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Abstract

We propose a novel nonparametric minimum-distance estimator for the estimation of sim-

ulation models. Our approach leverages a nonparametric smoothing step to approximate the

distance between real-world observations and data simulated from a model, allowing for the es-

timation of model parameters without relying on specific auxiliary models or moment selection.

By employing sieve estimation techniques, we approximate the objective function using a series

of basis functions, ensuring consistency and providing nonparametric rates of convergence. We

investigate the asymptotic properties of our estimator and demonstrate its performance through

Monte Carlo experiments and an empirical application to financial market data. Our method

addresses the limitations of traditional simulation-based estimation techniques, particularly in

cases where the stochastic equicontinuity condition is violated, and offers a robust framework

for estimating parameters in heterogeneous agents models and other complex systems.

Keywords: Simulated minimum-distance; sieve estimation; stochastic equicontinuity.

JEL classification: C15; C52; C63

1 Introduction

Simulation-based econometrics has become a central tool to estimate the parameters of complex

heterogeneous models in which the likelihood function is intractable or difficult to compute. Among

the available methods, simulated minimum-distance (SMD) techniques provide flexible approaches

to estimation by minimizing a discrepancy measure between simulated and observed data. Rooted

in the simulated method of moments (SMM) pioneered by McFadden (1989) and Pakes and Pollard

(1989), SMD has evolved into several strategies. One of the most exploited techniques is indirect

inference (II, Gouriéroux, Monfort, and Renault, 1993; Smith Jr., 1993), which aims at connecting

the theoretical (simulated) model to real-world data through a simplified auxiliary model. The

parameters of the auxiliary model are estimated on both simulated and real-world data and the

distance between the estimated parameters in the two cases is minimized.
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SMD holds several advantages with respect to SMM or II: it does not rely on the choice of

a specific auxiliary model and it allows to bypass the choice of moments to match (Gallant and

Tauchen, 1996). Moreover, SMD is computationally cheaper than performing a full simulated max-

imum likelihood (SML, Lee, 1992; Kristensen and Shin, 2012) estimation as it avoids to evaluate

the model likelihood function for each combination of parameters. Rather, the alignment between

model output and empirical evidence is done by minimizing a weighted distance between selected

distributional features.

Although these approaches have been widely applied in macroeconomics (e.g., Christiano, Eichen-

baum, and Evans, 2005), finance (e.g., Duffie and Singleton, 1993; Nikolov and Whited, 2014), labor

(e.g., Voena, 2015), and industrial organization (e.g., Goettler and Gordon, 2011; Aguirregabiria

and Magesan, 2020), there are still some rooms of improvement. In fact, a further drawback hit-

ting the estimation of complex heterogeneous models, and that has not been fully recognized in

the previous literature, is that several simulation models do not respect some of the conditions for

the identification of the parameter θ in simulation-based estimation methods. These issues mainly

relate to the violation of the stochastic equicontinuity condition (see, e.g., McFadden, 1989, Pakes

and Pollard, 1989 and Newey and McFadden, 1994, pp. 2136-2137 for a definition). To provide an

intuition of the problem, let us define the unknown function f (θ) := f
(
P̂y,Pz(θ)

)
measuring the

distance between P̂y, the estimator of the probability measure Py based on real data {yn}Nn=1, and

Pz(θ), the probability measure of the data simulated from the model {zm (θ)}Mm=1. Pz(θ) cannot be

computed but can be approximated through P̂z(θ), the empirical probability measure of a sample

extracted from Pz(θ). This approximation allows to define the function f̂ (θ) := f
(
P̂y, P̂z(θ)

)
used

in simulation-based estimation techniques. Stochastic equicontinuity condition guarantees that the

mapping θ 7→ f
(
P̂y, P̂z(θ)

)
satisfies suitable continuity properties and, therefore, model parame-

ters can be consistently estimated. However, this assumption cannot be verified for heterogeneous

agents models and network models. To face this situation, we propose to approximate f (θ) through

a smooth function fK (θ) given by an expansion in a series of basis functions. A more detailed

treatment of the dependence of the simulated data on θ and the consequences of the violation of

the stochastic equicontinuity condition are exposed in Section 2 (see also Martinoli, 2021, Chapter

2, for a related discussion).

We go beyond a purely parametric moment-based approach. Rather, in the same vein of Corradi

and Swanson (2007) who develop an evaluation method for Dynamic Stochastic General Equilibrium

(DSGE) models based on distributional comparisons, we put forward an estimator that combines

SMD with a nonparametric smoothing step. We call it simulated nonparametric minimum-distance

(SNPMD) estimator. As pointed out by Seri, Martinoli, et al. (2021), several metrics can be used

to quantify the dissimilarity between real-world and model output. When dealing with ergodic time

series in which a single instance of a time series is sufficient to estimate probabilities of events, as in

our case, a good choice concerns distances between the probability measures that generated the data.

For this reason, we adopt the distributional metric developed by Gray (1988) (see also D. Ryabko

and B. Ryabko, 2010). Let yn be a real-world time series extracted from a process distribution ρy

and let zm (θ) be a simulated time series extracted from a process distribution ρz
θ
, with θ ⊆ Θ ∈ R

d,

we consider the metric D (ρy, ρz
θ
) and we represent it as a function of θ, which we call f̂ (θ) (a
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more precise way to indicate it would be f̂N,M (θ), but we use f̂ (θ) for ease notation). Precisely,

f̂ (θ) = f (θ)+ε, where ε is the sampling error of f̂ (θ) around f (θ), and the function f is estimated

through the estimator f̂K using K sieve spaces. The estimator θ̂ is then obtained by solving the

following minimization problem:

θ̂ =argmin
θ∈Θ

f̂K (θ) .

Sieve estimation is a nonparametric technique that approximates the unknown function of in-

terest using a finite linear combination of some known basis function (e.g., power series, regression

splines, trigonometric polynomials). Function approximation is progressively refined as the sample

size grows, ensuring that the estimator becomes increasingly accurate. This framework is partic-

ularly useful in settings where the functional form of the data generating process (DGP) is left

unspecified or highly complex. As such, it provides a powerful tool for handling high-dimensional

and nonparametric components. Key contributions to the theory of sieve estimation include the

seminal book of Grenander (1981) and the works of Newey (1997), de Jong (2002), Chen (2007),

Belloni et al. (2015), and Chen and Christensen (2015), among others. Other results on the consis-

tency and the rate of convergence of the estimators, as well as asymptotic normality of functional

of the parameters, can be found in Chen and Pouzo (2012) and Chen and Pouzo (2015).

Our approach is in line with recent methodological advancements that have refined SMD esti-

mation in multiple directions (see, e.g., Altissimo and Mele, 2009; Hnatkovska, Marmer, and Tang,

2012; Dominicy and Veredas, 2013; Gospodinov, Komunjer, and Ng, 2017). To the best of our knowl-

edge, the first contributions merging sieve estimation and SMD can be attributed to Newey (2001)

and Bierens and Song (2012), which propose semiparametric estimators for some static models. The

authors show that, under some specific assumptions, their simulated estimators attain parametric

rate of convergence for the estimator and the functional of the parameters. However, their outcomes

are too stringent for our framework as we want to model the function linking the distribution and

the parameters fully nonparametric. A notable exception is the work of Forneron (2023), in which

the author combines the flexibility of sieve methods with the robustness of SMM, using a growing set

of basis functions to approximate the moment conditions. Sieve-SMM is then used to estimate the

parameters and the distribution of the shocks of intractable nonlinear dynamic models. While the

sieve-SMM estimator offers significant advantages in handling dynamic models with complex depen-

dence structures, it remains rooted in the SMM framework. Moreover, it considers the characteristic

functions, rendering the asymptotic theory less amenable. In contrast, our method directly computes

a statistical distance between the probability processes, thereby eliminating potential inefficiencies

and identification issues associated with moment-based approaches.

We conceive that our technique delivers several improvements to the literature. First, as already

outlined, it is particularly relevant when model-based densities provide richer information than

moments alone. Second, by approximating the objective function using a linear combination of K

sieve spaces, we can state assumptions on the identifiability and consistency of θ that allow us:

(i) to compute uniform error bounds on the approximation of the objective functions; (ii) to prove

consistency of the SMD estimator; (iii) to provide (nonparametric) rates of convergence. Third,
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it can be easily adapted to most softwares as the unique additional step is the computation of a

polynomial regression. Finally, we do not impose strong distributional restrictions on the model

DGP, opening-up the door to a statistical/data-driven approach to simulation-based estimation.

