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Abstract

Climate change is increasingly affecting the macroeconomic performance of countries and re-
gions. However, the effects on income inequality are less understood. We estimate the dynamic
impact of thunderstorms on income and wages and reveal a robust asymmetric effect. We lever-
age a comprehensive dataset covering more than 200,000 events affecting contiguous US’ counties
across three decades. While storms’ natural features are convenient for the identification of im-
pacts, previous studies mostly focused on more extreme events. We document a robust negative
association between storm activity, income and wages’ growth. While income tends to recover in
the long run, wages exhibit a significantly more stubborn decline, suggesting persistent and adverse
impacts on (functional) income inequality. Our analyses also highlight lack of effective adaptation
and stronger negative impacts in economically disadvantaged regions. Finally, we find evidence for
a sizable shock-absorbing role of federal assistance.
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1 Introduction

The effects of climate and weather on economic activities have been obvious to mankind for thousands

of years. In agricultural societies, where a dry season or a strong hailstorm could induce devastating

losses, weather has always been a daily concern for peasants and farmers. Nowadays, with climate

change reshaping the landscape of losses and potential damages, a thorough understanding of the

impacts of weather events is essential for designing appropriate adaptation and mitigation policies.

This is the goal of the rapidly growing New Weather-Economy Literature (Dell et al., 2014), which

attempts to characterize the effects of temperature, precipitation and extreme weather events on

economic outcomes.

Much empirical research focuses on the analysis of temperature and precipitation anomalies (Burke

et al., 2015; Palagi et al., 2022; Kotz et al., 2022) which, borrowing from statistical nomenclature, are

often called sufficient statistics. Part of their attractiveness lies in their simplicity, as well as their ease

of use in projections, which allows researchers to effectively explore, e.g., alternative future climatic

scenarios. However, climate change has been convincingly shown to entail more complex dynamics

(Pörtner et al., 2022), as it causes changes along the state of the atmosphere, ocean and freshwater

systems (Hsiang and Kopp, 2018), as well as changes in the frequency and strength of extreme events.

Focusing on sufficient statistics may hide a substantial amount of heterogeneity, including physical

specificities of distinct hazards (e.g., hurricanes, extreme temperatures, floods), different behavioral

attitudes and anticipatory actions, and geographical and sectoral asymmetries.

Numerous studies (e.g., Cavallo et al., 2011) have thus focused on the economic repercussions of

distinct hazards, considering time frames that extend beyond the immediate aftermath. There are

several hypothesis in the literature about how output and other economic variables might respond to

extreme events in the long-run. The creative destruction and “build back better” hypotheses postulate

that natural hazards foster long-run economic growth by replacing damaged assets with newer and

more efficient ones (Skidmore and Toya, 2002; Ahlerup, 2013; Hallegatte and Dumas, 2009). On the

contrary, the recovery to trend hypothesis posits the lack of any permanent change to economic activity.

Finally, the no recovery hypothesis conjectures a permanent negative impact on long-run economic

growth (Hsiang and Jina, 2014; Anttila-Hughes and Hsiang, 2013). Overall, empirical studies have

reached conflicting conclusions, depending on the hazard type, geographical scope, aggregation level

and statistical methodology employed (Cavallo et al., 2013; Klomp and Valckx, 2014; Skidmore and

Toya, 2002).

In this paper, we contribute to the debate by studying the long-run economic effects of thunder-

storms in the U.S. While more extreme phenomena have been thoroughly investigated (e.g., hurricanes

and cyclones, Hsiang and Jina, 2014) the analysis of thunderstorms has received considerably less at-

tention. However, such events offer a valuable design. They are much more frequent and geographically

dispersed than other natural disasters, which increases sample size and variability in the data; they

are very difficult to predict and vanish rapidly, which eliminates anticipation effects and makes them

resemble on-off shocks; they can interrupt electricity supply, impair traffic routes, uncover roofs, flood

buildings and destroy cultivated fields, cars and trucks, but they do not level entire blocks or cities

as hurricanes and tornadoes do. Relatedly, storms do not typically induce migratory phenomena

of people and firms (Deryugina et al., 2018), which allows avoiding major confounding factors in the

identification of the impacts. This, however, does not prevent such events from being highly damaging

at the macroeconomic level. Indeed, severe storms account, every year, for 45% of all weather-related

2



insured property losses in the United States (Kunkel et al., 1999).

In our analyses we employ National Oceanic and Atmospheric Administration (NOAA) data on

more than 200,000 severe thunderstorms that hit the continental United States between 1991 and 2019,

which we integrate with county-level economic data from the Regional Economic Accounts (Bureau

of Economic Analysis) and the Quarterly Census of Employment and Wages (U.S. Bureau of Labor

Statistics), and disaster declaration data from the Federal Emergency Management Agency (FEMA).

Through distributed lag models (Greene, 2003), traditionally employed in the analysis of exogenous

meteorological events (Dell et al., 2012; Barrios et al., 2010; Hsiang and Jina, 2014; Callahan and

Mankin, 2022), we identify the response of income and wages to storm exposure.

We find significant statistical effects of storm exposure on both income and wages. However, while

the impact on income shrinks and eventually vanishes over time, in line with the recovery to trend

hypothesis, the impact on wages appears to persist, in line with the no recovery hypothesis. The

combination of recovering income and further deteriorating wages suggests that severe storms may

lead to an increase in functional income inequality. Such a dynamics could be due to an hazard-induced

accelerated depreciation of capital, which leads firms to invest in new, labor-saving technologies. This

is supported by the evidence at the sectoral level of economic activity: while all industries show a

negative and persistent statistical effect on wages, such effect is more marked in sectors characterized

by a higher intensity of physical capital (good producing industries). Our results are robust to a

battery of control exercises, and we find similar patterns repeating our analyses on a separate set of

nearly 200,000 hailstorms occurred between 1991 ans 2019.

Next, we analyze the ability of specific localities to mitigate the negative impacts of storms. We

find evidence that poorer counties systematically display larger long-run impacts on income, consistent

with a notion of local adaptation deficit, or gap (Fankhauser and McDermott, 2014). At the same time,

counties historically more exposed to storms do not display significantly smaller losses – suggesting

that, like for hurricanes (Bakkensen and Mendelsohn, 2016), repeated exposure to a natural hazard

does not necessarily lead to some forms of successful adaptation. Finally, and importantly, we find

evidence of a critical role for public interventions in containing the impacts of storms: our results show

that areas which benefit from federal aid in the aftermath of a storm do not experience significant

losses in income and wages.

To sum up, our results support two main conclusions. First, (relatively) non-extreme but rather

common natural hazards as thunderstorms can differentially impact economic sectors and income

classes. While the negative statistical effects on income taper in the long run, those on wages persist,

exacerbating the existing trend of rising income inequality (Piketty and Saez, 2014). Second, we find

that poorer areas show evidence of an adaptation deficit relative to richer ones and, remarkably, public

interventions (in the form of federal aid) appear to effectively counteract negative economic impacts.

As climate change could increase both the frequency and the magnitude of severe storms (Diffenbaugh

et al., 2013), mitigation and, especially, adaptation policies needs to be strengthen in order to enhance

local resilience and reduce vulnerability to this type of hazards.

The remainder of the paper is organized as follows. Section 2 reviews the literature on storms,

climate change and the impact of natural disasters on the economy. Section 3 describes data and

methodology employed in our analyses. Section 4 details our results. Finally, Section 5 provides

conclusions and remarks on future work.
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2 What do we know about the long-run economic impacts of natural

hazards?

Natural hazards can significantly affect physical and social infrastructure, property, environmental

conditions, and living standards (Ibarrarán et al., 2009). Macroeconomic studies consistently show im-

mediate declines in economic output, deteriorated trade balances, fiscal imbalances, increased poverty

rates and heightened income inequality measures (Rasmussen, 2004). These findings are corroborated

by micro-level studies on economic and socio-demographic indicators such as productivity, life ex-

pectancy, mortality and crime rates (Hsiang et al., 2017). However, signs and magnitude of aggregate

economic effects in the medium and long-run are still openly debated (Noy et al., 2018).1

Overall, scholars have proposed four different - and by and large mutually exclusive - hypotheses

on the long-term consequences of natural hazards, as summarised in Hsiang and Jina (2014).2 First,

according to the creative destruction hypothesis, the occurrence of hazards can temporarily stimulate

economic growth by increasing demand for goods and services as communities replace lost capital, fos-

tering the influx of aid and assistance, and triggering innovations (Skidmore and Toya, 2002; Ahlerup,

2013). However, only in exceptional cases (e.g., small nations receiving sizable international aid)

economies are able to avoid a short-run decline in output. The “build back better” hypothesis suggests

that natural disaster are immediately followed by a slowdown in economic growth due to loss of life

and productive capital, as well as lengthy and onerous reconstruction processes, but that long-term

economic growth is stimulated by the replacement of damaged assets with newer and more efficient

units (Hallegatte and Dumas, 2009; Sawada et al., 2011; Akao and Sakamoto, 2018). Similarly, the

recovery to trend hypothesis postulates that an economy hit by a hazard experiences a short-term

contraction, but eventually returns to its pre-disaster growth trajectory. In contrast, the no recovery

hypothesis suggests that the negative effects of a hazard on an economy persist beyond the initial con-

traction phase, preventing the return to the pre-hazard growth trajectory (as found for hurricanes in

Hsiang and Jina, 2014). Various mechanisms have been proposed to explain such hysteresis dynamics

(Cerra et al., 2023), including the diversion of resources from productive investment to meet urgent

consumption needs (Anttila-Hughes and Hsiang, 2013).

Empirical analyses often produce conflicting findings – in support of one or the other hypothesis –

which could be due to a variety of factors. First, results can vary with the statistical methods employed.

Most of the initial studies used cross-sectional regressions, which can suffer from omitted variable bias

(Hino and Burke, 2021). This concern has been mitigated through an increasing use of methods that

exploit panel data (Dell et al., 2014; Burke et al., 2015), or at least repeated observations of the

phenomenon under analysis (Hino and Burke, 2021; Bernstein et al., 2019). An additional challenge

is posed by the simple fact that economies are constantly changing; pinpointing the effects of specific

events requires appropriate “counterfactuals” to compare against observed data. This is typically

pursued either trough the introduction of composite fixed effects (Zivin et al., 2020), or by creating

artificial control groups through, e.g., propensity score matching algorithms (Deryugina et al., 2018).

Second, results can can vary with the geographical scope of an analysis, because different countries and

areas have distinct socio-economic structures, are at different development stages and are characterized

1Most of the empirical results which are currently contributing to the debate originate from the so-called New Weather-
Economy Literature (Dell et al., 2014), to which this work also contribute.

2Focusing on hurricanes, Bakkensen and Barrage (2018) proposed a stochastic endogenous growth model that tries
to reconcile these contradictory hypotheses within a unified framework.
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by heterogeneous levels of exposure and resilience to natural hazards. Not surprisingly, most of the

studies reporting evidence in favor of the build back better hypothesis focus on high-income countries

(Crespo Cuaresma et al., 2008; Lackner, 2018), endowed with enough resources and technical know-

how to pursue effective adaptation and efficient capital replacement. Third, results can vary with

geographical resolution. Natural hazards are highly localized - even tough their effects can extend

well beyond the affected area (Hallegatte, 2019). Broad, aggregate studies might therefore either fail

to capture confined impacts, or confound them with spatial spillover effects – which may have very

different signs and magnitudes across locations. Regional studies have indeed produced more clear-cut

results (Xiao and Feser, 2014; Hornbeck, 2012; Vu and Noy, 2018).

Increased geographical resolution may also enrich and help dis-ambuiguate analyses in terms of

income levels. Growing evidence from aggregate studies based on sufficient statistics is pointing

towards asymmetric consequences of climate anomalies, with poorer populations carrying a heavier

burden from climate anomalies (Palagi et al., 2022). For what concern specific natural hazards,

the micro-econometric literature has often concentrated on event studies (Elliott and Pais, 2006),

particularly in highly-exposed developing countries (Carter et al., 2007; Mottaleb et al., 2013; Sakai

et al., 2017).3 Recent studies examining a larger set of events have provided additional evidence

supporting a connection between natural hazards and income inequality, both trough macro- (Cappelli

et al., 2021) and micro-econometric approaches (Howell and Elliott, 2019). However, little is still known

about long-run effects of specific natural hazards on income inequality at a sub-national level.

