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Abstract

This paper examines the impact of automation investments on employment dynam-
ics and workforce composition using administrative data from Portugal. I exploit
the lumpiness of automation imports in a difference-in-differences event study design.
My results show that automation creates jobs in small firms but leads to job losses
in larger ones. This pattern holds across a wide range of firm types, industries and
types of automation technologies. Most importantly, automation favors low-educated,
routine-blue-collar workers in routine-intensive jobs over highly skilled workers like
STEM professionals. These findings challenge the view of automation as inherently
skill-biased.
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1 Introduction

Does automation technology steal jobs? And if so, at whose expense? Recent advance-
ments in robotics and artificial intelligence (AI) coupled with the concept of lights-out
manufacturing — the fully automated production of goods without any human inter-
vention — have raised concerns about technological mass unemployment and growing
inequality (Brynjolfsson and McAfee, 2014; Ford, 2015; Arntz et al., 2022).1 These fears
are further fueled by some speculative studies predicting striking job losses in occupations
that are susceptible to automation (Frey and Osborne, 2017; Nedelkoska and Quintini,
2018). While automation is designed to perform tasks without human intervention (Nof,
2009), its overall impact on employment, the organisation of work and the skill com-
position of the workforce remains a subject of intense and ongoing debate. This paper
seeks to examine who gains and who loses among workers when firms adopt automation
technologies.

From a theoretical standpoint, the effects of adopting automation technology on em-
ployment are ambiguous, as both job-creating and job-destroying mechanisms may simul-
taneously be at play.2 Automation can displace workers in specific roles (Keynes, 1930;
Leontief, 1952; Brynjolfsson and McAfee, 2014), yet this displacement effect may be mit-
igated or even reversed through various compensatory effects. For example, automation
can generate cost-saving efficiencies prompting firms to expand their production scale or
enable the creation of new tasks increasing their demand for labor (Bowen and Mangum,
1966; Zeira, 1998; Autor, 2015; Acemoglu and Restrepo, 2019). Additionally, compensa-
tion may occur via a Schumpeterian mechanism, where the introduction of new products
stimulates the demand for labor (Dosi et al., 2021; Tuhkuri et al., 2022). Nonetheless,
even when displacement effects are counterbalanced, at the industry level there can still
be negative spillovers. For example, as adopting firms enhance their productivity and
capture greater market shares, non-adopting competitors may suffer declines in both pro-
ductivity and employment (Nelson and Winter, 1982; Bloom et al., 2013). Importantly,
since firms exhibit heterogeneous patterns of technology adoption and the diffusion of
these technologies occurs gradually, the sectoral and economy-wide effects of labor-saving
technologies are continuously shaped by the dynamic interactions between adopting and
non-adopting firms over time (Dosi and Nelson, 2010). Ultimately, the impact of automa-
tion on employment and work organization remains an empirical question.

Empirical research on the relationship between automation and employment has grown
rapidly, yet remains inconclusive. Most studies focus on industry-level adoption of indus-

1According to the Eurobarometer (2017) survey in Portugal—my focus area—over 90% of respondents
believe that robots and AI steal jobs. These fears of widespread technological unemployment are far from
new. From the Luddite movement in the early 19th century to contemporary debates on AI’s disruptive
potential, concerns about automation replacing human labor have persisted for centuries (see e.g., Autor,
2015).

2For a more comprehensive discussion of the theoretical literature, see, e.g, Calvino and Virgillito (2018);
Aghion et al. (2022a); Corrocher et al. (2023).
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trial robots, reporting mixed outcomes—ranging from positive to neutral to negative—for
more exposed regions and sectors (Graetz and Michaels, 2018; Acemoglu and Restrepo,
2020a; Gentili et al., 2020; Dauth et al., 2021; Dottori, 2021; Adachi et al., 2024; Aghion
et al., 2023). At the firm level, a growing body of literature suggests that automation
leads to increased employment within adopting firms (Dixon et al., 2021; Domini et al.,
2021), though this expansion often comes at the expense of non-adopting competitors ex-
periencing productivity and employment losses (Acemoglu et al., 2020, 2023; Koch et al.,
2021). However, some studies also identify a negative relationship between the adoption
of automation and employment (Bessen et al., 2020, 2023; Bonfiglioli et al., 2024).

In addition to its impact on employment, it is crucial to understand how automation
reshapes the organization of production and the skill composition within firms. The dom-
inant theoretical framework (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2019,
2020b) suggests that lower-skilled workers, particularly those engaged in routine-intensive
tasks—such as clerical and production roles—are most vulnerable to automation, as these
tasks are more easily codifiable (Autor et al., 2003). Conversely, higher-skilled workers,
such as STEM professionals, may benefit from automation’s compensatory effects, which
create new opportunities for productivity and innovation (Acemoglu and Restrepo, 2019,
2022; Restrepo, 2023). As a result, following an automation event, the organization of work
undergoes an upward skill shift. However, empirical evidence on the effects of automation
on the skill composition of the workforce remains inconsistent. For instance, using French
data, Acemoglu et al. (2020) finds negative employment effects for production workers,
while other studies report positive effects for this group and no significant changes in
overall workforce composition (Aghion et al., 2022b; Domini et al., 2021). Similarly, Ace-
moglu et al. (2023) find negative effects for low-educated workers in the Netherlands, while
Bessen et al. (2023) highlights adverse effects on middle-educated workers. To take stock,
we are far from a consensus about the impact of automation at the industry, firm and
worker-level.

Against this backdrop, this paper presents novel firm-level evidence on the impact of
automation technology on employment and skill composition within firms in Portugal. I
construct a firm-panel dataset spanning the period from 2004 to 2021 by combining linked
employer-employee data with firm balance sheets and trade transaction data. The richness
of Portuguese administrative data sources provides me with detailed worker-level infor-
mation on total hours worked and most importantly occupational groups and educational
levels, allowing for a more granular analysis than many previous studies, which often suffer
from the absence of such detailed information.3

To measure investments in automation, I employ an import-based proxy approach,
leveraging fine-grained product-level data on traded goods. I introduce a new classifica-

3For instance, Koch et al. (2021) using Spanish data lack access to worker-level information, while the
Italian (Bisio et al., 2025) and Dutch data sources (Bessen et al., 2023) do not provide occupational codes.
Additionally, French data sources do not contain information about workers’ educational levels (Acemoglu
et al., 2020; Domini et al., 2021)
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tion to capture a broader range of advanced automation technologies, including industrial
robots, numerically controlled machines, 3D printers, and technologies related to the In-
dustrial Internet of Things (IIoT), providing a more detailed and accurate picture of
automation’s impact across sectors. I identify automation events by leveraging the lumpy
nature of automation investments and estimate the effects of these events on employ-
ment and workforce composition using a difference-in-difference event study design. To
account for well-documented issues with heterogeneous effects in such empirical settings
(de Chaisemartin and D’Haultfœuille, 2020a; Goodman-Bacon, 2021; Sun and Abraham,
2021; Borusyak et al., 2022), I employ the approach developed by Callaway and Sant’Anna
(2021).

Portugal is particularly well-suited for this empirical strategy, as Portuguese firms
heavily rely on imports of automation technologies due to the near absence of domestic
manufacturers. In contrast, studies using this approach for countries like France, Italy,
and the Netherlands (Acemoglu et al., 2020, 2023; Bisio et al., 2025), where domestic
automation manufacturers are more prevalent (Andreoni et al., 2023; Castellani et al.,
2022), are more prone to measurement errors, potentially leading to false negatives when
identifying automation investments.

I contribute to the literature in two principal ways. Whereas my overall estimates
align with previous studies, that find a positive relationship between automation and
employment (Acemoglu et al., 2020; Dixon et al., 2021; Koch et al., 2021), my analysis
reveals a dual nature in automation with job creation in small firms and job destruction
in larger ones. Specifically, automation leads to a 19% increase in employment in small
firms, whereas large firms experience a 30% decline in total hours worked within five years
of an automation event. Importantly, I show that this pattern holds across a wide range
of firm types, industries and types of automation technologies, reinforcing the critical
role of firm size in shaping automation’s labor market consequences. While small firms
vastly outnumber large firms, the latter employ the majority of workers. As a result,
when weighting by baseline hours worked, I find on average a net decline of 17% in total
hours worked, suggesting that automation’s aggregate effect is negative. This dual nature
in automation with job creation in small firms and job destruction in large firms helps
reconcile conflicting findings in the literature, as some studies reporting negative effects
(Bessen et al., 2020, 2023) rely on weighted estimates that may mask positive effects among
smaller firms.

Second, my analysis suggests that automation in firms leads to a reorganization of pro-
duction, primarily relying on a lower-skilled workforce. This is particularly evident in the
marked increase in total hours worked by low-educated, routine-manual, and blue-collar
workers. In large firms, automation tends to result in workforce downsizing across most
skill groups, while in small firms, the workforce expands across most skill groups. Despite
these divergent trends, it appears that low-skilled workers are favored relatively to skilled
workers—such as STEM professionals—across both small and large firms. This is par-
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ticularly striking given that STEM professionals, often seen as the primary beneficiaries
of automation, experience the strongest negative effects. This pattern of workforce reor-
ganization around lower-skilled labor holds across all types of automation technologies,
challenging the prevailing view that automation inherently favors high-skilled workers.

The rest of this paper proceeds as follows. In Section 2 I present my data sources and
provide some novel stylized facts of automation that inform my empirical strategy, which
I outline in Section 3. Section 4 discusses my main results, while Section 5 provides a
bunch of robustness checks. Section 6 concludes.

2 Data and Descriptive Statistics

This paper’s empirical analysis combines and examines several administrative data sources
from the Portuguese National Statistics Institute (INE). Using a unique firm identifier, I
combine linked employer-employee records with firm balance sheet data and automation-
related imports from trade transaction data. The final panel covers nearly all firms active
in the private and non-financial sector in continental Portugal from 2004 to 2021. This
section outlines the data sources, panel construction, and key variables, with further details
in Appendix A.

