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Abstract

Agent-Based Models (ABMs) provide powerful tools for economic analysis, capturing micro-

to-macro interactions and emergent properties. However, integration with empirical data has

been a persistent challenge. To address it, we propose a protocol for integration between empir-

ical data and ABM, building a new multidimensional similarity index that aggregates different

similarity measures into a composite score, specifically designed to quantify alignment between

simulated and real-world data. This metric enables a complete model ranking procedure, facili-

tating a streamlined model selection. The protocol is designed to be model-agnostic and flexible,

allowing its application to a wide range of models beyond ABMs, including aggregate dynami-

cal systems and any type of computational model. As an example, we apply our methodology

to different configurations and model versions of the Schumpeter meeting Keynes (K+S) ABM

family (Dosi, Fagiolo, and Roventini, 2010) using US data (from 1948Q1 to 2019Q1). Next, we

propose a policy-informed application, attributing different weights to variables associated with

policy-making decisions and technological change. The exercise is done in order to showcase the

capacity of the procedure to target specific policy variables of interest, allowing for the design

of empirically informed scenario analyses and projections on real-world dynamics.
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1 Introduction

Understanding and evaluating how much a model is similar/dissimilar vis-à-vis the empirical ev-

idence is certainly a challenge for model development. The latter is particularly relevant for the

complex system approach to socio-economic phenomena (Dosi, 2023), capable of integrating micro-

meso-macro dynamics and analyzing the evolution of aggregates as a result of interactions and

structures occurring at lower levels of aggregation. Within the complex system approach, Agent-

Based Models (ABMs) stand out as a growingly important technique to study evolving economies.

One of the aims of building an agent-based model is to understand mechanisms and processes that

guide the real world dynamics and they often represent thought experiments or metaphorical models

(Bouchaud, 2023), that is simulated complex maps that can be used to build scenario analyses and

test for the relevance of parameters/interactions, providing diagnosis. The incipient May (1972)’s

model of population ecology, where high ecological diversity leads to unstable rather than stable

outcomes, serves as a classic example of a metaphorical model. Another common usage of ABMs is

comprehending the mechanisms of a social phenomenon, as Epstein (2007) referred to as Generative

Social Science.

Such metaphorical or diagnostic models are not primarily designed to replicate any specific

empirical dataset but to investigate how the proposed laws of motion yield coherent qualitative

results. With this virtual laboratory, the modeler can generate scenarios and data that are typi-

cally unobservable or unavailable for empirical studies. ABMs applied to economic phenomena are

medium-/large-scale simulated models that cover micro, industry, and macro aggregate variables,

providing a powerful tool for scenario analysis and policy experiments (Dosi, Fagiolo, and Roventini,

2010; Dawid, Gemkow, Harting, and Neugart, 2012; Dawid, Gemkow, Harting, van der Hoog, et al.,

2018; Cincotti et al., 2010; Delli Gatti et al., 2010, to name a few). One of the substantial advance-

ments of ABMs in economic modeling is the ability to create simulated environments for diagnostic

exercises, focusing on qualitative empirical patterns. Overall, agent-based models are designed to

generate stylized facts resulting from the interactions of numerous disaggregated units connected by

various forms of structure and interactions, allowing the emergence of aggregated properties, which

are tested against robust qualitative patterns.

While ABMs have proven helpful in capturing emergent properties and complex interactions,

their integration with empirical data remains an open issue. The relationship between empirical

data and models in economics generally goes in the realm of four different domains, which are

estimation, calibration, validation, and selection. While the first two problems mainly pertain to
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parameter definitions, validation, and selection pertain instead to model mechanisms, which depend

on the inner structure of interactions and the structure of variables.

The literature has addressed such issues in the last years, distinguishing between input and

output validation and highlighting the importance of external validity (Fagiolo, Moneta, et al.,

2007; Lamperti, 2018; Marks, 2007; Windrum et al., 2007; Fagiolo, Guerini, et al., 2019a). External

validity is a dimension that agent-based models particularly require, because of their attempt to be

empirically disciplined models (Dosi and Roventini, 2019). Recently, there has been growing interest

in applying ABMs to forecasting exercises (Poledna et al., 2023) and to inform specific policy

decisions (Delli Gatti and Reissl, 2022), stressing the shift towards the quantitative dimension.1

Overall, this indicates a rich research venue for data-friendly ABMs.

However, this involves closely examining and utilizing data. Still today there is a lack of a

comprehensive approach able to confront with the inner complexity of such models. Reconciling

simulated models with real-world data is non-trivial, especially in socio-economic systems impacted

by interacting processes and environmental changes like crises, catching-ups, economic development,

and stagnation. Developers of socio-economic models encounter numerous challenges, starting with

determining the appropriate data selection methods, including aggregation levels, historical periods,

and types of series to be analyzed. In addition, there is still a lack of a protocol able to synthetically

rank models in their performance ability to be close to the data. Metrics of distance between

simulated and real time series, such as simulated minimum distance, root mean squared errors, or

correlation coefficients, fail to capture the complete range of information and structure encoded

in the data. Indeed, unidimensional distance measures, such as Euclidean distance, may fail to

capture the global model dynamics and typical attributes of time series produced by ABMs, such as

persistent deviations from average behavior, path dependency, and structural breaks. In addition,

information regarding the signal domain of the series is not usually embraced by unidimensional

distance measures.

Signal processing and the frequency domain of economic variables are crucial information that

should be embraced when comparing data with a time-series structure. Economic time series are,

in fact, characterized by some distinctive features. Indeed, a common characteristic of this data

type is a smoothly decreasing spectral shape, which indicates the significance of low-frequency

phenomena, such as long-term fluctuations (Granger, 1966). Long waves, for example, have been

associated with low-frequency events in the literature (Kondratieff and Stolper, 1935), particularly

in the context of technological change (Clark et al., 1981; Silverberg, 2007) and structural change

(Dosi, Pereira, et al., 2022). In this specific context, for example, large-scale adoption of new

technological paradigms can also be driven by short-term euphoria (Perez, 2009). Neglecting the

frequency domain would overlook the distinctions associated with short versus medium versus long

1It is important to note that this quantitative dimension should not be seen as an alternative test of model validity
but rather as a complementary step to the diagnostic capabilities of the models.
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run cycles. Indeed, a similarity measure of time series should be able to embrace the time spectra,

including time intervals, lag structures, and misalignment. There is still a lack of a single indicator

able to account for different dimensions, therefore the quest for a multidimensional approach.

Responding to the increasing demand for data-friendly ABMs and the challenges of integrating

data back into the models, we propose a step to complement existing techniques in the literature.

This chapter introduces an alternative approach to similarity measurement, focusing on model

selection through a composite similarity index aggregating multiple dimensions of comparison. The

primary purpose of this approach is to provide a systematic method for model selection, which can

assist other methods in integrating data back into models.

The contribution of our approach lies in constructing a composite similarity index that aggre-

gates multiple statistical and dynamic measures into a single ranking system. Instead of relying on

a single indicator, we combine several metrics that capture different aspects of similarity, ensuring

a more detailed assessment. The ranking system is designed to iteratively refine model selection

by penalizing those models that achieve the highest aggregate dissimilarity score. This iterative

selection process ensures a continuous refinement of model selection, enabling a structured analysis

that can assist in integrating data back into models.

We apply the protocol to different versions of the Schumpeter meeting Keynes Agent-Based

Models (Dosi, Fagiolo, and Roventini, 2010; Dosi, Fagiolo, Napoletano, and Roventini, 2013; Dosi,

Fagiolo, Napoletano, Roventini, and Treibich, 2015; Dosi, Pereira, et al., 2017; Dosi, Pereira, et al.,

2020; Dosi, Pereira, et al., 2022). We use US data from 1948Q1 to 2019Q1 for our empirical dataset

throughout the analysis. Our protocol is designed to be easily adaptable to different empirical cases

and sets of simulated models, with the flexibility to apply to models beyond ABMs.

This protocol consists of two main phases. During the first phase, we systematically analyze

the empirical-simulated pair for each variable across different K+S model versions. Specifically, we

conduct a battery of tests to dynamically compare time series dissimilarities, taking into account

different alignments in the time spectra. This comparison examines statistical moments, different

frequencies, and paths of the signal as a whole. We obtain a variable-wise multidimensional index

by applying this procedure to every variable across all models under scrutiny. In the next phase,

we use the information from the multidimensional index to perform an iterative model selection. In

this way, we advance the analysis of time series similarity and model selection.

We finally present an extension to this protocol by assigning different weights (ex-ante) to fine-

tune the model selection for specific purposes. We apply the experiment to variables typically

associated with policymaking decisions and with technological change-related variables. The anal-

ysis reveals that the finance-augmented K+S model demonstrates robust performance compared

to recent developments, particularly when examining different frequencies. Likewise, the labor-

augmented model, adjusted for competitive institutional settings, yields satisfactory results across

most configurations.
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The remainder of this chapter is structured as follows. Section 2 briefly introduces the key

aspects of the K+S models. The information about the structure of the models grounds the rationale

behind pairing decisions between the simulated and empirical data. Section 3 describes the data

selection used to build the empirical dataset for comparison with the simulated models. Section 4

outlines the first phase of the protocol, which consists of creating a comprehensive evaluation of

model similarity to empirical data. Next, Section 5 presents the model selection routine to identify

the least dissimilar model. This section also presents a purpose-guided model selection to evaluate

models’ performance with a subset of target variables. Finally, Section 6 concludes the chapter and

offers insights into other potential uses of this protocol and possible improvements.

2 K+S family model

This section briefly presents the evaluated models and their underlying structural assumptions.

These assumptions will guide the data selection described in Section 3. Table 1 lists the different

model versions. The K+S model (Dosi, Fagiolo, and Roventini, 2006; Dosi, Fagiolo, and Roventini,

2008; Dosi, Fagiolo, and Roventini, 2010) is a macroeconomic agent-based model where Schum-

peterian and Keynesian mechanisms influence business cycle fluctuations and long-run economic

growth. The original version encompasses two industries, each populated by heterogeneous firms.

The households, banking, and government sectors are stylized in a parsimonious way and refined

in other versions. In this artificial economy, all agents make decisions using bounded-rational rules

and simple heuristics. This model was designed on purpose to capture a rich ensemble of micro-

macroeconomic regularities (stylized facts). As a consequence, this model (and its later extensions)

was not intended to precisely replicate the empirical time series of any specific economy or time

period. Therefore, some degree of dissimilarity with empirical data is expected.

Main reference Contribution Label

Dosi, Fagiolo, and Roventini (2010) First version of the K+S model K+S-original

Dosi, Fagiolo, Napoletano, and Roventini (2013) Detailed financial sector K+S-finance

Dosi, Pereira, et al. (2018b) and Dosi, Pereira, et al.
(2018a)

Decentralized labor market and
institutional growth regimes

[K+S-Ford,
K+S-Comp]

Dosi, Pereira, et al. (2022) Disruptive technological change
and multiple sectors

K+S-multi

Table 1: Collection of model versions (V) considered

Before comparing the models with empirical data, it is important to understand their general

structure. The models feature two distinct sectors. The first sector consists of capital goods firms

that produce heterogeneous, durable machine tools using only labor. These firms operate on a

made-to-order basis, producing capital goods in response to the investment plans of the other

industry, underscoring the interdependence between them. The labor productivity growth rate is
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endogenous and evolves according to the level of R&D expenditures, solely comprised of labor. Thus,

this sector is the primary locus of endogenous innovation embedded in capital goods of different

vintages. Consumption-good firms employ a stock of machine tools whose technologies evolve over

time. Consumption goods are demanded by households and can be stored if unsold. Both industries

have access to bank loans (up to a limit) and operate under conditions of imperfect information.

The capital goods sector, in particular, faces Schumpeterian competition. Firms in both sectors set

prices based on a mark-up rule over production costs.

The model includes a single bank, representing a stylized financial sector. At each time step,

the bank collects deposits from the private sector and offers interest-bearing loans to finance firms’

production and investment activities. The bank does not employ any workers for its operations, and

only firms have access to credit. If a firm is credit-constrained, it cannot carry out its production or

investment decisions as planned, requiring further revisions. The central bank sets the policy rate,

completing the financial circuit of the model. The prime rate anchors deposit and loan rates, which

are determined using mark-down and mark-up rules.

The household sector is also stylized and populated by homogeneous workers facing a centralized

labor market, receiving a homogeneous wage if employed. The government sets both the tax rate

and unemployment benefits. In this setup, all firms pay the same wage, and unemployed households

receive uniform unemployment benefits. The government is responsible for setting and collecting

taxes, issuing bonds to finance the public deficit, and maintaining a sustainable public debt trajec-

tory over the long term. Notably, the government does not provide goods or services to the private

sector. Like the banking sector, the government does not employ any workers.

Despite its stylized representation, the original K+S model successfully captures a wide range

of micro- and macroeconomic regularities. Table 2, adapted from Dosi, Pereira, et al. (2022), lists

the stylized facts (SFs) replicated by this model. At the macroeconomic level, the K+S-original

model generates endogenous, self-sustained growth with persistent fluctuations. It also produces fat-

tailed growth rate distributions, cross-correlations among macroeconomic variables, and cyclicality

in GDP components, among other features. At the firm level, the model exhibits lumpy investment

patterns and persistent productivity heterogeneity across firms. The table also highlights the SFs

associated with major extensions of the original model. Most of these extensions build on the core

principles outlined above, but are tailored to address specific research questions.