By the same token, results can vary based on the “economic resolution” of the data, as impacts

are very heterogeneous across sectors and economic activities, and are generally greater in agriculture

(Xiao, 2011) and manufacturing (duPont IV and Noy, 2015). When examining labor market outcomes,

research that emphasizes sufficient statistics indicates adverse effects on both wages and unemploy-

ment, primarily attributed to reduced labor productivity (Leduc and Wilson, 2023). Conversely,

investigations centered on catastrophic events such as hurricanes tend to reveal positive impacts on

labor compensation (Belasen and Polachek, 2009; Kirchberger, 2017; Zhu et al., 2021), although there

are studies that report contrary findings (Mueller and Quisumbing, 2009). These positive effects are

frequently attributed to mechanisms that characterize major events, and typically do not apply to

thunderstorms, including: i) significant migration (Groen and Polivka, 2008; McIntosh, 2008), leading

to increased unemployment and reduced labor supply (McComb et al., 2011); and ii) considerable

disruptions, coupled with the influx of federal and international aid (Zhu et al., 2021), which bolsters

specific sectors of the economy – e.g. construction (Belasen and Polachek, 2008).

Finally, a distinct body of literature delves into the pivotal role of international or federal assis-

tance in facilitating recovery following hazardous events. Typically, these studies illustrate how aid

helps mitigate adverse macroeconomic consequences. While the majority concentrate on country-level

analysis, primarily examining aggregate income (Yang, 2008; Hochrainer, 2009), there are also stud-

ies focused on the United States that employ county-level analysis (Davlasheridze and Miao, 2021;

Deryugina, 2017) or that specifically focus on wages (Zhu et al., 2021).

In this paper we contribute to the debate by focusing on a specific and understudied type of hazard:

severe thunderstorms. While less extreme than other, more broadly studied hazards (e.g., floods,

hurricanes, tornadoes) storms are more common and can be highly damaging. From a meteorological

standpoint, they are low-pressure areas, even if the term storm is widely used also in a broader sense

3Sociological research has generated numerous studies demonstrating their disproportionate effects on vulnerable
population segments (Baez and Santos, 2007; Klein, 2007)
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to indicate heavy winds or hailstorms.4 Growing evidence suggest that climate change is likely to

increase both the frequency and the strength of both thunderstorms (Diffenbaugh et al., 2013) and

extra-tropical storms in the Northern Hemisphere (Vose et al., 2014). Here, we focus on the United

States, where storms are a fundamental part of the nation’s climate, producing between 15% (West

Coast) and 70% (high plains) of the average precipitation across the nation. Storm-related damages

are a fairly frequent occurrence nation-wide, accounting for 45% of all weather-related insured property

losses (Kunkel et al., 1999).5 These events are typically characterized by wind speeds (measured on

the Beaufort wind force scale) ranging from 75 km/h to hurricane-like forces (≥ 118 km/h, cf. Barua,

2005); the associated impacts can range from slight structural damages (severe gales) to devastation

(hurricane-like wind forces).

Studying the U.S. allows us to consider a large geographical area, with data of reliable quality

and reasonably high resolution (the counties). Thus, our analyses can leverage highly diversified

information, both in terms of hazard exposure and in terms of economic activities. On such rich data,

we employ an empirical strategy akin to that in Hsiang and Jina (2014) and, more recently, Callahan

and Mankin (2022). Another point of strength of our study is the ability to consider different aggregate

economic outputs, namely income and wages, both overall and by economic sector. This helps further

elucidate the transmission channels through which hazards (storms in our case) affect the economy

(Hsiang et al., 2017), and the asymmetric dynamics effects these events may induce.

3 Data and methods

In this section we describe in detail the data on storms and economic variables used in our analyses

(Sections 3.1 and 3.2), the measures of hazard exposure we calculate from the storm data (Section

3.3), and our empirical strategy (Section 3.4).

3.1 Storm data

We employ data from the Storm Events Database (SED), which is maintained by the National Oceanic

and Atmospheric Administration (NOAA), and informed by the National Weather Service (NWS).

SED documents a variety of weather-related events capable of causing significant losses to property

or life (see Table A.1). In our study, we only consider severe storm events involving damaging winds,

i.e. those labeled as “thunderstorm wind”.6 Among these, we further restrict the analysis to those

with wind speed higher than 75 km/h (or 21 m/s) – the SED definition of extreme winds – occurring

between 1991 and 2019, for a total of 307,289 events. After extensive data cleaning and grouping

of storm events, our final dataset consists of 204,319 distinct storm events - details are provided in

Appendix A. As already mentioned above, a crucial feature of these events is that they extend well

beyond the typical hurricane landfall basins (see Figure 1A).

Severe storms are typically highly-localized, short-lived phenomena (Changnon Jr, 1980; Fujita,

1985; Caracena et al., 1989). The average storm span in our dataset is just 6.91 km, and the 95th

4In Section 4.3 we also consider hailstorms.
5Storms are typically better covered by insurance policies than other types of hazards (Jahn, 2015).
6SED also contains other types of events that involve damaging winds; namely, events labeled as “high wind” and

“strong wind”. We did not consider these in our study, as they may include non-convective events (Knox et al., 2011),
and are collected by SED within a time span different from that used for thunderstorms. Nevertheless, including them
does not sensibly alter our main results (estimates available upon request).
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percentile just 33.61 km.7 Even restricting attention to events with strictly positive span,8 the distri-

bution remains right skewed, with a mean of 20.33 km and a 95th percentile equal to 49.30 km (see

Figure 1B). In terms of duration, most events last less than one hour (see Figure 1C), and almost all

(99.1%) begin and end in the same day. Further, thunderstorms are very difficult to predict, even a

few days ahead (Clark et al., 2009; Lawson, 2019), which reduces the chances of effectively anticipating

their arrival. Notwithstanding their limited span and duration, these events can cause large damages

to property and people, with effects ranging from large branches breaking off trees, to constructions

and barricades blowing over, to flash flooding.

3.2 Economic data

We retrieve county-level data from the Quarterly Census of Employment and Wages (QCEW), main-

tained by the Bureau of Labor Statistics (BLS). QCEW publishes quarterly measurements covering

more than 95% of U.S. jobs, disaggregated by the economic sectors comprised in the North Ameri-

can Industry Classification System (NAICS). In our main analyses, we employ Annual Average Pay

(i.e. per capita annual wage) as our primary measure for wages. Employment, as captured by the

Annual Average Employment measure, is used in our robustness checks. In the QCEW, wages are

registered as reported by employers. As such, they are imputed to the county where the employer is

located (Feyrer et al., 2017).9

Separately, we retrieve county-level data on personal income from the Regional Economic Account

(REA), published by the Bureau of Economic Analysis (BEA). REA measures total personal income

as the total of all the revenues arising from from wages, proprietors’ income, dividends, interest, rents,

and government benefits. An individual’s income is registered in the county where she lives, even if

the income originated elsewhere.

3.3 Storm exposure measures

To analyze the association between thunderstorms and economic variables observed at the county

level, we produce a yearly, county level measurement of exposure aggregating storm events. Formally,

the aggregation is performed through a generic metric function

Mi,t = µ(η1,i,t, η2,i,t, . . . , ηni,t,i,t) (1)

where Mi,t is the exposure measure for county i in year t, µ(·) is the metric function, and ηj,i,t, with

j = 1, . . . , ni,t are the ni,t events affecting county i in year t. The literature on hazard impacts provides

several choices for µ(·), with different emphasis on event intensity and/or frequency. We consider four

alternative functions and test the robustness of our results to the resulting exposure measures (see

Figure B.2).

7For approximately 97% of the events comprised in our final dataset SED provides start and end coordinates; the
span, or radius, of these events is computed as the distance between start and end coordinates. Events were attributed
to counties not by relying on coordinates but rather by utilizing the FIPS codes provided by SED, which SED itself
indicates as the primary geolocation information – see Appendix A.

8Approximately 63% of the events in our dataset are recorded as starting and ending in the same location, and thus
have a radius of 0 km. Likewise, approximately 57% of observations report identical start and end date. These instances
are likely to signal very short and geographically confined storm spells.

9Note that individuals employed by state and local governments on a temporary basis following a declared emergency,
e.g., due to a storm, fire, snow, earthquake, flood, etc., and individuals employed under a Federal relief program are
excluded from QCEW data.
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Figure 1: Panel A: Yellow points mark the locations of the 204,319 thunderstorm events occurred
between 1991 and 2019 within the continental U.S., with reported initial and final coordinates. In
contrast to the broad geographic spread of these locations, the red shading indicates counties that
suffered at least one Atlantic basin tropical storm (with sustained wind above 21 m/s) between 1991
and 2019 – source: modeled winds (Willoughby et al., 2006) from hurricane best tracks data (Anderson
et al., 2020). Panel B: Number of observed thunderstorm events by duration, measured as the difference
between start and end time of storms (only events with strictly positive duration). The inset shows
a detail of the left tail of the distribution. Panel C: Number of observed thunderstorm events by
span, measured as the distance between the start and end location of storms (only events with strictly
positive span). Panel D: Number of observed thunderstorm events and mean wind speed (in kilometers
per hour) in various sub-periods of the 1991-2019 time interval covered by the study.

Nordhaus (2010) focused on frequency as the primary factor for the analysis of the economic

impacts of hurricanes. The sheer number of events can indeed be a simple and effective way to

capture activity also in the case of storms, resulting in the first exposure measure:

M
(1)
i,t = µ(η1,i,t, η2,i,t, . . . , ηni,t,i,t) = #(η1,i,t, η2,i,t, . . . , ηni,t,i,t) = ni,t , (2)

where #(·) is the counting function that enumerates the elements of a set.10 However, this approach

disregards information about wind speed, which can be captured through metrics derived from climate

10Even simpler metrics can be employed, as in Deryugina (2017), which only considers a dichotomous variable indicating
whether a county has been affected by at least one event in that year.
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physics. This is what we do with the second exposure measure; namely, the maximum wind speed

experienced throughout all storms in a given year (as in Hsiang and Narita, 2012):

M
(2)
i,t = µ(η1,i,t, η2,i,t, . . . , ηni,t,i,t) = max

j=1,...,ni,j

sj,i,t , (3)

where sj,i,t is the wind speed recorded during event ηj,i,t. Measuring exposure through maximum

wind speed is appealing, as most rigid materials used to construct durable capital fail above a critical

level of stress. On the other hand, this approach does not consider the cumulative effect which may

derive from the occurrence of multiple storms in the same time period. In order to account for both

magnitude and frequency, metrics are often based on empirically derived damage functions which

relate a physical stressor (e.g., wind speed) to experienced damages. Damage functions are highly

heterogeneous, as they are typically scale and location-dependent and can change over time (due,

e.g., to adaptation). As such, they cannot be directly inferred from a few physic principles, although

they are often concave and upwardly curved. Hence, the general approach is to model exposure as

either the square (Pielke Jr and Landsea, 1999) or the cube (Emanuel, 2005) of wind speed, although

higher powers have also been suggested (Münchener Rück, 2002; Nordhaus, 2010). Since damages

accumulate, aggregation can be achieved through summation (Henry et al., 2020). This leads to the

third and fourth exposure measures, using squares and cubes, respectively:

M
(3)
i,t = µ(η1,i,t, η2,i,t, . . . , ηni,t,i,t) =

ni,t∑
j=1

s3j,i,t , (4)

M
(4)
i,t = µ(η1,i,t, η2,i,t, . . . , ηni,t,i,t) =

ni,t∑
j=1

s2j,i,t . (5)

Another important consideration is that, while storms in our dataset have relatively homogeneous

sizes, county sizes range from 62 km2 (Bristol County, Rhode Island) to 51,947 km2 (San Bernardino

County, California). Since exposure could simply increase with county size, in line with the literature

(Hsiang, 2016) we normalize the measures in Equations 2, 3, 4 and 5 as

S
(k)
i,t =

ā

ai
M

(k)
i,t , k = 1, 2, 3, 4 (6)

where ai is the area of county i, and ā the average county area. Because of this normalization,

estimated impacts (Section 4) should be interpreted as impacts on a county of average size.11

Using the cumulative, square-based measure S(4), Figure 2A shows the percentage of years in which

each county registered an exposure in excess of one (pooled) standard deviation above the (pooled)

mean.12 This demonstrates again the much broader geographical spread of the storms considered

here relative to that of typical hurricanes and tropical storms. The vast majority of storm over-

exposure occurs east of the Rocky Mountains (though storms extend to other parts of the country; see

Figure 1A). In addition, the distribution of exposure measures (pooled over counties and years; Figure

2B) presents a large spread and a strong skew – suggesting a marked heterogeneity over time and

space. Figure 2C reports correlations for the four exposure measures considered, which range between

11In the case of very small counties, very large scaling factors generate outliers. We trimmed our data to mitigate their
effect. Additional details are provided in Appendix A.