2.1 Data sources

Linked employer-employee data. The Quadros de Pessoal (QP), administered by the
Ministry of Employment of Portugal, draws on a compulsory annual census of all private
firms in Portugal that employ at least one dependent worker and has been run since 1985.4

The full sample includes about 350,000 firms and 3 million employees in each year. Each
firm is required by law to report information on its characteristics, for each of its plants,
and for each of its workers at the end of the census reference month (October) of each year.
Entering the database, each firm and each worker are assigned a unique, time-invariant
identifying number, making it possible to track firms and workers over time.5 The list
of variables available in the data set is particularly rich including among other the firm’s
location, industry, date of creation, employment, sales, ownership and legal basis. At the
worker level, the data covers information on worker’s demographic characteristic (date of
birth, gender, education and so forth) and job characteristics (occupation group, wage,
hours worked, type of contract, and so forth).

4Note that in the census public administration and non-market services are excluded. QP has been
widely used by, amongst others, Blanchard and Portugal (2001), Cabral and Mata (2003) and Card et al.
(2015, 2018).

5The purpose of this survey is to verify if firms are complying with labor law. Since employers are the
one reporting the data, variables such as wages and worker qualifications are less prone to measurement
error. The unique worker identifier is based on the worker’s social security number. In addition, the
Ministry of Employment implements several checks to certify the quality of the data. Overall this implies
a high degree of coverage and reliability.
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Balance Sheet data. The next set of data to be used is the Sistema de Contas
Integrado da Empresa (SCIE) available since 2004. It is a yearly census of firms collected
by INE with the main objective to characterize the economic and financial performance
of companies.6 The data covers all firms (companies, individual entrepreneurs, and self-
employed) in the non-financial business sector that carry out an activity producing goods
or services during the year.7 The large number of variables include, among others, the
firm’s industry classification (5-digit CAE Rev.3), births and deaths of companies as well
as accounting statements, e.g. value added, sales and the wage bill.8

Trade transaction-level data. The third data source is the Comércio Internacional
(CI), which records individual trade transactions (imports and exports) on a monthly
basis for firms that are located in Portugal. The information is collected separately for
EU partner countries and non-EU partners. Information on extra-EU transactions are
collected by customs declarations, which cover the universe of external trade transactions
(“Extrastat”). Since 1993, following the creation of the Single European Market, informa-
tion on intra-EU transactions has come from the Intrastat system. It is a survey that must
be answered by firms whose value of intra-EU trade transactions exceeds a legally binding
threshold that has changed over time. For example, in 2015 the Portuguese thresholds were
set at 250,000 Euro and 350,000 Euro for exports and imports, respectively. Through-
out the sample period, the thresholds were set to ensure that the survey overall includes
at least 97 percent of intra-EU exports and 93 percent of intra-EU imports each year.9

For each transaction the database reports, among other variables, trade value (in euros),
trading partner country and an 8-digit Combined Nomenclature (CN) product code, an
extension of the 6-digit international Harmonized System (HS) trade classification. I use
CI to identify importing firms and their imports of automation-related goods based on
the 6-digit HS code.

2.2 Sample Selection

I combine firm-level workforce information from QP with firms’ accounting information
from SCIE and trade information from CI using the unique, time-invariant firm identifier.
I keep only firm observations that appear both in the QP and SCIE data sources. The
integration of my three sources restrict the analysis to the period 2004-2021. I assign to

6The information gathered in this dataset is the result of a process of integrating information on
companies, initially from the Annual Business Survey (IEH) and later from administrative information
from the protocol signed with the Tax and Customs Authority

7Accordingly, financial and insurance companies are excluded, as are entities that are not market-
oriented, namely central and local public administration units and various associative activities.

8All the data is subjected to comparisons between year n and year n-1, paying special attention to
possible deaths and births of companies, as well as changes in activity, region, levels of staff employed,
turnover and legal form. Whenever necessary, companies are contacted to provide additional clarifications,
which may or may not lead to occasional corrections, in order to guarantee the statistical quality of the
information to be made available.

9Note that this data is the country’s official information source on imports and exports used for official
trade statistics.
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each firm a permanent 2-digit sector based on the most frequent occurrence, since firm
industry codes may vary across years. I consider in my analysis firms based in continental
Portugal and exclude individual entrepreneurs and self-employment enterprises. Regard-
ing workers, I restrict the analysis to dependent workers aged between 18 and 65 years
old (working-age population). Observations with unreasonable values (e.g., non-positive
turnover or gross value added, non-complete basic remuneration, etc.) were discarded.
Since automation adoption is measured through imported product categories, most anal-
yses focus on importing firms. I distinguish between the full sample, the importer sample,
which includes firms that import at least once during 2004–2021, and the adopters sam-
ple, which includes firms that import automation technologies. I exclude intermediaries
of automation goods to prevent misclassification of adopters.10 All monetary values are
being deflated using the Consumer Price Index provided by INE.

2.3 Automation imports

Firm-level data on automation investments remain scarce.11 To address this issue, I
construct a proxy for automation investments using firm-level data on the yearly imports
of automation-related capital goods. Using imports as a proxy for technology adoption
and diffusion is well-established in the literature (Caselli and Wilson, 2004; Andreoni
et al., 2023). Originating from the seminal work by Caselli and Coleman (2001), which
investigated the diffusion of computers, this method has been recently adapted to measure
automation technology adoption at the firm level across various countries.12

The rationale for using an import-based proxy is grounded in the observation that
innovation and the production of capital goods, including automation technologies, are
concentrated in a few industrialized countries, making international trade a crucial chan-
nel for technological diffusion (Eaton and Kortum, 2001; Caselli and Coleman, 2001). For
example, Andreoni et al. (2023) show that 14 countries account for over 90% of global
digital exports, though their study includes a broader range of technologies beyond au-
tomation. However, countries like Denmark, France, Italy, and the Netherlands, frequently
analyzed in the literature, are net exporters of automation technologies, which can intro-
duce measurement bias in an import-based approach. This limitation is less of an issue
for Portugal, where most automation technologies are imported (Castellani et al., 2022).
Due to the absence of domestic production, Portuguese firms rely heavily on foreign equip-

10Following Bisio et al. (2025), I began with wholesalers, identified by NACE Rev. 2 group codes, and
determined the relevant three-digit sectors as defined in Table (4). Further discussion can be found in
Section 2.3.

11Firm-level data on automation investments is available for only a few countries, such as automation
expenditures by Dutch firms (Bessen et al., 2023) and data on robot usage and intensity in Germany and
Spain (Deng et al., 2021; Koch et al., 2021). Some cross-sectional evidence exists, e.g., for the United
States (Acemoglu et al., 2022), but these datasets are not well-suited for analyzing employment dynamics.

12For example, it has been applied for Canada (Dixon et al., 2021), Denmark (Humlum, 2019), France
(Acemoglu et al., 2020; Domini et al., 2021, 2022; Aghion et al., 2022b), Italy (Bisio et al., 2025), the
Netherlands (Acemoglu et al., 2023), and Norway (Barth et al., 2020).
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ment, making the import-based proxy an effective measure of their automation investment
decisions.

I propose a novel, more comprehensive measure of automation that encompasses a
broader range of automation technologies. While previous studies have predominantly fo-
cused on industrial robots as a proxy for automation (e.g., Acemoglu et al., 2020; Humlum,
2019; Dixon et al., 2021; Koch et al., 2021), it is important to recognize that investments
in industrial robots represent only a small fraction of total automation technologies and
are concentrated in a limited number of industries (Montobbio et al., 2022; Domini et al.,
2021; Aghion et al., 2022b). Broader measures adopted by other studies (Domini et al.,
2021; Bisio et al., 2025) often fail to account for emerging technologies like 3D printers
or the Industrial Internet of Things (IIoT), which hold significant potential for advancing
automation.

To address this gap, I identify firm-level imports of capital-embodied automation tech-
nologies using 6-digit Harmonized System (HS) product codes, categorizing them into four
groups: First, industrial robots and conventional automation technologies, such as numer-
ically controlled machines, automatic machine tools, and automatic welding machines,
which have been widely studied in previous research (Acemoglu and Restrepo, 2021; Do-
mini et al., 2021; Bisio et al., 2025). Second, additive manufacturing (also known as 3D
printing), which refers to technologies that create physical objects through the successive
addition of material, in contrast to traditional subtractive manufacturing methods (In-
ternational Organization for Standardization, 2015). Third, automatic data processing
(ADP) machines that automate tasks related to data processing , reducing labor-intensive
manual data handling.13 Finally, Industrial Internet of Things (IIoT) refers to the use
of interconnected smart devices in industrial applications, enabling machine-to-machine
communication for the collection, monitoring, and analysis of data from operational pro-
cesses. The primary objective of IIoT is to leverage sensors and automation to enhance
production flexibility, efficiency, and cost-effectiveness (Atzori et al., 2010; Gubbi et al.,
2013; Wang et al., 2016). A detailed breakdown of the HS codes and categories is provided
in Table (3) in the appendix.

The import-based approach has certain potential limitations, which I address. First,
firms may be misclassified as adopters if they resell imported automation goods domes-
tically or internationally. This is by definition true for resellers and intermediaries of
automation technologies. To mitigate this issue, I follow Bisio et al. (2025) and exclude
firms operating in these sectors from the analysis, as detailed in Table (4). Furthermore,
reselling activity is typically associated with regular imports. However, Figure (3) demon-
strates that automation imports occur infrequently within firms, making such misclassi-
fication unlikely. To further enhance the robustness of the analysis and reduce potential
noise in my automation measure, I apply varying restrictions to the treatment definition.

13Notably, Domini et al. (2021) argue, based on USPC-to-HS concordances, that this group is linked to
artificial intelligence technologies.
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These include restricting the analysis to firms that import only once and excluding firms
engaged in re-exporting activities, as outlined in section 5. Importantly, these varying
restrictions do not alter the results.