The first major modification to the model was introduced by Dosi, Fagiolo, Napoletano, and

Roventini (2013), who added a more complex banking sector. This extension aimed to explore

the relationship between finance and economic growth. Subsequently, Dosi, Fagiolo, Napoletano,

Roventini, and Treibich (2015) introduced bank heterogeneity. In this version, banks decide how

much credit to extend to firms and prioritize borrowers based on a pecking-order list determined

by the firms’ liquidity ratios. The amount of credit granted also depends on the bank’s net worth,

subject to Basel-type regulatory capital adequacy constraints. These refinements provide a more
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Microeconomic stylized facts Macroeconomic stylized facts

Skewed firm size distributiona Endogenous self-sustained growth with persistent fluc-
tuations and crisesa

Fat-tailed firm growth rates distributiona Fat-tailed GDP growth rate distributiona

Heterogeneous productivity across firmsa Endogenous volatility of GDP, consumption and
investmenta

Persistent productivity differentialsa Cross-correlation of macro variablesa

Lumpy investment rates of firmsa Pro-cyclical aggregate R&D investment and net entry of
firms in the marketa

Firm bankruptcies are counter-cyclicalb Cross-correlations of credit-related variablesb

Firm bad-debt distribution fits a power-lawb Cross-correlation between firm debt and loan lossesb

Banking crises duration is right skewedb

Fiscal costs of banking crises to GDP distribution is fat-
tailedb

Heterogeneous skills distributionc Persistent and counter-cyclical unemploymentc

Fat-tailed unemployment time distributionc Endogenous volatility of productivity, unemployment,
vacancy, separation and hiring ratesc

Fat-tailed wage growth rates distributionc Unemployment and inequality correlationc

Cross-sectional Engel Lawd Pro-cyclical workers skills accumulationc

Heterogeneous propensity to save and consumed Beveridge curvec

Okun curvec

Wage curvec

Matching functionc

Engel Lawd

Non-satiation in luxury goodsd

Technology-level stylized factsd Sectoral-level stylized factsd

Stepwise increase in technological frontier Product life-cycle

Lower rate of radical versus incremental innovation Exponential age distribution

Fast diffusion of dominant techniques Sectoral wage and productivity differentials

a Since Dosi, Fagiolo, and Roventini (2006) and Dosi, Fagiolo, and Roventini (2010).
b Since Dosi, Fagiolo, Napoletano, and Roventini (2013) and Dosi, Fagiolo, Napoletano, Roventini, and Treibich

(2015).
c Since Dosi, Pereira, et al. (2017), Dosi, Pereira, et al. (2018a), and Dosi, Pereira, et al. (2020).
d Since Dosi, Pereira, et al. (2022).

Table 2: Stylized Facts Replicated by the K+S family models

detailed representation of banks’ balance sheets and lending channels. This enables the model

to reproduce systemic financial phenomena, particularly those associated with banking crises and

their macroeconomic consequences (Reinhart and Rogoff, 2009). Notably, the model demonstrates

that banking crises can engender fiscal burdens for the government (Laeven and Valencia, 2008).

The incorporation of diverse transmission channels enriches the model’s descriptive capacity and

expands the scope for policy experiments, enabling revisiting the implications of both fiscal and

monetary rules (Amendola and Pereira, 2024)

Later, the centralized labor market was replaced with a decentralized one, inaugurating the

labor-augmented versions (Dosi and Roventini, 2019; Dosi, Pereira, et al., 2017; Dosi, Pereira, et

al., 2020; Dosi, Pereira, et al., 2018b; Dosi, Pereira, et al., 2018a). In these versions, the economy is

7



populated by workers with heterogeneous skills. This means labor market conditions now influence

productivity growth. When the decentralized labor market opens, firms and workers engage in a

search-and-matching process. In addition to imperfect information, this market has other forms of

imperfect competition. For example, larger firms receive more job applications than smaller ones.

Unlike in earlier versions, the assumption of a single nominal wage no longer holds. The evolution

of the labor market will be contingent upon the institutional arrangements within the economy.

Dosi, Pereira, et al. (2017) examine a setting that resembles a Fordist labor market in the spirit

of Bouchaud (2023)’s metaphorical model. In this regime, wage determination is insensitive to

the tightness of the labor market, while the productivity gains are passed on to wages. On the

behavioral side, firms and workers maintain longer-lasting contractual relationships. This includes

conditional firing schemes and less frequent job switching. While unemployed, households receive

government unemployment benefits provided by a welfare state, which also guarantees a minimum

wage. The authors also evaluate a “competitive regime” that reflects post-1980s changes. Unlike

the Fordist regime, wages respond more rapidly and markedly to changes in unemployment levels.

Firms have greater flexibility to fire workers in response to production plans, facilitating reductions

in excess workforce. Both minimum wage and its indexation to productivity are no longer guaran-

teed. Workers also exhibit increased job-seeking behavior, even while employed. Regardless of the

institutional setting, the labor-augment versions can replicate an additional collection of stylized

facts, also listed in Table 2. These include wage, Beveridge, and Okun curves, unemployment, and

vacancy rate volatility. This chapter applies the proposed protocol to both regimes, labeling the

first as K+S-Ford and the second as K+S-Comp.2

While earlier model versions featured only two sectors, each with a single industry, Dosi, Pereira,

et al. (2022) introduced a multi-sector version (K+S-multi). The key contribution is the introduc-

tion of disruptive technological change and the inclusion of multiple consumption goods sectors.

One sector represents basic non-durable consumption goods, as in previous versions. The second

simulates a luxury goods sector, produced through multiple stages. This extension, combined with

a decentralized labor market, enables the exploration of relationships between income distribution,

consumption patterns, and the impact of technological paradigms on job creation and displacement.

These advancements enable the reproduction of a new batch of stylized facts, such as Engel’s law,

non-satiation in luxury goods, heterogeneous propensity to save, paradigm changes, and product

life-cycle.

One of the advantages of this family of macroeconomic ABMs is its flexibility in generating

different metaphorical economic systems. While each model has been empirically validated by com-

paring its outputs with real-world regularities, the extent to which they resemble/mirror empirical

2In the original papers (Dosi, Pereira, et al., 2018b; Dosi, Pereira, et al., 2017), the authors examine the effect of an
institutional change during the simulations. Here, we compare the two regimes, ignoring the institutional transition
phase.
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data remains an open question. This chapter aims to address this question tentatively. We simulate

each model version discussed above using their benchmark configurations for 600 time steps without

changing the source code. All simulations were conducted using the Laboratory for Simulation De-

velopment (Valente and Pereira, 2023). The results were integrated into R using the LSDinterface

library (Pereira, 2022). The first 350 periods are excluded from the analysis to ensure that the

effects of institutional changes, which occur during simulations in some model versions, do not skew

the results. The following section outlines the process of selecting empirical data, guided by the

theoretical framework of the models presented here.

3 Data selection

The first step of the analysis consists of the collection of data, which will be later contrasted with the

simulated models presented in Section 2. The analysis is restricted to the variables common to the

most stylized model version presented in Dosi, Fagiolo, and Roventini (2010), due to the different

levels of disaggregation among the model versions. As those models are calibrated for quarterly

data, we downsample the empirical time series with higher frequency (e.g. monthly) by aggregating

the inter-quarter data using the mean, a method chosen for its simplicity and ability to preserve

the overall trend of the series. When available, we make use of seasonally adjusted series. For

each variable considered, we estimate the trend (TREND) and the cycle (CYCLE) for both empirical

and simulated series using the Christiano and Fitzgerald (2003) filter to the series in levels. This

enables us to evaluate whether the models under consideration are similar to empirical data in other

frequency domains alongside series without filtering (Unfiltered).

A critical aspect of the analysis is developing a mapping procedure to associate each simulated

series with its corresponding empirical counterpart. The mapping strategy needs to be robust to

what we refer to as ex-ante dissimilarity. This concept refers to the necessary degree of divergence

between simulated and empirical data that ensures the model does not artificially reproduce the

observed series due to structural simplifications or missing real-world complexities.3 We illustrate

the issue of ex-ante dissimilarity with an example. Suppose a model produces a simulated GDP

series identical to the observed one. Given that the model lacks crucial real-world elements such

as the external sector or more granularity, this perfect match suggests that the model might be

similar through artifacts rather than correctly reproducing the economic dynamics of the series. In

this case, a slight dissimilarity might indicate a more realistic representation of the core economic

mechanisms, given how stylized the models are. Still, determining the tolerance level of dissimilarity

is not straightforward.

One way to reduce the occurrence of spurious matches is by selecting time series that have

3Although this concept is not documented in the literature, it illustrates the challenges of comparing simulated
models with real data, which is not restricted to the K+S family or ABMs.
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a similar structure to the simulated ones, that is, selecting the empirical series whose generative

mechanisms are included in the model. Therefore, for this exercise, the theoretical aspects of the

model and its underlying assumptions serve as the selection criteria — even though it implies using

shorter series — so the empirical data possess a structure most akin to the model. This increases the

likelihood that models closely resembling the data are the best candidates for accurately representing

a higher similarity. However, it is important to note that controlling for ex-ante dissimilarity is

particularly challenging for GDP series, as simply aggregating demand subcomponents consistent

with the model does not fully capture the indirect effects necessary to replicate GDP dynamics

coherently. Since this is out of the scope of this chapter, we chose to select this variable in real

terms (GDPC1) without further modification.

Table 3 shows the empirical-simulated mapping for the remaining evaluated variables.4 We use

US data from the FRED database and, where possible, we select time series spanning from 1948Q01

to 2018Q04. The decision to restrict the dataset before 2019 removes any potential effects of the

COVID-19 crisis — a phenomenon not intended to be captured by the models under scrutiny.

As Section 2 describes, capital-good firms produce durable machine tools, which are subsequently

supplied to firms producing consumer goods. The aggregate production of these firms is mapped to

empirical data on durable industrial goods (IPG333S), reflecting their role in producing long-lasting

capital equipment. The real series is obtained using the implicit deflator of industrial equipments

(Y033RD3Q086SBEA). Additionally, we are repurposing this series to compare with the producer

price inflation rate. Furthermore, firms in this sector also invest in R&D (Y006RC1Q027SBEA),

allocating a portion of their workforce to innovative activities, which must be considered. Specifically

for the R&D series, we use the empirical R&D series as it is, deflating it by the intellectual products

implicit deflator (Y001RD3Q086SBEA), which lacks an equivalent in the model. This particular

implicit deflator is not utilized further.

Firms producing consumer goods combine capital and labor to produce goods consumed by

households. In the model, the consumption decisions exhibit characteristics akin to non-durable

personal consumption expenditures (PCND), as purchasing such goods in one period does not af-

fect decisions in the following periods. In obtaining the real series, we used the implicit price

deflator for non-durable PCE goods (DNDGRD3Q086SBEA) instead of the implicit GDP deflator

and repurposed this implicit deflator for the basic goods inflation rate. Because the production

of consumer goods requires industrial equipments, it can be mapped to the production of man-

ufactured non-durable (and non-energy) goods (IPB51210S). Likewise, we are using the observed

capacity utilization rate for the non-durable goods sector (CAPUTLGMFNS) to contrast it with

the simulated series. As for aggregate investment decisions, we focus on industrial equipment

(A680RC1Q027SBEA), the closest sub-component to capital goods in the simulated models. This

approach, mirroring that used for the capital goods sector, employs the implicit price deflator for

4We delay the explanation of its last column to Section 4.
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industrial equipment at the finest level of disaggregation available. Additionally, the pairing basic

goods/non-durable goods is used to compare labor productivity in the consumption goods sector by

contrasting the simulated series with labor productivity in the manufacturing sector (OPHMFG).

Although this decision has certain limitations, it is primarily driven by data availability.

For government expenditures, federal non-defense government consumption (A542RC1Q027SBEA)

is used for comparison with the corresponding model variable, as public investment and defense ex-

penditures are excluded from the models. The real government consumption series is derived by

applying the federal non-defense implicit deflator (A825RD3Q086SBEA); however, since no equiv-

alent exists in the models, it is not used further. Additionally, total federal debt as a share of GDP

(GFDEGDQ188S) is directly contrasted with the model counterpart.

Labor-market variables are examined by comparing model-generated data with the general un-

employment rate. For real wages, hourly compensation for all workers in the non-farm business

sector (COMPNFB) is used and deflated using the GDP implicit deflator (GDPDEF). Although

the model presents specific wages and unemployment by sector, we employ aggregate variables be-

cause the weight of the labor market in the capital-goods sector is very tiny. All data selected and

corresponding variables in the model are listed in Table 3.

Private inventories are not considered due to the high level of aggregation of empirical series.

Similarly, variables related to the financial sector are omitted primarily due to data availability

constraints, which limit establishing a credit/debt relationship in the analysis. Future stages of this

comparative exercise may incorporate additional data sources to address these limitations.

4 Multidimensional similarity index

4.1 Motivation and data pre-processing

This section presents a systematic approach to capturing various aspects of similarity between a set

of simulated models and their empirical counterparts. Our point of departure is that an analysis

limited to only one aspect of similarity — as the Euclidean distance, or statistical moments —

fails to properly capture all information embedded into signals. For this reason, we propose a

multidimensional composite index of similarity. The key principle guiding the development of this

protocol is to create a versatile and scalable procedure that can be applied to different pairs of

objects across the time domain, regardless of whether they originate from agent-based models. This

multidimensional approach is necessary because of the inherent complexity of time series data and

the absence of a single measurement capable of capturing all relevant aspects of similarity at once.

In order to motivate the importance of building a multidimensional similarity index, we start

with a counter-example, showing the case of a unidimensional similarity metric and the weakness

of such an approach. Figure 1 presents the trajectories of two time series. Suppose that the solid

gray one corresponds to the simulated series produced by a computational model, while the solid
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FRED Code Empirical series Simulated
variables

Transformation

GDPC1 Real GDP GDP Growth rate

PCND Nominal personal non-durable goods
expenditure

ScBas Growth rate

DNDGRD3Q086SBEA Non-durable goods implicit price
index

CPIbas Growth rate

A542RC1Q027SBEA Nominal federal non-defense
government expenditure

Gnom Growth rate

A680RC1Q027SBEA Private investment on industrial
equipment

Inom Growth rate

Y033RD3Q086SBEA Private equipment implicit price
index

PPI Growth rate

Y006RC1Q027SBEA R&D RDnom Growth rate

Y001RD3Q086SBEA Intellectual property products
implicit price index

- -

PRS32006093 Labor productivity A Growth rate

UNRATE General Unemployment Rate U Divided by 100

IPG333S Industrial production of machinery Q1 Growth rate

IPB51210S Non-durable and non-energy
industrial production

QcBas Growth rate

CAPUTLGMFNS Capacity utilization rate in the
non-durable manufacturing sector

QcUbas Divided by 100

GFDEGDQ188S Total public debt as percent of GDP DebGDP Divided by 100

Table 3: Empirical time series and corresponding equivalents in the models. Real series are estimated
using the deflators indicated in the text.

black line is the empirical counterpart that this series was designed to represent. One immediate

way to measure how similar these two series are is to compute the point-wise Euclidean distance

between them, indicated by the dashed lines. A naive interpretation of this metric might suggest

that the model lacks closeness to empirical data because the two series are substantially distant.