Despite these advances, we acknowledge some drawbacks. Indeed, due to its nonparametric

nature, our SNPMD estimator is subject to bias-variance tradeoff and overfitting. However, these

problems can be avoided by judiciously choosing the right number of basis functions using specific

information criteria such as Aikake Information Criterion (AIC), Bayesian Information Criterion

(BIC) or cross-validation. Moreover, SMD remains computationally challenging, particularly in high-

dimensional settings. Luckily, recent developments in regularized estimation and machine learning-

assisted moment selection have sought to address these issues (Cheng and Liao, 2015; I. Andrews,

Gentzkow, and Shapiro, 2017; Chernozhukov et al., 2018). Additionally, improvements in numerical

optimization, such as stochastic gradient descent and inexact Newton methods, have enhanced the

computational feasibility of minimum-distance estimation in large-scale simulation models (see, e.g.,

Martinoli, Seri, and Corsi, 2024; Forneron, 2024).

To check the robustness and efficiency of our estimator in finite samples, we perform some Monte

Carlo (MC) experiments using a first-order moving-average process and a stochastic volatility model

(Harvey, Ruiz, and Shephard, 1994). Moreover, we provide an empirical application exploiting an

asset pricing model with heterogeneous beliefs (Brock and Hommes, 1997; Brock and Hommes,

1998), which is a natural candidate to test the failure of the stochastic equicontinuity condition.

The outcomes of the MC experiments and the empirical application confirm the theoretical results.

The rest of the paper is structured as follows. In Section 2 we introduce the problem of stochastic

equicontinuity violation. In Section 3 we describe the econometric framework. In Section 4 we study

the theoretical properties of the estimator. In Section 5 we provide the Monte Carlo experiments

useful to study the finite-sample properties of the estimator. The results of the empirical application

are discussed in Section 6. Section 7 concludes. Proofs are delegated to Section 8.

2 Violation of the stochastic equicontinuity condition

Many simulation-based estimators rely on the optimization of an objective function depending on

both real-world and simulated data. Most proofs of the asymptotic properties of these estimators

require an assumption called stochastic equicontinuity (see, e.g., McFadden, 1989; Pakes and Pollard,

1989 and Newey and McFadden, 1994, pp. 2136-2137), a condition of probabilistic continuity of

the objective function without which asymptotic properties of simulation-based estimators are not

guaranteed.1

We try to explain the problem with the following very simple example in which the only parameter

is the mean µ ∈ R: we have a sample of real data {y1, y2, . . . , yN} and, for a given value of µ, we

draw a sample of independent Gaussian random variables {z1 (µ) , z2 (µ) , . . . , zM (µ)} with mean µ

and variance 1. We compute the estimator µ̂ minimizing the distance between the sample mean

1Stochastic equicontinuity is useful when the proofs of the asymptotic properties use uniform convergence of the
objective function. When epigraphical convergence is used instead of the uniform one in the proofs of consistency,
this condition can be replaced with a one-sided version (see Hess, 1996; Choirat, Hess, and Seri, 2003; Hess and Seri,
2019), but we do not pursue this topic here.
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of the real-world data and the simulated sample mean (see, in the context of a different model,

Gouriéroux and Monfort 1996, p. 20):

f̂ (µ) :=

(
1

N

N∑

n=1

yn − 1

M

M∑

m=1

zm (µ)

)2

,

µ̂ =argmin
µ∈R

f̂ (µ) .

We note that zm (µ) = µ + εm, where {ε1, ε2, . . . , εM} are independent standard Gaussian random

variables.2 If the variables {ε1, ε2, . . . , εM} are the same for any value of µ or, as often said, they are

recycled for different values of µ, f̂ (µ) is a continuous function of µ and stochastic equicontinuity

holds true. If, on the other hand, a new sample {ε1, ε2, . . . } is drawn for any µ the resulting function

f̂ (µ) will be “rugged” and both the computation and the study of the asymptotic properties of the

estimator will be difficult. For this reason, in order to obtain stochastic equicontinuity, the variables

{ε1, ε2, . . . , εM} of the model must be recycled for different values of µ, as required in McFadden

(1989, p. 999), Gouriéroux and Monfort (1996, p. 16), Kristensen and Shin (2012, p. 78) and

Eisenhauer, Heckman, and Mosso (2015, p. 346), among others.

However, several simulation models do not allow for the recycling of errors. This creates two

problems. First, as the function to optimize is rugged, optimization routines are often very time-

consuming and ad hoc algorithms have to be used. As an example, Gilli and Winker (2003) realize

that the objective functions arising in the simulation-based estimation of the parameters of HA

models are non-differentiable and devise algorithms combining a simplex search approach with a

threshold accepting algorithm in order to identify the optimum. In a different example, Kukacka and

Barunik (2017) outline some problems related to the roughness of the objective function (i.e., multiple

local minima, identification issues leading to large standard deviations), and perform a graphical

inspection of the simulated log-likelihood function (see also Lux, 2024, for a discussion about the lack

of parameter identification in behavioral macroeconomic models). Second, the classical asymptotic

properties may not hold and the corresponding inferential tools (tests, confidence intervals) are thus

not necessarily available. Our method provides solutions to both these problems.

3 Econometric framework

3.1 Distributional distance

We rely on the minimization of a distance between a real-world stationary ergodic time series yn =

(y1, . . . , yN ) extracted from a process distribution ρy and a stationary ergodic simulated time series

zm (θ) = (z1 (θ) , . . . , zM (θ)) extracted from a process distribution ρz
θ
. Let D (yn, zm (θ)) be a

distance between the real-world and simulated series, when N,M → ∞, if ergodicity assumptions

hold true, we have that D (yn, zm (θ)) →a.s. f (θ).

Several distances have been proposed to calibrate the marginal distribution of the process, its

profile over time or its complete distribution. An attractive choice for our purposes is the distri-

2The variables {ε1, ε2, . . . , εM} are often called errors in cross-sectional models and innovations in dynamic models.
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butional metric developed by Gray (1988). This metric measures the distance between the process

distribution ρy and ρz
θ

and can be defined as follows:

D (ρy, ρzθ) :=

∞∑

j=1

wj |ρy (Aj) , ρ
z
θ (Aj)| , (3.1)

where wj is a sequence of positive weights, and {Aj} is a countable collection of events in R,R2,R3,

etc. D (ρy, ρz
θ
) can be estimated by truncating the sum and replacing the probabilities with the

empirical frequencies. Therefore, the empirical distributional distance can be defined as follows:

D (ρ̂y, ρ̂zθ) :=

∞∑

j=1

wj |ν (yn, Aj) , ν (zm (θ) , Aj)| ,

where ν (yn, Aj) and ν (zm (θ) , Aj) are the frequencies with which yn and zm (θ) fall into {Aj}. It can

be shown that, under ergodicity, the empirical distributional distance converges to the distributional

distance defined in Equation (3.1). This result is gathered in Lemma (1):

Lemma 1. Let yn be a sample generated by the stationary ergodic process ρy and let zm (θ) be a

sample generated by the stationary ergodic process ρz
θ
, then:

lim
N,M→∞

D (ρ̂y, ρ̂zθ) →a.s. D (ρy, ρzθ) = f (θ) .

Remark 2. Lemma 1 tells us that, for any set Aj belonging to the Borel σ-algebra A, the frequency

at which the samples yn, zm (θ) fall into Aj converges to the probabilities ρy (Aj) and ρz
θ
(Aj),

respectively. As N,M increase, more and more sets Aj ∈ A will exhibit frequencies that have

already converged to their corresponding probabilities. Consequently, the combined weight of the

sets whose frequencies have not yet converged will converge to zero.

Let us stress that our setting can be applied to several distances. The only requirement is that

the latter converge to a function f (θ), i.e. the unknown function of the estimation problem. In the

next section we will clarify our data generating process.

