, while

the turbulence index kj,t. Productivity is proxied with a multi-factor index (mfp) and with a single-factor index (lp) while industry turbulence is

proxied with the sum of the absolute values of the firm-level difference in size divided by the industry size (proxy.1), with the sum of the firm-level

differences in market shares (proxy.2) and with the industry aggregate growth rate (proxy.3). Errors are clustered at the industry level.

we report few statistics describing the main variables involved in the estimation comparing different proxies

and methods to compute them. We show that rj,t does not seem to be significantly affected by the choice

of the number of bins and that it is typically estimated over a relatively large number of firms. Moreover,

as expected, multi factor and single factor productivity indexes may well differ across sector-year pairs, but

both register only positive correlations spanning a similar and relatively large portion of the interval [0, 1].

Finally, the three proxies for industry turbulence look in a first approximation similar among each other, but

still present different averages and ranges of variation. Overall, these statistics corroborate the idea that our

dependent variable is robustly estimated and not too sensitive to the arbitrary choice of the number of bins

and that exploring various proxies for ρj,t and kj,t in our estimations is an informative exercise to assess the

robustness of our findings.

Next we move to our reduced-form econometric exercise and estimate with OLS the following specifica-

tion

rj,t = α+ β1ρj,t + β2kj,t + βXXj,t + µj + µt + ϵj,t (3)

where all the variables are standardized and where µj and µt represent industry and year fixed effects and

Xj,t is a vector of industry-year varying controls including the (log) number of firms and the (log) industry

size. Standard errors are clustered at the level of industries.

Table 3 reports the main estimates of the reduced-form regression (3) using French industry-year data.

Column (1) presents our preferred specification, which computes the size-productivity correlation using

multi-factor productivity and proxies industry turbulence as the sum of absolute firm-level changes in size

relative to total industry size (proxy.1). The estimated coefficient on ρj,t, β1, is negative and statistically

significant: industries where size and productivity are more strongly correlated exhibit steeper declines in

volatility with firm size, consistent with a closer adherence to the log-log linear benchmark. The coefficient
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on the turbulence proxy, β2, is positive and significant, indicating that greater market turbulence is associated

with a flatter size-volatility relation, suggesting more uniform growth volatility across the firm size distribu-

tion. Taken together, these results align with the model’s prediction in Proposition 2, namely that stronger

size-productivity correlation and lower turbulence widen the volatility gap between small and large firms,

while weaker correlation and greater turbulence compress it. Column (2) tests the robustness of our findings

by replacing the multi-factor productivity measure with labor productivity (value added per employee) for

computing the size-productivity correlation. Results confirm the baseline pattern both for β1 and β2: esti-

mates remain significantly negative for the former and significantly positive for the latter. Finally, columns (3)

and (4) explore our regression model using alternative proxies for industry turbulence, that is the reallocation

of market shares (proxy.2) and the industry growth rate (proxy.3), respectively. Also these results corroborate

our main findings: β1 estimates remain negative and significant while estimates for β2 display the correct

sign, but lose statistical significance in one case, that is when the industry growth rate is used suggesting that

this proxy may be a noisier measure of industry turbulence not considering the firm-to-firm reallocations.

The results reported in Table 3 survive a battery of robustness checks where we change to 50 the number

of bins used to estimate the slope of the size-volatility relation, when we replace rj,t with a simple correlation

between the (log) size and the (log) growth volatility, when we replace the proxy of multi-factor produc-

tivity with the variant proposed in Wooldridge (2009), when we estimate the model weighting observations

by industry shares, and when we replace Spearman rank with a simple linear correlation. Results of these

robustness checks are reported in Appendix E.

5 Concluding remarks

We revisited the empirical and theoretical underpinnings of the size-volatility relationship in firm growth

dynamics, with a focus on the French manufacturing sector. Using comprehensive administrative data of

French manufacturing firms between 2000 and 2019, we document a robust non-linearity in the size-volatility

relation: while small firms exhibit a steep decline in volatility as they grow, this pattern progressively flattens

for larger firms. This two-regime structure challenges the standard log-log linear decay widely reported in

the literature and suggests a more nuanced mechanism linking size to growth volatility.