This conclusion changes when we reveal that the data-generating processes of the two series are

sin(t) and 2 cos(t), implying that although the data-generating processes are different, the two

series might overlap by means of a time shift transformation. This simple example highlights the

consequences of disregarding time shifts when measuring similarity.

Time shift is not the only drawback of the use of a Euclidean distance. Because computational

models can generate as many data points as desired, series lengths may differ. Additionally, models

may produce series with mismatches in scale and frequency. Labeling a model as similar/dissimilar

without properly addressing these issues might lead to wrongly ranking model distance vis-à-vis the

data structure.

Series with similar temporal structures may be deemed dissimilar solely due to differences in

scale. Typically, non-stationary series may initially share a similar scale but quickly diverge. While

taking the first difference is a standard method to transform a non-stationary series into a stationary

one, it does not address the scaling issue. To mitigate this issue, we calculate growth rates when

comparing two non-stationary series, thereby minimizing the problem of mismatched scales. The
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Figure 1: Example of measuring similarity of two generic and misaligned time series

last column of Table 3 denotes whether the series is being considered in terms of growth rates.

Whenever further normalization is necessary, we utilize the z-score recommended by Paparrizos

and Gravano (2015)5. This normalization is applied to the cyclical components of the series while

computing growth rates to control scale mismatches in trends if the original series is non-stationary.

Another source of incomparability is length mismatches. Although some similarity measure-

ments can handle differing lengths, others cannot. A common approach is to interpolate the shorter

series to match the length of the longer one or to pad zeros to the shorter series. However, this

requires another layer of decisions, such as the interpolation method, which can introduce artifacts

into the signals. Instead, we truncate the longer series by removing excess time steps to ensure that

5See Keogh and Kasetty (2003) for a discussion about the necessity of normalization before measuring the distances.
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both series have the same length. This procedure is not harmful in the case of ergodic series. The

next decision concerns the placement of truncation. We opt for a centered downsampling, ensuring

that an equal number of observations are dropped from the beginning and end of the series.

To provide an intuitive understanding of our protocol, Figure 2 visually illustrates the concept

of multidimensional similarity. We rely on multiple indices to measure different aspects of similarity

between time series, as indicated by the inputs on the left side of the figure. Each index will be

thoroughly explained in the following subsections, and we will revisit the motivation example when

appropriate. Each measurement is computed for all models for a single variable. This process is

repeated for each variable across different model versions represented by the inputs on the right

side. This results in a univariate multidimensional similarity index, which will later be used to

develop a ranking system for model selection. For the sake of clarity, we defer the details of the

computation of our multidimensional index to section 4.7.
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Figure 2: Flowchart representation of the protocol

We now introduce a general notation to ensure broad applicability across different model classes.

Let x represent the empirical time series vector (reference) with a length of m. The models discussed

in Section 2, denoted as V, will be considered. A generic model version is indexed by v, enabling us

to represent the simulated (query) time series vector for model v as yv, with a time-length of n data

points. It is important to note that the reference/query pair may not have the same length, with

m ≪ n being a typical case. Some similarity measures require all possible trajectory alignments

between two series, denoted as A(m, n), while π ∈ A(m, n) represents one possible trajectory that

belongs to this space. Specific alignments have a special property referred to as π⋆, while some

measurements impose restrictions on the alignment space, denoted as ω. Using M to represent

a generic index, we define the normalized distance as DM, and the corresponding similarity as

SM = 1−DM when the respective distance measurement is a metric and limited to closed range.

In the following subsections, we describe the individual measurements that compose the multi-

dimensional similarity index. The index shows how closely different K+S model versions resemble

their empirical counterparts. All similarity and distance measurements are applied to trend, cyclical,

and unfiltered components of the series. When presenting each measurement, we use the capacity

utilization rate as a variable of reference, as this series does not require any further transformation.
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4.2 Statistical moments

The first measurement, likely one of the most intuitive, evaluates the difference between selected

summary statistics of the simulated and empirical series. This index aims to measure dissimilarity

in terms of the probability distribution of the series. We consider the mean, standard deviation,

skewness, kurtosis, and the number of structural breaks. This selection is guided by the significance

of these moments in capturing key patterns in time series data, particularly for economic series.

Each moment provides distinct insights into the distributional characteristics of the data. The

mean µ conveys both the central tendency and the scale of the distribution. The standard deviation

(SD) measures volatility, a fundamental aspect of business cycles (Stock and Watson, 1999; Napo-

letano et al., 2006, and references therein). Skewness (Skew) and kurtosis (Kurt) further describe

the shape of the distribution. Skewness measures asymmetry and is relevant for analyzing the

magnitude and duration of fluctuations in economic time series (McKay and Reis, 2008; Reinhart

and Rogoff, 2009; Dosi, 2007). Kurtosis evaluates tailedness and the presence of fat tails, which are

empirically observed features of output growth rates (Fagiolo, Napoletano, et al., 2008; Bottazzi

and Secchi, 2006; Bottazzi, Li, et al., 2019; Laeven and Valencia, 2008), for instance. Finally, the

inclusion of structural breaks (SB) accounts for sudden changes in both simulated and empirical

series using the Bai and Perron (2003) method.

Let µx denote the mean of empirical series and µyv
, denote the mean of the simulated series v.

The relative deviation of the mean for model v, denoted as (relmean,v) is computed as follows:

relmean,v =

∣

∣

∣

∣

∣

µyv
− µx

µx

∣

∣

∣

∣

∣

· γ ∀v ∈ V

Normalization using the empirical mean mitigates scale mismatches. This procedure is applied

consistently to standard deviation, skewness, and kurtosis, each normalized by its empirical coun-

terpart. Specifically, for skewness and kurtosis, we introduce a penalty of γ = 2 when their sign

differs from the empirical series and set γ = 1 otherwise. The computation of the distance in terms

of the number of structural breaks is slightly different, as shown below:

relSB,v =

∣

∣

∣

∣

∣

SByv
− SBx

max(1, SBx)

∣

∣

∣

∣

∣

· γ ∀v ∈ V

The modification in the denominator ensures that the metric remains well-defined even when the

empirical series has no structural breaks.

After computing the relative deviations for the selected moments, we take their geometric mean

to form a composite index. This measure indicates how much a given simulated series deviates from

the empirical counterpart. A value closer to zero suggests higher similarity. Note that this index is

non-metric, ranging from [0,∞) meaning there are no strict boundaries. Thus, we define only the
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distance measure Dstatistical without an absolute similarity scale.

Table 4 presents the computed statistical moments for the capacity utilization rate and their

relative deviations from the empirical series (indicated in bold). This allows for a direct assessment

of how different K+S model versions replicate key distributional properties. Examining each mo-

ment individually, we observe that the original version (K+S-original) performs best in terms of

mean and skewness, aligning more closely with the empirical values, while the multi-sector model

(K+S-multi) exhibits the highest deviation in both moments. Besides the good relative performance

in terms of the mean, the original version does not perform well in terms of standard deviation,

displaced by the finance-augmented (K+S-finance). Regarding structural breaks, most models

display similar occurrences, except for K+S-Comp, which presents a lower frequency. In terms of

skewness, the multi-sector version (K+S-multi) stands out for having an opposite sign compared to

the empirical series, whereas the Fordist version (K+S-Ford) shows a similar discrepancy in kurtosis.

Aggregating these aspects — using the geometric mean —, the statistical moments similarity index

identifies the original version as the closest to the empirical data. This suggests that, among the

given alternatives, it better captures the distributional attributes of the observed capacity utilization

series.

K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original Empirical

Mean 0.9887 0.7099 0.9839 0.3972 0.7028 0.8061

Mean diff 0.2265 0.1193 0.2205 0.5072 0.1282 0.0000

SD 0.0002 0.0130 0.0016 0.0107 0.0040 0.0416

SD diff 0.9953 0.6879 0.9610 0.7414 0.9047 0.0000

Skewness -0.1934 -0.0516 -0.8938 0.6245 -0.4619 -0.4109

Pen. Skewness diff 0.5292 0.8743 1.1753 5.0396 0.1241 0.0000

Kurtosis -0.3428 -0.8460 0.2072 -0.3846 -0.4024 -0.5809

Pen. Kurtosis diff 0.4099 0.4565 2.7134 0.3379 0.3072 0.0000

Breaks 2.0000 5.0000 3.0000 4.0000 4.0000 4.0000

Breaks diff 0.5000 0.2500 0.2500 0.0000 0.0000 0.0000

Statistical Moments Similarity Index 0.5125 0.4517 0.8908 0.8421 0.2586 0.0000

Table 4: Statistical moments similarity index contrasting simulated and empirical capacity utiliza-
tion series across different K+S model versions

4.3 Longest Common Subsequence (LCSS)

Time series data are characterized by their dynamic nature, often representing evolving entities that

do not necessarily progress at the same pace or share the same length. As a consequence, an appro-

priate metric is needed to measure the similarity of the trajectories between the two series. Wagner

and Fischer (1974) introduced a method later called edit-based distance, which measures the cost

of transforming one sequence into another through a series of insertions, deletions, or substitutions.

This approach has been widely employed in diverse fields, including writing recognition and biolog-
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ical pattern identification (Gruber et al., 2010; Shyu and Tsai, 2009, for example). Based on this

method, Vlachos et al. (2002) proposed the Longest Common Subsequence (LCSS), a modification

of the edit-based framework explicitly tailored for time series analysis.

The Longest Common Subsequence (LCSS) Distance is computed by first constructing a distance

matrix that classifies pairs of points from time series x and yv as either matching or non-matching.

A pair (xi, yj) is considered a match if its Euclidean distance is smaller than or equal to a given

threshold ϵ; in this case, their distance is set to 0; otherwise, it is set to 1. Using this matrix, a

dynamic programming (DP) algorithm iteratively builds a cost matrix C(i, j), where each entry

represents the length of the longest common subsequence found up to that point. The cost matrix

is updated using the recurrence relation:

C(i, j) =











C(i− 1, j − 1) + 1, if ♣xi − yj ♣ ≤ ϵ (match)

max(C(i− 1, j), C(i, j − 1)), otherwise (gap)

If xi and yj match, the LCSS count increases based on previous matches; otherwise, the algorithm

propagates the maximum value from the adjacent entries, effectively allowing gaps without imposing

an explicit penalty. This flexibility enables LCSS to handle time shifts and noise by permitting

unmatched regions while focusing on the longest sequence of similar values. Another notable feature

of this index is the ability to accommodate cases where the length of the series diverges (m ̸= n).

The final entry of the cost matrix, C(m, n), contains the length of the LCSS distance measurement

between the two series:

LCSS = C(m, n) (1)

By definition, a larger value of LCSS indicates a greater degree of similarity, implying that the

two sequences share a longer contiguous subsequence within the given tolerance ϵ. To ensure

comparability across time series of different lengths, the similarity index is normalized by the length

of the shorter series:

SLCSS =
LCSS(x, yv, ϵ)

min(m, n)

which allows us to compute the normalized LCSS distance measurement as:

DLCSS = 1− SLCSS

Figure 3 revisits the prototypical example and presents the length of LCSS under different

ϵ values. The occurrence in the matching condition is indicated with gray lines. This example

illustrates the relevance of the choice of ϵ in determining the sensitivity of the LCSS measure:

a larger ϵ increases the likelihood of matching between observations, thereby producing a longer

common subsequence. To mitigate the discretion in selecting ϵ, an alternative approach is to
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Figure 3: Time series similarity using LCSS for the prototypical example under different ϵ values

compute an overall distance measure by averaging across multiple distance computations up to a

predefined maximum threshold, ϵmax = 0.005.6 The interpretation of ϵ is meaningful only when

applied to time series that are consistently scaled. For example, directly comparing the GDP levels

across different series may yield few common subsequences due to differences in scale. To address

this, it is often necessary to preprocess data. This is why we transformed variables into growth

rates where relevant, as indicated in the last column of Table 3.

Table 5 presents the length of the LCSS for the simulated and observed capacity utilization rate

according to Equation 1 under different values of ϵ. As expected, relaxing the restriction on ϵ leads

to increased matches. A closer inspection of the index reveals that the original (K+S-original)

and finance-augmented (K+S-finance) versions outperform the others, regardless of the threshold

value selected. Notably, the other model versions fail to have any common subsequence with the

observed data, suggesting the need for finer calibration. Still, this should not be interpreted as a

justification for discarding such models outright; instead, it highlights the importance of evaluating

similarity across multiple dimensions.

4.4 Dynamic Time Warping (DTW)

When using a pointwise method to compare two sequences, there is a risk of falsely identifying them

as dissimilar when they are simply out of phase. This issue, as illustrated in the opening example

of this section, can lead to the exclusion of relevant candidates. The Dynamic Time Warping

(DTW) algorithm addresses this problem by providing a distance measure robust to time shifts,

6In the context of growth rates, the value of ϵmax = 0.005 is not overly stringent.
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K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original

0.001 0 6 0 0 2

0.005 0 7 0 0 4

0.01 0 8 0 0 5

0.015 0 13 0 0 6

0.025 0 29 0 0 8

0.05 0 60 0 0 33

0.075 0 171 0 0 64

0.1 0 272 0 0 249

Table 5: LCSS index contrasting simulated and empirical capacity utilization series across different
K+S model versions

making it well-suited for comparing non-aligned time series (Berndt and Clifford, 1994; Lei and Sun,

2007).7 Due to this property, DTW has been widely applied across various fields, including speech

recognition (Sakoe and Chiba, 1978; Itakura, 1975), gene expression analysis in bioinformatics (Aach

and Church, 2001; Bar-Joseph et al., 2002), handwriting comparison (Rath and Manmatha, 2003),

and, to a lesser extent, economics (Franses and Wiemann, 2020; G.-J. Wang et al., 2012; Raihan,

2017). As an alternative to conventional Lp norms, such as Euclidean distance (L2 norm), DTW is

widely regarded as a state-of-the-art approach for sequential pattern matching (Cuturi, 2011; Lei

and Sun, 2007).