Second, firms may be incorrectly labeled as non-adopters if they source automation
technologies domestically rather than importing them. However, given the structure of
the Portuguese economy, it is unlikely that firms buy automation technologies from do-
mestic producers. As Juchniewicz and Łada (2020) shows, Portugal’s high-tech sector lags
significantly behind and is less competitive than those of other European countries. Addi-
tionally, patent data from Cséfalvay and Gkotsis (2022) reveal a lack of domestic suppliers
of industrial robots in Portugal. As a result, Portugal is a net importer of automation
technologies (Castellani et al., 2022). That said, firms may still rely on intermediaries to
import goods, as documented by Blum et al. (2010), Bernard et al. (2010), and Ahn et al.
(2011). While the use of intermediaries is less common for complex goods requiring high
relational specificity—such as automation technologies—firms in smaller, lower-income
countries like Portugal may be more likely to use them (Bernard et al., 2015). To explore
this further, Table 5 examines the role of intermediaries in automation imports. It shows
that, among firms that have imported automation technologies, approximately 8.2% are
active in the sectors defined in Table 4, accounting for 8.5% of the total value of automation
imports. This suggests that, while intermediaries do play a role in automation diffusion,
the vast majority of firms do not rely on them for purchasing goods from abroad. While
this may introduce some noise, it is unlikely to significantly affect the accuracy or validity
of my measure of automation. Moreover, my empirical strategy, as detailed in Section 3,
compares treated firms with those yet to adopt automation. This approach minimizes the
risk of misclassifying firms as non-adopters, as it focuses on firms at different adoption
stages, effectively eliminating any misclassification bias.

2.4 Stylized Facts about Automation

In this section, I present five stylized facts about automation imports in Portugal. These
findings serve to inform the empirical strategy and provide crucial insights into the patterns
of automation diffusion.

Fact 1. Automation Adoption is Slow. Contrary to the prevailing narrative of
rapid and disruptive automation diffusion (Brynjolfsson and McAfee, 2014; Ford, 2015),
the adoption of automation technologies in Portugal has been slow. Panel A of Figure
(1) shows that only around 2% of firms import automation technologies annually, with
smaller firms making up the majority. Automation imports are highly sensitive to economic
downturns. The global financial and Eurozone crises triggered a sharp, prolonged decline,
stalling adoption for several years. A recovery began only after 2013, though the COVID-
19 pandemic caused a temporary setback before imports surged in 2021. By then, about
7% of firms had imported automation technologies at least once, though these firms employ
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Figure (1) Automation imports between 2004-2021

Notes: Panel A of Figure (1) depicts the total value of automation-related capital goods imports (red
line, in millions of euros) alongside the annual share of importing firms, distinguishing between small (1–
49 employees) and large (>49 employees) firms, with their shares adding up to the total. Panel B breaks
down the composition of automation imports by technology, including Industrial Robots (IR), Conventional
Automation (CA), Additive Manufacturing (AM), Automatic Data Processing Machines (ADP), and the
Industrial Internet of Things (IIoT), as a share of total automation imports (see Table (3) for a detailed
breakdown of technologies).

roughly 36% of the workforce, highlighting their significant role in labor market dynamics.
Panel B of Figure (1) shows the composition of automation imports by technology

type. Automatic data processing machines remain dominant, though their share has de-
clined from around 50% to 40%. Conventional automation consistently accounts for over
25% of imports, while the share of Industrial Internet of Things (IIoT) technologies has
grown from 14% in 2004 to 28% in 2021. In contrast, industrial robots and additive man-
ufacturing remain marginal. These findings challenge the narrative that robots are the
most disruptive technological shift. In Portugal, automation adoption has been driven
more by traditional technologies than advanced robotics, a trend also observed in Italy
(Bisio et al., 2025).

Fact 2. Automation diffusion is skewed. Panel A of Figure (2) illustrates the
highly skewed nature of automation adoption across industries, with rates ranging from
under 1% to nearly 19%. The highest adoption rates are observed in primary sectors, man-
ufacturing, and high-tech industries like Information and Communication. While only a
small proportion of firms adopt automation, Panel B shows that these firms dispropor-
tionately account for a significant share of total employment, ranging from 6% to 75% of
employment in their respective industries. Notably, small firms, though more numerous,
contribute little to total employment. In contrast, large firms, despite being fewer in num-
ber, employ a substantial portion of the workforce. This trend holds across all industries,
although the balance between small and large adopters varies by sectors.
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Figure (2) Automation diffusion across industries

Notes: Panel A of Figure (2) shows the share of firms in 2021 that imported automation technologies. Panel
B presents the corresponding share of employment within these firms in 2021, with the red line representing
the overall mean. Firms are categorized as small (< 50 employees) and large (≤ 50 employees), with both
adding up to the total share. Panel C breaks down automation imports by technology, including Industrial
Robots (IR), Conventional Automation (CA), Additive Manufacturing (AM), Automatic Data Processing
Machines (ADP), and the Industrial Internet of Things (IIoT) from 2004 to 2021, as a share of total
automation imports (see Table (3) for a detailed breakdown).

Panel C of Figure (2) highlights distinct patterns in automation technology imports
across sectors. In primary and manufacturing industries, conventional automation, indus-
trial robots, and additive manufacturing are more common, although industrial robots
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and additive manufacturing remain relatively rare. In contrast, service sectors are dom-
inated by automatic data processing (ADP) technologies, followed by Industrial Internet
of Things (IIoT) technologies.

Figure (3) Automation investments occur in spikes

Notes: Panel A shows the distribution of the number of years in which firms import automation technology.
Panel B ranks the mean share of each year’s automation imports relative to total imports, from largest to
smallest. The figure separately distinguishes between small firms (with < 50 employees) and large firms
(≥ 50 employees) in their baseline year. Note that the total, small, and large firms represent different
samples and are not cumulative. The figures are based on the sample of adopters only.

Fact 3. Automation investments are lumpy. Automation imports exhibit the
characteristic ”lumpy” behavior typical of investment variables, meaning they are (i) rare
within firms and (ii) concentrated in a few episodes that account for a large share of total
investments (Letterie et al., 2004; Asphjell et al., 2014; Grazzi et al., 2016).

Panel A of Figure (3) shows that approximately 43% of firms that import automation
technology do so only once. Import frequency declines steadily with larger values, with a
small group of firms consistently importing automation-related goods every year. Panel
B illustrates that the largest import episode typically accounts for about 75% of a firm’s
total automation-related imports, with the median episode representing more than 90%.
Subsequent import episodes represent much smaller shares. These findings align with
studies on the lumpy nature of automation investments in Denmark (Humlum, 2019),
France (Domini et al., 2021), Italy (Bisio et al., 2025), and the Netherlands (Bessen et al.,
2023).

Additionally, the lumpiness of automation imports is evident for both small and large
firms. However, the degree of lumpiness is more pronounced for small firms. About 47% of
small firms import automation technology only once, with an average of 77% of their total
imports concentrated in a single year. For large firms, 24% import automation only once,
and while the pattern of decreasing frequency remains, lumpiness is less pronounced. No-

12



tably, persistent importers—firms that import every year—represent a substantial share,
contributing some noise to the measure. Still, 64% of total imports for large firms occur in
a single year. In Section (5), I evaluate whether such noise impacts my results; however,
the analysis confirms that it does not.

Figure (4) Technology composition of automation spikes

Notes: Panel A of Figure (4) shows the distribution of firms by the number of technologies adopted
during an automation spike, distinguishing between small (1–49 employees) and large (≥50 employees)
firms. Panel B illustrates the technological composition within each adoption group, detailing the shares
of Industrial Robots (IR), Conventional Automation (CA), Additive Manufacturing (AM), Automatic
Data Processing Machines (ADP), and the Industrial Internet of Things (IIoT). Panel C examines the co-
adoption patterns within each technological group, indicating the number of technologies adopted alongside
a given technology. The figures are based on the adopters-only sample, focusing on firms in the year of
the automation spike.

Fact 4. Automation spikes involve more than just robots. While most stud-
ies focus on industrial robots, actual automation adoption patterns remain unclear—
particularly whether firms implement multiple technologies or standalone solutions. Fig-
ure (4) explores this by analyzing the prevalence and combinations of different automation
technologies during adoption spikes.

Panel A shows that most firms (73%) adopt only one of five technological groups, while
27% combine two or more—though adopting more than two remains rare. This pattern
holds across firm sizes, with larger firms being more likely to adopt multiple technologies.

Panel B differentiates between firms adopting a single technology and those adopting
multiple. Among single-technology adopters, conventional automation dominates (48%),
followed by automation data processing and IIoT, while industrial robots and additive
manufacturing are rarely adopted. Among multi-technology adopters, conventional au-
tomation, data processing, and IIoT are the most common combinations, whereas robots
and additive manufacturing remain marginal. These patterns hold across both small and
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large firms.
These findings challenge the prevailing focus on industrial robots, raising questions

about studies that adopt this narrow perspective (e.g., Acemoglu and Restrepo, 2020a;
Acemoglu et al., 2020; Humlum, 2019).

Table (1) Summary Statistics: Selection into Adoption

Adopters Non-adopters P-value

Variable Mean SD Baseline Mean SD Industry B-I

Employees 55.28 282.20 51.59 14.67 51.52 28.32 ***
Total hours worked 9555.21 48282.93 8923.58 2532.78 8890.90 4879.38 ***
Labor Productivity 36.21 515.31 34.88 25.34 220.52 25.85 ***
Labor Share 0.52 0.18 0.51 0.54 0.19 0.58 ***
Hourly Wage 7.30 3.67 7.34 5.94 2.97 6.66 ***
Exporter 0.47 0.50 0.46 0.24 0.43 0.32 ***
Multinational 0.13 0.34 0.13 0.04 0.20 0.04 ***
Share of workers
Low Education 0.47 0.33 0.45 0.53 0.37 0.59 ***
Middle Education 0.31 0.26 0.32 0.29 0.30 0.25 ***
High Education 0.21 0.27 0.23 0.17 0.28 0.16 ***
Routine-Manual 0.33 0.35 0.31 0.29 0.37 0.35 ***
Routine-Cognitive 0.09 0.21 0.09 0.12 0.26 0.11 ***
Manual 0.04 0.13 0.04 0.06 0.17 0.05 ***
Cognitive 0.53 0.35 0.55 0.52 0.39 0.48 ***
Non-professional 0.38 0.33 0.38 0.47 0.38 0.44 ***
Bluecollar 0.29 0.33 0.28 0.26 0.35 0.31 ***
Professional 0.12 0.21 0.13 0.13 0.25 0.11 ***
STEM 0.14 0.25 0.15 0.07 0.20 0.09 ***
Manager 0.06 0.14 0.07 0.07 0.18 0.06 ***
Number of Firms 208,714 14,258 400,236 14,258

Notes: Table (1) presents summary statistics comparing adopters and non-adopters. Column (1) and
Column (4) report the mean values for the adopters and non-adopters (importers), respectively. Column (3)
displays the mean baseline values, measured in the year before adoption. Column (6) presents the average
values for a randomly selected group of non-adopters matched to adopters within the same industry-
year cell (one-to-one matching). Finally, Column (7) reports p-values for the null hypothesis that the
mean values of adopters (Column 3) and matched non-adopters (Column 6) are statistically equivalent.
Statistical significance is indicated by *, **, and *** for p-values below 0.1, 0.05, and 0.01, respectively.