12The square of a wind speed is often used as it proxies the energy carried by the storm, see Nordhaus (2010).
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Figure 2: Panel A: Percentage of years (between 1991 and 2019) in which each county experienced
an exposure (S(4)) in excess of one pooled standard deviation above the pooled mean. Panel B:
Distribution of exposures (S(4)) for all counties and years (1991-2019). Panel C: Correlations for
normalized exposure measures (S(1), S(2), S(3) and S(4); see Equations 2, 3, 4, 5, and 6).

0.7 and 0.98 – suggesting that all measures capture the same salient aspects of storm exposure.13

3.4 Empirical strategy

We model our panel data, which comprises i = 1, . . . , 2, 408 counties and t = 1, . . . , 29 years, with the

general equation

yi,t =

p∑
ℓ=0

βℓSi,t−ℓ + γXi,t + αi + ωi,t + ϵi,t

where yi,t is the annual growth rate of our dependent variable (i.e., annual average pay or, separately,

income per capita), Si,t is an exposure measure (as defined in Equation 6), which enters the model

with p lags (ℓ = 0, . . . , p), and Xi,t is a set of control variables. αi is a county-level fixed effect in-

troduced to control for observed and unobserved characteristics, such as differences in climate and

13Similar correlations can be observed among non-normalized exposure measures, i.e. among M (1), M (2), M (3) and
M (4), see Table A.2.
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in long-run trajectories of economic development across counties.14 ωi,t is a term that, in various

specifications of our model, comprises alternative formulations of composite time fixed effects. In its

most comprehensive formulation, ωi,t represents time-varying individual effects entering the model

as heterogeneous time trends (Bai, 2009), generated by multiple common time-varying factors. For

instance, when estimating cyclone impact on country-level growth, Hsiang and Jina (2014) consider

year fixed effects and country-specific trends, thus controlling for country-specific changes in economic

policies and curvatures of income growth trajectories, as well as trends in climate variables. In our

data, we do not find evidence of time trends in the county-level growth rates of the dependent variables

(cf. Figure B.1); most common statistical tests exclude the existence of trends for an overwhelming

majority of counties. Nevertheless, we include state-specific linear time trends in our baseline specifi-

cation in order to flexibly capture macroeconomic dynamics and, in a conservative spirit, any possible

true or artifactual trends in climate variables.15 Our baseline model is thus

yi,t =

p∑
ℓ=0

βℓSi,t−ℓ + γXi,t + αi + ϕt + λSit+ ϵi,t (7)

where λSit represents a state-specific linear time trend (Si is the state to which county i belongs).

Considering Si,t with p lags allows us to capture its effects dynamically; for an exposure occurring

in year t0, we track the response of the dependent variable throughout the period from t0 to t0 + p.

Since we are interested in examining dynamic responses to storm exposure over a long time span, we

typically set p = 10. This is as large as we can afford while still guaranteeing reliable estimates; the

panel comprises 29 years of annual exposure measures, so p = 10 already excludes over one third of the

observations. Notably though, results are robust to different choices of p (cf. Table B.4). Following

Hsiang and Jina (2014), for each intermediate duration τ ≤ p we can express the cumulative effect of

storm exposure as

Ĉτ =

τ∑
ℓ=0

β̂ℓ . (8)

While our models estimate the dependent variables as growth rates, the results presented in Figures and

Tables throughout the manuscript are consistently expressed as cumulative effects (Ĉτ ) standardized

relative to a pooled standard deviation of exposure, along with corresponding confidence intervals.

Therefore, each specific value of Ĉτ should be interpreted as the percentage difference in the dependent

variable (annual average pay or income per capita) in levels τ years after exposure, holding all else

constant.

Our panel methodology exploits both cross-sectional and temporal variations in storm exposure

measures. We note that the timing, location and intensity of storms “shocks” are unpredictable and

stochastic across years, conditional on each county’s typical climate. Our exposure measures may be

seen as locally exogenous variables to the dynamics of U.S. incomes and wages. Further, the timespan

of our sample and its geographical coverage makes any influence of the economy on the occurrence

and strenght of weather events implausible. As a consequence, in tune with other studies employing

analogous measures (e.g. Hsiang and Jina, 2014), the reported values of Ĉτ may reflect a causal effect

of the weather.

14Since our dependent variable is expressed in growth rates, αi captures the time-trends along which each county
moves over time.

15As shown in Table B.3 results are robust to the exclusion of state-specific trends, as well as to the inclusion of more
restrictive time fixed effects.
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Finally, we consider an alternative specification of the model in which exposure, at all lags, inter-

acts with a categorical variable that labels counties (Di), or counties and years in the most general

formulation (Di,t), as belonging to different groups:

yi,t =

p∑
ℓ=0

βℓ,Di
(Si,t−ℓ ×Di,t−ℓ) + γXi,t + αi + ϕt + λSit+ ϵi,t . (9)

We utilize Model 9 with county labels to differentiate impacts based on income and historical exposure

levels (Section 4.4), and with county-and-year labels to differentiate impacts based on whether FEMA

disaster declarations were issued (Section 4.5).

4 Results

In this section we report our main results on the impact of thunderstorms on wages and income per

capita at the county level (Section 4.1), followed by a battery of additional analyses which confirm

their robustness (Section 4.2) – including a parallel analysis of the economic impacts of hailstorms

(Section 4.3). Finally, we report results that offer important insights on the ability of different counties

to adapt to storm exposure (Section 4.4), and on the role of public relief policies (Section 4.5).

4.1 The impact of storm exposure on income and wages

Our findings reveal a significant negative association between storm exposure and both wages and

income per capita, although with notable differences. Estimates arising from our baseline model

(Equation 7) employing our preferred measure of exposure S(4) (Equations 5 and 6) are summarized

in Figure 3 and Table 1. Following a storm exposure equivalent to one pooled standard deviation,

wages exhibits a steady and nearly monotonic decline over time (Figure 3). More specifically, wages are

estimated to undergo a 0.14% reduction below pre-exposure levels in the medium-run (after 3 years),

eventually stabilizing at a plateau of 0.21% below pre-exposure levels in the long term (after 10 years).

Remarkably, estimated negative impacts exhibit high statistical significance in all years, except the

one in which the exposure occurs (Ĉ0; Table 1). Also remarkably, the estimated dynamic effect of

storm exposure on per capita income follows a different pattern. The same-year impact on income

is statistically significant and substantially larger than that on wages (a decrease of 0.1% compared

to 0.027%). This is likely explained by wage stickiness; revising labor contracts – whether upward

or downward – is typically a time-consuming process, while damages to capital stock (e.g., buildings

and infrastructure) are immediately reflected in reduced incomes. In the short term, income follows

a declining trajectory until reaching its minimum (−0.18% after 3 years). Subsequently, it gradually

recovers, eventually approaching pre-exposure levels in the long run; the estimated impact after 10

years is small (−0.026%) and no longer statistically significant. Thus, the dynamic behavior of wages

is consistent with the the no recovery hypothesis, while that of income aligns with the return to trend

hypothesis. Since income comprises both labor and capital components (e.g., rents, profits, etc.), and

is typically dominated by the latter, this divergent behavior points toward a concurrent deterioration

of functional income inequality.

The findings described above do not depend on the choice of exposure measure S(4). Using the

other measures introduced in Section 3.3; namely, S(1), S(2) and S(3) (Equations 2, 3, 4 and 6,

respectively), yields very similar results for both wages and income (Figure B.2). More specifically,
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Figure 3: Cumulative effects of severe thunderstorms (Ĉτ ) for one pooled standard deviation of the
exposure measure, on Annual Average Pay (wages; red) and Income per capita (blue), as estimated
by Model 7. The exposure measure is S(4) (Equations 5 and 6). The number of lags considered is
p = 10. The climatic controls included are population-weighted county-level yearly total precipitations
and average temperatures. The shaded areas represents serial correlation and heteroskedasticity-
robust 95% confidence intervals (Arellano, 1987). The horizontal black dotted line at 0 represents the
baseline trend for each county (a 0 effect indicates that a county follows its baseline trajectory after
storm exposure). Full detail on estimates can be found in Table 1.

estimated impacts are slightly milder with S(2), almost identical with S(3), and slightly stronger with

S(1). This suggests that the observed dynamics are likely triggered by a combination of hazard severity

(primarily captured by S(2)) and hazard frequency (primarily captured by S(1)).

To gain a deeper understanding, we repeat the analysis disaggregating wages by economic sector.

We fit Model 7 separately for the primary sector (agriculture, forestry, fishing, hunting and mining),

the service sector, and the goods-producing sector further partitioned into Construction and Man-

ufacturing – which are characterized by distinct dynamics following a climatic shock (Belasen and

Polachek, 2008; Hsiang, 2010).16 As shown in Figure 4, Services, Construction and Manufacturing

exhibit a wage dynamics similar to that observed at the aggregate level, with an initial decline followed

by a stabilization below pre-exposure levels. The primary sector differs from the others; estimated

effects do not reach statistical significance in both the short and the long run, but the estimated con-

temporaneous effect is significant and notably larger than in other sectors. This aligns with the notion

that the agricultural sector may experience more immediate and pronounced impacts from weather

shocks (Xiao, 2011). Additionally, the primary sector – and in particular agriculture – is typically

characterized by seasonal work contracts; this reduces wage stickiness and may contribute to its ability

to quickly respond to exogenous shocks. The goods-producing sector exhibits larger negative impacts

than the service sector. This is especially true for Manufacturing, in line with previous results (duPont

IV and Noy, 2015), while Construction exhibits a medium-term temporary rebound, potentially influ-

16While sectoral data is available at finer digits resolution in the QCEW dataset, we focus on this coarse partition
because capturing the effects of highly volatile county-level sub-sectoral dynamics would require more targeted studies
and is beyond the scope of this study.
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Table 1: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one pooled standard de-
viation of the exposure measure, on Annual Average Pay (wages) and Income per capita, as estimated
by Model 7. The exposure measure is S(4) (Equations 5 and 6). The number of lags considered is
p = 10. The controls included in the model are population-weighted county-level yearly total precip-
itations and average temperatures. Serial correlation and heteroskedasticity-robust standard errors
(Arellano, 1987) are reported in parentheses. See also Figure 3.

Annual Average Pay Income per capita

Years since storm exposure Cumulative effect Ĉτ Cumulative effect Ĉτ

0 -0.027. (0.015) -0.100*** (0.024)
1 -0.076*** (0.020) -0.127*** (0.031)
2 -0.127*** (0.025) -0.169*** (0.038)
3 -0.149*** (0.028) -0.187*** (0.042)
4 -0.159*** (0.029) -0.149*** (0.044)
5 -0.130*** (0.030) -0.138** (0.046)
6 -0.126*** (0.033) -0.102* (0.050)
7 -0.163*** (0.037) -0.070 (0.054)
8 -0.197*** (0.040) -0.106. (0.056)
9 -0.217*** (0.043) -0.058 (0.059)
10 -0.212*** (0.045) -0.026 (0.065)

County fixed effects ✓ ✓
Year fixed effects ✓ ✓
State-level trends ✓ ✓
Climatic controls ✓ ✓

Adjusted R2 0.05 0.09
Observations 45752 45752

Wald (χ2) test λSi = 0 (p-value) <0.001 <0.001
F-test λSi = 0 (p-value) <0.001 <0.001

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1

enced by public aid flows and reconstruction efforts. In all, our findings are consistent with the notion

that industries in which physical capital plays a larger role experience more pronounced disruptions

due to storms.