The DTW algorithm aims to compute the optimal alignment between two sequences by minimiz-

ing the distance between corresponding data points, even when they are not temporally aligned (as

Euclidean distance requires). Instead, DTW allows for temporal shifts by aligning points along the

time axis (Keogh and Ratanamahatana, 2005). The alignment cost is computed iteratively by recur-

sively updating the distortion function d, which measures discrepancies between elements of the two

sequences. The distortion cost is updated for i = 2, 3, . . . , m and j = 2, 3, . . . , n, while the direction

of alignment follows a predefined step function. Following Cuturi (2011), we adopt the symmetrical

step pattern with no slop restrictions, initially proposed by Sakoe and Chiba (1978), which remains

a standard choice in the literature (Giorgino, 2009). The cost of aligning two sequences using DTW

is formally defined as follows:

D(i, j) = d(xi, yv,j) + min























D(i− 1, j) (→)

D(i, j − 1) (↑)

D(i− 1, j − 1) (↗)

(2)

Equation 2 represents the recurrence relation for computing the alignment cost along the step

7We refer to Kruskal and Liberman (1999) for a more detailed discussion about DTW and Sardá-Espinosa (2019)
for its implementation.
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pattern. The alignment proceeds monotonically by either moving right (skipping an element in

the observed sequence), upward (skipping an element in the simulated sequence), or diagonally

(aligning both). Consistent with Sardá-Espinosa (2019), we use the L1 (Manhattan distance) as

the discrepancy function for computing the distortion costs.

After computing the distortion costs, the algorithm constructs an m × n Local Cost Matrix

(LCM), which accumulates alignment costs along the alignment space A(m, n).8 Starting from the

first element of each sequence (x1, yv,1) and proceeding to the last (xm, yv,n), the LCM enables

the identification of multiple possible warping paths (π) that traverse the alignment space. One

limitation of DTW is that it requires the first and last elements of the query/reference pair to be

aligned as a boundary condition. In other words, it needs to start at x1, y1 and end at xm, yn. Some

modifications can relax this restriction by allowing the algorithm to choose the starting/ending

point with the lowest alignment costs. However, these modifications can lead to matches with

little significance. For instance, the algorithm might suggest a warping path in which only a small

portion m′ ≪ m of the sequences are aligned. In other words, the resulting alignment could show

that the series are alike, but only for a short time window. Thus, the decision was made to maintain

the first/last alignment constraint. These paths define how indices (i.e.. time steps in the case of

time series) are remapped between two sequences, effectively capturing distortions in the time axis.

DTW aims to determine the optimal warping path π⋆ that minimizes the cumulative distortion over

time. This is expressed as:

DDT W = DTW (x, yv) = min
π∈A(m,n)

Dx,y(π)

At this stage, it is important to emphasize that our goal is not to align the sequences directly but

rather to measure their similarity. Hence, our primary focus is on computing distortion costs rather

than optimizing the alignment.

Before delving into how DTW is applied in our comparative exercise, we revisit the motivating

example presented at the beginning of this section. This example highlights two common issues

in time series similarity measurement: misalignment (time shifts) and scale mismatches. Figure 4

exemplifies how the DTW algorithm works. In all subfigures, the horizontal axis represents the time

indices of the sin(t) series, while the vertical axis corresponds to the time indices of 2 · cos(t). The

cumulative local cost matrix for our prototypical example, computed using Equation 2, is in the main

plot of Figure 4a. The solid line represents the warping path, which traverses regions of minimal

distortion cost within the alignment space. This warping path provides an optimal alignment of

the two series, as shown in Figure 4b. As demonstrated in this figure, the Euclidean distance

substantially overestimates dissimilarity compared to DTW, underscoring DTW’s robustness to

time shifts.

8One drawback of this algorithm is the computational cost of obtaining the matrix, which is of the order of O(m·n).
These aspects also motivate the departures from it, which will be discussed in the sub-section 4.5.
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Figure 4: Computing similarity using DTW: Revisiting the prototypical example

DTW ensures that the warping path follows the trajectory with the least temporal distortion.

Still, this alignment may not always be economically meaningful. To address this issue, we impose

global window constraints (ω), which restrict the warping path to align points within ω time periods,

regardless of the distortion costs involved.9 Paths falling outside this range are excluded from the

analysis, even when producing a costless alignment. By imposing these constraints, we ensure

that the computed alignments remain within an economically relevant time frame.10 Figure 4c

illustrates the distortion cost between the two series, restricted to a defined window. The resulting

distance measurement increases as the algorithm is no longer allowed to traverse paths with minimal

temporal distortion.

Having established the operationalization of DTW, we now outline its application in our analysis.

Our approach involves computing the normalized DTW distance to align various model versions

with a common empirical reference.11 A lower DTW distance indicates greater similarity, with

a zero value representing perfect alignment.12 Table 6 presents the results for the simulated and

observed capacity utilization rate time series. The distance computation is performed under different

window sizes. As expected, increasing the window size reduces alignment costs, as the algorithm

can explore a broader range of warping paths. To summarize these results, we compute the average

distance up to a maximum window size (ωmax = 8), which is further utilized for constructing the

9In signal processing, various windowing procedures have been described in the literature. Sakoe and Chiba (1978)
introduced one of the most well-known methods. However, this technique applies when the time series dimensions
are equal (m = n). To address cases where m ̸= n, rather than employing downsampling, we have chosen to utilize a
slanted band window function (Giorgino, 2009).

10Another alternative would be to adopt a lower-bound DTW proposed by Lemire (2009) and Keogh and Ratanama-
hatana (2005). However, this algorithm only applies in cases where m = n.

11Normalization is important to yield comparable results in cases where m ̸= n.
12It is worth noting that this distance is non-metric — not defined in a closed range — so only DDT W is defined.

Hence, additional re-scaling procedures are necessary to enable comparison with other measurements. Further details
on this topic will be discussed in subsection 4.7.
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multidimensional similarity index.

K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original

2 0.177 0.090 0.172 0.402 0.097

4 0.172 0.084 0.167 0.396 0.092

8 0.166 0.075 0.161 0.387 0.083

20 0.158 0.060 0.153 0.372 0.068

40 0.153 0.047 0.148 0.357 0.054

60 0.149 0.042 0.145 0.352 0.050

Table 6: DTW index contrasting simulated and empirical capacity utilization series across different
K+S model versions

The similarity index for these specific sequence pairs reveals that the finance-augmented model

version (K+S-finance) shows the lowest dissimilarity, indicating minimal temporal distortion rel-

ative to the empirical series. The multi-sector version (K+S-multi), on the other hand, has the

highest time distortion. Notably, the original model version (K+S-original) ranks second in sim-

ilarity. The two labor-augmented institutional settings produce relatively close results. As these

two models share the same structure, this outcome is expected.

4.5 Triangular Global Alignment Kernel (TGAK)

A key limitation of Dynamic Time Warping (DTW) is that it only explores a subset of possible align-

ments between two sequences, constrained by a predefined step pattern. This restriction prevents

DTW from considering the full spectrum of alignments in the alignment space A(m, n). Cuturi

et al. (2007) introduced the Global Alignment Kernel (GAK), a kernel-based method that measures

similarity by aggregating contributions from all possible alignments to address this restriction.

Unlike DTW, which focuses on the minimum-cost alignment, GAK computes the exponentiated

soft-minimum of all alignment costs, as defined in Equations 3.13 This approach provides a more

comprehensive assessment of dissimilarity, capturing both strong and weak alignments. As a re-

sult, GAK offers a richer similarity measure compared to DTW, particularly when sequences have

significant divergence.

The GAK is formally defined as:

kGA(x, yv) =
∑

π∈A(m,n)

♣π♣
∏

i=1

κ (πx(i), πy,v(i)) (3)

13The computation of the kernel requires estimating a hyperparameter (σ), and we adopt the suggestion of Cuturi
(2011) implemented by Sardá-Espinosa (2019), which relies on a subsample of both series. Unlike previous methods,
this sampling introduces randomness into the distance estimation, which can be controlled by setting a random seed.
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where κ(x, yv) = exp ϕσ(x, yv) is a local kernel computed over the aligned points in x and yv, while

ϕσ is a negative definite kernel given by:

ϕσ(x, yv) =
1

2σ2
∥x− yv∥

2 + log



2− exp−
∥x− y∥2

2σ2



(4)

Building on the GAK framework, Cuturi (2011) introduced the Triangular Global Alignment

Kernel (TGAK), which incorporates a triangular local kernel T (i, j) to constrain the alignment space

— as the global constraint in DTW.14 Unlike DTW, where a larger constraint window typically

reduces the distortion cost, TGAK does not guarantee that relaxing the window constraint will lead

to lower dissimilarity. A larger ω window may result in higher dissimilarity due to the inclusion of

suboptimal alignments. The TGAK is defined as:

T (i, j) =



1−
♣i− j♣

ω



+
(5a)

TGAK(x, yv, σ, ω) = τ−1


T ⊗
1

2
κ



(i, x; j, yv) =
T (i, j)κ(x, yv)

2− T (i, j)κ(x, yv)
(5b)

where τ−1 is the inverse mapping function, and ω controls the width of the triangular kernel15.

Figure 5 exemplifies the local similarity matrix (LSM) computed with the local kernel using

Equation 4 for the prototypical sin(t) and 2 cos(t) example. Each entry of this matrix contains pair-

wise similarities between individual elements of the two time series being compared. The difference

between the two sub-figures is the presence of a global constraint over the alignment space. In the

case paired with the triangular kernel (Figure 5b), the similarity is reduced if the compared points

are far apart from the time restriction modulated by ω. This ensures that only temporally close

points contribute substantially to the overall similarity measurement.

The next step consists of accumulating the similarity scores for all alignments possible. By doing

this, TGAK returns similarity scores (ST GAK = TGAK) ranging from zero (perfect similarity) to

one (maximum dissimilarity), providing a proper metric distance DT GAK = 1−ST GAK . Similar to

the implementation of DTW, described in subsection 4.4, we explore different global constraints ω,

averaging results up to ωmax = 8.

Table 7 presents the results of applying TGAK to compare empirical capacity utilization across

different model versions. The results show that the similarity scores are numerically close across all

14According to Cuturi (2011), one technical advantage of using the triangular kernel is reduce the complexity from
O(mn) to O(min(m, n)).

15A practical challenge with GAK is diagonal dominance, which occurs when the lengths of the sequences being
compared differ considerably (2 ·m ≪ n or m ≫ 2 ·n). In such cases, the kernel values κ(x, yv), may be biased toward
self-alignments, distorting the similarity analysis (Cuturi et al., 2007). This is a probable scenario as we encounter
cases where m ≪ n. To mitigate this issue, we apply centered downsampling, truncating the longer sequence by
removing an equal number of elements from both the beginning and the end. This ensures that the lengths of the
sequences are comparable, reducing the risk of diagonal dominance.
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(b) LSM paired with triangular kernel

Figure 5: Local Similarity Matrix (LSM) for the prototypical example

K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original

2 0.023 0.020 0.023 0.023 0.021

4 0.026 0.022 0.025 0.026 0.023

8 0.027 0.024 0.027 0.028 0.024

20 0.029 0.025 0.029 0.030 0.026

40 0.030 0.026 0.030 0.030 0.027

60 0.030 0.026 0.030 0.031 0.027

Table 7: TGAK index contrasting simulated and empirical capacity utilization series across different
K+S model versions

model versions, regardless of the window constraint ω. The finance-augmented model (K+S-finance)

produces the most similar series, closely followed by the original model (K+S-original), while other

models fall within a narrow range16. This suggests that TGAK alone may not isolate the most sim-

ilar model. To refine the analysis, we use a min-max normalized distance index, which provides

a finer-grained assessment to compare similarity. This highlights the need for a multidimensional

similarity approach to distinguish between closely related models, discussed in sub-section 4.7.

4.6 Shape-Based Distance (SBD)

The previous indices do not explicitly account for the lag structure of the series, a commonly

neglected factor in data mining literature (see X. Wang et al. (2013) for a review). The Shape-

16It is worth noting that these findings are consistent with the ones produced by DTW.
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Based Distance (SBD) measurement, introduced by Paparrizos and Gravano (2015), addresses this

gap and has been successfully applied in time series clustering (Fahiman et al., 2017). This index

captures the temporal shape of two series by utilizing the normalized cross-correlation (NCC(x, yv),

Equation 6). In signal processing, normalized cross-correlation — or sliding inner-product — is a

measure of similarity between two signals as a function of the time lag slid over one of them. The

result is scaled to a range of [−1, 1], facilitating interpretable comparisons.17 For two sequences x

and yv the discrete form normalized cross-correlation is given as:

NCC(x, yv, k) =
CC(x, yv, k)

√

∑n
n=1(x[n]− x̄)2 ·

∑n
n=1(y[n + k]v − ȳv)2

(6)

CC(x, yv, k) =
n
∑

n=1

(x[n]− x̄)(y[m + k]v − ȳv) (7)

where CC(x, yv) is the cross-correlation between x and the shifted version of yv, and k represents

the time index used to compute the shift.

The cross-correlation is computed over m + n− 1 time steps. The algorithm identifies the lag i

at which the two series have the highest cross-correlation, effectively capturing the similarity of out-

of-phase signals (see Equation 8). Like Dynamic Time Warping (DTW) and the Triangular Global

Alignment Kernel (TGAK), SBD is robust to temporal shifts, making it particularly suitable for

comparing time series with phase differences.

SBD(x, yv) = 1−max¶(NCC(x, yv, k))♢k=m+n−1
k=1 (8)

The SBD metric is constrained to the range [0, 2], where zero indicates identical temporal shapes

between the two series. For comparability with other measurements, we normalize the results by

dividing them by two (details in section 4.7). As SBD provides a closed-form distance measurement,

we can represent the results in terms of the distance DSBD = SBD(x, yv) and similarity SSBD =

1−DSBD.

Before applying SBD, several practical issues must be addressed. First, the metric is sensitive

to the scale of the input series. Following Paparrizos and Gravano (2015), we standardize each

series by computing its z-score, ensuring scale invariance. Second, length mismatches between

series can affect results as the SBD implementation utilizes the convolution theorem to reduce the

computational complexity. In cases of length mismatch, zero-padding is applied during convolution

to equalize series lengths. As this operation may introduce artifacts into the series, potentially

distorting the signals, we adopt the centered downsampling approach, resizing both series to match

the length of the shorter one.

17While the signal processing definition emphasizes time-domain analysis and signal detection, the statistical and
econometric interpretation focuses on assessing the linear relationship and lead-lag dynamics between variables, often
using a similar normalization to quantify correlation strength.