Fact 5. Firms select into automation adoption. Table (1) compares firms that
adopt automation technologies with non-adopting importers, revealing significant differ-
ences in firm characteristics and workforce composition. Automating firms tend to be
larger and offer higher wages than non-adopters. Additionally, their workforce is more
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skilled, with a higher share of educated and specialized employees.
Crucially, these differences are already evident before adoption. When comparing

firms in the year prior to adoption with non-adopters in the same industry-year cell, I
observe that adopters were systematically different even before implementing automation.
This suggests that firms do not adopt automation randomly; rather, there is a clear
selection process into automation adoption. These pre-existing differences underscore the
importance of accounting for selection effects when analyzing the impact of automation
on firms and labor markets.

3 Empirical Strategy

This section outlines my empirical strategy, which is grounded in three key observations
from section 2.4. First, automation investments are lumpy, that means they occur in dis-
crete spikes. This justifies to model automation adoption as a one-off decision and the use
of a difference-in-difference (DiD) event study design to estimate its impact on firm em-
ployment and workforce composition. Second, firms do not adopt automation randomly;
rather, they exhibit systematic differences from non-adopters even before adoption, raising
concerns about selection bias. To mitigate this issue, I use firms that have not yet adopted
automation as the control group. Third, automation adoption varies across firms, indus-
tries, and technologies, which motivates an analysis of heterogeneous effects, allowing for
a deeper understanding of the varying impacts of automation across different contexts.

Treatment definition. In Section 2.4, I showed that automation investments tend to
occur in spikes, a statistical property that allows for the identification of distinct automa-
tion events. Given the highly skewed distribution of this variable, I define a firm’s largest
automation investment as an automation event.14 Figure (11) provides empirical valida-
tion of this definition. Panel A shows the share of total automation imports around the
event year, revealing a distinct one-period surge in the adoption year. Panel B exam-
ines whether this spike is also reflected in balance sheet data by plotting the yearly share
of total machinery investment around the automation spike. Here, too, a clear pattern
emerges, reinforcing the validity of my definition of treatment. In addition, I provide
further robustness exploring various restrictions and alternative definitions of spikes in
Section 5. None of these affect my results.

Event study design My empirical setting involves a binary, absorbing treatment where
automation adoption occurs at staggered intervals across firms and time. I exploit this
variation in treatment timing by employing a difference-in-differences (DiD) approach.
Recent literature has highlighted several limitations of the traditional Two-Way Fixed
Effects (TWFE) estimator in settings with staggered treatment adoption and treatment

14See Domini et al. (2021, 2022) and Bisio et al. (2025) for similar definitions.
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effect heterogeneity (Meer and West, 2016; Goodman-Bacon, 2021; de Chaisemartin and
D’Haultfœuille, 2020b; Sun and Abraham, 2021; Borusyak et al., 2022). While the TWFE
estimator is commonly used in DiD analyses, it can yield biased estimates in such contexts.
This bias arises because it computes a weighted average of all possible two-by-two DiD
comparisons. These comparisons include both “good comparisons” (with units that have
never been treated or are not yet treated) and “bad comparisons” (involving units that
have already been treated).15 To address these methodological issues, I use the estimator
proposed by Callaway and Sant’Anna (2021), which is more robust in such settings.16

The Callaway and Sant’Anna (2021) estimator involves a two-step procedure. First, it
estimates group-time average treatment effects (ATT) for each cohort of adopters. Then,
it aggregates these effects to derive parameters of interest, such as the overall ATT or
event study estimates. Formally, I estimate the group-time ATT as follows:

ATT(g, t) = E[Yi,t − Yi,g−1|Gi = g]− E[Yi,t − Yi,g−1|Gi = Gcomp] (1)

where ATT(g, t) represents the average treatment effect at time t for the cohort that
adopts automation in year g.17 Here, Yi,t is the dependent variable of interest at time
t for firm i, Gi indicates the year of adoption for firm i, and Gcomp denotes the set of
comparison firms for an adopter at time g, which have either never adopted or have not
yet adopted by time t. Formally Gcomp = {g′|g′ > t}. By construction, this method relies
solely on “good comparisons” and does not impose restrictive assumptions on treatment
effect heterogeneity.

To compute the event-study parameters, I take a weighted average of the treatment
effects l periods after adoption across different cohorts:

ÂTTl =
∑

g

wgATT(g, g + l) (2)

where the weights wg reflect the relative frequency of each cohort among adopters. I
cluster standard errors at the firm level and report 90% and 95% bootstrap confidence
intervals. The validity of my DiD approach relies on two key assumptions: (i) parallel

15Most previous firm-level studies on automation do not to account for these issues, leading to potentially
misleading conclusions (e.g., Acemoglu et al., 2020; Koch et al., 2021; Domini et al., 2021). Some exceptions
exist: for instance, Bessen et al. (2023) employs a stacked DiD design as proposed by Cengiz et al. (2019).
However, despite its appeal, Wing et al. (2024) argue that stacked regressions can be biased due to
differential implicit weighting of treatment and control trends across sub-experiments. Another exception
is the work by Bisio et al. (2025), which similarly to me employs the approach by Callaway and Sant’Anna
(2021).

16The approach by Callaway and Sant’Anna (2021) also enhances the transparency and objectivity of the
analysis, as advocated by Rubin (2007, 2008), by clearly defining the control group. Given the challenges
of estimating the effects of automation, such methodological rigor is particularly valuable in my context.

17For example, ATT(2015, 2017) would be the average treatment effect in 2017 for firms that adopt
automation technology in 2015.
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trends and (ii) no anticipation.

Parallel trends. The parallel trends assumption requires that, in the absence of treat-
ment, the average outcome for the treatment and control group would have followed
parallel trends over time. However, as highlighted in Section 2.4, automating firms differ
significantly from non-adopters, e.g., in terms of size and productivity. Indeed, automation
is a decision by the firm, hence a self-selection into treatment. To account for this issue, I
define the comparison group to include only firms that have not yet adopted automation
at the time of comparison. Additionally, I condition parallel trends on a set of relevant
covariates.18 Although the parallel trend assumption is not directly testable, its validity
can be partially assessed by examining pre-treatment trends. I visually inspect whether
the pre-trend coefficients are different from zero and formally test for pre-treatmen parallel
trends based on group-time average treatment effects (Callaway and Sant’Anna, 2021).
Finally, I perform various robustness checks and sensitivity analyses, as detailed in Section
5. My findings remain unchanged across these controls.

No anticipation. The no-anticipation assumption requires that firms do not adjust their
behavior in anticipation of automation adoption. This means that adopting automation
in time t should not affect the outcome variables before t. Although this assumption is
not testable, I conduct robustness checks by varying the horizons of the baseline period
to detect any potential anticipatory behaviors (Callaway and Sant’Anna, 2021).

4 Results

This section presents the main findings from my difference-in-differences event study de-
sign, focusing on two key puzzles from the literature. First, I examine automation’s impact
on total hours worked, addressing the conflicting evidence in the literature, where some
studies find a positive effect, while others report job losses. Drawing on insights from
Section (2.4), I use heterogeneity analyses to reconcile these discrepancies. Second, I in-
vestigate automation’s effects on workforce skill composition. While the prevailing view
suggests skill-biased automation favoring, e.g., STEM professionals and managers at the
expense of blue-collar workers, previous firm-level evidence remains inconclusive.

Effect on Employment. Figure 5 presents the impact of an automation spike on the
log of total hours worked at the firm-level. Panel A estimates indicate a 9% increase in
total hours worked five years post-adoption. The visual inspection shows that pre-trends in
employment were similar between the treatment and control groups and I cannot reject the
null hypothesis of conditional parallel trends. This finding aligns with a growing body of

18In my benchmark exercise I control for baseline values of the log of labor productivity, log of turnover,
log of hourly wages, firm size class and export status using the doubly-robust (DR) estimation procedure
(Sant’Anna and Zhao, 2020; Callaway and Sant’Anna, 2021).
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evidence suggesting a positive relationship between automation and firm-level employment,
as observed in various studies across different countries.19 These studies typically argue
that automation can enhance productivity, leads to new task or job creation, thereby
driving overall employment growth within firms. Some studies, however, offer a contrasting
narrative by highlighting the job-destroying nature of automation, identifying a negative
relationship between automation and employment (Bonfiglioli et al., 2024; Bessen et al.,
2020, 2023). These contradictory findings reveal a fundamental puzzle in the current
literature.

Figure (5) Event study: Job creating and destroying effects of automation

Notes: The figure provides event study estimates of adopting automation using the approach of Callaway
and Sant’Anna (2021) as specified in equation (2). The comparison group comprises firms that have not
yet adopted automation, with the analysis conducted under the assumption of conditional parallel trends.
I control for the log of labor productivity, log of turnover, log of hourly wages, firm size class and export
status at the firm’s baseline (τ = −1). The coefficient for the year prior to adoption is normalized to zero.
Panel A includes all firms that eventually adopt automation within the 2004-2021 period, while Panel B
further disaggregates the sample by firm size—distinguishing between small firms (1-49 employees) and
large firms (50 or more employees) based on their baseline values. Bootstrapped standard errors are
clustered at the firm level, with confidence intervals provided for both the 5% and 10% significance levels.