3.2 Data generating process

Provided that, under suitable assumptions of ergodicity (see Lemma 1), the statistical distance

converges almost surely to a function depending on θ, to define our statistical model we select a grid

of points {θi, i = 1, . . . , P} ⊂ Θ and, for any θi belonging to the grid, we simulate a series zm (θi)

of length M . Therefore, we can represent our DGP as follows:

f̂ (θi) = f (θi) + εi, (3.2)

where f (θi) is the unknown average and εi is the sampling error of f̂ (θi) around f (θi). For

each θi, one can simulate more than one series zjm (θi), with j = 1, . . . , S. In that case f̂ (θi) =
1
S

∑S
j=1D (yn, zjm (θi)). For our purposes, we will consider S = 1. The vector of parameters θi
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belongs to a parameter space Θ that is a subset of Rd, where d is the dimension of the parameter

space. We state the following regularity conditions on the unknown function and the parameter

space.

Assumption 3. The unknown function f respects the following conditions:

1. Θ is compact;

2. f is uniquely minimized at θ⋆;

3. f is continuous.

Remark 4. This assumption provides minimal regularity conditions for consistency. In what follows,

we will suppose that the function f belongs to a space F that will not be specified explicitly. In

the discussion of the theoretical results, we will assume that f has s continuous derivatives; in that

case, F will coincide with the Sobolev space Ws,∞ = {f : |f |s <∞}.
We rewrite equation (3.2) using the matrix notation. First of all, we create the (P × 1)-vectors

θ = (θ1, . . . ,θP )
′
and ε = (ε1, . . . , εP )

′
. Hence, equation (3.2) becomes:

f̂ (θ) = f (θ) + ε. (3.3)

Then, we make the following assumption concerning the behavior of the errors.

Assumption 5. The errors respect the following assumptions:

1. The sampling error ε follows a distribution with mean E (ε) = 0 and variance E (εε′) = Σ.

2. Σ is a (P × P )-positive definite matrix and each element of the covariance matrix is finite.

Remark 6. The errors (ε1, . . . , εP ) are correlated through the series yn:

Cov (εr, εi) = Cov

(
f̂ (θr) , f̂ (θi)

)
= Cov (D (yn, zm (θr)) , D (yn, zm (θi))) ,

with r, i = 1, . . . , P and i ̸= r, but this correlation decrease as a function of N (and M). Moreover,

we impose standard regularity conditions on the covariance matrix.

To perform estimation, we approximate the function f (θ) through a function fK (θ) given by

an expansion in a series of basis functions:

fK (θ) = ψK (θ)β,

where ψK (θ) = [ψ1K (θ) , . . . , ψKK (θ)] is the (1×K)-vector of known basis functions, while β =

[β1, . . . , βK ]
′

is a (K × 1)-vector of unknown coefficients, with K → ∞, with N and M . Let us

discuss the construction of the function fK using some examples. We first consider some cases when

θ is a scalar, i.e. θ = θ. Moreover, we suppose that θ ∈ [0, 1].

Example 7. [Power series] A solution is to use ψjK (θ) = θj−1, for any j. In this case, ζs (K) ≲

K1+2s.

7



Example 8. [Orthogonal polynomial series] An alternative is to use orthogonal polynomials as,

e.g., Legendre polynomials, that are orthonormal with respect to the Lebesgue measure on [0, 1]:

ψ′
K (θ) =

(
1,
√
3θ,
√

5/4
(
3θ2 − 1

)
, . . .

)
.

The value of ζs (K) does not change.

Example 9. [Spline series] A spline series of order 1 starts from a finite number of equally spaced

knots ℓ1, . . . , ℓk−2 in [0, 1] and defines:

ψK (θ) =
(
1, θ, (θ − ℓ1)+ , . . . , (θ − ℓk−2)+

)′
.

The cubic splines or spline series of order 3 starts instead from the equally spaced knots ℓ1, . . . , ℓk−4

to get:

ψK (θ) =
(
1, θ, θ2, θ3, (θ − ℓ1)

3
+ , . . . , (θ − ℓk−4)

3
+

)′
.

This can be generalized to an arbitrary order s0. It is often the case that, instead of splines, B-splines

are used. In this case, ζs (K) ≲ K
1

2
+s.

Other examples are in Cox (1988), D. W. K. Andrews (1991), Huang (1998), Chen (2007) and

Belloni et al. (2015).

Now we cover the case when θ = (θ1, . . . , θd) is a vector where each component is supposed to

belong to [0, 1].

Example 10. [Tensor products] In this case, the solution is to take a series ψKi
(θi) for any i =

1, . . . , d. The vector ψK (θ) is then built as the tensor product of the previous ones, i.e.:

ψK (θ) = ψK1
(θ1)⊗ · · · ⊗ψKd

(θd) .

The number of terms is K =
∏d

i=1Ki. The value of ζs (K) is the same of the corresponding method

in the scalar case.

Example 11. [Total degree space of monomials] The previous solution contains elements of order

higher than each Ki. As an example, if each ψKi
(θi) is a polynomial series, we will observe a term

of order K1 +K2 like θK1

1 θK2

2 but we will not observe θK1+K2

1 . In some cases, it is possible to build

ψK (θ) as a union of forms, where a form is a homogeneous polynomial (as in linear or quadratic

form). Migliorati (2015) calls total degree space the set of monomials of degree smaller than a certain

value. As an example, if θ = (θ1, θ2) we have:

ψK (θ) =
(
1, θ1, θ2, θ

2
1, θ1θ2, θ

2
2, . . .

)′
.

In the general case, if the degree of each scalar polynomial is k, the number of terms is K = (d+k)!
k!d! ∼

kd

d! , where the last relation holds for large k. The corresponding product of tensors is:

ψK (θ) =
(
1, θ1, θ2, θ1θ2, θ

2
1, θ

2
2, θ

2
1θ

2
2, . . .

)′
.
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The value of ζs (K) can be bounded from above by ζds (k).

By stacking the vector ψK (θ) at every point {θi, i = 1, . . . , P}, we can define the (P ×K)-matrix

Ψ =




ψ1K (θ1) · · · ψKK (θ1)
...

. . .
...

ψ1K (θP ) · · · ψKK (θP )


 ,

and the DGP can be rewritten as follows:

f̂ (θ) = Ψβ + U. (3.4)

Rearranging the terms we have f (θ) + ε = Ψβ + U and U = f (θ)−Ψβ + ε.

The true value β⋆ of the unknown coefficients β is such that

E

[
Ψ

′
(
f̂ (θ)−Ψβ⋆

)]
= 0,

where the expectation is taken with respect to the distribution of f̂ (θ), that is

β⋆ =
(
Ψ

′
Ψ
)−1

Ψ
′
E

[
f̂ (θ)

]
.

Assuming E (U) = 0 and V (U) = IP , where IP is the (P × P ) identity matrix, the sieve estimator

β̂ can be computed using ordinary least squares (OLS):

β̂ =
(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ) . (3.5)

Finally, we have

f̂K (θ) := Ψβ̂, f⋆K (θ) := Ψβ⋆,

and

θ̂ = argmin
θ∈Θ

f̂K (θ) .

4 Theoretical results

In order to verify the theoretical properties of our estimator, we can build on the results of Seri,

Centorrino, and Bernasconi (2019). Let us start by defining the norm:

|u|s :=max
|λ|⩽s

sup
θ∈Θ

∣∣∣∂λu (θ)
∣∣∣,

∥u∥∞ :=sup
θ∈Θ

|u (θ) |.
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Then, for every s ≥ 0, we define the following quantity which will be necessary throughout the

paper:

ζs (K) := max
|λ|⩽s

sup
θ∈Θ

∥∥∥∂λψK (θ)
∥∥∥
F
,

with ∥ · ∥F the Frobenius norm. For every integer s ≥ 0, we define:

NK := |f − f⋆K |s .

For s ≥ 0, we define λP = λmax (Σ) as the largest eigenvalue of the covariance matrix, and τP =

tr (Σ) as the trace of the covariance matrix.

The first theoretical result we want to provide concerns an upper bound for the rate of convergence

of the sieve estimator f̂K to f . To find it and, consequently, to prove consistency, we have to make

specific assumptions. In particular, Assumption 12, together with the above-listed definitions, allows

to define the bound.