While the short-term effects can be attributed to a storm-induced decline in productivity, we

interpret our findings on the long-run impacts of storm exposure as the outcome of firms replacing

damaged physical capital prior to its natural obsolescence – i.e., hazard induced depreciation (Hsiang

and Jina, 2015). This process of capital substitution is not technology neutral, as it often entails

the adoption of labor-saving technologies, which can lead to a decrease in labor demand and to a

permanent reduction in wages. At the same time, capital replacement drives income towards its

pre-exposure levels, potentially resulting in a net increase in income inequality. This conjecture is

corroborated by the fact that the effect is stronger in higher capital intensity sectors. The impacts of

severe storms appear then to exacerbate pre-existing trends of increasing income inequality (see, e.g.,

Piketty and Saez, 2014, among a large literature), as wages exhibit a lower average rate of growth

with respect to income – together with a lower variance, see Figure B.1.

4.2 Robustness

We challenge the results in Section 4.1 with a series of robustness checks involving additional control

variables, the specification of fixed-effects included in the model, the number of lags of the expo-
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Figure 4: Cumulative effects of severe thunderstorms (Ĉτ ) for one pooled standard deviation of the
exposure measure, on Annual Average Pay (wages) disaggregated by economic sectors, as estimated
by Model 7. The exposure measure is S(4) (Equations 5 and 6). The number of lags considered is
p = 10. The climatic controls included are population-weighted county-level yearly total precipitations
and average temperatures. The shaded areas represents serial correlation and heteroskedasticity-
robust 95% confidence intervals (Arellano, 1987). In each panel, the horizontal black dotted line at
0 represents the baseline trend for each county (a 0 effect indicates that a county follows its baseline
trajectory after storm exposure).

sure variable, alternative time periods, as well as a “placebo” analysis based on different types of

randomization, and a county sub-sampling exercise. Overall, our findings remain robust.

Control variables. Estimated impacts of storm exposure vary negligibly when additional control vari-

ables (i.e. other terms in Xi,t of Equation 7) are included alongside population-weighted annual total

precipitations and average temperatures (Tables B.1 and B.2). Specifically, we added squares of the

precipitation and temperature controls, to capture potential non-linearities in climate impacts (Burke

et al., 2015; Palagi et al., 2022); county-level growth rates for employment and population, to account

for labor market dynamics; as well as lagged state-level active population (i.e. employed workforce

over total population). Furthermore, even when introducing the state-level lagged growth rate of the

dependent variable (Annual Average Pay or Income per Capita) as an extra control, results remain

very similar to those obtained with the baseline model. This suggests that the consequences of storm

exposure primarily stem from highly localized (county-level) effects.

Fixed effects. The use of panel methodology is a crucial component of our empirical strategy. As

discussed in Section 3.4, our baseline model (Equation 7) includes county-level fixed effects, year

fixed effects, and state-level trends. Concerning the latter, we run Wald and F tests to assess the

null hypothesis of state-level trends being inconsequential to our regression analysis (λ∫ = 0). As

shown in Table 1, both tests strongly reject the null for both wages and income regressions. However,

removing state-level trends from our model does not substantially alter impact estimates for the wage

regression, and only modestly modifies impact estimates for the income regression, resulting in a

positive long-term effect in line with the build back better hypothesis (Table B.3). Finally, our results

remain qualitatively unchanged even using a highly restrictive model incorporating state-year fixed

effects, although with such a model the estimates for the income regression are, understandably, less

significant (Table B.3).

Time lags. Also altering the number of lags with which the exposure variable is included in our model

(p in Equation 7) does not fundamentally change our key findings (Table B.4). While increasing the

number of lags is often recommended to mitigate the risk of omitted variable bias (Greene, 2003;
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Hsiang and Jina, 2014), it also introduces greater statistical uncertainty and leads to a larger number

of dropped observations, thereby amplifying statistical noise. Impact estimates for the wage regression

are largely unchanged when using p = 8 or p = 12. On the other hand, while remaining consistent

with the return to trend hypothesis, impact estimates for the income regression exhibit a gradual

reduction in size and statistical significance as the number of lags increases.

Temporal window. In a conservative spirit, we conducted additional checks by restricting our model

fits to different temporal windows within the 1991-2019 interval. While this reduces the number of

observations and diminishes statistical power, it allows us to assess whether our results are driven by

dynamics specific to a particular time period. Table B.6 shows results obtained across four different

sub-samples (those outlined in Figure 1C). Specifically, we consider two panels beginning in 1998 and in

2003, respectively (to remove the first years of the sample containing fewer events); one dataset ending

in 2008 (to remove the years of the global financial crisis and its aftermath); and one dataset ending in

2012 (to exclude most recent years in our sample). Despite the decrease in statistical significance due

to the substantially smaller sample sizes, the results remain consistent with our baseline estimates.

Additionally, we notice that the different response of wages and income is starker in samples ending

in 2008 and 2012, suggesting that more recent years have witnessed a lower asymmetry.

Placebo analysis. To further investigate potential misspecifications in our baseline model and validate

our estimates, we conduct a “placebo” analysis along the lines of Hsiang and Jina (2014). Specifically,

we re-fit our baseline specification (Equation 7) after different types of data randomizations. This

approach allows us to gauge whether our findings could arise from spurious relationships or biases

due to the specification itself. In the first exercise we randomize storm exposures while keeping the

dependent variables (wages and income growth rates) fixed. Conversely, in the second exercise we

keep storm exposures fixed and randomize the dependent variables. Furthermore, for each exercise,

we implement two different randomization schemes. In the Full Sample randomization scheme, we

scramble the whole set of values (exposures, or dependent variables) thereby introducing randomness

in both timing and location of the observations. This allows us to assess potential biases stemming

from both temporal trends (local or aggregate) and cross-sectional patterns (across counties). In the

Within-county randomization scheme, we scramble the time series (exposures, or dependent variables)

separately within each county. This specifically targets potential biases stemming from cross-sectional

patterns (across counties). Figure 5 displays the distribution of point estimates obtained trough

repeated re-fits of Model 7 on datasets generated trough the four combinations of variables being

randomized (exposures, or dependent variables) and randomization schemes being applied full sample,

or within-county). Randomization and re-estimation are repeated 1000 times for each configuration.

Specifically, for each of the four combinations and for each dependent variable, we show estimates of

the cumulative effects of storm exposure in the short-run (Ĉ3) and in the long-run (Ĉ10). The averages

of all distributions are around 0, and the original estimates (red dashed lines in Figure 5) fall well

to the left of the range of the randomized estimates, except for the long-run effect on income (the

original estimates for this effect where consistently non-significant in our multiple analyses). In all,

the “placebo” results demonstrate that our original estimates are highly unlikely to stem from the

omission of time or location-time specific terms.

Random sub-samples. To ascertain whether our results may be driven by a limited number of counties,

we perform a sub-sampling exercise, progressively excluding from the analysis increasing fractions of
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Figure 5: Distributions of cumulative effects of severe thunderstorms in the short (Ĉ3) and long (Ĉ10)
run for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages)
and Income per capita, obtained re-estimating Model 7 on randomized datasets. Randomization
is carried out with two different schemes: i) randomly re-assigning observations within each county
(Within-county), or ii) randomly re-assigning observations across the entire panel (Full Sample). Each
randomization scheme is carried out on the exposure measure (Random Exposure) and, separately,
on the dependent variable (Random Economic Outcome), repeating randomization and subsequent
estimation 1000 times. The exposure measure is S(4) (Equations 5 and 6). The number of lags
considered is p = 10. The climatic controls included are population-weighted county-level yearly total
precipitations and average temperatures. Vertical dotted black lines mark 0 and vertical dashed red
lines mark the original estimates obtained fitting Model 7 without randomizing the data (Figure 3
and Table 1). T-tests comparing the means of the estimates obtained through randomization to the
original estimates all yield p-values < 0.001.

counties (10%, 20%, 30%, and 40%) selected at random. For each fraction, we repeat random sub-

sampling and the re-estimation of Model 7 1000 times. As shown in Figure B.3, the larger the

fraction of counties excluded, the more uncertainty one has in effect estimates. Notwithstanding this

obvious sample size-related fact, the averages of the distributions of effect estimates remain significantly

different from 0, demonstrating that our findings are not driven by a restricted subset of counties.

Auto-correlation. We conclude this section with an additional analysis addressing auto-correlations.

Estimates from distributed lag models may exhibit some degree of bias due to the presence of short-

run serial correlation in growth rates. A common robustness check involves introducing autoregressive

terms in the estimated model. Following Cerra and Saxena (2008) and Hsiang and Jina (2014), we

augment our baseline Model 7 with additional autoregressive terms, up to the 4th degree. As shown

in Table B.5, this does not qualitatively change our results.
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4.3 Hailstorms

As an additional way to validate our findings, we perform a parallel analysis exploring the impacts

of a distinct yet analogous weather event recorded in the SED dataset: hailstorms. Although dam-

ages occur differently (thunderstorms cause damage mainly through strong wind gusts and potential

flash floods), this parallel analysis provides an opportunity to scrutinize the effects of a detrimental

meteorological phenomenon that bears some resemblance to thunderstorms – in terms of potential for

property damage, predominant type of harm and highly localized nature. Consequently, we anticipate

that hailstorms will exhibit economic impacts similar to those of thunderstorms.

Like thunderstorms, hailstorms are geographically confined and short-lived weather events. On

average, they have a duration of approximately one hour, and the distance between their starting

and ending locations is typically between 20 and 30 km (Figure A.1C). However, they differ from

thunderstorms in terms of geographical distribution (Figure A.1A), as they primarily occur in the

Central part of the continental U.S. – while thunderstorm exposure is highest in the Eastern part

of the country (Figure 2). Notably, we are thus investigating a comparable event whose strongest

impacts are expected to affect areas characterized by a different socio-economic context.

The magnitude of hailstorms is measured in terms of hailstone diameter. Accordingly, we construct

an exposure measure that serves as a proxy for the energy carried by the hailstorm. Specifically, we

calculate the sum of the cubes of hailstone diameters recorded in hailstorms that occurred in each

county and year, as described in Equation 4, thereby producting a measure directly related to the

volume of hail cubes. To ensure cross-county comparability, we then normalize using Equation 6,

resulting in a hail exposure measure H(3) which is analogous to S(3) for thunderstorms – see Appendix

A for additional details. In fact, the distribution of H(3), likewise that used for thunderstorms, exhibits

a pronounced right skew (Figure A.1B).

Results for the fits of Model 7 with H(3) as the exposure measure are shown in Figure 6. Like for

thunderstorms, wages tend to decline in the first three years following exposure, and then stabilize on

a plateau. Effect estimates are generally statistically significant (except for Ĉ10), but the magnitude

of the short-run decline is less pronounced with respect to thunderstorms (Ĉ3 = −0.069). For income,

effect estimates are consistently positive but not statistically significant. Nevertheless, patterns for

both wages and income are qualitatively consistent with those observed for thunderstorms, and show

that also hailstorms induce different impacts on the two dependent variables.

4.4 Do income levels and long-term exposure matter?

After assessing the impacts of severe storms on economic activity, we investigate whether such impacts

vary in significant and meaningful ways across the counties in our panel – and in particular, whether

counties present different degrees of resilience related to income levels and long-term exposure – as

these could be interpreted as evidence of differential response and adaptation ability.17 To this end, we

employ Model 9, where exposures at all lags interact with a categorical variable representing groups

of counties.