Heterogeneous effects. A potential explanation for these discrepancies in the litera-
ture may be that the average effect of automation on employment is less informative in
the presence of heterogeneous treatment effects. One commonly cited factor, which could
influence automation outcomes in opposing ways is firm size. Larger firms may experience
greater productivity gains from automation than smaller firms due to economies of scale,
which in turn, may result in higher employment growth. (Koch et al., 2021; Humlum,
2019; Acemoglu et al., 2022). Conversely, a substantial body of literature on firm growth
determinants suggests an inverse relationship between firm size and employment growth

19For example, for Canada (Dixon et al., 2021), Denmark (Humlum, 2019), Finland (Tuhkuri et al.,
2022), France (Acemoglu et al., 2020; Aghion et al., 2022b), Italy (Bisio et al., 2025) and Spain (Koch
et al., 2021).
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(Birch et al., 1979; Neumark et al., 2011). Moreover, scale effects from automation are
frequently linked to export status (Koch et al., 2021) and multinational ownership (Leone,
2023). Some studies also find that firms with greater technological sophistication benefit
more from exposure to international competition (Bloom et al., 2015). Additionally, firm
age plays a crucial role in employment dynamics, with multiple studies documenting a
negative correlation between firm age and firm-level employment growth (Delmar et al.,
2003; Haltiwanger et al., 2013). Beyond firm-level characteristics, sectoral differences may
be crucial, as automation could reduce jobs in some industries while fostering employ-
ment in others (Bogliacino and Pianta, 2010; Reljic et al., 2023). While these factors may
drive variation in automation’s employment effects, their influence remains unclear. The
following analysis investigates their role in shaping automation outcomes.

Table (2) Event study: Job creating and destroying effects of automation

Unweighted (All) Weighted (All) Small firms Large firms

Event time ATT SE ATT SE ATT SE ATT SE

-4 0.015 (0.009) -0.010 (0.036) 0.023 (0.012) -0.031 (0.015)
-3 0.019 (0.008) 0.020 (0.03) 0.026 (0.01) -0.030 (0.013)
-2 0.005 (0.006) 0.008 (0.028) 0.012 (0.008) -0.026 (0.01)
0 0.046 (0.005) -0.016 (0.034) 0.067 (0.006) -0.046 (0.01)
1 0.084 (0.007) -0.104 (0.048) 0.127 (0.008) -0.106 (0.013)
2 0.098 (0.009) -0.166 (0.049) 0.156 (0.011) -0.152 (0.016)
3 0.104 (0.011) -0.203 (0.057) 0.180 (0.014) -0.204 (0.022)
4 0.107 (0.013) -0.262 (0.063) 0.191 (0.015) -0.241 (0.021)
5 0.094 (0.015) -0.263 (0.083) 0.190 (0.017) -0.292 (0.028)

Overall ATT 0.089 (0.008) -0.169 (0.047) 0.152 (0.009) -0.174 (0.014)

Pre-trend p-value 0.350 0.140 0.530 0.170
Number of Firms 14720.000 14720.000 11956.000 2764.000

Notes: This table reports overall ATT and dynamic ATT estimates from the event study in equation
(2), following Callaway and Sant’Anna (2021). The outcome variable is the log of total hours worked.
The comparison group consists of firms that have not yet adopted automation under the assumption of
conditional parallel trends. I control for the log of labor productivity, log of turnover, log of hourly wages,
firm size class and export status at the firm’s baseline (τ = −1). Columns (1)-(2) show unweighted results,
(3)-(4) present results weighted by baseline total hours worked (net employment effect for adopters), and
(5)-(6) and (7)-(8) report results for small and large firms, respectively. The coefficient for the year before
adoption is normalized to zero. Bootstrapped standard errors, clustered at the firm level, are in brackets.

Small vs. Large Firms. To assess whether automation’s employment effects vary by
firm size, I separately analyze its impact on small (1–49 employees) and large firms (50+
employees) based on their baseline size (τ = −1). Panel B of Figure 5 reveals a stark
contrast: automation increased employment in small firms by approximately 15%, while
large firms experienced a 30% decline in total hours worked. This pattern aligns with
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recent evidence from Italy (Bisio et al., 2025), suggesting a dual nature in automation
with job creation in small firms and job destruction in larger firms.

Since small firms dominate in number among adopters, but large firms account for
most employment (see Section 2.4, the aggregate employment effects of adopters likely
differ from those in Panel A of Figure (5). To quantify the net impact, I weight the results
by total hours worked in the baseline year. As shown in Table (2), the negative effect
dominates, leading to an average 17% reduction in total hours worked. This divergence
between small and large firms may help reconcile conflicting findings in the literature,
as some studies reporting negative effects (Bessen et al., 2020, 2023) rely on weighted
estimates that may mask positive effects among smaller firms (Bisio et al., 2025).

Further Heterogeneity. Figure (6) examines heterogeneity across firm characteristics
and industries. Panels A and C present the overall effects, while Panels B and D further
break down the results by firm size. Panel A shows positive employment effects for young
firms, non-exporters, multinational firms, and domestic firms, while exporters exhibit no
effect and old firms experience employment losses. Panel B confirms the dual pattern:
small firms see job creation, while large firms face job destruction, with the exception of
small old firms, where the effect is positive but not statistically significant. Industry het-
erogeneity in Panel C reveals predominantly positive employment effects across sectors,
though some are not statistically significant. Panel D, which further differentiates by
firm size, highlights a consistent pattern across all industry categories—small firms ben-
efit from automation, while large firms experience employment declines. Notably, Table
(7) shows that firm types and sectors with statistically insignificant results for the total
sample tend to have a higher proportion of large firms, reinforcing the idea that sample
composition, particularly firm size, can explain discrepancies in the literature. Finally, I
examine heterogeneous effects across different automation technologies. This consistent
pattern is also observed across all five automation technologies, with small firms consis-
tently experiencing job creation, while large firms see employment declines or no effect.
Taken together, these findings confirm a robust and recurring result: regardless of firm
type, industry, or technology, firm size determines the direction of automation’s impact
on employment dynamics.

Effect on the workforce composition. Automation influences not only the number
of jobs but may also change the composition of the workforce. The prevailing view in
the literature suggests that automation is skill-biased, meaning it tends to displace low-
skilled workers engaged in simple, repetitive tasks (routine-manual work), while increasing
demand for workers in more complex roles that require a broader range of skills, such as
managers and STEM professionals (Acemoglu and Restrepo, 2019, 2020b; Restrepo, 2023).
However, an alternative perspective argues that automation can lead to ”deskilling,” where
work is reorganized around lower-skill levels than previously required (Braverman, 1974;
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Figure (6) Heterogeneity analysis by firm and industry characteristics

Notes: The figure provides overall ATTs based on event study estimates of dynamic effects of adopting
automation on employment shares using the approach of Callaway and Sant’Anna (2021) specified in
equation (2). The comparison group comprises firms that have not yet adopted automation, with the
analysis conducted under the assumption of conditional parallel trends. I control for the log of labor
productivity, log of turnover, log of hourly wages, firm size class and export status at the firm’s baseline (τ
= −1). The coefficient for the year prior to adoption is normalized to zero. Panel A segments the sample
by firm characteristics, distinguishing between young (age ≤ 15) and old firms (age > 15); exporting and
non-exporting firms, multinational firms (foreign capital share ≤ 50%) and domestic firms (>50%) based
on their baseline values. Panel C differentiates firms by sector, categorizing them into manufacturing,
services, and varying levels of digital intensity, following the sectoral taxonomy outlined by Calvino et al.
(2018). Panel B and D further disaggregate these groups by firm size. Bootstrapped standard errors are
clustered at the firm level, with confidence intervals provided at both the 5% and 10% significance levels.

Kunst, 2020; Downey, 2021; Danieli, 2022). Furthermore, some empirical studies point
to skill-neutral effects, where automation does not significantly change the overall skill
distribution of the workforce (Domini et al., 2021; Tuhkuri et al., 2022).
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Figure (7) Heterogeneity Analysis by Technology Groups

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), differentiating between various groups of technologies: Industrial Robots (IR),
Conventional Automation (CA), Additive Manufacturing (AM), Automatic Data Processing Machines
(ADP), and the Industrial Internet of Things (IIoT). For more detailed information refer to table (3).
The spike is defined in relation to the largest event of imports for the respective technology type. The
comparison group consists of firms that have not yet adopted the respective technology. The coefficient
for the year prior to adoption is normalized to zero. Panel A includes all firms that eventually adopt
automation within the 2004-2021 period, while Panel B further disaggregates the sample by firm size—
distinguishing between small firms (1-49 employees) and large firms (50 or more employees) based on their
baseline values. Bootstrapped standard errors are clustered at the firm level, with confidence intervals
provided for both the 5% and 10% significance levels.

Figure (8) illustrates the impact of automation on workforce composition across three
key dimensions: (i) education levels, (ii) task groups, and (iii) macro-occupational cate-
gories.20 Given the heterogeneous patterns observed earlier, Panel A presents results for
the full sample, while Panel B differentiates between small and large firms to uncover
potential firm-size-driven disparities. Broadly, an increasing demand for higher-skilled
workers aligns with the notion of skill-biased technological change, whereas a shift toward
lower-skilled roles supports the deskilling hypothesis.21

Looking first at educational groups, Panel A shows a strong positive effect of automa-
tion adoption on the total hours worked by low-educated workers. A similar but less
pronounced effect is observed for middle-educated workers, while the impact on highly
educated workers appears negligible. Panel B, which differentiates by firm size, reveals a
downsizing trend across all educational groups in large firms and an expansion in small
firms. However, the magnitude differs significantly between lower- and higher educated
workers, suggesting a relative shift toward lower educated workers.