Assumption 12. For P → ∞, with K fixed,
(

Ψ′Ψ
P

)
converges in Frobenius norm to a given matrix

QK , which means that: ∥∥∥∥
Ψ

′
Ψ

P
−QK

∥∥∥∥
F

→ 0,

whose smallest eigenvalue λmin (QK) > 0. For every s ≥ 0, there exists a finite ζs (K), and ζs (K) ≥
1 for K large enough.

Assumption 12 characterizes the asymptotic behavior of the design matrix Ψ
′
Ψ and, for fixed K,

implies that the eigenvalues of Ψ′Ψ
P

converge to the eigenvalues of QK . This assumption is needed

since we deal with deterministic regressors. If the regressors are supposed to be stochastic as in the

case of, e.g., Newey (1997), de Jong (2002) and Belloni et al. (2015), this convergence can be reached

by invoking a Law of Large Number.

Remark 13. As in Cox (1988, p. 714), we define the design measure, i.e. the discrete uniform

distribution supported by the values {θi, i = 1, . . . , P}:

PP (A) :=
1

P

P∑

i=1

1 {θi ∈ A}

where A is a Borel set in R
d. By choosing the points θi in such a way that their empirical probability

converges to the asymptotic design measure P, we can obtain an explicit expression for QK =

E
[
ψK (θ)

′
ψK (θ)

]
, where the expectation is taken with respect to P.

The following assumption allows us to obtain consistency.

Assumption 14. For P,N,M → ∞, we have:

ζs (K)

(
KλP ∧ τP

P

) 1

2

→ 0.

For s = 0, as K,P → ∞, NK → 0. For s > 0, as K,P → ∞, ζs (K)NK → ∞.
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The quantity ζs (K) is a measure of the complexity of the sieve spaces, while NK is a measure

of how easy it is to approximate f through the sieve spaces. Assumptions 12 and 14 are standard in

the sieve literature. Together, these assumptions can be exploited to bound the approximation error

and to find a uniform upper bound on the derivative of the vector of basis functions. The following

theorem gives an upper bound for the rate of convergence of f̂K to f .

Theorem 15. Under Assumptions 3(i), 5 and 12, we can derive the following uniform bound:

∣∣∣f̂K − f
∣∣∣
s
= OP

{
ζs (K)

[
(KλP ) ∧ τP

P

] 1

2

+ ζs (K)NK

}
.

If also Assumption 14 holds, the bound is o (1) and the sieve estimator is consistent for f for the

norm | · |s.

The following Corollary provides a results on the convergence of θ̂ to the true value θ⋆.

Corollary 16. Under Assumptions 3-14:

θ̂ = argmin
θ∈Θ

f̂K (θ)
Pr−→ θ⋆ = argmin

θ∈Θ

f (θ) .

Corollary 16 is useful to obtain the rate of convergence. First of all we state the following

assumption:

Assumption 17. The functions f and ψK respect the following differentiability requirements:

1. f is twice differentiable on int (Θ).

2. ψK is differentiable on int (Θ) for any K.

3. λmin {f ′′ (θ)} ≥ ε > 0 for θ ∈ N (θ⋆).

Remark 18. Assumptions 17 (1) and 17 (2) require the function and the vector of basis functions,

for any K, to be differentiable on the interior of the parameter space. Assumption 17 (3) states that

the smallest eigenvalue of the Hessian must be bounded away from zero in a neighborhood of the

true value. This is equivalent to the requirement that the function is strongly convex.

Theorem 19. Under Assumptions 3-17, the following rate of convergence holds true:

∥∥∥θ⋆ − θ̂
∥∥∥ = O

(∣∣∣f̂K − f
∣∣∣
1

)
.

Remark 20. In most cases λP ≤ τP ∼ P
N∧M

. Therefore, the bound in Theorem 15 becomes

∣∣∣f̂K − f
∣∣∣
s
= OP

{
ζ1 (K)

[
P

(N ∧M)P

] 1

2

+ ζ1 (K)NK

}

= OP

{
ζ1 (K)

[
1√

N ∧M
+NK

]}
.

11



Provided that K/P → 0, Assumption 12 ensures consistency, as it implies that P → ∞. For any finite

values ofK and P , withK ≤ P , Assumption 12 can be strengthened to ensure that the design matrix

is nonsingular. However, since K is finite, the bias component does not vanishes asymptotically,

leading to an inconsistent estimator. In our framework, allowing P to approach infinity yields a

consistent estimator of the function f . Parametric convergence rates can be achieved for s = 0 when

both P and K increase sufficiently quickly.

5 Monte Carlo experiments

In this section we report the results of some simulation experiments, of increasing complexity, in-

tended to verify the finite-sample properties of our estimator. We start by providing an example

concerning the estimation of the moving-average (MA) parameter θ of a MA(1) process. Although

it could appear a simple case, this estimation problem is highly nonlinear and its solution often

requires numerical methods. As such, this framework explain well the behavior of our estimator in

different situations. Moreover, it allows us to compare the performances of the SNPMD estimator

with well-established techniques as II and Maximum Likelihood Estimation through Kalman Filter

(KF-MLE).

The second example regards the estimation of the autoregressive parameter ϕ1 and the variance

of the errors σε of a stochastic volatility (SV) model (Harvey, Ruiz, and Shephard, 1994). We decide

to adopt this model for two main reasons: (i) the parameters are often estimated using II; (ii) the

parameters can be represented as a linear combination of an infinite number of basis functions, which

means that the relation between parameters and distribution functions is fully nonparametric.

5.1 Estimation of the MA parameter of a MA(1) model

We consider as benchmark series a first order moving average model of the form

yn = εn + θεn−1,

for n = 1, . . . , N , where the innovations εn ∼ N (0, 1) and ε0 = 0. The true value used to simulate

the benchmark series is θ⋆ = 0.5.

The estimation algorithm used for the Monte Carlo experiments is summarized in Algorithm 1.

The simulation experiment, described in Algorithm 1, is performed using different configura-

tions. Specifically, to reconcile the theoretical results, we vary the number of polynomials K, the

number of points P on the grid and the sample sizes N,M . The values taken by these quan-

tities are the following: K = {2, 3, 4, 5, 6, 7, 8, 9, 10}, N,M = {100, 1000}, and the parameter

θi = {−0.99, . . . , 0.99}, with i = 1, . . . , P , used to simulate the model, is taken on an equispaced

grid of cardinality P = {201, 401, 801, 1201, 1601}.3 Finally, we have the following DGP for the

3We reckon on an equispaced grid for two reasons: (i) it is a “worst-case” scenario since it is well known that
other configurations of points of smaller cardinality provide equivalent approximations; (ii) we comply with the design
matrix used in so-called computational experiments by the most popular simulation softwares.

12



Algorithm 1 Computing the SNPMD estimator for the MA(1) model

1: Set the dimensions for N , M , the MC runs S, and choose the cardinality P
2: Define the vector k of polynomials degree
3: for k ∈ k do

4: for s = 1, . . . , S do

5: Simulate the benchmark series yn = (y1, . . . , yN )
6: Compute the process distribution ρy

7: Select a grid of points {θi, i = 1, . . . , P} ⊂ Θ and, for any θi belonging to the grid, simulate
a series zsm (θ) = (zs1 (θ) , . . . , z

s
M (θ))

8: For any θi, compute the process distribution ρz
θi

9: Compute the distance between ρy and ρz
θi

, i.e. f̂ (θ)

10: Compute the sieve regression f̂ (θ) = Ψβ + U

11: Estimate β̂ =
(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ) and compute f̂K (θ) = Ψβ̂

12: Find the parameter values minimizing f̂K (θ)
13: end for

14: end for

simulation model:

zsm (θi) = εsm + θiε
s
m−1,

form = 1, . . . ,M and s = 1, . . . , S, where the innovations εsm ∼ N (0, 1) and εs0 = 0. We replicate the

experiment S = 10, 000 times, and we compute the bias, standard deviation (SD) and sample root

mean squared error (RMSE) of the estimator of θ across Monte Carlo runs. The bias, SD and sample

RMSE are compared with the ones of the II estimator that exploits a third order autoregressive

process as auxiliary model (Gouriéroux, Monfort, and Renault, 1993), and the maximum likelihood

estimator through Kalman Filter, which is known to be efficient.