To interpret this empirical regularity, we propose a simple stochasticmodel of industry dynamics grounded

in an łislandsž framework (e.g. Sutton, 2001; Klepper and Thompson, 2006; Bottazzi and Secchi, 2006a), in

which firms compete for market opportunities and differ in productivity. A key insight of the model is that

the shape of the size-volatility relation depends on the efficiency of resource allocation in the economy, mea-

sured by the correlation between firm size and firm productivity. When the correlation is perfect, growth

volatility decays linearly in log-log space with a slope of -0.5. When the correlation is imperfect ś a condition

supported by our empirical findings ś the decay attenuates and flattens at higher firm sizes. Importantly,

the model predicts and explains the observed cross-sector heterogeneity in the strength and shape of this

relationship.

Our results carry implications for the quantitative relevance of the granularity channel in explaining

aggregate fluctuations (see Gabaix, 2011; Carvalho and Grassi, 2019). The flattening of the size-volatility curve

among large firms implies that the macroeconomic influence of granular shocks may remain substantial even
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in the presence of size-dependent volatility. Moreover, the strength of this influence is linked to the degree of

resource misallocation: economies with weaker size-productivity correlations ś i.e., greater misallocation ś

tend to exhibit flatter size-volatility relationships and stronger granular effects. A second implication of our

work is also that structural policies that boost market reallocation may have unexpected consequences on

overall volatility. In this regard, our model suggests that an increase in market reallocation not only increases

firm growth volatility regardless of firm size. It also changes the shape of the relation between firm growth

volatility and firm size, by flattening it and inducing a smaller volatility gap between small and large firms.

By bridging empirical evidence with a structurally interpretable model, our work contributes to the lit-

erature on industrial dynamics, firm growth, and macroeconomic volatility. It emphasizes the importance

of resource misallocations in shaping the aggregate impact of idiosyncratic firm-level shocks and calls for

further research into how policy and institutional factors may influence the link between market reallocation

processes and macroeconomic fluctuations.
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A Size-volatility relation - robustness checks

A.1 Using value added to proxy for size

In this appendix we reproduce Figure 1 replacing total sales with value added as a proxy of size. We keep the same procedure used in

Section 2 with the only difference that we reduce the threshold below which we estimate the log-log linear fit from 350K to 100K
euro. The main message remains unaffected.
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Figure A.1: Kernel regression estimate of the size-volatility relationship across years (top panel) and industrial sectors (bottom panel). The inset in
the top panel zooms in the scaling of variance for largest firms. Kernel regressions are computed on a 32 points regular grid using an Epanenchnikov
kernel and a rule-of-thumb bandwidth selection procedure. Binned relations are built including in the sample non individual firms active in the
manufacturing industry in the time window 2000-2019. We report also a linear fit estimated on bins recording value added lower or equal than 100K
(light-blue solid line) euro. The average of the estimated slopes (dark-violet solid line) is −0.50 and −0.45 for years and sectors respectively while
the estimated slopes (dark-green solid line) pooling observations are −0.49(0.01) and −0.42(0.01) respectively with asymptotic standard error in
parenthesis.
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A.2 Using mean absolute deviation to proxy for volatility

In this appendix we reproduce Figure 1 replacing the Standard Deviation with the Mean Absolute Deviation to estimate growth

volatilities. We keep the same procedure used in Section 2. While the main message remains unaffected we observe an anomalous

behavior of the industrial sector łBeverage industryž (SIC 11) in the bottom panel highlighted with a dashed red line. A deeper look

at the data reveals that in the first two bins (out of 500), those associated with the smallest firms, there are duplicated values that

concentrate around to the mean. In this situation the mean absolute deviation of the growth rates for these two bins mechanically

shrinks to zero.42 Figure A.2 reports the size-volatility scaling profile for this sector obtained by removing the two bins with a solid

red line, showing an almost perfect overlap for most of the size support.
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Figure A.2: Kernel regression estimate of the size-volatility relationship across years (top panel) and industrial sectors (bottom

panel). The inset in the top panel zooms in the scaling of mean absolute deviation for largest firms. Kernel regressions are computed

on a 32 points regular grid using an Epanenchnikov kernel and a rule-of-thumb bandwidth selection procedure. Binned relations are

built including in the sample non individual firms active in the manufacturing industry in the time window 2000-2019. We report

also a linear fit estimated on bins recording sales lower or equal than 350K (light-blue solid line) euro. The average of the estimated

slopes (dark-violet solid line) is−0.54 and−0.43 for years and sectors respectively while the estimated slopes (dark-green solid line)

pooling observations are −0.53(0.01) and −0.42(0.01) respectively with asymptotic standard error in parenthesis.