A broad literature emphasizes the role of income in shaping both resilience and adaptation to

natural hazards. Indeed, richer areas tend to absorb weather-related impacts more efficiently (e.g., due

to more efficient institutions, higher savings, or spending capacity), and economically disadvantaged

17Here, we broadly refer to adaptation as the array of measures that a specific community can implement to mitigate
the impacts of weather events.
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Figure 6: Cumulative effects of hailstorms (Ĉτ ) for one pooled standard deviation of the exposure
measure, on Annual Average Pay (wages; red) and Income per capita (blue), as estimated by Model 7.
The exposure measure, based on hail size, isH(3) (Equations 4 and 6). The number of lags considered is
p = 10. The climatic controls included are population-weighted county-level yearly total precipitations
and average temperatures. Shaded areas represent serial correlation and heteroskedasticity-robust 90%
confidence intervals (Arellano, 1987). The horizontal black dotted line at 0 represents the baseline
trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm
exposure). Full details on estimates can be found in Table C.5.

areas can suffer from adaptation deficits or gaps (Fankhauser and McDermott, 2014). Moreover,

empirical evidence suggests a positive relationship between income and the demand for climate security

(Bakkensen and Mendelsohn, 2016). To examine this in the context of thunderstorms, we partition

the counties in our panel into three distinct groups based on their initial income level (below, between,

or above the inter-quartile range of the income distribution in 1991; Figure 7C) and estimate Model

9. Our results do not display marked differences for what concerns impacts on wages (Figure 7A).

Counties in the low, middle and upper range of the income distribution exhibit indistinguishable

responses to storm exposure, essentially identical to the pooled results shown in Figure 3. However,

there are notable differences in estimated impacts on income (Figure 7B). The poorest counties exhibit

much larger contemporaneous impacts (Ĉ0 = −0.272%, compared to −0.056% for medium-income

counties and a statistically not significant −0.038% for high-income counties), as well as short-run

impacts (Ĉ3 = −0.365%, compared to −0.136% for medium-income counties and a statistically not

significant −0.116% for high-income counties). Moreover, while medium- and high-income counties

do exhibit a return-to-trend behavior in the long run, poor counties remain significantly below their

pre-exposure levels, with a negative estimated long-run impact as large as Ĉ0 = −0.404%.

Empirical studies have also provided evidence suggesting that historical exposure to natural haz-

ards can stimulate adaptation efforts to reduce losses. (Fankhauser and McDermott, 2014; Hsiang and

Narita, 2012; Neumayer et al., 2014; Schumacher and Strobl, 2011; Plumper et al., 2010). However,

other works (sse e.g., Bakkensen and Mendelsohn, 2016) have reported no significant hazard-driven

adaptation to hurricane-related damages in the United States. In the context of thunderstorms, coun-

ties that frequently experience damaging winds could have invested more in preventive measures to
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Figure 7: Cumulative effects (Ĉτ ) of severe thunderstorms for one pooled standard deviation of the
exposure measure, on Annual Average Pay (wages; Panel A) and Income per capita (Panel B), as
estimated by Model 9 with dummies Diℓ = Di capturing three income groups (counties with 1991
income below, in and above the inter-quartile range; Panel C shows the 1991 income distribution
in 2012$ and on the logarithmic scale). The exposure measure is S(4), as defined in Equations 5
and 6. The number of lags considered in p = 10. The climatic controls included are population-
weighted county-level yearly total precipitations and average temperatures. Shaded areas represent
serial correlation and heteroskedasticity-robust 95% confidence intervals (Arellano, 1987). Horizontal
black dotted lines at 0 in Panels A and B represent the baseline trend for each county (a 0 effect
indicates that a county follows its baseline trajectory after storm exposure). Full details on estimates
can be found in Table C.1.

contain damages and the negative impact of severe weather events. To examine this hypothesis, we

partition the counties in our panel into three distinct groups based on their average historical exposure

(below, between, or above the inter-quartile range of the distribution of average exposure, where aver-

ages are taken over the period 1991-2019).18 Evidence of hazard-driven adaptation would be reflected

in lower impact estimates in classes with higher risk, i.e., higher average exposure. Our findings,

consistent with Bakkensen and Mendelsohn (2016), do not support such hypothesis, see Table C.2.

Counties in the middle and upper range of the risk distribution exhibit estimates very similar to the

pooled results shown in Figure 3, and counties in the low range of the risk distribution exhibit virtually

no effect.19

Taken together, our results suggest that severe storms may exacerbate income inequality not only

through different impact patterns on labor and capital incomes, but also through asymmetric effects

across counties. While middle- and high-income counties do return to trend in terms of income, poor

counties – which may lack the capacity to effectively update their capital in response to adverse events

– do not. Poor counties may in fact lack the capacity to effectively update their capital in response

to adverse events, leading to a greater persistence of negative impacts on income. The observed

differences in impacts may be influenced not only by greater recovery capabilities, but also by higher

adaptation efforts in wealthier counties, which are less income-constrained. Nonetheless, our results

do suggest that these differing efforts are not related to hazard risk.

18To avoid possible issues of under-reporting of weather events and taking into account that year-on-year exposure to
storms may vary significantly due to intrinsic weather stochasticity, we decided to partition the data according to the
historical average exposure within our full sample, and not according to the intensity of storm activity in a given year.

19Note that these counties are rarely affected by thunderstorms and essentially serve as a control group here; their
minimal exposure does not generate statistically detectable impacts.
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4.5 The role of relief policies

Results shown in the previous section suggest a possible link between local spending capacity and

a form of resilience to the impacts of thunderstorms. Relatedly, we next investigate whether public

aid provided in the aftermath of storm events can affect counties’ adaptation capabilities, and, more

generally, our impact estimates.

A significant body of research has found a positive role for the aid provided by governments and

international organizations in limiting the impacts of major natural hazards (Davlasheridze and Miao,

2021; Deryugina, 2017; Hochrainer, 2009; Yang, 2008). Given their localized and generally non-extreme

nature, US thunderstorms do not activate international assistance – but the most disruptive ones can

overwhelm the resources of local and state authorities, thus prompting federal intervention. Federal

responses to emergencies and disasters in the U.S. are typically the domain of the Federal Emergency

Management Agency (FEMA). Upon issuance of a formal disaster declaration, FEMA can activate its

assistance programs20 and provide financial means, resources and expertise to support affected areas

in their response and recovery efforts.

We thus employ the FEMA Disaster Declaration Summary (DDS) to identify events for which

FEMA issued a disaster declaration. To determine which storms were covered by FEMA, for each

county we use a matching procedure between storm dates in the SED database and disaster declaration

dates in the FEMA record. Conservatively, we establish a match between a storm and a disaster

declaration only if the timeframes (starting and ending dates) reported for the hazard pertaining the

declaration by DDS fall within those reported for the storm by SED (Figure A.2 provides a visual

representation of the matching procedure). The disaster entries selected for the matching procedure

include only those categorized as explicitly linked to storms (see Appendix A for more information on

data treatment).

We identify a total of 8,436 storm events for which FEMA issued a disaster declaration, 4.13% of

all storms in our dataset. Next, since FEMA assistance is typically deployed for an extended period

of time (often several months) and our panel data is aggregated at the county-year level rather than

at the storm level, we label any county-year in which at least one storm received FEMA support as a

“FEMA intervention” datum. There are 3,641 county-year pairs, 5.21% of all pairs in our panel. We

then employ a model akin to Model 9 utilizing the categorical variable to separate county-years into

“intervention” and “non-intervention” (see caption of Figure 8).

Figure 8 suggests a remarkable effect of federal assistance on the estimated storm impact patterns:

restricting attention to counties and years where FEMA issued a disaster declaration, the impacts

of storm exposure on both wages and income are close to 0 and statistically non-significant across

almost the entire impact period considered. The only exception is the contemporaneous impact on

wages (Ĉ0), which is significantly positive. This suggest that FEMA intervention quickly prompts an

influx of resources which sustain wage growth over the medium run. Reassuringly, for counties and

years where FEMA did not issue a disaster declaration, impact patterns are indistinguishable from

the overall ones in Figure 3 – confirming that our main conclusions are not driven by a small portion

of extreme cases (i.e., counties-years with thunderstorms triggering disaster declarations).

20These programs include Individual Assistance, Public Assistance, and Hazard Mitigation. The Individual Assistance
program provides financial support to affected individuals and households, while the Public Assistance program offers
funding to local government and nonprofit organizations for recovery efforts (e.g., covering facilities reparation costs).
The Hazard Mitigation program focuses on reducing future disaster risks. In addition, Small Business Administration
(SBA) loans are often made available in conjunction with FEMA assistance programs. The SBA offers low-interest loans
to homeowners, renters, and businesses located in the affected region.

21



Annual Average Pay

0 2 4 6 8 10

-0.3%

-0.2%

-0.1%

0%

0.1%

0.2%

Years since storm exposure

%
 c

ha
ng

e 
pe

r s
.d
. o
f S

(4
)

FEMA intervention (✓) No FEMA intervention (✗)

A Income per capita

0 2 4 6 8 10

-0.2%

0%

0.2%

Years since storm exposure

%
 c

ha
ng

e 
pe

r s
.d
. o
f S

(4
)

FEMA intervention (✓) No FEMA intervention (✗)

B

Figure 8: Cumulative effects (Ĉτ ) of severe thunderstorms for one pooled standard deviations of
the exposure measure, on Annual Average Pay (wages; Panel A) and Income per capita (Panel B),
as estimated by Model 9 with dummies Dit capturing county-year pairs with FEMA interventions.
The exposure measure is S(4) (Equations 5 and 6). The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and average
temperatures. Shaded areas represents serial correlation and heteroskedasticity-robust 95% confidence
intervals (Arellano, 1987). Horizontal black dotted lines at 0 in Panels A and B represent the baseline
trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm
exposure). Full detail on estimates can be found in Tables C.3 and C.4. More information on the
identification of county-year pairs associated with FEMA interventions can be found in Appendix A
and Figure A.2.

We also tested whether our results could be influenced by spurious effects, such as counties-years

experiencing other simultaneous disasters that prompted FEMA intervention. We accordingly aug-

mented our model controlling for FEMA interventions related to non-wind-water-related events. Re-

sults (see Tables C.3 and C.4) are essentially indistinguishable from those in Figure 8. On the other

hand, when we expand our matching procedure to include disaster declarations not directly linked to

storms but involving more hazardous wind-water-related events, we observe more similar dynamics

between the FEMA intervention and No FEMA intervention groups (see Tables C.3 and C.4).

In summary, our findings show that FEMA interventions can play a crucial role in mitigating

the adverse impacts of storms on wages and income dynamics, potentially preventing any associated

increases in income inequality. However, the effectiveness of this intervention seems to diminish as

the severity of the event increases, indicating that federal assistance might not fully offset the largest

impacts.21

5 Conclusions

In this study, we examine the economic impacts of severe thunderstorms. While previous research has

extensively analyzed the impacts of extreme events such as hurricanes and tropical storms, our study

is the first to provide a comprehensive analysis of these less extreme, yet much more common and still

21Due to the distinct categorization of events across SED and SSD datasets, we cannot rule out the possibility that
disasters declaration not explicitly labeled as storms – which we indeed excluded from our baseline estimates in Figure 8
– may refer to separate events occurring concurrently with a storm episode. Consequently, our results related to larger
events might underestimate the positive impact of FEMA intervention. See Appendix A for more information on SSD
labeling.
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pernicious weather events. We employ detailed information on over 200,000 severe storms occurred in

the continental United States from 1991 to 2019, including wind speed and geolocation data, to create

physically-grounded storm exposure measures, and use these to fit distributed-lag models within a

panel framework.