Figure 5.1 shows the behavior of the bias, SD and RMSE of the SNPMD estimator for different

values of K (x-axes), P = 201 (solid line), P = 401 (dashed line), P = 801 (dotted line), P = 1201

(dot-dashed line) and P = 1601 (long-dashed line). The windows in each panel represent different

sample sizes, i.e. N = M = 100 (left), N = 1000 and M = 100 (center), N = M = 1000 (right).

The horizontal gray dotted lines represent the bias, SD and RMSE of the KF-MLE for different

combinations of sample sizes, while the horizontal gray dashed lines refer to the performances of the

II estimator.
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Figure 5.1: Behavior of the Bias, SD and RMSE of the SNPMD estimator for for different combi-
nations of K, P , N and M , with respect to II and KF-MLE.

We can state some considerations about the impacts of K, P , N and M on the performance

of the SNPMD estimator. Let us start by studying the role of P . The comparison with KF-MLE

and II reveals that the SNPMD estimator exhibits a lower bias for higher values of P . This effect is

partially balanced by the behavior of the SD, which is less clear for smaller sample sizes. Overall,

the SNPMD RMSE approaches the RMSE of the II estimator and KF-MLE as P → ∞. This is in

line with Theorem 19 and Remark 20 as, for finite K and P → ∞, f̂K is a consistent estimator of f .

The dependence of the bias, SD and RMSE on K is not monotonic. In fact, the bias seems to

decrease as K increases suggesting that the accuracy of the estimator improves with larger K. On

the other hand, the SD is lower for smaller values of K and increases for K > 3. Finally, the RMSE

attains its minimum value when K = 3 and increases for K ≥ 4, reaching a plateau for K ≥ 5. This

suggests that the polynomials degree must be chosen judiciously to avoid overfitting (i.e. relying on

some information criteria or cross-validation techniques). Also this situation is compliant with our

theoretical results as, for finite K, consistency can be achieved provided that K/P → 0.

Finally, for N,M → ∞ the bias, SD and RMSE decrease. In line with the bound in Remark 20,

the convergence is driven by min {N,M}. Indeed, the case in which N = 1000 and M = 100 and

the case in which N = M = 100 provide similar results, meaning that, when M ̸= N , the shortest

sample size influence the convergence of the estimator.

5.2 Estimation of the parameters of a stochastic volatility model

Before discussing the estimation results, we introduce the structure of the SV model. Let us define

the series of interest yi = σiηi, with i = 1, . . . , N , where ηi ∼ N (0, 1) and σi is the standard

deviation. We also define log σ2
i = hi, where hi is modeled according to an autoregressive process of

order 1,

hi = −0.5 + ϕ1hi−1 + εi,

where εi ∼ N (0, σε). Since yi = ηi exp
(
1
2hi
)
, we have

log y2i = hi + log η2i ,

14



where the mean and variance of log η2i are known to be -1.27 and π2

/2 = 4.93, respectively (see

Harvey, Ruiz, and Shephard, 1994). The model admits the following state-space representation,

which is more convenient for estimation:

log y2i =− 1.27 + hi + ξi,

hi =− 0.5 + ϕ1hi−1 + εi,

where ξi = log η2i + 1.27 and V (ξi) = π2

/2. The series to be matched is yn = log y2i , the parameters

to be estimated are the autoregressive parameter ϕ1 and the standard deviation of the errors σε,

and the vector of the true parameters is denoted with θ⋆ = (ϕ⋆1, σ
⋆
ε ), where ϕ⋆1 = 0.9 and σ⋆

ε = 0.35.

The estimation algorithm used for the Monte Carlo experiments is described in Algorithm 2.

Algorithm 2 Computing the SNPMD estimator for the SV model

1: Set the dimensions for N , M , S and the polynomials degree of K
2: for s = 1, . . . , S do

3: Simulate the benchmark series yn = (y1, . . . , yN )
4: Compute the process distribution ρy

5: Select a grid of points {θi, i = 1, . . . , P} ⊂ Θ and, for any θi belonging to the grid, simulate
a series zsm (θ) = (zs1 (θ) , . . . , z

s
M (θ))

6: For any θi, compute the process distribution ρz
θi

7: Compute the distance between ρy and ρz
θi

, i.e. f̂ (θ)

8: Compute the sieve regression f̂ (θ) = Ψβ + U

9: Estimate β̂ =
(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ) and compute f̂K (θ) = Ψβ̂

10: Find the parameter values minimizing f̂K (θ)
11: end for

As for the previous exercise, the simulation experiment is performed using different configurations

(see Table 1). To simulate the model, we select a grid of P points {(ϕ1i, σεi) , i = 1, . . . , P} ⊂ Θ =

(0,+∞) × (0,+∞). The values of ϕ1 are chosen according to an equispaced grid with range [0, 1]

and cardinality 21, while the values of σε are chosen according to an equispaced grid with range

[0, 2] and cardinality 21. The final values of θ = (ϕ1, σε) form a two-dimensional grid in Θ, i.e.

the parameter values are chosen according to a full factorial design. The experiment is replicated

S = 1000 times.

In Table 1 we report the bias, SD and RMSE of the estimators of ϕ1 and σε, together with

the coverage probability useful to quantify the small-sample approximation error. The coverage

probability is computed by first building the 90% confidence intervals based on Hall (2013) percentiles

using the S Monte Carlo runs, and then counting how many times the estimated parameter falls

within these confidence intervals. The performances of SNPMD are compared with the ones of the

II estimator that exploits a generalized autoregressive conditional heteroskedasticity, GARCH(1,1),

model as auxiliary model.
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Table 1: Bias, SD and sample RMSE of the estimator of the autoregressive parameter ϕ1 and the
SD of the errors σε in the SV model.

φ̂1 σ̂ε

Method K N M Bias SD RMSE Cov. Bias SD RMSE Cov.

SNPMD 2
250 250 -0.0821 0.1323 0.1556 91.7 0.0876 0.0868 0.1233 87.7
500 250 -0.0981 0.0630 0.1166 90.9 0.0748 0.0433 0.0864 90.1
500 500 -0.0573 0.1250 0.1374 89.1 0.1061 0.0965 0.1434 86.9

SNPMD 3
500 250 -0.0765 0.1397 0.1592 90.3 0.0891 0.0883 0.1254 88.3
500 250 -0.0972 0.0649 0.1168 90.7 0.0780 0.0489 0.0921 89.4
500 500 -0.0567 0.1331 0.1446 89.7 0.1037 0.0894 0.1369 85.1

SNPMD 4
250 250 -0.0817 0.1254 0.1496 90.7 0.0896 0.0930 0.1291 87.8
500 250 -0.1014 0.0628 0.1193 91.0 0.0741 0.0423 0.0853 89.4
500 500 -0.0560 0.1333 0.1445 89.9 0.1030 0.0914 0.1377 85.9

SNPMD 5
250 250 -0.0865 0.1080 0.1383 90.2 0.0827 0.0766 0.1127 88.9
500 250 -0.0989 0.0573 0.1143 92.0 0.0735 0.0395 0.0834 88.9
500 500 -0.0571 0.1235 0.1360 88.9 0.1087 0.0956 0.1447 84.8

SNPMD 6
250 250 -0.0821 0.1228 0.1476 91.2 0.0880 0.0838 0.1215 88.1
500 250 -0.0983 0.0595 0.1149 89.5 0.0762 0.0474 0.0898 89.9
500 500 -0.0543 0.1403 0.1503 89.0 0.1016 0.0885 0.1348 85.6

II
250 250 0.0021 0.0628 0.0628 89.0 -0.0508 0.1309 0.1404 88.3
500 250 0.0076 0.0619 0.0624 87.3 -0.0638 0.1225 0.1380 89.8
500 500 -0.0035 0.0632 0.0633 89.6 -0.0076 0.1456 0.1458 87.2

Notes: Cov. denotes the coverage probability.

For ϕ1, the SNPMD method shows a small negative bias across different sample sizes and config-

urations, indicating a tendency to underestimate the true parameter. However, the bias term seems

to decrease as N and M increase. For σε, the SNPMD estimator generally has a small positive bias,

which is close to the (absolute) values of the II estimator. The II estimator shows a smaller bias for

ϕ1, but a negative bias for σε.