25



Maximum cross−correlation at index = 9
Adj. SBD = 0.069

Sliding over m + n − 1 = 189 obs.
Padding 10 zeros

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150 200

Index

C
o

e
ff
ic

ie
n

t 
N

o
rm

a
liz

e
d

 C
ro

s
s
−

C
o

rr
e

la
ti
o

n

(a) Normalized Cross-Correlation

−3

−2

−1

0

1

2

3

0 5 10 15

Time

Z
−

n
o

rm
a

liz
e

d
 v

a
lu

e

Series

Aligned 2cos(t)

cos(t)

sin(t)

(b) Series alignment based on maximum NCC

Figure 6: Computing similarity using SBD: Revisiting the prototypical example (z-normalized)

Figure 6 illustrates the SBD alignment process for the prototypical example. Figure 6a shows the

normalized cross-correlation (after z-normalization) between two series, while Panel 6b displays the

same series after shifting one of them by the lag that maximizes cross-correlation. Visual inspection

confirms the robustness of SBD to phase differences, as it correctly identifies the shift required to

realign the sequences. The distance measure is computed at this optimal lag, reflecting the shape

similarity of the series.

Table 8 presents the similarity analysis of simulated series compared to the empirical capacity

utilization, using the DSBD distance measure. Because SBD requires no additional parameteriza-

tion, we apply it directly to the raw (unfiltered), trend, and cyclical components of the series. For the

unfiltered series, the results align with earlier findings: labor-augmented versions perform relatively

worse, while the original (K+S-original) model has the least dissimilarity. The finance-augmented

(K+S-finance) and multi-sector (K+S-multi) models show comparable performance. This finding

persists in the cyclical component, where the original model remains among the most similar while

the other models have smaller relative differences. For the trend, the finance-augmented is consid-

erably dissimilar compared to the other models, while the original version — indicated as the least

dissimilar at other frequencies — no longer stands out.

4.7 Building the Multidimensional Index

The preceding sections introduced various measurements designed to capture distinct aspects of

similarity between two series along different domains. Subsection 4.2, presents an index incorpo-

rating information on the probability distribution of the series. Subsection 4.3 utilized the Longest
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K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original

UNFILTERED 0.385 0.233 0.311 0.267 0.192

TREND 0.349 0.307 0.352 0.342 0.350

CYCLE 0.370 0.378 0.370 0.374 0.367

Table 8: SBD index contrasting simulated and empirical capacity utilization series across different
K+S model versions

Common Subsequence (LCSS) to account for the similarity of the series’ trajectories. Subsections

4.4 and 4.5 describe Dynamic Time Warping (DTW) and Triangular Global Alignment (TGAK),

which are elastic measurements that handle temporal misalignments between sequences. Finally,

subsection 4.6 discussed the Shape-Based Distance (SBD), which is robust to time shifts and pro-

vides insights into the lag structure of the series.

These measurements highlight a critical insight: no single similarity metric can fully capture the

complexity embedded in the signals produced by the models. To address this limitation, we propose

a multidimensional index that combines these diverse measurements, thereby achieving a more

comprehensive approximation of similarity that embraces both the sequential and distributional

domains of the data structure.

Certain adjustments are necessary to create our multidimensional index. First, we address the

issue of differing ranges across measurements. Except for TGAK and SBD, the other criteria operate

on non-closed ranges. Additionally, the LCSS measurement, as implemented, interprets similarity

in the opposite direction compared to the others — higher values indicate greater similarity.18 To

ensure consistency, we transform all measurements to convey the same information.

As we have non-closed and non-metric indexes, we present the results in terms of dissimilarity.

Thus, we use the normalized LCSS distance (DLCSS) so that higher values indicate greater dissim-

ilarity. Next, we rescale all measurements using min-max normalization, where one represents the

most dissimilar and zero represents the least dissimilar. This normalization ensures that all mea-

surements are on a comparable scale. We then compress the information from all measurements

into a single index using the geometric average.19 This approach is chosen because it is less sensi-

tive to extreme values than the arithmetic mean, making it more robust for combining dissimilarity

metrics. Equation 9 presents the geometric mean computation.

Geometric Averagev = 5

√

DStatistical,v · DNLCSS,v · DDT W,v · DT GAK,v,DSBD,v (9)

We introduce a penalizing factor based on Shannon (1948) entropy, to refine the index further.

The entropy is computed to quantify the consistency of a model’s performance across all measure-

18This is the case because implementing the LCSS in the TSdist package (Mori et al., 2014) returns the occurrence
of contiguous subsequences that respect the matching condition, so higher values indicate greater similarity.

19We use the geometric average extension robust to the presence of zeroes, as proposed by Cruz and Kreft (2019).
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ments. Specifically, we calculate the number of times it occupies each position in the ranking system

for each model across all measurements. This is achieved by tabulating the positions of each model

across the rankings and computing the entropy of the resulting distribution. A high entropy value

indicates that a model performs inconsistently, appearing in multiple positions across the indices.

Conversely, a low entropy value suggests that the model consistently occupies a similar position

across all measurements.20 To ensure comparability, we normalize the entropy by dividing it by

the maximum possible entropy, which occurs when a model occupies a different position for each

measurement. The normalized entropy, ranging from zero to one, is then used as a penalizing factor

in the geometric average, which we refer to as the final multidimensional index. This formulation

ensures that models with high entropy (inconsistent performance) are appropriately down-weighted

in the final index. The penalized index is computed as follows:

Entropy Adj. Geometric Averagev = Geometric Average · (1 + Entropy) (10)

To showcase our approach, we present results for the capacity utilization rate as a representative

variable in Table 9. The numbers in parentheses represent the rank across measurements, with one

indicating the least dissimilar model and five indicating the most dissimilar.21 We will use this

example to discuss the multidimensional index in more detail and how to interpret it. According

to the multidimensional index, the original model K+S-original outperforms the others, while the

multi-sector version is the most dissimilar. This result is driven by the original model’s good perfor-

mance in replicating similar statistical moments and lag structures as observed in the empirical data

(captured by SBD). Although the finance-augmented version performs well in terms of trajectory

similarity (captured by LCSS) and alignment paths (captured by DTW and TGAK), the original

model’s consistent performance across all measurements explains its position as the relatively most

similar model.

Our findings also provide valuable insights into domains where specific models require improve-

ment. For instance, the K+S-multi model has poor performance in terms of statistical moments and

shows notable dissimilarity regardless of temporal elasticity (as indicated by DTW and TGAK). In

particular, the labor-augment and multi-sector versions perform poorly in capturing the trajectories

of the series, with no common subsequences identified.

Figure 7 provides a comprehensive overview of the relative similarity across all variables, mod-

els, and filters using the multidimensional index22. The heatmap is divided into three subplots –

Unfiltered, Trend, and Cycle – each corresponding to a different frequency component. The Y-axis

20It is worth noting that a low entropy does not necessarily mean that the model under consideration has a relatively
good performance. In other words, a model with a consistently poor performance will present a low entropy.

21Due to space limitations, we present the results for the unfiltered series, although the same process is repeated
for the filtered variables.

22Table A.1 in Appendix A offers a more detailed breakdown for each model, variable, and filter across all measures.
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K+S-Comp K+S-finance K+S-Ford K+S-multi K+S-original

Statistical 0.512 (3) 0.452 (2) 0.891 (5) 0.842 (4) 0.259 (1)

LCSS 1 (3) 0.155 (1) 1 (3) 1 (3) 0.375 (2)

DTW 0.171 (4) 0.083 (1) 0.167 (3) 0.395 (5) 0.091 (2)

TGAK 0.025 (4) 0.022 (1) 0.025 (3) 0.026 (5) 0.023 (2)

SBD 0.385 (5) 0.233 (2) 0.311 (4) 0.267 (3) 0.192 (1)

Geometric Average 6e-01 (3) 3e-03 (2) 7e-01 (4) 8e-01 (5) 1e-03 (1)

Entropy 7e-01 (4) 4e-01 (1) 6e-01 (3) 7e-01 (4) 4e-01 (1)

Entropy adj Geom. Avg. 1e+00 (3) 4e-03 (2) 1e+00 (4) 1e+00 (5) 1e-03 (1)

Table 9: Example of the computation of the multidimensional index for the unfiltered capacity
utilization index across different K+S model versions

represents the model versions, while the X-axis denotes the variables listed in Table 323. Each cell

displays the ranking (one to five) within the same variable, where lower values indicate superior

relative performance.

Figure 7: Relative performance of all models according to the multidimensional index across all
variables and filters
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In the Unfiltered dataset, model rankings appear more dispersed, suggesting that when all

frequency components are considered, differences in model performance become more pronounced.

This could be attributed to unfiltered data incorporating both short-term fluctuations and long-

term trends, requiring models to balance these dynamics effectively. Conversely, in the Trend

and Cycle decompositions, the rankings exhibit more structured patterns, indicating that specific

23Variables transformed into growth rates are prefixed with “d” to reflect this adjustment. For instance, dGDP
represents the growth rate of real GDP.
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models (notably K+S-Comp and K+S-finance) better capture long-term structural movements or

cyclical dynamics. The systematic shifts in rankings across these panels underscore the importance

of aligning model selection with the specific frequency components of interest in economic analysis.

Overall, these findings emphasize the sensitivity of model performance to the frequency domain

and variable characteristics. For instance, while the K+S-original and K+S-Comp models perform

well in the unfiltered dataset, their rankings deteriorate under different frequency filters. Specific

economic indicators, such as GDP growth rate (dGDP) and general price inflation (dCPI), show

relatively stable rankings across filtering methods, suggesting that model performance for these

variables is more robust to data transformations. In contrast, variables like government consumption

(dGreal) and consumer goods production (dQcUbas) growth rates show substantial ranking shifts

depending on the filtering approach. This underscores the necessity of selecting a model tailored to

the specific characteristics of the dataset and research objectives.

This section has demonstrated how to capture different aspects of similarity between two sig-

nals. Several key insights emerge from this approach. First, relying on a single similarity index

may overlook critical information embedded in the signals, reinforcing the importance of consider-

ing multiple dimensions of similarity. Second, our method identifies specific aspects where a model

requires refinement (indicated with higher ranking positions), enabling targeted improvements. Fi-

nally, the multidimensional index makes constructing a ranking system that sorts models based

on their similarity to empirical data possible. In the next section, we leverage the ranking system

derived from our proposed index to conduct model selection exercises.

5 Model selection

Following the workflow illustrated in Figure 2, we have computed a multidimensional index for each

variable across all models being compared. This index quantifies the degree of similarity between

each model and the empirical data, providing a comprehensive basis for comparison, discussed in

the previous section. A striking result from this analysis is the absence of a single model version

that consistently outperforms the others across all variables. Performance rankings vary notably

depending on the specific variable and the frequency component analysed, highlighting the need for

a nuanced approach to model selection.

A wide array of complementary approaches exists in model selection, each tailored to specific

modeling contexts and objectives. A critical aspect of model selection is its coexistence with valida-

tion and calibration exercises, which ensure that the chosen model replicates key empirical patterns.

One well-known set of techniques, rooted in statistical and econometric traditions, relies on infor-

mation criteria and forecasting accuracy (Lamperti, 2018; Martinoli et al., 2024; Poledna et al.,

2023). Another group prioritizes the ability of models to generate realistic qualitative outcomes,

such as stylized facts, through history-friendly calibration (Windrum et al., 2007; Fagiolo, Guerini,
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et al., 2019b) or pattern-oriented modeling (Grimm et al., 2005). Despite this diversity, the pre-

dominant focus has been on predictive performance or analyzing impulse response functions rather

than measuring the direct similarity between models and empirical data.

This chapter introduces an alternative selection scheme based on our multidimensional index,

departing from traditional practices. Starting from the ranking system described in the previous

section, we remove models with a higher occurrence of the most dissimilar variables rather than

selecting those with the highest frequency of similar cases. Algorithm 1 outlines the pseudocode

for this iterative process. The first selection exercise does not attribute a distinct importance to

any variables. Later, we imposed different weights to adopt a purpose-driven selection framework,

similar to what Leombruni and Richiardi (2005) did.

Algorithm 1 Pseudo code of the iterative process

Require: dimension(MultidimensionalIndex) ≡ Variables× V ▷ Dataframe produce in phase 1

Require: length(TieBreaker) ≡ length(V) ▷ TieBreaker is a vector of strings

Require: length(Weights) ≡ length(Variables) ▷ Weights is a numeric vector
1: function IterativeSelection(MultidimensionalIndex, TieBreaker, Weights)
2: output Least dissimilar model configuration
3: Versions = V
4: repeat

5: RankedTable = matrix(Variables, Versions) ▷ Reset at each iteration
6: for var in variables do

7: RankedTable[var,Versions] ← rank(MultidimensionalIndex[var, Versions]) ▷ Rank
from 1 to lenght(Versions)

8: WorstLevel = max(RankedTable) ▷ Gets the higher dissimilarity
9: for var in variables; ver in Versions do

10: ▷ Transforms the ranked table in a binary matrix ◁

11: if RankedTable[var, ver] ≡ WorstLevel then

12: RankedTable[var, ver] ← 1
13: else

14: RankedTable[var, ver] ← 0
15: RankedTable ← RankedTable × Weights ▷ Apply weights penalization to all columns
16: OccuranceWorst = matrix(Versions) ▷ To collect number of occurances of worst cases
17: for ver in Versions do

18: OccuranceWorst[ver] = ←
∑

RankedTable[:, ver]
19: MostDissimilar = name(max(OccuranceWorst)) ▷ Find the most dissimilar
20: if length(MostDissimilar) > 1 then

21: MostDissimilar ← sort(MostDissimilar, TieBreaker)
22: ▷ Apply the tie breaker criteria only if there is a tie ◁

23: MostDissimilar ← first(MostDissimilar) ▷ Collects the most dissimilar
24: Versions ← drop(Versions, MostDissimilar) ▷ Remove the most dissimilar from the list
25: until length(Versions) ≡ 1
26: return Versions ▷ This is the least dissimilar version

The first group of Table 10 provides the number of relative “worst” cases for each variable
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using this algorithm. Although this analysis is applied to both cyclical and trend components, we

illustrate our approach using the unfiltered series for clarity. In the first iteration, the K+S-multi

version is removed, as it is the most dissimilar for the highest number of variables. The ranking

may change after each removal because dissimilarity is measured in relative terms. We then sort the

remaining candidates, assigning a value of one to the least dissimilar and four (the number of kept

models, V − 1) to the most distant one. This iterative process stops when only one model remains.