Our analyses reveal significant negative economic effects associated with storm exposure. Specifi-

cally, we find that severe storms considerably affect income, which then recovers over time consistent

with a return to trend hypothesis. However, we also find that severe storms lead to persistent de-

clines in wages, exhibiting hysteresis and supporting a no recovery hypothesis. Jointly, these results

suggest that storm exposure can contribute to an increase in functional income inequality – likely by

accelerating capital obsolescence and the subsequent adoption of labor-saving technologies, which may

explain the diverging trajectories observed for wages and income. This is supported by our analyses

disaggregated by economic sectors. In addition to a broad battery of robustness checks, our main

findings are also confirmed by a separate analysis of the impacts of hailstorms occurred in the U.S.

between 1991 and 2019.

We also run analyses to investigate whether some communities may be better equipped than

others to withstand the impacts of storms. In particular, we find that economically disadvantaged

counties experience larger and more enduring income losses, suggesting that local spending capacity

(and perhaps attitudes correlated with affluence) can help mitigate negative economic impacts. In

contrast, we do not find evidence of hazard-driven adaptation, i.e. of a reduction in economic impacts

associated with long-term exposure levels.

Finally, we investigate whether federal interventions can reduce the severity of economic impacts

and foster more equitable recoveries. Remarkably, the issuance of FEMA disaster declarations and

the provision of aid do dampen the negative consequences of severe storms on both income and wages,

although such positive effects may not apply to the largest events.

Our work can be extended in several ways. Specifically, we intend to delve deeper into the impact

of federal aids and related support programs on shaping recovery trajectories post-hazardous events,

with a particular focus on their role in fostering equitable outcomes. Prior studies have indeed reached

conflicting conclusions. While micro-econometric approaches reported evidence of FEMA intervention

worsening wealth inequality along lines of race, education and home ownership (Howell and Elliott,

2019), other studies suggested instead a generally equitable allocation of FEMA relief funds (Domingue

and Emrich, 2019). Our own observations only pertain to the domain of functional income inequality,

and are limited to a specific subset of relatively moderate weather events. Further studies employing

more disaggregated data will be needed to validate our findings and elucidate to what extent federal

interventions may promote equitable outcomes.
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Online Appendix

A Data cleaning

Out of the 370,753 events classified as “Thunderstorm winds” in the SED dataset (see Table A.1), we specifically
focus on those with recorded wind speeds exceeding 75 km/h - or 21 m/s - which is the designated threshold for
extreme winds with potential for causing damage. Additionally, we limit our analysis to events that occurred
within the continental United States, excluding observations from Puerto Rico, American Samoa, Guam, Virgin
Islands, Hawaii, and Alaska. To assign events to specific counties, we employed the FIPS codes provided by
the SED dataset. Such codes were validated using Census shapefiles, ensuring the accuracy of the county-
level assignment. In cases where events span multiple counties, we allocate them to each respective county
individually. In terms of income data, the Regional Economic Accounts (REA) published by the Bureau of
Economic Analysis (BEA) aggregate data for several counties and independent cities that are considered county-
equivalents for census purposes. To ensure comparability, we aggregated the storm events accordingly. The SED
dataset includes identifiers for both “events” and “episodes”. “Events” represent distinct localized occurrences
that may stem from the same synoptic meteorological phenomenon, as indicated by the corresponding “episode”
identifier. While individual events are expected to refer to separate incidents, we observed instances where
multiple events not only occurred within the same county but also overlapped in time. To ensure a conservative
approach and avoid double-counting, we made the decision to combine events within the same episode, occurring
in the same county, and overlapping temporally into a single event. By implementing these cleaning procedures,
we reduced the total number of episodes from 307,322 to 204,319. To address the issue of outliers arising from
the normalization of county-year aggregated exposures - as a result of large scaling factors for small counties
- we applied a trimming procedure to our panel data. This involved removing counties that had a normalized
exposure S(4) (as defined in Equations 5 and 6) in the top 1% percentile. By implementing this trimming
process, we further ensure that our results are not unduly influenced by extreme recorded wind speeds. It is
worth noting that similar results would be obtained by trimming data solely on the basis of county territorial
extension (see replication code; full Table available from the authors upon request).

Identical cleaning and aggregation procedures have been applied to entries related to “Hail” - see Table A.1
and Figure A.1.

The entries from the FEMA Disaster Declaration Summary dataset underwent a thorough manual cleaning
process to ensure the accurate county allocation for each entry. In cases where declarations encompassed
multiple counties, we allocated them to each respective county individually. To maintain consistency with
the storms data and facilitate comparability with income data, we followed an identical aggregation procedure
for the declarations. For our baseline analysis, we focused on disaster declarations strictly related to storms,
which included the categories labeled as “Severe Storm” and “Coastal Storm”. To identify matching pairs
of storm-disaster declarations, we employed the methodology illustrated in Figure A.2. Matching pairs were
considered when a disaster declaration was issued in the same county as a given storm, and the reported dates
from DDS fell within the reported dates from SED. In line with a conservative approach, any other type of
time overlap was disregarded as non-matching. We further performed a parallel matching procedure including
disasters declarations related to storms and eventual secondary disasters, which included the categories labeled
as “Severe Storm”, “Coastal Storm”, “Flood”, and “Mud/Landslide” – see Model (2) in Tables C.3 and C.4
– and including disasters declarations pertaining any wind-water-related event, which included the categories
labeled as “Severe Storm”, “Coastal Storm”, “Flood”, “Mud/Landslide”, “Severe Ice Storm”, “Snowstorm”,
“Tornado”, and “Hurricane” – see Model (3) in Tables C.3 and C.4. The creation of the dichotomous variable
used in Model (4) in Tables C.3 and C.4 did not involve any matching procedure. It identifies the presence of
a disaster declaration in a given county-year pair which did not fall under the wind-water-related categories.

Data from the Quarterly Census of Employment and Wages (QCEW), maintained by the Bureau of Labor
Statistics (BLS), underwent the same aggregation procedure as storm data, to ensure consistency and compara-
bility with income data from BEA. Both the Annual Average Pay data from QCEW and the Income per capita
data from BEA were adjusted for inflation using CPI deflator from the Federal Reserve Bank of St. Louis, with
the base year set as 2012. To address outliers in the QCEW and BEA data, we applied a filtering process by
removing counties that fell within the top 0.0025% and bottom 0.0025% quantiles of the distribution. All the
data used in this study are publicly available.
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Table A.1: Frequency of different types of events in SED database (1991-2019).

Event type Frequency Event type Frequency

Astronomical low tide 547 Marine hurricane/Typhoon 50
Avalanche 657 Marine lightning 1
Blizzard 14022 Marine strong wind 141

Coastal flood 3138 Marine thunderstorm wind 27909
Cold/Wind chill 14216 Marine tropical depression 11

Debris flow 1535 Marine tropical storm 170
Dense fog 13323 Northern lights 8

Dense smoke 84 Rip current 1343
Drought 55612 Seiche 65

Dust devil 228 Sleet 726
Dust storm 1129 Sneakerwave 18

Excessive heat 8809 Storm surge/tide 1326
Extreme cold/Wind chill 12222 Strong wind 21425

Flash flood 85123 Thunderstorm wind 370753
Flood 55766 Thunderstorm wind/Tree 1

Freezing fog 411 Thunderstorm wind/Trees 3
Frost/Freeze 12055 Thunderstorm winds funnel cloud 2
Funnel cloud 8610 Thunderstorm winds heavy rain 1

Hail 316638 Thunderstorm winds lightning 2
Hail flooding 1 Thunderstorm winds/Flood 2

Hail/Icy roads 1 Thunderstorm winds/Flash flood 1
Heat 21154 Thunderstorm winds/Flooding 1

Heavy rain 25223 Thunderstorm winds/Heavy rain 1
Heavy snow 62286 Tornado 38745

High surf 9211 Tornado/Waterspout 1
High wind 70241 Tornadoes/Tstm wind/Hail 1
Hurricane 133 Tropical depression 409

Hurricane (typhoon) 1799 Tropical storm 5146
Ice storm 11150 Tsunami 33

Lake-effect snow 2327 Volcanic ash 70
Lakeshore flood 194 Volcanic ashfall 69

Lightning 16676 Waterspout 5086
Marine dense fog 8 Wildfire 7157

Marine hail 709 Winter storm 74021
Marine high wind 497 Winter weather 60792

Table A.2: Correlation coefficients among various exposure measures not normalized (M (1),M (2),M (3),
and M (4), see Equations 2, 3, 4, and 5 in the manuscript).

M (1) M (2) M (3) M (4)

M (1) 1.00 0.64 0.94 0.98

M (2) 0.64 1.00 0.69 0.68

M (3) 0.94 0.69 1.00 0.99

M (4) 0.98 0.68 0.99 1.00
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Figure A.1: Panel A: Percentage of years (between 1991-2019) in which each county experienced an
exposure (H(3)) a pooled standard deviation above the pooled mean. H(3) is obtained aggregating
hail sizes (in cm), as in Equation 4 and normalized according to Equation 6, out of 163,961 total
hailstorms events. Panel B: Frequency of exposure measures (H(3)), pooled observations (1991-2019);
inset graph shows the right tail of the distribution. Panel C: number of observed hail storm episodes,
mean hail size recorded (diameter in cm), mean hail storm span - measured as the distance between
start and end coordinates, for events with reported initial and final coordinates, in km - and mean
storm spell - measured as the difference between start and end time of hail storms, for events with
reported initial and final time, in hours - by period.
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Figure A.2: Strategy for matching storm-disaster declarations pairs. Matching pairs were determined
based on storm events associated with a disaster declaration occurring in the same county and within
the same date range. County-year pairs that had at least one storm event matched with a disaster
declaration were classified as “FEMA intervention”, as reported in Figure 8.
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Figure B.1: Time series for growth rates of Annual Average Pay and Income per capita for each county,
between 1991 ans 2019. Pooled sample means and standard deviations reported in tables. Values for
Phillips-Perron tests (both with and without constant) report the percentage of counties for which
the tests reject the null hypothesis of a unit root. Mann-Kendall tests (both bootstrapped and not)
report the percentage of counties for which the tests fails to reject the null hypothesis of no-trend.
Linear model (OLS regression with time as covariate) reports the percentage of counties for a T-test
on the time regressor fails to reject the null hypothesis of no-trend. All significance levels are at 5%.
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Figure B.2: Cumulative effects (Ĉτ ) of severe thunderstorms for one pooled standard deviation of
the exposure measure, on Annual Average Pay (wages; Panel A) and Income per capita (Panel B),
as estimated by Model 7, with varying exposure measures (S(1), S(2), S(3), and S(4), see Equations
2, 3, 4, 5, and 6). The number of lags considered in p = 10. The climatic controls included are
population-weighted county-level yearly total precipitations and average temperatures. Shaded areas
represents serial correlation and heteroskedasticity-robust 95% confidence intervals (Arellano, 1987).
Horizontal black dotted lines at 0 in Panels A and B represent the baseline trend for each county (a
0 effect indicates that a county follows its baseline trajectory after storm exposure).
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Figure B.3: Distributions of cumulative effects of severe thunderstorms in the short (Ĉ3) and long
(Ĉ10) run for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages)
and Income per capita, obtained re-estimating Model 7 on randomized datasets. Randomization
is carried out randomly extracting decreasing fraction of observations from the full dataset: 90%,
80%, 70% and 60%, respectively. Each randomization and subsequent estimation is repeated 1000
times. The exposure measure is S(4) (Equations 5 and 6). The number of lags considered is p = 10.
The climatic controls included are population-weighted county-level yearly total precipitations and
average temperatures. Vertical dashed red lines mark 0 and vertical dashed black lines mark the
original estimates obtained fitting Model 7 without randomizing the data (Figure 3 and Table 1). T-
tests comparing the means of the estimates obtained through randomization to zero all yield p-values
< 0.001.
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Table B.1: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard devi-
ation of pooled exposure measure, on Annual Average Pay (wages), as estimated by Model 7 in
the manuscript, with varying controls. The exposure measure is S(4) (Equations 5 and 6 in the
manuscript). The number of lags considered is p = 10. The climatic controls included are population-
weighted county-level yearly total precipitations and average temperatures. Serial correlation and
heteroskedasticity-robust standard errors (Arellano, 1987) are reported between parenthesis.