Regarding task groups, Panel A shows that automation significantly increases the
20For detailed definitions of these categories, see Table (6).
21Note that this analysis focuses on shifts between occupational and educational groups rather than

within-group changes.
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Figure (8) Impact on Skill Composition

Notes: The figure provides overall ATTs based on event study estimates of dynamic effects of adopting
automation on total hours worked by skill groups using the approach of Callaway and Sant’Anna (2021)
specified in equation (2). The figure distinguishes between workers according to three key dimensions: (i)
educational attainment, (ii) routine-intensity of their tasks and (iii) macro-occupational group. For more
detailed information refer to table (6). The comparison group comprises firms that have not yet adopted
automation, with the analysis conducted under the assumption of conditional parallel trends. I control
for the log of labor productivity, log of turnover, log of hourly wages, firm size class and export status at
the firm’s baseline (τ = −1). The coefficient for the year prior to adoption is normalized to zero. Panel
A includes all firms that eventually adopt automation within the 2004-2021 period, while Panel B further
disaggregates the sample by firm size —distinguishing between small firms (1-49 employees) and large firms
(50 or more employees) based on their baseline values Bootstrapped standard errors are clustered at the
firm level, with confidence intervals provided at both the 5% and 10% significance levels.

working hours of routine-manual workers, mirroring the strong effect observed for low-
educated workers. While other task groups also experience positive effects, these are
notably smaller in magnitude. Panel B further clarifies the pattern of job creation in
small firms and job destruction in large firms across all task categories. Importantly, the
demand for routine-manual workers is particularly strong in small firms, reinforcing the
notion that automation fosters employment growth in lower-skilled, manual-intensive roles
within smaller enterprises.

Turning to macro-occupational groups, Panel A indicates positive effects on total hours
worked for non-professional, blue-collar, and professional workers, though the increases are
far more pronounced for blue-collar and non-professional workers. In contrast, I find no
significant effects for STEM professionals and managers. Once again, Panel B confirms
the opposing trends of downsizing in large firms and expansion in small firms. Notably,
in large firms, the effect on managers is not statistically significant, and the decline in
hours worked is most pronounced for STEM professionals. Conversely, in small firms, the
demand for lower-skilled workers is strongest for blue-collar and non-professional workers.

Overall, these findings challenge the prevailing narrative in the literature. The results
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in Figure (8) suggest that automation leads to a shift in the skill composition of adopting
firms away from highly skilled workers—both in terms of education and occupational
groups—toward less-skilled workers. Particularly striking is the strong positive effect
for low-educated workers, routine-manual workers, and blue-collar workers in small firms,
which contrasts with the widely held view of automation as primarily skill-biased. Notably,
estimates for industrial robots and additive manufacturing are relatively noisy and often
not statistically significant. Moreover, it is worth highlighting that for automatic data
processing and IIoT technologies, the estimates for highly educated workers in small firms
turn negative, though they remain statistically insignificant.

5 Robustness

I conduct extensive robustness checks, sensitivity analysis and falsification tests. More
specifically, I control for potential issues related to the diff-in-diff approach, i.e. potential
violations of the parallel trend and no anticipation assumptions, as well as issues related
to my automation proxy. The results are presented in Appendix B. Importantly, none of
these exercises result in significant deviations from my key findings.

Sensitivity Analysis of Robustness to Violations of Parallel Trends. I use the
approach by Rambachan and Roth (2023) to evaluate the robustness of my findings to
potential violations of the parallel trends assumption. Their approach is based on the
intuition that pre-trends are informative about violations of parallel trends. Thus, vio-
lations of parallel trends in the post-treatment period cannot be much bigger than those
in the pre-treatment period. Accordingly, I can impose boundaries such that the post-
treatment violation of parallel trends is no more than some constant (M̄) larger than the
maximum violation of parallel trends in the pre-treatment period. For example, setting
the value of M̄ to 1 assumes post-treatment violations are, at most, the same size as
pre-treatment violations. Figure (12) presents sensitivity analyses for employment effects
five years post-adoption. Results for the full sample (Panel A) remain robust even when
allowing post-treatment violations up to half the maximum pre-treatment deviation. For
small and large firm subsamples (Panels B and C), results hold even when permitting
violations as large as the maximum pre-treatment deviation.

Placebo treatment timing. Moreover, one would want to be sure that the dynamic
results I report are not the result of unrelated trends. To test this, I re-estimate the
effect of an automation spike by considering a ‘placebo’ treatment. More precisely, I
randomized the timing of the adoption of automation across adopters. If my results are
driven by spurious trends between adopting cohorts, these trends will now be picked up
by my estimation as the treatment effect. Figure (13) shows zero effects of these placebo-
treatment.
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No anticipation. As pointed out above, a central concern for identification is the va-
lidity of the no-anticipation assumption. My identification strategy could be threatened
if firms had anticipated their investment in automation in advance. In such cases, results
might be biased, as firms could have already begun adjusting their labor force during
the pre-treatment period. To address this issue, I follow the approach of Callaway and
Sant’Anna (2021) by relaxing the assumption of no treatment anticipation behavior. Es-
sentially, this involves extending the pre-treatment window further back in time and only
including periods that are sufficiently distant from when the treatment actually begins.
I conduct a sensitivity analysis that accounts for potential anticipation effects, covering
periods ranging from one year (baseline) to four years prior to automation adoption. Fig-
ure (14) shows no significant evidence of anticipation effects in the years leading up to the
automation event.

Single vs. Multiple Establishment Firms. Another potential concern involves the
organization of work across different plants within a firm. The displacement effects of
automation are expected to be more pronounced in the plants that directly implement au-
tomation, whereas non-automating plants within the same firm might experience indirect
effects through productivity spillovers. Unfortunately, my analysis is constrained by the
nature of my data, which is aggregated at the firm level (from customs and balance sheet
data), preventing us from conducting a more granular plant-level investigation. However,
I can focus on single-plant firms, where within-plant and within-firm effects are indis-
tinguishable, providing a clearer view of the automation impact. Notably, single-plant
firms constitute approximately 80% of my sample. The results presented in Figure (15)
align mainly with my main findings. However, it is important to note that for small and
multi-plant firms, the observed effects become statistically insignificant.

Controlling for hidden intermediation. Some potential concerns may arise regard-
ing the use of my import-based proxy for automation. Specifically, my empirical design
assumes that imported automation-related goods are utilized by firms for production pur-
poses. However, it is possible that some firms may import automation products with
the intent to resell them domestically or internationally, a practice known as Carry Along
Trade (Bernard et al., 2019). This could potentially lead to a misclassification of adoption.
To address the issue of re-exporting, I re-estimated my baseline model using two filters:
(i) excluding all firms that re-export automation products within five years of the import
spike, and (ii) adopting a more conservative approach by excluding all firms that export
automation products during the entire observation period. To further mitigate the risk of
reselling within the domestic market, I (iii) excluded persistent importers — those firms
that import every year — as this may indicate a business model focused on reselling, and
(iv) restricted my sample to firms that import only once during the observation period,
as it is unlikely these firms are engaged in systematic reselling activities. As illustrated in
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figure (16), my results are robust to these controls. Note, however, that Panel B shows
that the re-estimates for small and large firms are (modestly) bigger than my baseline
results, suggesting that hidden intermediation may introduce a bias toward zero.

Alternative Specification of Spikes. Additionally, two potential issues may arise
regarding the definition of an import ”spike.” First, accurately identifying the timing of
adoption may be challenging for firms that import automation products multiple times.
However, my previous analysis, which restricts the sample to firms that import automation
only once, suggests that this is not an issue in my case. Second, there is the possibility
that technology-adoption events are not sufficiently large, potentially leading to issues
of statistical power. To address these concerns, I conducted a sensitivity analysis using
alternative specifications of automation spikes. Following a similar approach to Bessen
et al. (2020, 2023), I defined a spike based on a relative size threshold rather than the
highest rank, specifically defining a spike as occurring when imports are at least three
times larger than the firm’s average import value in other years. Additionally, I applied
more stringent criteria to my baseline spike definition by imposing a minimum import
value of 2,500 and 5,000 Euro.22 These alternative definitions not only address potential
concerns but also enhance the comparability of my results with the existing literature.
Also here, Figure (17) shows that my results are robust.

Event-time balanced panel: Another concern is that the panel of treated firms may be
unbalanced in terms of event time. To address this, Figure (18) presents results based on a
balanced sample, restricted to a 5-year event window. This ensures that the composition
of the treatment and control groups remains consistent across different points in event
time. The effects of an automation spike observed in this balanced sample closely mirror
those found when using the full dataset. While my main specification utilizes all available
data to maximize statistical power, the consistency of results from the balanced panel
strengthens my confidence that the observed effects of automation on employment are not
driven by shifts in firm composition over event time.

Reskilling instead of deskilling. The results presented in Figure (8) suggest that
after an automation event, work tends to be reorganized around lower skill levels than
before. However, an alternative explanation might be that this apparent shift toward
lower skill levels is obscured by companies investing in employee training. In this case,
while the educational qualifications or occupational categories of workers may not show a
noticeable change, automation could still be associated with higher skill requirements. This
hypothesis may be particularly relevant in the context of Portugal, where the workforce’s
skill level is below the European average. To investigate this hypothesis, I estimate the

22Note that Acemoglu et al. (2023) impose a minimum import value of 2,500 Euro in their baseline
specification.
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impact of automation on training costs per worker. If the reskilling hypothesis holds, I
would expect to see an increase in training expenses. However, Figure (19) demonstrates
that there is no significant effect of automation on training costs following an automation
event.

6 Conclusion

The fear of technological mass unemployment is widespread. Despite a rapidly growing
body of empirical research on the adoption of automation technologies, its overall impact
on employment and workforce composition remains a topic of intense debate. Recent
findings are particularly puzzling: while some studies suggest a positive relationship be-
tween firm-level automation and employment (Acemoglu et al., 2020; Koch et al., 2021;
Dixon et al., 2021), others report a negative impact (Bessen et al., 2020, 2023; Bonfigli-
oli et al., 2024). Furthermore, although skill-biased frameworks predict that automation
should disproportionately displace low-educated production workers in routine-intensive
jobs and favors highly skilled workers like STEM professionals, empirical evidence remains
inconclusive.