Continuing this procedure, the next removed models are K+S-Ford, K+S-finance, and K+S-Comp.

Based on this, we find that the K+S-original is the least dissimilar for the unfiltered series, while

the K+S-Comp ranks as the second best across all frequencies. When analyzing other components of

the frequency domain, the K+S-finance outperforms the other alternative versions.

Although the iteration ends here, this should not be seen as a final step. We suggest revisiting

the performance of the selected candidates to refine the analysis. We refer to Figure 7, which pro-

vides a visual representation of the model performance across variables. A quick inspection of this

heatmap reveals variables where the models could be improved. For example, the K+S-original

shows relatively higher dissimilarity for productivity and unemployment series, indicating variables

requiring further attention. Not only is the K+S-original the least dissimilar model for the unfil-

tered series, but it also has no occurrences of relatively worst variables before the iterative removal

process begins. The same applies to the K+S-finance model for other frequencies. This indicates

that the selection criteria successfully identify a good candidate as the least dissimilar model version.
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Table 10: Number of relativelly worse variables across different K+S versions, filters, and purpose-driven experiments
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Policy-Oriented

1 1 6 4 12 0 10 0 5 5 3 6 0 7 5 5

2 6 7 10 - 0 - 1 13 6 3 6 6 - 5 6

3 11 9 - - 3 - 2 - 13 8 7 7 - 9 -
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3 8 15 - - 6 - 8 - 7 14 12 4 13 - -

4 14 - - - 15 - 13 - 16 - 17 12 - - -
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5.1 Targeting variables: a policy-oriented exercise

It is worth noting that the selection procedure discussed so far is variable-agnostic. However, model

design often targets specific research questions or policy-oriented debates. To address this, we

propose an alternative approach that incorporates external criteria to evaluate the performance

of any simulated model collection. At this stage, it is important to emphasize that the similarity

of any two series does not depend on these criteria. Thus, we assign penalization weights during

the iterative selection process rather than adjusting the multidimensional similarity index. Table

11 indicates the penalization weights associated with each variable in every experiment, in which

a higher value forces the algorithm to demote the variable if the model has a relatively worse

performance. Weights might be due to higher importance assigned to some specific variable, such

as inflation in a phase of inflation spiral, unemployment in case of recessions, or productivity growth

in case of prolonged stagnation.

Table 11: Penalization weights for purpose-guided model selection

Policy-Oriented Research-Oriented

dA 1 4

dC 2 1

dCPI 4 2

DebGDP 1 1

dGDP 4 4

dG 2 1

dI 2 2

dPPI 2 2

dQ1 2 2

dQcBas 2 1

dRDreal 1 4

dwReal 1 1

QcUbas 2 1

U 4 4

Once the priorities are set, we apply the iterative selection process with slight changes. Our

goal is to identify the most similar model, so we use these priority weights as a penalization factor

during the elimination step. As before, we first count the number of occurrences of the worst relative

performance for each model under scrutiny. Unlike the previous exercise, a model is penalized by
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these weights when it is more dissimilar with respect to the target variables. This approach allows

us to guide the iterative procedure toward a desired purpose.

Policy-oriented considerations inspire the first experiment without aiming to replicate any spe-

cific policy decision. Through this experimental setup, we employ arbitrary weights to demonstrate

the refined model selection mechanism24. For instance, suppose policymakers are interested in

targeting specific macroeconomic variables, such as real GDP growth rate, inflation, and unemploy-

ment rate. Labor productivity and R&D variables are assigned lower priority, as they are indirectly

affected by government actions in the short run. The iterative process then begins25. The second

group of Table 10 displays the models removed at each iteration. Interestingly, the same model

selection emerges in this experiment, with the K+S-original producing similar results for the un-

filtered series, while the K+S-finance remains the least dissimilar for other frequencies. Except for

the trend component, the K+S-Comp ranks as the second-best model in this targeted exercise.

As previously discussed, the models evaluated here were designed to reflect general regulari-

ties rather than a specific economy or time period. Therefore, it is more appropriate to contrast

the model collections with their theoretical aims. For this reason, we also evaluate their relative

performance in terms of similarity to variables associated with technological change, such as labor

productivity, R&D expenditures, and their effects on real GDP and unemployment rates. The pro-

cedure remains the same as described earlier, with the only difference being the weights assigned to

each variable, as shown in the second column of Table 11.

The third group of Table 10 presents the models removed at each iteration. Unlike previous

exercises, the K+S-original is no longer the best candidate for the unfiltered series, displaced by the

finance-augmented version, which also ranks as the best model for other frequencies. This result is

primarily driven by the fact that the original version does not generate similar series for innovation-

related variables and the unemployment rate. As a consequence, the finance-augmented version is

more suitable for analyses involving these variables. The K+S-Comp maintains its relatively good

performance, again ranking as the second-best model. Overall, this model performs well regarding

labor productivity and unemployment rates, which is consistent with its theoretical design.

Considering all this, model performance and selection must be evaluated in light of the specific

elements and objectives the model was designed to address. The K+S-original and K+S-finance

models emerge as the least dissimilar in different contexts, with their performance varying substan-

tially depending on the variables and frequency components analysed. These findings underscore the

importance of aligning model selection with theoretical and practical objectives, offering a flexible

framework for identifying the most suitable model for specific applications.

24The ranging of the values does not have an explicit reasoning, but rather imposes an ordinal hierarchy on the
variables. The fine-tuned selection can be performed as long as there is an unambiguous hierarchy among variables.

25It is important to note that there are two models with the same number of worst cases on the second iteration of
the cyclical component. This requires a tie-break rule. We remove the model with the higher mean value according
to our proposed multidimensional index (see table A.1 in the appendix). While this tiebreaker criterion is not the
only possible option, the number of tied cases is small, as shown in Table 10.
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6 Concluding remarks

The primary contribution of this chapter lies in the development of a protocol that enables modelers

to evaluate the similarity between their models and empirical data, with specific reference to the

K+S macroeconomic ABM. We argue that the similarity of a model vis-à-vis the empirical evidence

should be measured from a multidimensional perspective, considering various aspects when com-

paring two objects along the time domain. Building on this premise, we have created an index to

capture these diverse dimensions, providing a detailed understanding of the relative performance of

each model.

Our work is part of a larger effort to bridge the gap between simulated models and their real-

world counterparts, focusing on a specific category of macroeconomic agent-based models. The

motivation behind this exercise is the increasing demand for data-friendly models that can enhance

forecasting capabilities for policymakers. While our application is rooted in economic literature, the

protocol’s utility is not limited to this field. With broader applications in mind, the design of the

protocol aims to be as adaptable and scalable as possible, making it suitable for numerous research

and policy challenges.

In addition to the protocol, we have proposed two potential uses. First, an iterative procedure

identifies the most similar model. This procedure is further complemented by a refinement that

considers an external criterion in the selection process, assigning weights to specific target variables.

The analysis reveals that the finance-augmented K+S model demonstrates robust performance

compared to recent developments, particularly when examining different frequencies. Likewise, the

labor-augmented model, adjusted for competitive institutional settings, yields satisfactory results

across most configurations. Second, we have performed a policy analysis exercise, targeting specific

variables and showing that the protocol can be employed to assign specific weight and relevance

to variables of interest. The iterative selection process can address several research questions and

policy challenges by integrating domain-specific weights and criteria.

Another potential application, not explored due to space limitations, is the interactive calibration

of models based on their similarity to empirical data. This approach could assist modelers in

determining parameters that are not directly observable. For example, the modeler can compare

different parametric settings of the same model against empirical data and choose the one that is

more similar accordingly to the iterative model selection.

While the selection protocol and multidimensional index improve the understanding of the mod-

els’ similarity with empirical data, they are not without limitations and offer opportunities for fur-

ther refinement. At a higher level of abstraction, the lack of interaction among the variables under

consideration is a notable limitation. Therefore, although the index covers multiple dimensions of

similarity, it should not be interpreted as a global measure. Nonetheless, the protocol serves as a first

effective step to identify a set of alternative configurations and/or models before resorting to more
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computationally intensive methods. Finally, the applicability of the proposed method goes beyond

ABM, enlarging the understanding of model performance under different theoretical assumptions.
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Table A.1: Dissimilarity across different K+S versions, variables, and filters
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TGAK 0.018 (3) 0.016 (1) 0.019 (4) 0.025 (5) 0.017 (2) 0.013 (2) 0.013 (3) 0.014 (4) 0.013 (1) 0.014 (5) 0.021 (3) 0.014 (1) 0.025 (4) 0.020 (2) 0.026 (5)

SBD 0.367 (3) 0.370 (4) 0.357 (1) 0.438 (5) 0.359 (2) 0.321 (2) 0.351 (3) 0.317 (1) 0.434 (5) 0.364 (4) 0.267 (1) 0.272 (3) 0.293 (4) 0.344 (5) 0.269 (2)

Geometric Average 0.284 (5) 7.4e-04 (1) 0.051 (3) 0.030 (2) 0.137 (4) 0.029 (2) 0.048 (3) 0.054 (4) 0.007 (1) 0.529 (5) 0.007 (2) 0.002 (1) 0.686 (4) 0.741 (5) 0.222 (3)

Entropy 0.590 (2) 0.590 (2) 0.590 (2) 0.590 (2) 0.311 (1) 0.828 (4) 0.590 (1) 0.828 (4) 0.655 (2) 0.655 (2) 0.590 (2) 0.655 (3) 0.655 (3) 0.655 (3) 0.418 (1)

Entropy adj Geom. Avg. 0.451 (5) 0.001 (1) 0.081 (3) 0.048 (2) 0.179 (4) 0.053 (2) 0.077 (3) 0.099 (4) 0.011 (1) 0.875 (5) 0.011 (2) 0.003 (1) 1.136 (4) 1.227 (5) 0.315 (3)

dC

Statistical 1.106 (3) 0.866 (2) 1.910 (5) 1.315 (4) 0.619 (1) 1.033 (4) 0.736 (2) 1.952 (5) 0.795 (3) 0.567 (1) 0.832 (3) 0.475 (1) 0.528 (2) 0.833 (4) 0.869 (5)

LCSS 0.006 (3) 0.006 (1) 0.009 (4) 0.015 (5) 0.006 (2) 0.005 (4) 0.005 (3) 0.008 (5) 0.005 (2) 0.005 (1) 0.047 (2) 0.058 (4) 0.049 (3) 0.046 (1) 0.062 (5)

DTW 0.004 (3) 0.003 (2) 0.004 (4) 0.008 (5) 0.003 (1) 0.003 (3) 0.003 (2) 0.003 (4) 0.003 (5) 0.002 (1) 0.335 (1) 0.450 (5) 0.416 (2) 0.438 (3) 0.439 (4)

TGAK 0.008 (4) 0.007 (1) 0.008 (3) 0.013 (5) 0.007 (2) 0.004 (1) 0.004 (2) 0.005 (4) 0.005 (5) 0.004 (3) 0.011 (5) 0.008 (2) 0.009 (3) 0.011 (4) 0.007 (1)

SBD 0.429 (4) 0.409 (1) 0.413 (3) 0.410 (2) 0.441 (5) 0.390 (1) 0.425 (4) 0.406 (2) 0.421 (3) 0.435 (5) 0.320 (4) 0.295 (2) 0.317 (3) 0.284 (1) 0.334 (5)

Geometric Average 0.201 (3) 6.1e-06 (1) 0.233 (4) 0.451 (5) 9.7e-04 (2) 0.003 (2) 0.160 (3) 0.700 (5) 0.284 (4) 0.003 (1) 0.048 (1) 0.057 (2) 0.369 (5) 0.155 (3) 0.364 (4)

Entropy 0.418 (1) 0.418 (1) 0.655 (4) 0.590 (3) 0.655 (4) 0.655 (3) 0.590 (1) 0.655 (3) 0.655 (3) 0.590 (1) 1.000 (5) 0.828 (4) 0.418 (1) 0.655 (3) 0.590 (2)

Entropy adj Geom. Avg. 0.285 (3) 8.7e-06 (1) 0.385 (4) 0.717 (5) 0.002 (2) 0.006 (2) 0.255 (3) 1.158 (5) 0.471 (4) 0.005 (1) 0.096 (1) 0.105 (2) 0.524 (4) 0.257 (3) 0.580 (5)

dCPI

Statistical 1.163 (2) 1.311 (5) 1.278 (3) 0.997 (1) 1.298 (4) 1.298 (4) 1.254 (3) 0.894 (2) 3.102 (5) 0.618 (1) 0.648 (1) 0.798 (2) 1.159 (3) 1.415 (4) 1.745 (5)

LCSS 0.033 (4) 0.078 (5) 0.014 (2) 0.014 (1) 0.015 (3) 0.008 (4) 0.006 (1) 0.008 (3) 0.018 (5) 0.007 (2) 0.050 (2) 0.060 (5) 0.056 (4) 0.047 (1) 0.054 (3)

DTW 0.009 (3) 0.016 (5) 0.005 (1) 0.011 (4) 0.006 (2) 0.003 (4) 0.003 (1) 0.003 (3) 0.023 (5) 0.003 (2) 0.513 (2) 0.541 (4) 0.518 (3) 1.085 (5) 0.482 (1)

TGAK 0.015 (4) 0.017 (5) 0.013 (2) 0.014 (3) 0.013 (1) 0.009 (4) 0.008 (2) 0.009 (5) 0.006 (1) 0.009 (3) 0.011 (3) 0.013 (5) 0.010 (2) 0.010 (1) 0.011 (4)

SBD 0.385 (2) 0.417 (3) 0.451 (5) 0.376 (1) 0.445 (4) 0.408 (1) 0.422 (2) 0.453 (4) 0.439 (3) 0.458 (5) 0.327 (3) 0.309 (2) 0.364 (5) 0.294 (1) 0.361 (4)

Geometric Average 0.300 (4) 0.883 (5) 0.006 (2) 0.003 (1) 0.008 (3) 0.014 (3) 0.008 (1) 0.179 (5) 0.169 (4) 0.014 (2) 0.023 (2) 0.311 (4) 0.318 (5) 0.008 (1) 0.091 (3)