Annual Average Pay

Years since storm exposure Baseline (1) (2) (3) (4) (5) (6)

0 -0.027. -0.031* -0.025. -0.029. -0.03* -0.028. -0.025.
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

1 -0.076*** -0.079*** -0.075*** -0.073*** -0.073*** -0.071*** -0.065***
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

2 -0.127*** -0.129*** -0.122*** -0.116*** -0.115*** -0.112*** -0.104***
(0.025) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

3 -0.149*** -0.15*** -0.144*** -0.139*** -0.139*** -0.135*** -0.124***
(0.028) (0.028) (0.028) (0.027) (0.027) (0.027) (0.027)

4 -0.159*** -0.158*** -0.156*** -0.152*** -0.151*** -0.146*** -0.134***
(0.029) (0.029) (0.029) (0.028) (0.028) (0.028) (0.028)

5 -0.13*** -0.131*** -0.123*** -0.122*** -0.12*** -0.114*** -0.103***
(0.03) (0.03) (0.031) (0.03) (0.03) (0.03) (0.03)

6 -0.126*** -0.127*** -0.117*** -0.114*** -0.112*** -0.105** -0.092**
(0.033) (0.033) (0.033) (0.032) (0.032) (0.032) (0.032)

7 -0.163*** -0.164*** -0.155*** -0.155*** -0.152*** -0.143*** -0.13***
(0.037) (0.037) (0.037) (0.035) (0.035) (0.035) (0.035)

8 -0.197*** -0.198*** -0.191*** -0.193*** -0.19*** -0.179*** -0.166***
(0.04) (0.04) (0.04) (0.038) (0.038) (0.038) (0.038)

9 -0.217*** -0.217*** -0.215*** -0.216*** -0.211*** -0.199*** -0.187***
(0.043) (0.043) (0.043) (0.041) (0.041) (0.041) (0.041)

10 -0.212*** -0.214*** -0.206*** -0.207*** -0.202*** -0.188*** -0.18***
(0.045) (0.045) (0.045) (0.043) (0.043) (0.043) (0.044)

County fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓

State-Level trends ✓ ✓ ✓ ✓ ✓ ✓ ✓
Climatic controls ✓ ✓ ✓ ✓ ✓ ✓

Squared climatic controls ✓ ✓ ✓ ✓ ✓
Growth rate of Employment ✓ ✓ ✓ ✓
Growth rate of Population ✓ ✓ ✓

State-Level Lagged Active population ✓ ✓
State-Level Lagged Annual Average Pay ✓

Adjusted R2 0.05 0.04 0.04 0.06 0.06 0.06 0.07
Observations 45752 45752 45752 45752 45752 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table B.2: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard deviation
of pooled exposure measure, on Income per capita, as estimated by Model 7 in the manuscript, with
varying controls. The exposure measure is S(4) (Equations 5 and 6 in the manuscript). The number
of lags considered is p = 10. The climatic controls included are population-weighted county-level
yearly total precipitations and average temperatures. Serial correlation and heteroskedasticity-robust
standard errors (Arellano, 1987) are reported between parenthesis.

Income per capita

Years since storm exposure Baseline (1) (2) (3) (4) (5) (6)

0 -0.1*** -0.1*** -0.102*** -0.109*** -0.104*** -0.104*** -0.099***
(0.024) (0.024) (0.024) (0.024) (0.023) (0.023) (0.023)

1 -0.127*** -0.127*** -0.129*** -0.125*** -0.126*** -0.126*** -0.121***
(0.031) (0.031) (0.031) (0.031) (0.03) (0.03) (0.031)

2 -0.169*** -0.168*** -0.17*** -0.157*** -0.16*** -0.159*** -0.157***
(0.038) (0.037) (0.038) (0.037) (0.036) (0.036) (0.037)

3 -0.187*** -0.181*** -0.189*** -0.18*** -0.187*** -0.186*** -0.183***
(0.042) (0.042) (0.042) (0.041) (0.041) (0.041) (0.041)

4 -0.149*** -0.144*** -0.152*** -0.144*** -0.156*** -0.155*** -0.154***
(0.044) (0.044) (0.044) (0.042) (0.042) (0.042) (0.043)

5 -0.138** -0.134** -0.141** -0.139** -0.159*** -0.158*** -0.159***
(0.046) (0.046) (0.047) (0.045) (0.044) (0.044) (0.045)

6 -0.102* -0.096. -0.106* -0.101* -0.128** -0.127** -0.128**
(0.05) (0.05) (0.05) (0.048) (0.047) (0.047) (0.049)

7 -0.07 -0.064 -0.073 -0.072 -0.107* -0.106* -0.106*
(0.054) (0.053) (0.054) (0.052) (0.05) (0.05) (0.052)

8 -0.106. -0.103. -0.11. -0.115* -0.16** -0.158** -0.164**
(0.056) (0.056) (0.057) (0.055) (0.053) (0.053) (0.054)

9 -0.058 -0.051 -0.061 -0.064 -0.116* -0.115* -0.128*
(0.059) (0.059) (0.059) (0.057) (0.055) (0.055) (0.057)

10 -0.026 -0.018 -0.029 -0.031 -0.09 -0.089 -0.109.
(0.065) (0.064) (0.065) (0.063) (0.06) (0.06) (0.062)

County fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓

State-Level trends ✓ ✓ ✓ ✓ ✓ ✓ ✓
Climatic controls ✓ ✓ ✓ ✓ ✓ ✓

Squared climatic controls ✓ ✓ ✓ ✓ ✓
Growth rate of Employment ✓ ✓ ✓ ✓
Growth rate of Population ✓ ✓ ✓

State-Level Lagged Active population ✓ ✓
State-Level Lagged Income per capita ✓

Adjusted R2 0.09 0.08 0.08 0.11 0.13 0.13 0.14
Observations 45752 45752 45752 45752 45752 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table B.3: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard deviation
of pooled exposure measure, on Annual Average Pay (wages) and Income per capita, as estimated by
Model 7 in the manuscript, with varying fixed effects. The exposure measure is S(4) (Equations 5 and
6 in the manuscript). The number of lags considered is p = 10. The climatic controls included are
population-weighted county-level yearly total precipitations and average temperatures. Serial correla-
tion and heteroskedasticity-robust standard errors (Arellano, 1987) are reported between parenthesis.

Annual Average Pay Income per capita

Years since storm exposure Baseline (1) (2) Baseline (1) (2)

0 -0.027. -0.029. 0.004 -0.1*** -0.083*** -0.027
(0.015) (0.015) (0.016) (0.024) (0.024) (0.022)

1 -0.076*** -0.079*** -0.027 -0.127*** -0.093** -0.048
(0.02) (0.019) (0.021) (0.031) (0.031) (0.031)

2 -0.127*** -0.131*** -0.073** -0.169*** -0.114** -0.082*
(0.025) (0.024) (0.026) (0.038) (0.037) (0.038)

3 -0.149*** -0.156*** -0.077** -0.187*** -0.11** -0.107*
(0.028) (0.026) (0.029) (0.042) (0.041) (0.042)

4 -0.159*** -0.168*** -0.085** -0.149*** -0.051 -0.061
(0.029) (0.027) (0.03) (0.044) (0.043) (0.044)

5 -0.13*** -0.139*** -0.078* -0.138** -0.018 -0.122**
(0.03) (0.028) (0.032) (0.046) (0.045) (0.047)

6 -0.126*** -0.133*** -0.074* -0.102* 0.046 -0.06
(0.033) (0.03) (0.035) (0.05) (0.048) (0.049)

7 -0.163*** -0.166*** -0.089* -0.07 0.111* -0.025
(0.037) (0.033) (0.039) (0.054) (0.051) (0.053)

8 -0.197*** -0.191*** -0.09* -0.106. 0.1. -0.057
(0.04) (0.034) (0.041) (0.056) (0.053) (0.056)

9 -0.217*** -0.203*** -0.115* -0.058 0.18** -0.035
(0.043) (0.036) (0.045) (0.059) (0.056) (0.06)

10 -0.212*** -0.19*** -0.131** -0.026 0.243*** -0.025
(0.045) (0.037) (0.048) (0.065) (0.059) (0.065)

Climatic controls ✓ ✓ ✓ ✓ ✓ ✓
County fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State-Level trends ✓ ✓ ✓

State-Year dummies ✓ ✓

Adjusted R2 0.05 0.04 0.1 0.09 0.08 0.28
Observations 45752 45752 45752 45752 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table B.4: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard deviation
of pooled exposure measure, on Annual Average Pay (wages) and Income per capita, as estimated by
Model 7 in the manuscript, with varying number of lags p. The exposure measure is S(4) (Equations
5 and 6 in the manuscript). The climatic controls included are population-weighted county-level
yearly total precipitations and average temperatures. Serial correlation and heteroskedasticity-robust
standard errors (Arellano, 1987) are reported between parenthesis.

Annual Average Pay Income per capita

Years since storm exposure Baseline (1) (2) Baseline (1) (2)

0 -0.027. -0.026. -0.022 -0.1*** -0.092*** -0.071**
(0.015) (0.014) (0.016) (0.024) (0.022) (0.026)

1 -0.076*** -0.057** -0.066** -0.127*** -0.138*** -0.045
(0.02) (0.019) (0.022) (0.031) (0.028) (0.034)

2 -0.127*** -0.107*** -0.123*** -0.169*** -0.167*** -0.096*
(0.025) (0.023) (0.028) (0.038) (0.033) (0.042)

3 -0.149*** -0.126*** -0.139*** -0.187*** -0.196*** -0.091.
(0.028) (0.025) (0.031) (0.042) (0.036) (0.047)

4 -0.159*** -0.15*** -0.155*** -0.149*** -0.195*** -0.072
(0.029) (0.026) (0.033) (0.044) (0.038) (0.049)

5 -0.13*** -0.132*** -0.119*** -0.138** -0.204*** -0.059
(0.03) (0.028) (0.036) (0.046) (0.041) (0.052)

6 -0.126*** -0.136*** -0.115** -0.102* -0.174*** -0.027
(0.033) (0.03) (0.04) (0.05) (0.044) (0.055)

7 -0.163*** -0.179*** -0.146*** -0.07 -0.141** 0.009
(0.037) (0.033) (0.043) (0.054) (0.047) (0.059)

8 -0.197*** -0.217*** -0.176*** -0.106. -0.168*** -0.039
(0.04) (0.036) (0.046) (0.056) (0.049) (0.062)

9 -0.217*** - -0.198*** -0.058 - -0.015
(0.043) - (0.049) (0.059) - (0.065)

10 -0.212*** - -0.191*** -0.026 - 0
(0.045) - (0.051) (0.065) - (0.07)

11 - - -0.199*** - - 0.007
- - (0.054) - - (0.074)

12 - - -0.196*** - - 0.084
- - (0.058) - - (0.08)

County fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
State-level trends ✓ ✓ ✓ ✓ ✓ ✓
Climatic controls ✓ ✓ ✓ ✓ ✓ ✓

Adjusted R2 0.04 0.05 0.05 0.08 0.09 0.09
Observations 50568 45752 40936 50568 45752 40936

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table B.5: Cumulative effects of severe thunderstorms for selected periods (contemporaneous Ĉ0,
short-run Ĉ3 and long-run Ĉ10) (Ĉτ ), in percentage, for one standard deviation of pooled exposure
measure, on Annual Average Pay (wages) and Income per capita, as estimated by Model 7 in the
manuscript, augmented with additional auto-regressive components. Full model is thus given by
yi,t =

∑p
ℓ=0 βℓSi,t−ℓ +

∑h
j=1 δjyi,t−j + γXi,t + αi + ϕt + λSit+ ϵi,t, with h ranging from 1 to 4. The

exposure measure is S(4) (Equations 5 and 6 in the manuscript). The number of lags considered is
p = 10. The climatic controls included are population-weighted county-level yearly total precipitations
and average temperatures. Serial correlation and heteroskedasticity-robust standard errors (Arellano,
1987) are reported between parenthesis.