This paper began by confirming the positive relationship between automation adoption
and firm-level employment in Portugal. However, consistent with the recent findings of
Bisio et al. (2025) for Italy, this analysis reveals a critical dual nature in automation—job
creation in small firms and job destruction in large firms. Since small adopters are more
numerous but large adopters employ the majority of workers, weighting by total hours
worked suggests an overall negative net employment effect. Importantly, I show that this
pattern persists across various firm types, industries, and types of automation technology,
emphasizing the important role of firm size in shaping automation outcomes. Crucially,
this dual nature in automation helps reconcile conflicting findings in the literature. Stud-
ies identifying a negative relationship (Bessen et al., 2020, 2023) often rely on weighted
estimates, which may obscure positive effects among smaller firms. These findings under-
score the urgent need to develop a better understanding of how policies and labor market
institutions can mitigate automation’s adverse effects.

Most importantly, focusing on the impact of automation on skill composition, my
findings suggest that automation reorganizes work around less-skilled workers. Specifically,
I identify a positive effect on total hours worked for low-educated, routine-manual, and
blue-collar workers. Differentiating by firm size, the analysis reveals that large firms tend to
downsize across most skill groups, while small firms expand employment. Yet, both exhibit
a relative shift toward lower-skilled labor over high-skilled workers. Particularly striking
are the strong negative estimates for STEM professionals in large firms, challenging the
widely accepted view that automation primarily benefits highly skilled workers. Instead,
my findings contribute to an emerging debate on characterization of technological change
in relation to labor. While traditional perspectives emphasize skill-biased technological
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change, some recent studies suggest a deskilling trend (Kunst, 2020; Downey, 2021; Danieli,
2022). My results align with this emerging perspective, indicating that automation’s
impact on the workforce may be more complex than previously assumed.

My findings have several important implications. First, they challenge the optimistic
narrative that automation-driven job creation is widespread across adopting firms. The
evidence of job destruction in larger firms, combined with some support for the deskilling
hypothesis, suggests that automation may exacerbate inequality. Second, discussions on
automation’s diffusion and impact are often shaped by techno-deterministic perspectives.
However, my findings highlight the critical role of socio-economic factors-such as firm size,
the types of automation technology adopted and institutional or country-specific contexts-
in shaping both the spread and consequences of automation. This aligns with qualita-
tive studies documenting significant heterogeneity in automation adoption and outcomes
across firms, sectors and countries (Krzywdzinski, 2017, 2021). Future research should
further explore the varieties of automation. To determine whether my findings reflect pat-
terns specific to middle-income countries or represent broader trends, rigorous comparative
cross-country studies on automation, aligned with recent econometric advancements, are
needed. Third, my findings have direct policy implications, particularly for industrial
strategies such as Industry 4.0. For example, Portugal’s Industry 4.0 strategy adopts a
bottom-up approach targeting small- and medium-sized enterprises (SMEs) (Yang and
Gu, 2021). Policymakers must recognize the dual nature of automation’s impact on small
and large firms; failure to do so could lead to unintended consequences—either fostering
employment growth or exacerbating unemployment, depending on the context. Finally,
the net employment effect of automation calls for labor market policies and institutions
that mitigate its negative impacts, highlighting the need for research to better understand
automation’s interaction with these institutions and inform effective policy responses.
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Figure (9) Event study - Impact on Skill Groups by Technologies
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Notes: The figure provides overall ATTs based on event study estimates of dynamic effects of adopting
automation on total hours worked by skill groups using the approach of Callaway and Sant’Anna (2021)
specified in equation (2). The figure distinguishes between workers according to three key dimensions: (i)
educational attainment, (ii) routine-intensity of their tasks and (iii) macro-occupational group. For more
detailed information refer to table (6). I distinguish between various groups of technologies: Conventional
Automation (CA) in Panel A and B, Additive Manufacturing (AM) in Panel C and D, Industrial Robots
(IR) in Panel E and F, Automatic Data Processing Machines (ADP) in Panel G and H, and the Industrial
Internet of Things (IIoT) in Panel I and J. For more detailed information refer to table (3). The spike
is defined in relation to the largest event of imports for the respective technology type. The comparison
group consists of firms that have not yet adopted the respective technology. I control for the log of labor
productivity, log of turnover, log of hourly wages, firm size class and export status at the firm’s baseline
(τ = −1). The coefficient for the year prior to adoption is normalized to zero. Panels on the left hand
side (A,C,E,G,I) include all firms that eventually adopt automation within the 2004-2021 period, while
Panels on the right hand side (B,D,F,H,J) further disaggregates the sample by firm size —distinguishing
between small firms (1-49 employees) and large firms (50 or more employees) based on their baseline values.
Bootstrapped standard errors are clustered at the firm level, with confidence intervals provided at both
the 5% and 10% significance levels.
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A Additional information

A.1 Data Processing and Variable Construction

I start with the matched employer-employee data set (QP), which includes 5,570,419 firm
and 50,960,574 worker observations for the period 2004-2021. I first merge firm and worker
data for each year and I then apply for each year the following cleaning procedure: (i) I
drop a minority of worker observations with an invalid social security number, i.e., if the
worker id has less than 6 digits or more than 10 digits. (ii) For workers with multiple
jobs within the same year, I keep his or her highest paying job with the highest hours
worked (since most likely, this is his or her primary job).23 I keep (iii) dependent workers
(iv) between 18 and 65 (working-age population). I drop worker-year pairs (v) without
complete basic remuneration, (vi) whenever the sum of weekly normal and overtime hours
is below 25 and above 80 and (vii) their regular earnings are less than 80 percent of
the minimum wage.24 (viii) Based on the resulting sample, I trim worker-year pairs
whose monthly total wage is outside the top 0.5 percentile. Gross monthly earnings from
dependent work are obtained by the sum of the five types of pay available in the data (base
wages, tenure-related payments, overtime pay, subsidies). I construct hourly total wages
by dividing individuals’ total monthly remuneration by total monthly hours worked. The
data is then appended to construct my linked employer-employee panel data. After this
procedure I have 4,187,954 firm-year observations and 35,889,005 worker-year observations.
Finally, as the Portuguese classification of occupations (corresponding to the European
ISCO classification) has been revised in 2010, I establish a data-driven one-to-one mapping.
To do this, I use the following criterion: if the majority of workers in occupation A in
2010 (CPP/2010) have occupation B in 2009 (CNP/1994), then I map occupation A
into occupation B. I then turn to the balance sheet data (SCIE) and recover information
on firm’s 5-digit industry classification (CAE Rev.3, based on NACE-Rev. 2 Statistical
classification of economic activities in the European Community), gross value added at
market prices, total sales, wage bill, investment in equipment and machines and expenses
for worker training. I discard observations that have unreasonable values, i.e. non-positive
turnover or gross value added.

The customs data records individual trade transactions on a monthly basis. I collapse
these transactions to the firm, product, year level and retrieve information on total yearly
imports and exports of automation-related capital goods as described in section 2 and
table 3. I then compute total imports and exports aggregating the data at the firm-year
level.

Finally, I merge the the matched employer-employee data QP with the balance sheet
data SCIE using the unique, time-invariant identifier based on the firm’s social security

23Note that others (e.g. Caliendo et al., 2020) drop workers with multiple jobs in the same year.
24Information on minimum wage regulation stems from https://www.dgert.gov.pt/evolucao-da-

remuneracao-minima-mensal-garantida-rmmg.

41

https://www.dgert.gov.pt/evolucao-da-remuneracao-minima-mensal-garantida-rmmg
https://www.dgert.gov.pt/evolucao-da-remuneracao-minima-mensal-garantida-rmmg


number. I keep only firm observations that appear in both data sources. Then I add
firm-year trade information from the CI dataset. I assign each firm a permanent 2-digit
sector based on the most frequent occurrence, since firms industry code may vary across
years, e.g. due to misreporting. I restrict the sample to firms located in mainland Portugal
(omitting those in the Azores and Madeira islands). To avoid potential misclassification
of firms as adopters, I exclude retailers and intermediaries from my analysis by dropping
firms with the respective 5-digit industry codes as detailed in Table (4). Given that my
proxy for automation adoption is based on imported product categories, I primarily focus
on firms that have imported at least once during the period from 2004 to 2021 (importer
sample). This results in a final sample size of 578,764 firm-year observations. All monetary
values in the paper are quoted in year 2012 Euros, deflated using the Consumer Price Index
from INE.

Identification of automation-related capital goods. Table 3 presents the product
codes that I use to identify automation-related imports following the previous work by
Acemoglu and Restrepo (2021), Abeliansky et al. (2020), Domini et al. (2021, 2022),
Castellani et al. (2022) and Andreoni et al. (2023).
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Table (3) HS product codes referring to automation-related capital goods

Label HS17 codes (6-digits) Used in extant literature

01 Industrial robots 847950. Acemoglu et al. (2020);
Dixon et al. (2021); Domini
et al. (2021, 2022); Ace-
moglu and Restrepo (2021);
Castellani et al. (2022); Bi-
sio et al. (2025).

02 Conventional Automation technologies
2.1 Dedicated Machinery 847989
2.2 Numerically controlled machines (NCM) 845811, 845891, 845921,

845931, 8459411, 845951,
845961, 8460122, 846022,
846023, 8460243, 846031,
846221, 846231, 846241.

2.2 Automatic machine tools
(excl. NCM)

845600- 846699, 846820-
846899, 851511-851519

Acemoglu and Restrepo
(2021); Domini et al. (2021,
2022); Bisio et al. (2025).

2.3 Automatic welding machines 851521, 851531, 851580,
851590

2.4 Weaving and knitting machines 844610-844630,
844711-844790.

2.5 Other textile dedicated machinery 844400-844590
2.6 Automatic conveyors 842831, 842832, 842833,

842839.
03 Additive Manufacturing (3D-Printing) 847720, 847759, 847780. Abeliansky et al. (2020);

Castellani et al. (2022).
04 Automatic Data processing machines
3.1 Automatic data processing machines 847130, 847141, 847149,

847150, 847321, 847330.
Domini et al. (2022); Bisio
et al. (2025).

3.2 Electronic calculating machines 847010, 847021, 847029.
05 Industrial Internet of Things
5.1 Network communication equipment 847180, 847190

Castellani et al. (2022)5.2 Non-wireles communication equipment 8517624.
5.3 Radio navigational aid and remote control

apparatus
852691, 852692.

5.4 Automatic regulating and control instru-
ments

903210, 903220, 903281,
903289, 903290.