The SD for the SNPMD estimator of ϕ1 is lower for N > M (e.g., N = 500 and N = 250),

indicating more precise estimates as N → ∞. The SD of the SNPMD estimator of σε also decreases

with larger sample sizes. Furthermore, the latter compares favorably with respect to the II estimator.

The RMSE for the SNPMD estimator of ϕ1 and σε tends to decrease with larger sample sizes,

reflecting improved estimation accuracy. II seems to perform slightly better than our method in the

estimation of ϕ1. On the other hand, the SNPMD technique seems to provide better estimates of

σε.

The coverage probability for ϕ̂1 is generally close to the nominal 90% level, indicating that the

confidence intervals are accurate. For σ̂ε, the coverage probability is slightly lower, suggesting some

underestimation of the uncertainty in the error standard deviation. Overall, the coverage probability

levels of the SNPMD estimator are higher that the ones of the II estimator.
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6 Empirical application

In this section we provide an application of our method to the Brock and Hommes (BH) model

(Brock and Hommes, 1997; Brock and Hommes, 1998). We decide to adopt this model for three

reasons: (i) it is a workhorse in the literature of calibration and estimation of heterogeneous agents

models (see, e.g., Boswijk, Hommes, and Manzan, 2007; Recchioni, Tedeschi, and Gallegati, 2015;

Lamperti, Roventini, and Sani, 2018); (ii) by construction, it does not allow to recycle innovations

leading to the violation of the stochastic equicontinuity hypothesis; (iii) nevertheless its simplicity,

the estimation of its parameters is still an open issue.

6.1 The model

The BH model consists in an asset pricing model with heterogeneous beliefs. Agents can choose

among a finite number of predictors of future prices of a risky asset and revise their expectation in

each period in a bounded rational way, according to a fitness measure based on past realized profits.

For our purposes, we refer to the simplified version proposed by Hommes (2006).

Traders have the option to invest in either a risk-free asset, which is supplied perfectly elastically

at a gross return R = (1 + r) > 1, where r is the risk-free return, or a risky asset that pays an

uncertain dividend y and has a price of p. The dynamics of wealth are described by:

Wt+1 = RWt + (pt+1 + yt+1 −Rpt)zt, (6.1)

where Wt+1, pt+1, and yt+1 are random variables, and zt represents the number of shares of the risky

asset purchased at time t. The market provides a publicly available information set on past prices

and dividends, allowing for the definition of the conditional expectation Eb and variance Vb. Agents

have different forecasts (beliefs) about these conditional expectations and variances. Specifically,

Eht and Vht denote the beliefs of trader h regarding these operators. Each investor is assumed to be

a myopic mean-variance maximizer, so her demand zht for the risky asset is determined by solving:

max
zt

[
Eht(Wt+1)−

α

2
Vht(Wt+1)

]
, (6.2)

which leads to:

zht =
Eht(pt+1 + yt+1 −Rpt)

ασ2
. (6.3)

Here, α is the risk aversion parameter, and σ2 is the conditional variance, assumed to be constant

and the same for all traders.

The market equilibrium equation, when there is zero supply of outside shares and different types

of traders h, can be expressed as:

Rpt =

H∑

h=1

nhtEht(pt+1 + yt+1), (6.4)

where nht represents the fraction of agents of type h at time t. In a scenario where all traders are
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identical and homogeneous, the arbitrage market equilibrium equation with rational expectations

can be derived from the above equation:

Rp⋆t = Et(p
⋆
t+1 + yt+1), (6.5)

where p⋆t denotes the fundamental price, and Et is the conditional expectation based on the

information set It = [pt−1, pt−2, . . . ; yt−1, yt−2, . . .].

Agents’ strategy is driven by an evolutionary dynamics described by a set of equations. The first

equation concerns the agents’ expectation on the spot price at time t, fht:

fht = ghxt−1 + bh, (6.6)

where gh is the trend component and bh is the bias affecting each trader. In our application we

consider only two unbiased agents, “fundamentalists” and “trend followers”. Hence, h = 1, 2, b1 =

b2 = 0 and, for h = 1, gh = 0. The second equation relates to the deviation from the fundamental

price, xt:

(1 + r)xt =
H∑

h=1

nht (fht) + εt, (6.7)

where the random error εt due to the uncertainty about the risky asset is i.i.d. uniformly distributed

between −0.5 and +0.5 (see Brock and Hommes, 1998). The deviation from fundamental price p⋆t

is expressed as xt = pt − p⋆t , where, in the special case of i.i.d. dividends with constant mean

E(dt) = d, p⋆t = d
r

and pt is the price of the risky asset at time t. The third equation regards the

share of “fundamentalists”/“trend followers” at time t, nht, modeled according to a multinomial logit:

nht =
exp (βUh,t−1)∑H
h=1 exp (βUh,t−1)

. (6.8)

A key role is played by the parameter β, which represents the intensity of choice of the agents. The

higher is the value of β the higher is the probability to switch strategy (from “fundamentalists” to

“trend followers” and viceversa). Finally, the last equation defines the fitness measure of the strategy,

Uh,t−1:

Uh,t−1 = (xt−1 −Rxt−2)

(
ghxt−3 + bh −Rxt−2

ασ2

)
+ wUh,t−2, (6.9)

where w is the weight to past profits.

6.2 Estimation results

The model is estimated using the daily closing information of two stock market indices: the USA

Standard&Poor’s (S&P) 500, which is an index embodying the biggest corporations listed in the

New York Stock Exchange, American Stock Exchange and Nasdaq, and the Euro Stoxx 50, which is

an index composed by the main corporations in the Euro area. We decide to choose these indices for

two reasons: (i) they represent two geographical areas with different characteristics; (ii) they allow

for a direct comparison with other calibration exercises (e.g., Recchioni, Tedeschi, and Gallegati,
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2015). The sample size of the S&P 500 ranges from January 2, 2012 to December 31, 2012, for a

total of N = 261 observations. The sample size of the Euro Stoxx 50 ranges from January 3, 2012

to December 30, 2012, for a total of N = 251 observations. The real-world series compared with the

simulated data is the log-difference of the daily closing prices.

As common in the literature (see, e.g., Boswijk, Hommes, and Manzan, 2007), we choose to

estimate the trend component parameter gh, with h = 2, and the intensity of choice β, and we

fix the other parameters according to previous studies (Lamperti, 2018; Recchioni, Tedeschi, and

Gallegati, 2015). The model parameters and explored ranges are reported in Table 2.

Table 2: Description of parameters and explored ranges.
Parameter Description Support Range Range

S&P 500 Euro Stoxx 50

β Intensity of choice [0,+∞) [1, 30] [1, 30]
n1 Initial share of type 1 traders [0, 1] 0.5 0.5
g2 Trend component of type 2 traders (−∞,+∞) [−1, 1] [−1, 1]
w Weight to past profits [0, 1] 1 1
σ Asset volatility (0,+∞) 0.1 0.1
p⋆t Fundamental price [0,+∞) 0.8 0.7
α Risk aversion [0,+∞) 23 23
r Daily risk-free return (0,+∞) 0.01/250 0.01/250

The (empirical) estimation procedure is described in Algorithm 3.

Algorithm 3 Computing the SNPMD estimator for the BH model

1: Set the dimensions for N , M and S
2: Choose the real-world price index pn and compute yn = log (pn)− log (pn−1)
3: Compute the process distribution ρy

4: for s = 1, . . . , S do

5: Select a grid of points {θi, i = 1, . . . , P} ⊂ Θ and, for any θi belonging to the grid, obtain
the simulated price psm (θ)

6: Compute zsm (θ) = log (psm (θ))− log
(
psm−1 (θ)

)

7: For any θi, compute the process distribution ρz
θi

8: Compute the distance between ρy and ρz
θi

, i.e. f̂ (θ)
9: for k ∈ k do

10: Compute the sieve regression and its AIC
11: end for

12: Select the polynomial degree K with the lowest AIC
13: Compute the sieve regression f̂ (θ) = Ψβ + U

14: Estimate β̂ =
(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ) and compute f̂K (θ) = Ψβ̂

15: Find the parameter values minimizing f̂K (θ)
16: end for

We evaluate the objective function on a two-dimensional grid {(βi, gi) , i = 1, . . . , P} ⊂ Θ =

[0,+∞)× (−∞,+∞), where βi = {1, . . . , 30} and gi = {−1, . . . , 1} are taken on an equispaced grid

of cardinality P = 101. As for the previous Monte Carlo experiments, the parameter values are

chosen according to a full factorial design. Therefore, the total number of points is P = 10201. To

better understand the extent of the estimation problem, in Figure 6.1 we report the values of the
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objective functions f̂ (θ) (left plot) and f̂K (θ) (right plot) for a specific MC run.
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Figure 6.1: Objective function f̂ (θ) (left) and its smoothed approximation f̂K (θ) (right).