42Clearly one should expect the same behavior for the standard deviation. However, the mean absolute deviation, being a linear

measure of dispersion, is more sensitive to adding zero deviations from the mean.
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A.3 Disaggregating firms by legal types

Figure A.3 shows the size-volatility relation built with the łbins methodologyž grouping observations by type of legal unit but pooling

across years and manufacturing sectors. While corporations span a significant larger size range than companies three of the four

panels (top and bottom-left) show that the size-volatility relation when represented in a double-log scale does not look linear but

features a decay in the rate at which growth volatility scales down with size quite similar for these legal types of organization. On

the contrary Micro enterprises display a rather peculiar pattern. We believe this behavior is mechanically generated by the łMicro-

entreprise regimež and this is why we remove these firms from our sample.
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Figure A.3: Size-volatility relationship across type of legal unit. Binned relations are built including in the sample firms active in the manufacturing
industry in the time window 2000-2019. Pooling observations across years and sectors gives about 1.09M firm-year observations for Limited Liability
Companies, 345K for Simplified Corporations, 245K unique firm for Other Corporations, and 475K for Individual Companies. We report also a linear fit
(dashed green line) estimated on bins recording sales lower or equal than 250K euro. Estimated slopes are−0.49(0.01),−0.48(0.02),−0.48(0.03)
and −0.47(0.01) respectively with asymptotic standard errors in parenthesis.
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B Proofs of Propositions

This appendix contains the proofs of the two propositions presented in the main text. They both make use of a preliminary lemma

using the law of total variance to decompose the variance in Equation (2) in three components: a component measuring the contri-

bution from the assignment of market opportunities to firms, a component accounting for productivity heterogeneity of firms and a

residual term.

Lemma 1. Consider an industry populated byN firms heterogeneous both in size and productivity. LetH , Fs and Fa denote the number

of market opportunities and the cumulative distribution functions of size and productivity andMt the total market size. Then

V
[
gi|Si,t

]
=

1

Si,t

H

Mt

[(

1−
Si,t

Mt

)

z2
(
2E

[
Fa(ai)

]
− 1

)2
+

+
(

1 + (H − 1)
Si,t

Mt

)

4z2V [Fa(ai)]+

+ 4z2
(
E
[
Fa(ai)

]
− E

[
F 2
a (ai)

])]

,

(B.1)

where gi is defined in equation (2).

Proof. Let us consider a random variable Y , which is jointly determined by two other random variables X1 and X2. Bowsher and

Swain (2012) show that in this case the law of total variance

V (Y ) = V [E(Y |X1)]
︸ ︷︷ ︸

From X1

+E{V [E(Y |X1, X2)|X1]}
︸ ︷︷ ︸

FromX2

+E[V (Y |X1, X2)]
︸ ︷︷ ︸

Residual variance of Y

. (B.2)

states that the variance V (Y ) can be decomposed in a first term that depends on the variability ofX1, a second term that depends on

X2 and a residual term that does not depend upon X1 and X2. The second term is new vis-à-vis the standard law of total variance

based on one random variable only. It is equal to the average difference between the variance of Y conditional onX1 only and the one

conditional on bothX1 andX2, and is indeed equal to 0 if Y andX2 are independent. The choice of the order for the two components

X1 and X2 matters for the resulting decomposition, as it depends on the sequence of conditioning. Following Bowsher and Swain

(2012), we decompose the variance of firms’ growth rates according to the natural order of our two-steps process. More specifically,

X1 represents the number of market opportunities assigned to firms hi(H, si,t) andX2 the CDF of productivity Fa(ai).
43 All other

variables appearing in Equation (2) (size Si,t, total number of market opportunitiesH and market sizeMt) are treated as constants.