Entropy 0.655 (3) 0.311 (1) 0.828 (4) 0.590 (2) 0.828 (4) 0.311 (1) 0.655 (3) 0.828 (4) 0.590 (2) 0.828 (4) 0.655 (2) 0.655 (2) 0.828 (4) 0.590 (1) 0.828 (4)

Entropy adj Geom. Avg. 0.497 (4) 1.157 (5) 0.011 (2) 0.004 (1) 0.015 (3) 0.018 (2) 0.012 (1) 0.327 (5) 0.268 (4) 0.025 (3) 0.038 (2) 0.514 (4) 0.581 (5) 0.013 (1) 0.166 (3)

DebGDP

Statistical 1.898 (2) 9.839 (5) 4.326 (4) 2.171 (3) 0.469 (1) 34.886 (5) 1.365 (3) 0.793 (1) 2.269 (4) 1.074 (2) 3.905 (5) 0.681 (1) 1.775 (3) 2.469 (4) 0.876 (2)

LCSS 1.000 (2) 1.000 (2) 1.000 (2) 1.000 (2) 0.016 (1) 0.040 (5) 0.021 (4) 0.009 (1) 0.010 (2) 0.012 (3) 0.060 (3) 0.056 (1) 0.060 (4) 0.070 (5) 0.058 (2)

DTW 0.540 (2) 146.100 (5) 0.555 (3) 3.798 (4) 0.091 (1) 0.246 (5) 0.058 (4) 0.007 (2) 0.012 (3) 0.006 (1) 0.848 (5) 0.448 (1) 0.459 (2) 0.547 (4) 0.468 (3)

TGAK 0.022 (2) 0.024 (5) 0.022 (3) 0.023 (4) 0.001 (1) 0.010 (5) 0.005 (1) 0.008 (3) 0.005 (2) 0.009 (4) 0.011 (2) 0.012 (3) 0.016 (5) 0.014 (4) 0.010 (1)

SBD 0.138 (3) 0.163 (4) 0.250 (5) 0.053 (2) 0.037 (1) 0.412 (2) 0.424 (5) 0.411 (1) 0.417 (4) 0.413 (3) 0.370 (4) 0.371 (5) 0.271 (2) 0.325 (3) 0.265 (1)

Geometric Average 0.183 (2) 0.901 (5) 0.261 (4) 0.203 (3) 0.0e+00 (1) 0.586 (5) 0.016 (3) 2.4e-05 (1) 0.070 (4) 0.009 (2) 0.518 (4) 0.001 (1) 0.175 (3) 0.555 (5) 0.002 (2)

Entropy 0.590 (3) 0.311 (2) 0.655 (4) 0.828 (5) -0.0e+00 (1) 0.311 (1) 0.828 (4) 0.590 (2) 0.655 (3) 0.828 (4) 0.828 (4) 0.590 (1) 0.828 (4) 0.590 (1) 0.655 (3)

Entropy adj Geom. Avg. 0.291 (2) 1.181 (5) 0.432 (4) 0.371 (3) 0.0e+00 (1) 0.769 (5) 0.029 (3) 3.8e-05 (1) 0.116 (4) 0.016 (2) 0.946 (5) 0.002 (1) 0.319 (3) 0.882 (4) 0.003 (2)

dGDP

Statistical 1.690 (5) 1.195 (2) 1.532 (4) 1.449 (3) 0.707 (1) 2.365 (5) 1.507 (3) 1.571 (4) 0.941 (2) 0.918 (1) 1.088 (4) 1.439 (5) 1.059 (3) 0.542 (2) 0.412 (1)

LCSS 0.009 (4) 0.006 (1) 0.008 (3) 0.010 (5) 0.007 (2) 0.008 (5) 0.005 (1) 0.006 (3) 0.006 (2) 0.007 (4) 0.050 (2) 0.048 (1) 0.059 (4) 0.052 (3) 0.065 (5)

DTW 0.004 (2) 0.004 (3) 0.004 (4) 0.005 (5) 0.004 (1) 0.003 (5) 0.003 (1) 0.003 (3) 0.003 (2) 0.003 (4) 0.469 (4) 0.458 (3) 0.376 (1) 0.445 (2) 0.564 (5)

TGAK 0.007 (3) 0.007 (2) 0.007 (4) 0.009 (5) 0.007 (1) 0.005 (1) 0.005 (2) 0.005 (4) 0.005 (5) 0.005 (3) 0.012 (4) 0.008 (2) 0.012 (5) 0.010 (3) 0.008 (1)
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Table A.1: Dissimilarity across different K+S versions, variables, and filters (continued)
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SBD 0.411 (2) 0.422 (3) 0.398 (1) 0.430 (4) 0.434 (5) 0.385 (1) 0.404 (4) 0.391 (3) 0.409 (5) 0.389 (2) 0.316 (2) 0.341 (4) 0.273 (1) 0.357 (5) 0.316 (3)

Geometric Average 0.255 (4) 0.010 (2) 0.043 (3) 0.923 (5) 0.001 (1) 0.467 (5) 0.003 (1) 0.405 (4) 0.244 (3) 0.049 (2) 0.432 (5) 0.062 (3) 0.026 (2) 0.335 (4) 0.022 (1)

Entropy 0.828 (5) 0.655 (4) 0.590 (1) 0.590 (1) 0.590 (1) 0.418 (1) 0.828 (4) 0.418 (1) 0.418 (1) 0.828 (4) 0.418 (1) 1.000 (5) 0.828 (4) 0.655 (2) 0.655 (2)

Entropy adj Geom. Avg. 0.466 (4) 0.017 (2) 0.069 (3) 1.468 (5) 0.002 (1) 0.662 (5) 0.005 (1) 0.574 (4) 0.347 (3) 0.089 (2) 0.612 (5) 0.124 (3) 0.048 (2) 0.555 (4) 0.036 (1)

dGreal

Statistical 2.013 (1) 5.395 (3) 8.931 (5) 7.605 (4) 2.980 (2) 0.801 (4) 0.570 (2) 0.724 (3) 0.561 (1) 1.360 (5) 0.460 (1) 1.038 (4) 1.158 (5) 0.639 (2) 0.859 (3)

LCSS 1.000 (3) 0.129 (2) 1.000 (3) 1.000 (3) 0.121 (1) 0.014 (1) 0.018 (4) 0.014 (2) 0.016 (3) 0.026 (5) 0.051 (2) 0.054 (4) 0.052 (3) 0.054 (5) 0.050 (1)

DTW 0.633 (2) 0.846 (3) 9.664 (5) 3.480 (4) 0.410 (1) 0.029 (1) 0.044 (3) 0.031 (2) 0.046 (4) 0.083 (5) 0.726 (4) 0.764 (5) 0.661 (2) 0.660 (1) 0.718 (3)

TGAK 0.018 (5) 0.012 (1) 0.018 (4) 0.016 (3) 0.016 (2) 0.003 (1) 0.003 (4) 0.003 (3) 0.003 (2) 0.004 (5) 0.011 (5) 0.009 (1) 0.010 (4) 0.010 (3) 0.009 (2)

SBD 0.390 (1) 0.432 (3) 0.410 (2) 0.432 (4) 0.434 (5) 0.333 (1) 0.404 (4) 0.382 (3) 0.409 (5) 0.368 (2) 0.268 (1) 0.340 (3) 0.358 (5) 0.357 (4) 0.330 (2)

Geometric Average 0.001 (1) 0.008 (3) 0.844 (5) 0.690 (4) 0.005 (2) 0.037 (1) 0.219 (4) 0.135 (3) 0.043 (2) 0.858 (5) 0.008 (1) 0.248 (4) 0.329 (5) 0.066 (3) 0.032 (2)

Entropy 0.655 (4) 0.590 (1) 0.590 (1) 0.590 (1) 0.655 (4) 0.311 (1) 0.590 (4) 0.418 (3) 1.000 (5) 0.311 (1) 0.828 (2) 0.828 (2) 0.828 (2) 1.000 (5) 0.655 (1)

Entropy adj Geom. Avg. 0.002 (1) 0.013 (3) 1.342 (5) 1.098 (4) 0.009 (2) 0.048 (1) 0.348 (4) 0.192 (3) 0.087 (2) 1.124 (5) 0.015 (1) 0.453 (4) 0.602 (5) 0.132 (3) 0.053 (2)

dI

Statistical 1.140 (1) 2.006 (4) 2.412 (5) 1.527 (2) 1.985 (3) 0.891 (4) 0.992 (5) 0.846 (3) 0.810 (2) 0.638 (1) 0.613 (2) 0.470 (1) 0.745 (3) 0.962 (5) 0.822 (4)

LCSS 0.011 (1) 0.053 (5) 0.040 (4) 0.032 (3) 0.016 (2) 0.010 (5) 0.010 (4) 0.009 (2) 0.009 (1) 0.009 (3) 0.048 (2) 0.048 (3) 0.040 (1) 0.053 (5) 0.053 (4)

DTW 0.019 (1) 0.074 (5) 0.061 (4) 0.050 (3) 0.026 (2) 0.012 (2) 0.013 (5) 0.012 (1) 0.012 (4) 0.012 (3) 0.449 (4) 0.399 (2) 0.408 (3) 0.396 (1) 0.475 (5)

TGAK 0.008 (1) 0.015 (5) 0.015 (4) 0.014 (3) 0.010 (2) 0.004 (2) 0.004 (1) 0.005 (5) 0.005 (3) 0.005 (4) 0.009 (2) 0.009 (4) 0.012 (5) 0.009 (3) 0.007 (1)

SBD 0.430 (2) 0.416 (1) 0.439 (4) 0.433 (3) 0.444 (5) 0.431 (5) 0.416 (4) 0.411 (3) 0.394 (1) 0.408 (2) 0.253 (1) 0.353 (3) 0.268 (2) 0.360 (4) 0.378 (5)

Geometric Average 0.060 (1) 0.197 (2) 0.838 (5) 0.536 (4) 0.317 (3) 0.444 (5) 0.146 (4) 0.018 (2) 0.007 (1) 0.031 (3) 0.077 (3) 0.024 (1) 0.035 (2) 0.127 (4) 0.199 (5)

Entropy 0.311 (1) 0.590 (4) 0.311 (1) 0.311 (1) 0.590 (4) 0.655 (1) 0.655 (1) 0.828 (3) 0.828 (3) 0.828 (3) 0.590 (1) 0.828 (3) 0.828 (3) 0.828 (3) 0.655 (2)

Entropy adj Geom. Avg. 0.078 (1) 0.314 (2) 1.099 (5) 0.702 (4) 0.504 (3) 0.735 (5) 0.242 (4) 0.032 (2) 0.013 (1) 0.056 (3) 0.122 (3) 0.044 (1) 0.064 (2) 0.232 (4) 0.329 (5)

dPPI

Statistical 1.794 (5) 1.740 (4) 1.024 (1) 1.038 (2) 1.056 (3) 1.770 (2) 1.915 (4) 1.780 (3) 3.902 (5) 0.806 (1) 3.384 (4) 1.773 (1) 2.806 (3) 4.057 (5) 2.481 (2)

LCSS 0.026 (4) 0.070 (5) 0.006 (1) 0.012 (3) 0.007 (2) 0.008 (3) 0.007 (1) 0.008 (4) 0.007 (2) 0.009 (5) 0.069 (4) 0.052 (1) 0.052 (2) 0.069 (5) 0.052 (2)

DTW 0.013 (4) 0.020 (5) 0.004 (1) 0.005 (3) 0.004 (2) 0.004 (3) 0.004 (1) 0.004 (2) 0.009 (5) 0.004 (4) 0.506 (1) 0.599 (2) 0.663 (4) 1.036 (5) 0.607 (3)

TGAK 0.014 (4) 0.016 (5) 0.009 (1) 0.009 (3) 0.009 (2) 0.009 (4) 0.008 (2) 0.008 (3) 0.008 (1) 0.009 (5) 0.010 (3) 0.011 (4) 0.009 (1) 0.009 (2) 0.012 (5)

SBD 0.436 (1) 0.440 (3) 0.439 (2) 0.441 (4) 0.451 (5) 0.453 (5) 0.445 (3) 0.446 (4) 0.394 (1) 0.432 (2) 0.317 (3) 0.239 (1) 0.338 (4) 0.257 (2) 0.345 (5)

Geometric Average 0.086 (4) 0.772 (5) 0.028 (1) 0.070 (3) 0.043 (2) 0.364 (5) 0.009 (1) 0.293 (4) 0.010 (2) 0.034 (3) 0.113 (3) 7.1e-04 (1) 0.021 (2) 0.388 (5) 0.283 (4)

Entropy 0.590 (2) 0.590 (2) 0.311 (1) 0.590 (2) 0.590 (2) 0.828 (3) 0.828 (3) 0.655 (1) 0.655 (1) 0.828 (3) 0.655 (3) 0.590 (2) 0.655 (3) 0.418 (1) 0.655 (3)

Entropy adj Geom. Avg. 0.137 (4) 1.228 (5) 0.037 (1) 0.111 (3) 0.068 (2) 0.666 (5) 0.016 (1) 0.486 (4) 0.017 (2) 0.062 (3) 0.187 (3) 0.001 (1) 0.034 (2) 0.551 (5) 0.469 (4)

dQ1

Statistical 1.646 (1) 2.483 (3) 3.603 (5) 2.427 (2) 2.852 (4) 0.611 (3) 0.244 (1) 0.479 (2) 1.492 (5) 1.224 (4) 0.759 (3) 0.503 (1) 0.970 (5) 0.756 (2) 0.935 (4)

LCSS 0.020 (1) 1.000 (3) 1.000 (3) 1.000 (3) 0.041 (2) 0.009 (2) 0.011 (4) 0.009 (1) 0.011 (5) 0.010 (3) 0.054 (1) 0.073 (4) 0.062 (3) 0.057 (2) 0.076 (5)

DTW 0.020 (1) 0.107 (3) 0.154 (5) 0.123 (4) 0.044 (2) 0.006 (1) 0.011 (4) 0.007 (2) 0.014 (5) 0.007 (3) 0.415 (1) 0.458 (4) 0.497 (5) 0.449 (3) 0.439 (2)