The mean and standard error, across S = 10, 000 replications, of the estimated parameters for

the S&P 500 and Euro Stoxx 50 indices are reported in Table 3.

Table 3: Mean and standard error, across MC runs, of the estimated parameters.
Parameter S&P 500 Euro Stoxx 50

β̂ 4.123 8.292
(S.E.) (0.1741) (0.0804)
ĝ2 0.308 0.349

(S.E.) (0.0097) (0.0059)

Notes: S.E. denotes the Standard Error.

The estimated β̂ values are 4.123 for the S&P 500 and 8.292 for the Euro Stoxx 50. The higher

value for the Euro Stoxx 50 suggests a stronger relationship or sensitivity in the model for this index

compared to the S&P 500. Specifically, the higher value for Euro Stoxx 50 indicates that agents

acting in this market are characterized by a stronger collective behavior. The higher β̂ for the

Euro Stoxx 50 might also imply a greater susceptibility to speculative behavior or market instability

compared to the S&P 500 (Boswijk, Hommes, and Manzan, 2007). In general, the difference in

β̂ values illustrates that, in contrast with the original BH model, this parameter is not of crucial

importance in switching models (Recchioni, Tedeschi, and Gallegati, 2015; Lamperti, Roventini, and

Sani, 2018).

The values of ĝ2 are 0.308 for the S&P 500 and 0.349 for the Euro Stoxx 50, suggesting that

agents can be identified as pure trend chasers in both markets. Since the values of ĝ2 are relatively

close, we can conclude that the model under analysis describes well the empirical data. Furthermore,

as also noted by Lamperti, Roventini, and Sani (2018), among others, ĝ2 plays a key role in fitting

the empirical distribution of observed returns.
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The standard errors for both parameters are relatively low, suggesting precision in the esti-

mation procedure. This precision is crucial for making reliable inferences about market behavior,

understanding market dynamics and predicting financial crises.

To sum-up, the results of the empirical estimation shows differences in market behavior between

the S&P 500 and Euro Stoxx 50, which could be further explored in the context of market efficiency,

volatility, and speculative behavior.

7 Conclusion

In this paper we introduce a nonparametric minimum-distance estimator that combines simulated

minimum-distance techniques with sieve estimation to address the challenges of estimating complex

simulation models. Our approach avoids the pitfalls of traditional methods, such as the need for

auxiliary models or moment selection, and provides a flexible framework for estimating parameters

in models where stochastic equicontinuity condition may not hold.

We study the theoretical properties of the SNPMD estimator by stating conditions for consis-

tency of the estimator and providing nonparametric rates of convergence for the estimator and the

functional of the parameters. We acknowledge that the asymptotic rate of convergence of θ̂ to θ is

sub-optimal as we consider a nonparametric estimation technique, but the loss of efficiency in terms

of convergence speed is compensated by the flexibility deriving from the nonparametric estimation

of the objective function.

We perform several Monte Carlo experiments to demonstrate the finite-sample properties of

our estimator, showing its ability to accurately estimate parameters in both moving-average and

stochastic volatility models. The empirical application to the BH model further highlights the

practical relevance of our method in analyzing financial market dynamics. Our results suggest that

the proposed estimator is a valuable tool for econometricians and researchers working with complex,

heterogeneous models, offering a robust and efficient alternative to existing estimation techniques.

Our framework can be expanded in different directions. First, by considering different statis-

tical metrics to deal with non-ergodic and nonstationary processes. Second, by relying on other

smoothing techniques such as splines or Kernel methods. Third, by incorporating machine learning

and regularization techniques to mitigate overfitting and curse of dimensionality. We leave these

investigations to future research.
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8 Proofs

8.1 Proof of distance

Proof of Lemma 1. The proof follows the steps of D. Ryabko and B. Ryabko (2010, pp. 1432-1433).

We start noting that for any quantity δ > 0 it is possible to find and index I such that
∑∞

j=I wj < δ/2.

For each ℓ, we also have ν ((y1, . . . , yN ) , Aℓ) →a.s. ρ
y (Aℓ) so that

|ν ((y1, . . . , yN ) , Aℓ)− ρy (Aℓ)| <
δ

4Iwℓ

(8.1)

for some step N on.

Now, let Kℓ := N , K := maxℓ<I Kℓ, which depends on the realization of (y1, y2, . . . ), Jℓ := M ,

and J := maxℓ<I Jℓ that depends on the realization of (z1 (θ) , z2 (θ) , . . . ). Therefore, provided that

N > K and M > J , we have:

|D (ρ̂y, ρ̂zθ)−D (ρy, ρzθ)|

=

∣∣∣∣∣∣

∞∑

j=1

wj (|ν (yn, Aj)− ν (zm (θ) , Aj)| − |ρy (Aj)− ρzθ (Aj)|)

∣∣∣∣∣∣

≤
∞∑

j=1

wj (|ν (yn, Aj)− ρy (Aj)|+ |ν (zm (θ) , Aj)− ρzθ (Aj)|)

≤
I∑

j=1

wj (|ν (yn, Aj)− ρy (Aj)|+ |ν (zm (θ) , Aj)− ρzθ (Aj)|) +
δ

2

≤
I∑

j=1

wj

(
δ

(4Iwℓ)
+

δ

(4Iwℓ)

)
+
δ

2
= δ,

where the first inequality comes from the triangle inequality, the second comes from the fact that
∑∞

j=I wj < δ/2, and the third inequality is obtained by using Equation (8.1). Q.E.D.

8.2 Proof of consistency

We start the proof recalling that, by Assumption 12, we have:

lim
P→∞

(
Ψ

′
Ψ

P

)
= QK ,

where QK can be considered an identity matrix IK of dimension K. This implies that λmin

(
Ψ′Ψ
P

)
→

1. We then define the indicator function 1P = 1

{
λmin

(
Ψ′Ψ
P

)
> c
}

, where 0 < c < 1. Under

Assumption 5, we have β̂ =
(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ), where f̂ (θ) = f (θ) + ε.

We need the following lemma.
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Lemma 21. Under Assumption 5 and 12:

1P

∥∥∥β̂ − β⋆
∥∥∥ = OP

((
(KλP ) ∧ τP

P

) 1

2

)
+O (NK) .

Proof. We start demonstrating that:

β̂ − β⋆ =
[(
Ψ

′
Ψ
)−1

Ψ
′f̂ (θ)

]
−
[(
Ψ

′
Ψ
)−1

Ψ
′f⋆K (θ)

]

=
(
Ψ

′
Ψ
)−1

Ψ
′
(
f̂ (θ)− f (θ)

)
+
(
Ψ

′
Ψ
)−1

Ψ
′ (f (θ)− f⋆K (θ))

=
(
Ψ

′
Ψ
)−1

Ψ
′ε+

(
Ψ

′
Ψ
)−1

Ψ
′ (f (θ)− f⋆K (θ))

=
1

P

(
Ψ

′
Ψ

P

)−1

Ψ
′ε+

1

P

(
Ψ

′
Ψ

P

)−1

Ψ
′ (f (θ)− f⋆K (θ)) ,

and from the triangle inequality we can write:

1P

∥∥∥β̂ − β⋆
∥∥∥ ≤ 1P

∥∥∥∥
(
Ψ

′
Ψ

P

)−1(
Ψ

′ε

P

)∥∥∥∥+ 1P

∥∥∥∥
(
Ψ

′
Ψ

P

)−1

Ψ
′ (f (θ)− f⋆K (θ))

∥∥∥∥.