To further simplify the notation, in these proofs we remove the time subscript also in Si,t andMt since t represents unambiguously

the beginning of the period. Moreover we replace Fa(ai) with Fai
and hi(H, si) with hi. Then using (B.2) and equation (2) in

Section 3 one can write

V [gi|Si] =
1

S2
i

[

V
[
E
[

hi∑

h=0

ϵ(Fai
)|hi

]]
+ E

[
V [E(

hi∑

h=0

ϵ(Fai
)|hi, Fai

)|hi]
]
+ E[V (

hi∑

h=0

ϵ(Fai
)|hi, Fai

)]
]

(B.3)

Noting that the two conditioning variables hi and Fai
the first term in (B.3) expands as follows

V
[
E[

hi∑

h=0

ϵ(Fai
)|hi]

]
=V

[
hiE[E(ϵ(Fai

)|Fai
)]
]
= V [hi]E[E(ϵ(Fai

)|Fai
)]2 , (B.4)

where we have used the Law of Iterated Expectations to note that E[E(ϵ(Fa)|Fa)] is constant and the facts that ϵ are identically

distributed by assumption and Fai
is Uniformly distributed because of the Probability Integral Transform theorem. Furthermore

since hi is a Binomial random variable with success probability si =
Si

M
by assumption,44 we get

V
[
E[

hi∑

h=0

ϵ(Fai
)|hi]

]
= H

Si

M

(

1−
Si

M

)(

E[E(ϵ(Fai
)|Fai

)]
)2

. (B.5)

Recalling that ϵ are i.i.d, the second terms can be rewritten as follows

E
[

V
[
E
[

hi∑

h=0

ϵ(Fai
)|hi, Fa

]
|hi

]]

=E[h2
i ]E

[
V [E(ϵ(Fai

)|Fai
)]
]
=

=
(
V [hi] + E[hi]

2
)
V [E[ϵ(Fai

)|Fai
]] =

=H
Si

M

(

1 + (H − 1)
Si

M

)

V
[
E[ϵ(Fai

)|Fai
]
]

.

(B.6)

43Note that we condition on the productivity distribution Fa and not on the overall realization process ϵ(Fa). This is sufficient

to generate the analytical results which are relevant for our purpose. Conversely, the inclusion of the additional conditionality on

ϵ(Fa) would only add another term to the decomposition in Equation (B.2), without any additional analytical gain.
44Then its mean and variance are equal toH Si

M
andH Si

M

(
1− Si

M

)
respectively.
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Similarly, the third term develops as follows

E[V (

hi∑

h=0

ϵ(Fai
)|hi, Fai

)] =E[hi]E(V (ϵ(Fai
)|Fai

)) =

=H
Si

M
E[V (ϵ(Fai

)|Fai
)] .

(B.7)

Substituting (B.5), (B.6) and (B.7) in (B.3) gives

V (gi|Si) =
1

Si

H

M
{
(
1−

Si

M

)
(E[E(ϵ(Fai

)|Fai
)])2+

+
[
1 + (H − 1)

Si

M

]
V [E(ϵ(Fai

)|Fai
)]+

+ E[V (ϵ(Fai
)|Fai

)]}

(B.8)

Finally we compute the conditional expectation of ϵ(Fa) given Fa and its variance

E(ϵ(Fai
)|Fai

) =zFai
− z(1− Fai

) = z(2Fai
− 1)

E(ϵ(Fai
)2|Fai

) =z2Fai
+ (−z)2(1− Fai

) = z2

V (ϵ(Fai
)|Fai

) =E(ϵ(Fai
)2|Fai

)− E(ϵ(Fai
)|Fai

)2 =

=z2 − (z(2Fai
− 1))2 = 4z2(Fai

− F 2
ai
) ,

(B.9)

and substitute them in (B.8) to obtain (B.1). We do not further elaborate on the variance terms, as treating Fa as a random variable

depends on its relationship with firm size.