TGAK 0.018 (1) 0.026 (3) 0.027 (5) 0.026 (4) 0.023 (2) 0.008 (3) 0.007 (2) 0.012 (5) 0.007 (1) 0.008 (4) 0.010 (1) 0.013 (4) 0.018 (5) 0.013 (3) 0.013 (2)

SBD 0.416 (1) 0.419 (2) 0.420 (3) 0.427 (4) 0.443 (5) 0.416 (4) 0.414 (3) 0.307 (1) 0.413 (2) 0.426 (5) 0.341 (3) 0.380 (5) 0.199 (1) 0.298 (2) 0.367 (4)

Geometric Average 0.0e+00 (1) 0.496 (3) 0.691 (5) 0.655 (4) 0.267 (2) 0.019 (2) 0.030 (3) 0.002 (1) 0.318 (4) 0.445 (5) 0.006 (1) 0.091 (2) 0.110 (3) 0.352 (4) 0.607 (5)

Entropy -0.0e+00 (1) 0.590 (3) 0.311 (2) 0.590 (3) 0.590 (3) 0.828 (4) 0.828 (4) 0.655 (2) 0.590 (1) 0.655 (2) 0.418 (1) 0.590 (3) 0.590 (3) 0.418 (1) 0.655 (5)

Entropy adj Geom. Avg. 0.0e+00 (1) 0.789 (3) 0.906 (4) 1.042 (5) 0.424 (2) 0.035 (2) 0.055 (3) 0.003 (1) 0.505 (4) 0.737 (5) 0.009 (1) 0.145 (2) 0.175 (3) 0.499 (4) 1.004 (5)

dQcBas
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Table A.1: Dissimilarity across different K+S versions, variables, and filters (continued)

Unfiltered Trend Cycle
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Statistical 3.444 (5) 2.490 (3) 3.033 (4) 1.917 (1) 2.154 (2) 2.007 (5) 0.887 (2) 1.444 (4) 1.196 (3) 0.801 (1) 0.840 (3) 1.108 (5) 0.700 (1) 0.727 (2) 0.879 (4)

LCSS 0.018 (3) 0.010 (1) 0.019 (4) 0.019 (5) 0.013 (2) 0.013 (5) 0.009 (2) 0.012 (4) 0.008 (1) 0.009 (3) 0.074 (5) 0.062 (4) 0.060 (2) 0.056 (1) 0.060 (2)

DTW 0.005 (3) 0.004 (1) 0.005 (4) 0.008 (5) 0.005 (2) 0.003 (1) 0.003 (3) 0.003 (4) 0.003 (5) 0.003 (2) 0.438 (3) 0.371 (1) 0.398 (2) 0.540 (5) 0.443 (4)

TGAK 0.013 (3) 0.011 (1) 0.014 (4) 0.017 (5) 0.012 (2) 0.007 (2) 0.007 (1) 0.007 (4) 0.007 (3) 0.007 (5) 0.015 (4) 0.009 (1) 0.010 (2) 0.018 (5) 0.013 (3)

SBD 0.332 (1) 0.398 (4) 0.388 (2) 0.397 (3) 0.419 (5) 0.314 (1) 0.406 (5) 0.348 (2) 0.393 (3) 0.394 (4) 0.217 (1) 0.320 (3) 0.327 (4) 0.267 (2) 0.356 (5)

Geometric Average 0.050 (2) 0.002 (1) 0.536 (5) 0.232 (3) 0.244 (4) 0.007 (1) 0.012 (2) 0.424 (5) 0.064 (4) 0.019 (3) 0.081 (4) 0.013 (1) 0.033 (2) 0.037 (3) 0.463 (5)

Entropy 0.590 (3) 0.590 (3) 0.311 (1) 0.590 (3) 0.311 (1) 0.655 (3) 0.828 (4) 0.311 (1) 0.590 (2) 1.000 (5) 0.828 (3) 0.828 (3) 0.828 (3) 0.655 (1) 0.655 (1)

Entropy adj Geom. Avg. 0.080 (2) 0.004 (1) 0.703 (5) 0.369 (4) 0.320 (3) 0.011 (1) 0.021 (2) 0.556 (5) 0.102 (4) 0.039 (3) 0.149 (4) 0.023 (1) 0.060 (2) 0.061 (3) 0.766 (5)

dRDreal

Statistical 0.416 (1) 0.934 (5) 0.919 (3) 0.932 (4) 0.749 (2) 0.859 (5) 0.785 (4) 0.518 (2) 0.423 (1) 0.726 (3) 0.832 (3) 0.411 (1) 0.800 (2) 0.842 (4) 1.163 (5)

LCSS 0.008 (1) 0.050 (3) 0.057 (4) 0.058 (5) 0.012 (2) 0.007 (1) 0.008 (4) 0.007 (2) 0.008 (5) 0.007 (3) 0.062 (5) 0.058 (4) 0.049 (2) 0.041 (1) 0.056 (3)

DTW 0.007 (1) 0.038 (4) 0.042 (5) 0.036 (3) 0.018 (2) 0.005 (1) 0.007 (5) 0.005 (2) 0.007 (4) 0.006 (3) 0.465 (4) 0.475 (5) 0.448 (1) 0.455 (2) 0.458 (3)

TGAK 0.008 (1) 0.015 (4) 0.016 (5) 0.015 (3) 0.012 (2) 0.006 (5) 0.005 (1) 0.006 (4) 0.005 (2) 0.005 (3) 0.009 (1) 0.010 (2) 0.010 (5) 0.010 (4) 0.010 (3)

SBD 0.421 (3) 0.436 (4) 0.406 (1) 0.447 (5) 0.420 (2) 0.418 (2) 0.429 (4) 0.420 (3) 0.442 (5) 0.411 (1) 0.351 (2) 0.386 (5) 0.327 (1) 0.351 (3) 0.356 (4)

Geometric Average 0.042 (1) 0.870 (4) 0.594 (3) 0.950 (5) 0.312 (2) 0.010 (1) 0.174 (4) 0.281 (5) 0.089 (3) 0.059 (2) 0.101 (3) 0.129 (4) 0.016 (1) 0.068 (2) 0.612 (5)

Entropy 0.311 (2) 0.590 (3) 0.828 (5) 0.655 (4) -0.0e+00 (1) 0.655 (4) 0.590 (2) 0.590 (2) 0.828 (5) 0.311 (1) 1.000 (5) 0.828 (3) 0.655 (2) 0.828 (3) 0.590 (1)

Entropy adj Geom. Avg. 0.055 (1) 1.383 (4) 1.085 (3) 1.573 (5) 0.312 (2) 0.016 (1) 0.277 (4) 0.446 (5) 0.163 (3) 0.077 (2) 0.201 (3) 0.235 (4) 0.027 (1) 0.124 (2) 0.974 (5)

dwReal

Statistical 2.294 (3) 2.301 (4) 1.666 (2) 1.362 (1) 2.643 (5) 1.604 (3) 2.170 (5) 1.239 (2) 0.893 (1) 2.091 (4) 0.958 (3) 0.754 (1) 0.893 (2) 1.001 (4) 1.727 (5)

LCSS 0.011 (3) 0.010 (1) 0.012 (4) 0.018 (5) 0.011 (2) 0.006 (2) 0.008 (5) 0.006 (3) 0.005 (1) 0.007 (4) 0.060 (5) 0.046 (2) 0.042 (1) 0.058 (4) 0.051 (3)

DTW 0.004 (3) 0.003 (1) 0.005 (4) 0.008 (5) 0.004 (2) 0.002 (1) 0.002 (4) 0.002 (2) 0.003 (5) 0.002 (3) 0.475 (4) 0.524 (5) 0.426 (1) 0.457 (3) 0.441 (2)

TGAK 0.008 (3) 0.005 (1) 0.009 (4) 0.013 (5) 0.007 (2) 0.004 (2) 0.004 (1) 0.004 (4) 0.004 (5) 0.004 (3) 0.010 (4) 0.010 (5) 0.008 (1) 0.009 (3) 0.009 (2)

SBD 0.407 (4) 0.390 (1) 0.395 (2) 0.442 (5) 0.402 (3) 0.401 (4) 0.377 (2) 0.370 (1) 0.431 (5) 0.381 (3) 0.315 (2) 0.263 (1) 0.333 (3) 0.369 (5) 0.368 (4)

Geometric Average 0.323 (4) 0.090 (1) 0.259 (3) 0.704 (5) 0.236 (2) 0.061 (3) 0.045 (2) 0.028 (1) 0.467 (5) 0.420 (4) 0.517 (4) 0.010 (2) 5.9e-04 (1) 0.521 (5) 0.455 (3)

Entropy 0.311 (1) 0.311 (1) 0.418 (4) 0.311 (1) 0.590 (5) 0.828 (3) 0.828 (3) 0.828 (3) 0.418 (1) 0.418 (1) 0.828 (4) 0.655 (2) 0.590 (1) 0.655 (2) 0.828 (4)

Entropy adj Geom. Avg. 0.424 (4) 0.118 (1) 0.367 (2) 0.923 (5) 0.376 (3) 0.111 (3) 0.081 (2) 0.051 (1) 0.662 (5) 0.595 (4) 0.945 (5) 0.016 (2) 9.4e-04 (1) 0.863 (4) 0.832 (3)

QcUbas

Statistical 0.512 (3) 0.452 (2) 0.891 (5) 0.842 (4) 0.259 (1) 0.695 (3) 0.638 (1) 0.698 (4) 0.672 (2) 0.727 (5) 0.279 (1) 0.369 (3) 0.283 (2) 0.482 (5) 0.381 (4)

LCSS 1.000 (3) 0.155 (1) 1.000 (3) 1.000 (3) 0.375 (2) 0.163 (3) 0.030 (1) 0.171 (4) 1.000 (5) 0.035 (2) 0.012 (5) 0.011 (2) 0.011 (4) 0.011 (3) 0.010 (1)

DTW 0.171 (4) 0.083 (1) 0.167 (3) 0.395 (5) 0.091 (2) 0.162 (4) 0.079 (1) 0.157 (3) 0.377 (5) 0.086 (2) 0.019 (5) 0.016 (2) 0.019 (4) 0.016 (3) 0.016 (1)

TGAK 0.025 (3) 0.022 (1) 0.025 (4) 0.026 (5) 0.023 (2) 0.023 (4) 0.018 (1) 0.023 (3) 0.025 (5) 0.019 (2) 0.014 (4) 0.014 (3) 0.014 (5) 0.013 (1) 0.013 (2)

SBD 0.385 (5) 0.233 (2) 0.311 (4) 0.267 (3) 0.192 (1) 0.349 (3) 0.307 (1) 0.352 (5) 0.342 (2) 0.350 (4) 0.370 (3) 0.378 (5) 0.370 (2) 0.374 (4) 0.367 (1)

Geometric Average 0.615 (3) 0.003 (2) 0.682 (4) 0.816 (5) 9.2e-04 (1) 0.443 (3) 0.0e+00 (1) 0.450 (4) 0.781 (5) 0.101 (2) 0.078 (3) 0.159 (4) 0.292 (5) 0.023 (2) 4.8e-04 (1)

Entropy 0.655 (4) 0.418 (1) 0.655 (4) 0.590 (3) 0.418 (1) 0.418 (2) -0.0e+00 (1) 0.655 (5) 0.418 (2) 0.590 (4) 0.828 (4) 0.655 (2) 0.655 (2) 0.828 (4) 0.590 (1)

Entropy adj Geom. Avg. 1.018 (3) 0.004 (2) 1.129 (4) 1.298 (5) 0.001 (1) 0.628 (3) 0.0e+00 (1) 0.746 (4) 1.108 (5) 0.161 (2) 0.143 (3) 0.264 (4) 0.484 (5) 0.043 (2) 7.6e-04 (1)

U

Statistical 0.419 (1) 0.884 (2) 1.139 (3) 1.327 (4) 1.464 (5) 4.081 (5) 1.835 (3) 2.422 (4) 0.491 (1) 0.624 (2) 4.376 (4) 3.905 (3) 2.980 (2) 5.649 (5) 1.467 (1)

LCSS 0.138 (3) 0.017 (1) 1.000 (4) 0.027 (2) 1.000 (4) 0.095 (3) 0.014 (1) 1.000 (4) 0.019 (2) 1.000 (4) 0.009 (3) 0.006 (1) 0.010 (4) 0.009 (2) 0.010 (5)

DTW 0.027 (2) 0.017 (1) 0.042 (4) 0.033 (3) 0.048 (5) 0.027 (2) 0.017 (1) 0.042 (4) 0.034 (3) 0.048 (5) 0.004 (2) 0.004 (5) 0.004 (3) 0.004 (1) 0.004 (4)

TGAK 0.016 (2) 0.013 (1) 0.017 (4) 0.016 (3) 0.017 (5) 0.016 (2) 0.014 (1) 0.018 (4) 0.016 (3) 0.018 (5) 0.009 (4) 0.008 (1) 0.009 (5) 0.009 (2) 0.009 (3)

SBD 0.332 (3) 0.309 (1) 0.373 (5) 0.333 (4) 0.316 (2) 0.279 (1) 0.314 (4) 0.337 (5) 0.305 (3) 0.298 (2) 0.219 (1) 0.289 (2) 0.353 (3) 0.385 (5) 0.353 (4)
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Table A.1: Dissimilarity across different K+S versions, variables, and filters (continued)

Unfiltered Trend Cycle
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Geometric Average 0.037 (1) 0.055 (2) 0.878 (5) 0.253 (3) 0.635 (4) 0.036 (3) 0.003 (1) 0.837 (5) 0.010 (2) 0.415 (4) 0.135 (2) 0.017 (1) 0.691 (5) 0.189 (3) 0.256 (4)

Entropy 0.655 (3) 0.311 (1) 0.655 (3) 0.655 (3) 0.311 (1) 0.828 (5) 0.590 (3) 0.418 (1) 0.590 (3) 0.418 (1) 0.828 (2) 0.828 (2) 0.828 (2) 0.655 (1) 0.828 (2)

Entropy adj Geom. Avg. 0.061 (1) 0.072 (2) 1.454 (5) 0.418 (3) 0.833 (4) 0.066 (3) 0.005 (1) 1.188 (5) 0.016 (2) 0.588 (4) 0.248 (2) 0.031 (1) 1.263 (5) 0.313 (3) 0.468 (4)

Note:

Number in parenthesis represents the relative position, in which (1) indicates the relative best; (5) the relative worse.
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