Let us consider the first term of the inequality, proceeding in this way:

E

[
1P

∥∥∥∥
(
Ψ

′
Ψ

P

)−1(
Ψ

′ε

P

)∥∥∥∥
2
]
= 1PE

[
ε′Ψ

P

(
Ψ

′
Ψ

P

)−1(
Ψ

′
Ψ

P

)−1
Ψ

′ε

P

]

≤ 1PEtr

[
ε′Ψ

P

(
Ψ

′
Ψ

P

)−1
Ψ

′ε

P

]
λmax

(
Ψ

′
Ψ

P

)−1

= 1PEtr

[(
Ψ

′
Ψ

P

)−1
Ψ

′ε

P

ε′Ψ

P

]
λmax

(
Ψ

′
Ψ

P

)−1

= 1P tr

[
Ψ

P

(
Ψ

′
Ψ

P

)−1
Ψ

′

P
E (εε′)

]
λmax

(
Ψ

′
Ψ

P

)−1

=
1P

P 2
tr

[
Ψ

(
Ψ

′
Ψ

P

)
Ψ

′
Σ

]
1

λmin

(
Ψ′Ψ
P

) .

We can derive two different bounds. For the first bound, let us consider the following majoriza-

tion:

E

[
1P

∥∥∥∥
(
Ψ

′
Ψ

P

)−1(
Ψ

′ε

P

)∥∥∥∥
2
]
≤ 1P

P 2
tr

[
Ψ

(
Ψ

′
Ψ

P

)
Ψ

′
Σ

]
1

λmin

(
Ψ′Ψ
P

)

=
1P

P 2
tr

[(
Ψ

′
Ψ

P

)(
Ψ

′
ΣΨ

)] 1

λmin

(
Ψ′Ψ
P

)

=
1P

P 2
tr

[(
Ψ

′
Ψ

P

)(
Ψ

′
Ψ
)] 1

λmin

(
Ψ′Ψ
P

)λmax (Σ)

≤ 1P

P
tr

[(
Ψ

′
Ψ

P

)(
Ψ

′
Ψ

P

)]
1

λmin

(
Ψ′Ψ
P

)λmax (Σ)
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= 1P
tr (IK)λP

Pλmin

(
Ψ′Ψ
P

) = O

(
KλP
P

)
.

The second bound, can be stated as follow:

E

[
1P

∥∥∥∥
(
Ψ

′
Ψ

P

)−1(
Ψ

′ε

P

)∥∥∥∥
2
]
≤ 1P

P 2
tr

[
Ψ

(
Ψ

′
Ψ

P

)
Ψ

′
Σ

]
1

λmin

(
Ψ′Ψ
P

)

=
1P

P 2
tr

[
Σ

1

2Ψ

(
Ψ

′
Ψ

P

)
Ψ

′
Σ

1

2

]
1

λmin

(
Ψ′Ψ
P

)

=
1P

P 2
tr
[
Σ

1

2Ψ
(
Ψ

′
Ψ
)
Ψ

′
Σ

1

2

] 1

λmin

(
Ψ′Ψ
P

)

≤ 1P

P 2
tr (Σ)

λmax

(
Ψ
(
Ψ

′
Ψ
)
Ψ

′
)

λmin

(
Ψ′Ψ
P

)

=
1P τP

Pλmin

(
Ψ′Ψ
P

) = O
(τP
P

)
,

where the last inequality is obtained by idempotency of Ψ
(
Ψ

′
Ψ
)
Ψ

′ and the upper bound is a direct

result of Markov’s inequality.

For the second term of the inequality we have:

1P

P 2

∥∥∥∥
(
Ψ

′
Ψ

P

)−1

Ψ
′ (f (θ)− f⋆K (θ))

∥∥∥∥

=
1P

P 2

[
(f (θ)− f⋆K (θ))

′
Ψ

(
Ψ

′
Ψ

P

)−1(
Ψ

′
Ψ

P

)−1

Ψ
′ (f (θ)− f⋆K (θ))

]

≤ 1P

P 2

[
(f (θ)− f⋆K (θ))

′
Ψ
(
Ψ

′
Ψ
)−1

Ψ
′ (f (θ)− f⋆K (θ))

]
λmax

(
Ψ

′
Ψ

P

)−1

≤ 1P

P 2

[
(f (θ)− f⋆K (θ))

′
Ψ
(
Ψ

′
Ψ
)−1

Ψ
′ (f (θ)− f⋆K (θ))

] λmax

(
Ψ
(
Ψ

′
Ψ
)
Ψ

′
)

λmin

(
Ψ′Ψ
P

)

≤ 1

λmin

(
Ψ′Ψ
P

) 1P
P 2

[(f (θ)− f⋆K (θ)) (f (θ)− f⋆K (θ))]

=
1P

λmin

(
Ψ′Ψ
P

)
P

[f (θ)− f⋆K (θ)]
2
=

1P

λmin

(
Ψ′Ψ
P

)
P
N2

K = o
(
N2

K

)
.

Finally, the result of Lemma 21 is the following:

1P

∣∣∣f̂K − f
∣∣∣
s
= 1P

∣∣∣f̂K − f⋆K

∣∣∣
s
+ 1P

∣∣∣f⋆K − f
∣∣∣
s

= 1P

∣∣∣ψK (θ)
(
β̂ − β⋆

)∣∣∣
s
+ 1P

∣∣∣ψK (θ)β⋆ − f
∣∣∣
s

= 1P

∥∥∥β̂ − β⋆
∥∥∥+ 1PNK

≤ ζs (K) 1P

∥∥∥β̂ − β⋆
∥∥∥+NK

= OP

{
ζs (K)

[(
(KλP ) ∧ τP

P

) 1

2

+NK

]}
+NK .
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Q.E.D.

Proof of Theorem 15. The bound in Lemma 21 and Assumption 14 lead to the definition of

Theorem 15.

Q.E.D.

Proof of Corollary 16. By Assumption 3 we know that f is continuous, uniquely minimized at

θ⋆ and Θ is compact. By Theorem 15
∣∣∣f̂K − f

∣∣∣
s

Pr−→ 0. These conditions imply that θ̂
Pr−→ θ⋆.

Q.E.D.

8.3 Proof of rate of convergence

Proof of Theorem 19. The pseudo-true value θ⋆ is such that f ′ (θ⋆) = 0 and the estimator θ̂ is such

that f̂ ′
(
θ̂
)
= 0. In order to define the rate of convergence, we expand f ′ (θ⋆) around θ̂:

f ′ (θ⋆) = f ′
(
θ̂
)
+ f ′′

(
θ̃
)(
θ⋆ − θ̂

)
,

θ⋆ − θ̂ =
[
f ′′
(
θ̃
)]−1 [

f ′ (θ⋆)− f ′
(
θ̂
)]
, (8.2)

where θ̃ is a point between θ⋆ and θ̂. As f ′ (θ⋆) = 0 = f̂ ′
(
θ̂
)
, we can rewrite equation (8.2) as

follows:

θ⋆ − θ̂ =
[
f ′′
(
θ̃
)]−1 [

f̂ ′
(
θ̂
)
− f ′

(
θ̂
)]
,

∥∥∥θ⋆ − θ̂
∥∥∥ ≤

∥∥∥∥
[
f ′′
(
θ̃
)]−1

∥∥∥∥
∥∥∥f ′

(
θ̂
)
− f̂ ′

(
θ̂
)∥∥∥ . (8.3)

By equation (8.3) we can isolate
∥∥∥f ′ − f̂ ′

∥∥∥ ≤
∣∣∣f̂K − f

∣∣∣
1
, which is known by Theorem 15. By

Corollary 16 we have that θ̂
Pr−→ θ⋆ and θ̃

Pr−→ θ⋆. This implies that, with probability converging to

1, θ̃ belongs to the neighborhood N (θ⋆) of Assumption 17. Therefore:

∥∥∥∥
[
f ′′
(
θ̃
)]−1

∥∥∥∥ ≤ Cλmax

([
f ′′
(
θ̃
)]−1

)
= Cλ−1

min

(
f ′′
(
θ̃
))

≤ Cε.

At last, the rate of convergence is:

∥∥∥θ⋆ − θ̂
∥∥∥ = O

(∣∣∣f̂K − f
∣∣∣
1

)
.

Q.E.D.
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