Proposition 1. 1 LetH denote the number ofmarket opportunities available in an industry of sizeM . Suppose that business opportunities

are assigned and realized according to hypotheses (hp1) and (hp2), and assume that firm productivity ai is perfectly correlated with size

Si, i.e. ρ = corr(ai, Si) = 1. Then, in the limit asM → ∞ andH → ∞ such that H
M

= k < ∞, the standard deviation of firm growth

rates,
√

V (gi | Si), decays as a log-linear function of Si with a constant slope equal to −0.5.

Proof. When the rank correlation between a firm’s size and productivity is equal to 1, there exists a deterministic and strictly mono-

tonic relation between the two variables ai = f(Si) with f ′ > 0. This relation is in general non-linear and implies that the ranks

of Si and ai are perfectly aligned.45 As a consequence, for a given Si, Fa is not considered anymore as a random variable and the

second term in Equation (B.1) vanishes since term V (Fai
) is zero. Therefore, we can write

V
[
gi|Si

]
=

1

Si

H

M

((

1−
Si

M

)

z2(2Fai
− 1)2 + 4z2(Fai

− F 2
ai
)
)

. (B.10)

In the limit for H,M → ∞ such that H
M

= k < ∞, (1− S/M) is approximately 1 when S is small with respect to M . When S is

very large and close to M , (1 − S/M) is approximately 0, and the last expression converges to 1/Sk4z2(F − F 2). In both cases,

this proves the proposition.

Proposition 2. Let H denote the number of market opportunities andM the total market size, with

lim
M,H→∞

H/M = k < ∞. Suppose that market opportunities are assigned and realized according to assumptions (hp1) and (hp2),

and that firm productivity ai is imperfectly correlated with firm size Si. Then, in the limit as M,H → ∞, the standard deviation of

firm growth rates,
√

V (gi | Si), exhibits a non-linear decay with firm size: for small firms it declines approximately as a power law with

exponent −0.5, whereas for large firms it flattens and converges to a horizontal asymptote. An increase in industry turbulence k shifts

upwards the size-volatility schedule and reduces the volatility gap between small and large firms.

Proof. When the rank correlation between a firm’s size and productivity is positive but lower than 1, there is no deterministic

functional relation between the two variables. Hence Fa is not given, and the term including V [Fa] in (B.1) does not vanish anymore.

In this scenario the behavior of V [gi|Si] depends on what happens in the limit H,M → ∞ to the first two term in (B.1) and in

particular to (1− Si

M
) and 1+(H−1)Si

M
). When Si is very small, Si << 1

k
, both (1− Si

M
) and 1+(H−1)Si

M
) are approximately 1

and we get as in the case of perfect correlation limH,M→∞ V (gi,t|Si) =
1

Si
kz2. When Si is very large, Si >> 1

k
, the market share

Si

M
is close to 1 and then (1 − Si

M
) to 0. Differently from the previous case, (1 + (H − 1)Si

M
) is approximated by Si

H
M

that is Sik.
Noting that all the moments of Fai

are bounded since Fa is a cumulative distribution function, one obtains limH,M→∞ V (gi,t|Si) =
4k2z2V [Fai

] proving the first part of the proposition.

45Note that the relation can be linear ai = q + mSi even when the variance of Si is infinite because of the heavy tail of its

distribution. The point is that it cannot be quantified it using the Pearson correlation that does not exist.
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To complete the proof we compute the logarithm of the growth rate variance in Equation (B.1):

log V (gi|Si) = log
H

M
− logSi+

log
(

γ + Si

−E[E[ϵ(Fai
)|Fai

]]2 + (H − 1)V [E[ϵ(Fai
)|Fai

]]

M

)
,

(B.11)

where γ = (E[E(ϵ(Fai
)|Fai

])2+V [E[ϵ(Fai
)|Fai

]]+E[V [ϵ(Fa)|Fa]]. When the size-productivity correlation is perfectV (E(ϵ(Fa)|Fa))
is zero and in (B.11) the number of business opportunitiesH affects only the constant, shifting up and down the whole schedule. To

investigate the case when the size-productivity correlation is not perfect, note that k enters quadratically in the variance for large

firms, but not for small firms. This implies that, as k increases, the logarithm of volatility rises twice as fast for large firms compared

to small ones.
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C Simulation algorithms

In this appendix we report the meta code for the two algorithms we use to numerically simulate Proposition 1 and Proposition 2 in