Acemoglu and Restrepo
(2021); Domini et al. (2021,
2022); Bisio et al. (2025);
Castellani et al. (2022);
Andreoni et al. (2023).

Notes: The 6-digit product codes from the HS17 remain consistent across the years with very few excep-
tions: 1,2,3in Numerically controlled machines 845941 does not exist in HS02-HS12 and it’s concordance
845940 is classified among automatic machine tools, 846012 corresponds to 846011 and 846022-846024
corresponds to 846021 in HS02-HS12; 4in Network communication equipment 851762 (HS17) corresponds
to 851780 (HS02).;
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Role of Intermediaries in Automation. As discussed in section 2.3, I exclude in-
termediaries in automation technologies to reduce potential noise in the import-based
automation proxy. To identify these sectors, I follow Bisio et al. (2025), who began with
wholesalers classified under NACE Rev. 2 group codes 461–469 and then identified the
relevant 5-digit sectors, as detailed in Table (4).

Table (4) Industry codes of retailers/intermediaries of automation goods

5-digit codes Description
46140 Agents involved in the sale of machinery and industrial equipment
46190 Agents involved in the sale of various goods
46500 Wholesale of information and communication equipment
46620 Wholesale of machine tools
46640 Wholesale of machinery for the textile industry
46699 Wholesale of other machinery
46900 Non-specialized wholesale trade

Table (5) Role of Intermediaries in Automation

Year Share of firms Share of import value Net imports

2004 11.8 7.8 86.9
2005 11.8 8.3 86.2
2006 11.7 8.2 76.9
2007 12.5 9.4 77.2
2008 11.9 7.0 78.1
2009 11.0 4.4 78.0
2010 10.4 6.7 77.9
2011 10.5 7.6 83.5
2012 10.6 7.7 79.0
2013 10.6 9.4 83.3
2014 10.3 9.2 88.7
2015 10.1 8.9 90.6
2016 10.2 8.5 84.1
2017 9.7 9.4 85.7
2018 10.0 9.8 87.9
2019 9.9 9.9 87.1
2020 9.6 9.7 88.7
2021 8.2 9.6 91.3

Total 8.2 8.5 79.4

Notes: Table (5) presents the yearly share of resellers among firms that import automation technologies,
as well as the corresponding import value share of these technologies. This table also includes the net
import share for resellers, which is calculated as the difference between automation imports and exports,
divided by total imports. The final row shows the share of firms that act as resellers among those that
have imported automation technologies at least once. For more details on the role of intermediaries, refer
to Table (4).

44



Measuring skill groups. To distinguish workers by skill groups I rely on three
commonly used measures: First, I distinguish workers by their educational level defined
as low, middle and high-educated workers. Second, I classify occupation codes into broad
task groups, i.e. non-routine cognitive, routine cognitive, routine manual and non-routine
manual, following the work by Cortes et al. (2021). Third, I define five macro-occupation
groups: managers, STEM professionals, other professionals, blue-collar workers and other
non-professionals, similarly as in Barth et al. (2020). For the description of the codification
of the occupation codes see Table (6).

Table (6) Classifications of Occupational codes

Broad Task Group (Cortes et al., 2021) Occupational classification coding, CNP94 (3-digits)

Non-routine cognitive 112-131, 211-247,311-315,321-515
Routine cognitive 521-523
Routine manual 711-745,811-834,916-933
Non-routine manual 516,911-915

Macro-Occupation Groups Occupational classification coding, CNP94 (2-digits)

Managers 11-13
STEM professionals 21,31
Other professionals 22-24,32-34
Blue-collar workers 71-83
Other non-professionals 41-42,51-52,61-62,91-93

Notes: i) I map detailed occupation codes to broad task groups following previous work by Cortes et al.
(2021). ii) I classify occupation codes into five macro groups similar to Barth et al. (2020).
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A.2 Appendix Tables and Figures

Figure (11) Validation of treatment definition

Notes: Figure 11 illustrates, in Panel A, the average yearly share of automation imports as a percentage
of total automation imports over the period 2004–2021. Panel B presents the average yearly share of
investments in fixed assets, based on balance sheet data, relative to total investment over the same period,
serving as a proxy for investments in machinery. Both panels are centered around the automation spike,
defined as the largest automation import episode for each firm.

Table (7) Size Class Composition

Share of firms
Variable Small Large
Digital-Intensity - High 0.78 0.22
Digital-Intensity - Medium-high 0.86 0.14
Digital-Intensity - Low 0.65 0.35
Digital Intensity - Medium-low 0.69 0.31
Services 0.83 0.17
Production 0.69 0.31
Domestic firms 0.81 0.19
Multinational firms 0.56 0.44
Non-exporter 0.88 0.12
Exporter 0.68 0.32
Young firms 0.86 0.14
Old firms 0.65 0.35

Notes: Table (7) presents the composition of firm size classes in the baseline year, relative to the subsamples
used across different firm types and industry categories in Figure (6).
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B Robustness Checks - Figures

Figure (12) Sensitivity Analysis of Robustness to Violations of Parallel Trends

[1ex]

Notes: The figure presents a sensitivity analysis using the approach from Rambachan and Roth (2023) for
the event study that uses the approach from Callaway and Sant’Anna (2021) depicted in Figure (5) when
e = 5. The red line represents the 95% confidence interval based on the original estimates. The black lines
show the 95% confidence sets, allowing for violations of the parallel trends assumption up to M̄ times as
large as the maximum observed in pre-treatment periods. Panels A, B, and C illustrate the results of this
sensitivity analysis for all firms, small firms, and large firms, respectively.
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Figure (13) Placebo-Test

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), conducting a placebo test. In this test, I randomize the timing of automation
adoption among the adopters. The coefficient for the year prior to adoption is normalized to zero. Panel
A includes all firms that eventually adopt automation within the 2004-2021 period, while Panel B further
disaggregates the sample by firm size—distinguishing between small firms (1-49 employees) and large firms
(50 or more employees) based on their baseline values. Bootstrapped standard errors are clustered at the
firm level, with confidence intervals provided for both the 5% and 10% significance levels.

Figure (14) Controlling for adopters’ anticipation

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), this time relaxing the assumption of no treatment anticipation behavior. To account
for potential anticipation effects, I extend the pre-treatment window further back in time, ranging from
one year (baseline) to four years prior to the adoption, and include only those periods that are sufficiently
distant from the actual onset of treatment. The coefficient for the year prior to adoption is normalized
to zero. Panel A includes all firms that eventually adopt automation within the 2004-2021 period, while
Panel B further disaggregates the sample by firm size—distinguishing between small firms (1-49 employees)
and large firms (50 or more employees) based on their baseline values. Bootstrapped standard errors are
clustered at the firm level, with confidence intervals provided for both the 5% and 10% significance levels.
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Figure (15) Single vs. Multi-establishments

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), distinguishing between single and multi-establishment firms w.r.t. their baseline
year. The coefficient for the year prior to adoption is normalized to zero. Panel A includes all firms that
eventually adopt automation within the 2004-2021 period, while Panel B further disaggregates the sample
by firm size—distinguishing between small firms (1-49 employees) and large firms (50 or more employees)
based on their baseline values. Bootstrapped standard errors are clustered at the firm level, with confidence
intervals provided for both the 5% and 10% significance levels.

Figure (16) Controlling for hidden intermediation

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), with adjustments to account for hidden intermediation. The following filters are
applied: (i) exclusion of all firms that re-export within five years of the import spike, (ii) exclusion of all
firms that eventually export, (iii) exclusion of persistent importers, and (iv) inclusion of only those firms
that import automation products a single time. The coefficient for the year prior to adoption is normalized
to zero. Panel A includes all firms that eventually adopt automation within the 2004-2021 period, while
Panel B further disaggregates the sample by firm size—distinguishing between small firms (1-49 employees)
and large firms (50 or more employees) based on their baseline values. Bootstrapped standard errors are
clustered at the firm level, with confidence intervals provided for both the 5% and 10% significance levels.
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Figure (17) Controlling for alternative spike definitions

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), incorporating alternative specifications of automation spikes. Specifically, I define
a spike as occurring when (i) imports reach a minimum value of at least 2,500 Euros, (ii) imports exceed
5,000 Euros or (iii) imports are at least three times larger than the firm’s average import value in other
years. The coefficient for the year prior to adoption is normalized to zero. Panel A includes all firms that
eventually adopt automation within the 2004-2021 period, while Panel B further disaggregates the sample
by firm size—distinguishing between small firms (1-49 employees) and large firms (50 or more employees)
based on their baseline values. Bootstrapped standard errors are clustered at the firm level, with confidence
intervals provided for both the 5% and 10% significance levels.

Figure (18) Event-time balanced panel

Notes: The figure presents re-estimated event study results from Figure (5) using the approach of Callaway
and Sant’Anna (2021), applied to a balanced sample restricted to a 5-year event window. The coefficient
for the year prior to adoption is normalized to zero. Panel A includes all firms that eventually adopt
automation within the 2004-2021 period, while Panel B further disaggregates the sample by firm size—
distinguishing between small firms (1-49 employees) and large firms (50 or more employees) based on their
baseline values. Bootstrapped standard errors are clustered at the firm level, with confidence intervals
provided for both the 5% and 10% significance levels.

50



Figure (19) Effect on training costs per worker

Notes: The figure provides event study estimates of dynamic effects of adopting automation on training
costs using the approach of Callaway and Sant’Anna (2021) specified in equation (2). I restrict the panel
to the period 2010-2021 - excluding firms that adopt automation before 2011, because information on
training costs from the SCIE data is not available before. The comparison group comprises firms that have
not yet adopted automation, with the analysis conducted under the assumption of conditional parallel
trends. I control for the log of labor productivity and the log of total hourly wage at the firm’s baseline
(฀ = −1). The coefficient for the year prior to adoption is normalized to zero. Panel A includes all firms
that eventually adopt automation within the 2004-2021 period, while Panel B further disaggregates the
sample by firm size—distinguishing between small firms (1-49 employees) and large firms (50 or more
employees) based on their baseline values. Bootstrapped standard errors are clustered at the firm level,
with confidence intervals provided for both the 5% and 10% significance levels.
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