Section 3. Algorithm 1 contains four blocks. In the first one łParametersž we set the model parameters: the number of firms N , the

exponent of the Pareto distribution αwe use for drawing a firm’s size, the industry turbulence kmeasuring the strength of the alloca-

tion and riallocation processes and the fixed size of a business opportunity z. The second one łInizializationž, initializes the model by

drawing a size for each firm and summing them to compute market sizeM from which we get the number of business opportunities

H . The third block łMonte Carlo simulationž is the main simulation loop where we randomly assign business opportunities to firms

based on their market share. Each business opportunities is then randomly transformed into a positive or negative growth shock

based on a firm’s ranking in the productivity ladder which in this scenario maps one to one on that of size. Using growth shocks we

compute the growth rates for each firm. In the last block łPost-simulation analysisž we compute a firm’s growth volatility across the

R iterations in the Monte Carlo simulation σi and regress both parametrically and non-parametrically its log on log size.

Algorithm 1 Simulation structure (Scenario I)

Parameters

1: Set number of firms N , Pareto exponent α, industry turbulence k, shock size z

Initialization

2: Draw firm sizes {Si}
N
i=1 from a Pareto(α) distribution with xmin = 1

3: Sort firms in increasing order of size

4: Compute total market sizeM ←
∑

i Si

5: Set number of market opportunities H ← ⌊k ·M⌋

Monte Carlo Simulation

6: for r = 1 to R do

7: for i = 1 to N do

8: Assign hi ∼ Binomial(H,Si/M)
9: Compute Fa(ai) as ECDF of {Sj}
10: Draw posi ∼ Binomial(hi, Fa(ai))
11: Compute negi ← hi − posi
12: Compute growth rate g

(r)
i ← z · (posi − negi)/Si

Post-Simulation Analysis

13: for i = 1 to N do

14: Compute volatility σi ← std. dev. of {g
(r)
i }

R
r=1

15: Fit OLS regression: log(σi) = β0 + β1 log(Si) + εi
16: Estimate non-parametric regression of log(σi) on log(Si)

Algorithm 2 differs from the previous one in only one aspect, the decoupling of the size and productivity ladders. Our procedure to

implement this decoupling is very simple. We set first a perturbation factor pf which is a number in between 0 and 1, identifying
a share of the initial rankings in the size ladder. Next, we randomly select N times pf size ranking, reshuffling their positions

generating a new ladder we assign to productivity. In this procedure Scenario I is reproduced setting the perturbation factor equal to

0.

Algorithm 2 Productivity rank perturbation function (Scenario II)

Parameters

1: Set number of firms N , perturbation fraction pf ∈ [0, 1]

Input

2: Firm sizes {Si}
N
i=1

Procedure

3: Compute base ranks initial.ranks← rank(−{Si})
4: Compute number of firms to perturb nperturb ← ⌊pf ·N⌋
5: Randomly select indices to perturb perturb.ids← sample(1:N,nperturb)
6: Shuffle selected ranks new.ranks← sample(initial.ranks[perturb.ids])

Output

7: Perturbed productivity ranks new.ranks

‘
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D Simulation results

In this appendix we report a few additional simulation results to complete those displayed in Section 3. We start considering Propo-

sition 1 showing in Figure D.1 the size-volatility relation in case α = 2, i.e. considering a firm size distribution with both finite mean

and variance. We do not observe qualitative differences with respect to those reported in Figure 3.
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Figure D.1: Local-linear kernel estimator of the size-volatility relation for industries populated with a different number of firms (N ) whose size is
drawn from Pareto distributions with shape parameter α equal to 2 together with a 99% asymptotic confidence band( points) and the corresponding
−0.5 benchmark (solid black line). Local-linear kernel estimator is obtained using the whole sample of artificial data generated in one single Monte
Carlo iteration and is evaluated for the plot trimming the bottom and top 1%. Bandwidth is least-squares cross-validated. Bottom-right panel reports
the average slope of the size-volatility relation across 100 Monte Carlo iterations together with a 99% confidence band. Industry turbulence k is set
to 0.1.

We then consider the effect of increasing the market turbulence parameter k to 0.2 and 0.5 (cfr. Figure D.2) and once again

the qualitative behavior of the size-volatility relation remains the same, except for a shift upwards of the entire schedule that looks

increasing in k. See Proposition 2 for a detailed discussion about this feature.
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Figure D.2: Local-linear kernel estimator of the size-volatility relation for industries populated with a different number of firms (N ) whose size is
drawn from Pareto distributions with diverse shape parameter together with a 99% asymptotic confidence band (α = 2.0 gold points, α = 1.75
dark-violet points, α = 1.5 dark-green points and α = 1.25 light-blue points) and the corresponding−0.5 benchmark (solid black line). Local-linear
kernel estimator is obtained using the whole sample of artificial data generated in one single Monte Carlo iteration and is evaluated for the plot
trimming the bottom and top 1%. Bandwidth is least-squares cross-validated. Bottom-right panel reports the average slope of the size-volatility
relation across 100 Monte Carlo iterations together with a 99% confidence band. Industry turbulence k is set to 0.2 and 0.5 in all panels.
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Next, we move to the second scenario of imperfect correlation between size and productivity and repeat the exercises shown in

Figure 5 and Figure 6 also for α equal 2 and 1.5. Figure D.3 confirms that results shown in Section 3 concerning Proposition 2 are by

no means peculiar and emerge with only quantitative differences here.
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Figure D.3: Local-linear kernel estimates of the size-volatility relation for industries populated by a different number of firms (N ) whose size is
drawn from Pareto distributions with diverse shape parameter together with a 99% asymptotic confidence band (α = 2.0 gold points, α = 1.75
dark-violet points, α = 1.5 dark-green points and α = 1.25 light-blue points) and the corresponding−0.5 benchmark (solid black line). Local-linear
kernel estimator is obtained using the whole sample of artificial data generated in one single Monte Carlo iteration and is evaluated for the plot
trimming the bottom and top 1%. Bandwidth is least-squares cross-validated. Bottom-right panel reports the average slope of the size-volatility
relation across 100 Monte Carlo iterations together with a 99% confidence band. Industry turbulence k is set to 0.2 and 0.5 in all panels.
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E Robustness checks

Dependent variable rj,t
(1) (2) (3) (4) (5)

ρj,t
mfp -0.103*** -0.537*** -0.145* -0.129*** -0.145***

(0.038) (0.153) (0.077) (0.039) (0.044)

kj,t
proxy.1 0.314*** -0.936** 0.277** 0.180* 0.284**

(0.086) (0.445) (0.131) (0.087) (0.133)

Xj,t controls Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Observations 440 440 440 440 440

Adjusted R-squared 0.525 0.333 0.470 0.554 0.479

Table E.1: Estimates of the regression (3) using French industry-year data. With respect to the baseline reported in Table 3 in column (1) the slope

of the size-volatility relation rj,t is estimated using the bin methodology with 50 bins, in column (2) rj,t is replaced with with a simple correlation

between the (log) size and the (log) growth volatility, in column (3) the multi-factor productivity index is estimated according to Wooldridge (2009),

in column (4) we weight observations by sector industry shares, and in column (5) we compute ρj,t as the Pearson correlation index. Errors are

clustered at the industry level.

Table E.1 shows that our main regression results survive to a battery of robustness checks where we explore different definitions of

our dependent and independent variables and where we weight our observations. In column (1) we increase to 50 the number of

bins used to estimate the slope of the size-volatility relation in each industry-year. In column (2) we replace as a dependent variable

the slope of the size-volatility relation with a simple correlation between the (log) size and the (log) growth volatility. In column (3)

instead of following Levinsohn and Petrin (2003) as corrected by Ackerberg et al. (2015) we estimate the multi-factor productivity

index as in Wooldridge (2009). In column (4) each observations is weighted by sector industry shares computed year by year. In

column (5), even with the caveat that size must have in this case a finite variance, we replace the Spearman rank with the Pearson

linear correlation. Across all specifications, the empirical results remain consistent with the model’s theoretical predictions: stronger

correlation between size and productivity is associated with a steeper decline in volatility, while greater market turbulence tends to

compress the size-volatility gradient.
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