Cumulative effect

Contemporaneous

Ĉ0

Short term

Ĉ3

Long term

Ĉ10
Adjusted R2 Observations

Annual Average Pay

Baseline
AR(0)

-0.027.
(0.015)

-0.149***
(0.028)

-0.212***
(0.045)

0.05 45752

AR(1)
-0.027.
(0.015)

-0.157***
(0.029)

-0.228***
(0.047)

0.05 45752

AR(2)
-0.027.
(0.015)

-0.162***
(0.03)

-0.248***
(0.05)

0.06 45752

AR(3)
-0.028.
(0.015)

-0.164***
(0.03)

-0.263***
(0.051)

0.06 45752

AR(4)
-0.028.
(0.015)

-0.164***
(0.03)

-0.263***
(0.051)

0.07 45752

Income per capita

Baseline
AR(0)

-0.1***
(0.024)

-0.187***
(0.042)

-0.026
(0.065)

0.09 45752

AR(1)
-0.116***
(0.024)

-0.227***
(0.047)

-0.064
(0.072)

0.11 45752

AR(2)
-0.116***
(0.024)

-0.235***
(0.047)

-0.074
(0.073)

0.11 45752

AR(3)
-0.121***
(0.024)

-0.267***
(0.048)

-0.127.
(0.077)

0.12 45752

AR(4)
-0.123***
(0.024)

-0.273***
(0.048)

-0.138.
(0.077)

0.12 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table B.6: Cumulative effects of severe thunderstorms for selected periods (contemporaneous Ĉ0,
short-run Ĉ3 and long-run Ĉ10) (Ĉτ ), in percentage, for one standard deviation of pooled exposure
measure, on Annual Average Pay (wages) and Income per capita, as estimated by Model 7 in the
manuscript, with samples starting or ending from different points in time. The exposure measure is S(4)

(Equations 5 and 6 in the manuscript). The number of lags considered is p = 10. The climatic controls
included are population-weighted county-level yearly total precipitations and average temperatures.
Serial correlation and heteroskedasticity-robust standard errors (Arellano, 1987) are reported between
parenthesis.

Estimated impacts

Contemporaneous Short term Long term Adjusted R2 Observations

Ĉ0 Ĉ3 Ĉ10

Annual Average Pay

Baseline
-0.027.
(0.015)

-0.149***
(0.028)

-0.212***
(0.045)

0.05 45752

>1997
-0.008
(0.021)

-0.104*
(0.045)

-0.196*
(0.085)

0.05 28896

>2002
-0.073*
(0.034)

-0.229**
(0.079)

-0.274
(0.169)

0.04 16856

<2008
-0.03
(0.024)

-0.188***
(0.057)

-0.424**
(0.146)

0.05 16856

<2013
-0.003
(0.019)

-0.114**
(0.037)

-0.245**
(0.076)

0.06 28896

Income per capita

Baseline
-0.1***
(0.024)

-0.187***
(0.042)

-0.026
(0.065)

0.09 45752

>1997
-0.073*
(0.033)

-0.125.
(0.066)

-0.101
(0.121)

0.1 28896

>2002
-0.083.
(0.049)

-0.304**
(0.113)

-0.073
(0.222)

0.06 16856

<2008
-0.034
(0.037)

0.106
(0.088)

0.474*
(0.227)

0.06 16856

<2013
-0.083**
(0.029)

-0.031
(0.057)

-0.011
(0.109)

0.13 28896

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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C Additional Tables

Table C.1: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard deviation
of pooled exposure measure, on Annual Average Pay (wages), grouped by county 1991 level of income
per capita, as estimated by Model 9 in the manuscript with dummies Diℓ = Di capturing three income
groups (counties with 1991 income below, in and above the inter-quartile range; see Figure 7C in
the manuscript). The exposure measure is S(4) (Equations 5 and 6 in the manuscript). The number
of lags considered is p = 10. The climatic controls included are population-weighted county-level
yearly total precipitations and average temperatures. Serial correlation and heteroskedasticity-robust
standard errors (Arellano, 1987) are reported between parenthesis. See also Figures 7A and 7B in the
manuscript.

Annual Average Pay Income per capita

Years since storm exposure Poor Medium Rich Poor Medium Rich

0 -0.014 -0.037. -0.022 -0.272*** -0.056. -0.038
(0.034) (0.021) (0.025) (0.049) (0.033) (0.04)

1 -0.052 -0.094*** -0.07* -0.248*** -0.094* -0.083
(0.044) (0.028) (0.03) (0.057) (0.041) (0.062)

2 -0.073 -0.151*** -0.139*** -0.365*** -0.147** -0.053
(0.052) (0.035) (0.035) (0.067) (0.047) (0.074)

3 -0.134* -0.148*** -0.169*** -0.385*** -0.136* -0.116
(0.055) (0.038) (0.042) (0.073) (0.054) (0.08)

4 -0.195*** -0.131*** -0.182*** -0.421*** -0.092 -0.031
(0.055) (0.039) (0.045) (0.075) (0.056) (0.081)

5 -0.139* -0.1* -0.178*** -0.349*** -0.084 -0.056
(0.058) (0.041) (0.048) (0.077) (0.059) (0.088)

6 -0.115. -0.081 -0.207*** -0.312*** 0.034 -0.151
(0.061) (0.058) (0.061) (0.079) (0.076) (0.107)

7 -0.135. -0.16** -0.189** -0.31*** 0.046 -0.069
(0.07) (0.059) (0.063) (0.087) (0.08) (0.107)

8 -0.209** -0.219*** -0.15* -0.294** -0.07 -0.026
(0.073) (0.062) (0.063) (0.092) (0.083) (0.105)

9 -0.265*** -0.236*** -0.146* -0.319*** -0.067 0.142
(0.08) (0.064) (0.065) (0.097) (0.085) (0.104)

10 -0.258*** -0.182** -0.216** -0.404*** 0.016 0.163
(0.076) (0.067) (0.066) (0.099) (0.089) (0.107)

County fixed effects ✓ ✓
Year fixed effects ✓ ✓
State-level trends ✓ ✓
Climatic controls ✓ ✓

Adjusted R2 0.05 0.09
Observations 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table C.2: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard deviation
of pooled exposure measure, on Annual Average Pay (wages), grouped by county average exposure,
as estimated by Model 9 in the manuscript with dummies Diℓ = Di capturing three exposure groups
(counties with average exposure below, in and above the inter-quartile range). The exposure measure
is S(4) (Equations 5 and 6 in the manuscript). The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and average
temperatures. Serial correlation and heteroskedasticity-robust standard errors (Arellano, 1987) are
reported between parenthesis.

Annual Average Pay Income per capita

Years since storm exposure Low risk Medium risk High risk Low risk Medium risk High risk

0 -0.175 -0.027 -0.018 -0.353* -0.057 -0.122***
(0.114) (0.024) (0.017) (0.168) (0.04) (0.025)

1 -0.329* -0.081** -0.054* -0.188 -0.076 -0.164***
(0.146) (0.031) (0.024) (0.267) (0.053) (0.032)

2 -0.092 -0.125** -0.127*** 0.305 -0.142* -0.216***
(0.192) (0.038) (0.028) (0.303) (0.062) (0.039)

3 0.163 -0.145*** -0.164*** 0.442 -0.151* -0.25***
(0.221) (0.042) (0.032) (0.34) (0.068) (0.045)

4 0.048 -0.161*** -0.161*** 0.216 -0.121. -0.194***
(0.228) (0.044) (0.033) (0.355) (0.07) (0.046)

5 0.11 -0.111* -0.151*** 0.248 -0.057 -0.227***
(0.252) (0.047) (0.035) (0.371) (0.073) (0.051)

6 0.047 -0.098 -0.151 -0.067 -0.052 -0.151
(0.272) (0.125) (0.12) (0.416) (0.221) (0.214)

7 -0.04 -0.15 -0.173 0.186 0.07 -0.21
(0.289) (0.127) (0.121) (0.45) (0.224) (0.215)

8 -0.094 -0.183 -0.209. -0.095 -0.02 -0.197
(0.308) (0.128) (0.122) (0.462) (0.224) (0.216)

9 -0.067 -0.201 -0.233. -0.165 0.033 -0.146
(0.317) (0.13) (0.123) (0.448) (0.226) (0.216)

10 -0.307 -0.187 -0.222. -0.438 0.023 -0.073
(0.321) (0.132) (0.123) (0.435) (0.228) (0.218)

County fixed effects ✓ ✓
Year fixed effects ✓ ✓
State-level trends ✓ ✓
Climatic controls ✓ ✓

Adjusted R2 0.05 0.09
Observations 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table C.3: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard de-
viation of pooled exposure measure, on Annual Average Pay (wages), as estimated by Model 9
in the manuscript with dummies Dit capturing county-year pairs with FEMA interventions. In
Model (1), the storm-disaster matching procedure (identifying Dit; see also Figure A.2) encom-
passes only disaster declarations strictly related to storms. Model (2) replicates Model (1) but fo-
cuses on declarations related to storms and secondary hazards (floods and landslides) in the storm-
disaster matching procedure. Model (3) replicates Model (1) but focuses on declarations related to
all wind-water-related events in the storm-disaster matching procedure. Model (4) augments Model
(1) by including, at all lags, a binary dummy Fi,t variable indicating the presence of a non-wind-
water FEMA intervention in that specific year-county combination. Model (4) is thus given by
yi,t =

∑p
ℓ=0 βℓ,Di

(Si,t−ℓ ×Di,t−ℓ) +
∑p

ℓ=0 θℓFi,t−ℓ + γXi,t + αi + ϕt + λSit+ ϵi,t. The exposure mea-
sure is S(4) (Equations 5 and 6 in the manuscript). The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and aver-
age temperatures. Serial correlation and heteroskedasticity-robust standard errors (Arellano, 1987)
are reported between parenthesis. See also Figure 8A in the manuscript.

Annual Average Pay

Baseline
Storms

(1)

Storms and
secondary hazards

(2)

All wind-water
hazards

(3)

Baseline plus
non-wind-water hazards

(4)

Years since
storm exposure

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

0 -0.042** 0.052* -0.041** 0.041. -0.038* 0.014 -0.039* 0.056*
(0.015) (0.025) (0.015) (0.024) (0.016) (0.022) (0.015) (0.025)

1 -0.088*** 0.008 -0.088*** -0.002 -0.084*** -0.04 -0.086*** 0.014
(0.02) (0.036) (0.02) (0.035) (0.02) (0.032) (0.02) (0.036)

2 -0.139*** -0.027 -0.142*** -0.032 -0.135*** -0.084* -0.135*** -0.019
(0.026) (0.045) (0.025) (0.043) (0.026) (0.039) (0.026) (0.044)

3 -0.152*** -0.073 -0.155*** -0.073 -0.144*** -0.137** -0.148*** -0.063
(0.029) (0.053) (0.029) (0.051) (0.029) (0.046) (0.029) (0.052)

4 -0.163*** -0.077 -0.165*** -0.081 -0.149*** -0.167*** -0.159*** -0.068
(0.03) (0.059) (0.03) (0.057) (0.031) (0.051) (0.03) (0.058)

5 -0.143*** -0.013 -0.142*** -0.036 -0.129*** -0.115* -0.137*** -0.007
(0.032) (0.066) (0.032) (0.064) (0.033) (0.056) (0.032) (0.065)

6 -0.144*** 0.02 -0.143*** -0.008 -0.13*** -0.088 -0.134*** 0.029
(0.035) (0.077) (0.035) (0.074) (0.035) (0.065) (0.035) (0.077)

7 -0.19*** 0.039 -0.188*** -0.002 -0.174*** -0.099 -0.179*** 0.051
(0.039) (0.083) (0.038) (0.08) (0.039) (0.07) (0.039) (0.082)

8 -0.223*** 0.008 -0.219*** -0.037 -0.208*** -0.129. -0.208*** 0.026
(0.042) (0.09) (0.042) (0.086) (0.042) (0.075) (0.042) (0.089)

9 -0.233*** -0.061 -0.228*** -0.111 -0.213*** -0.202* -0.217*** -0.039
(0.045) (0.097) (0.045) (0.093) (0.046) (0.081) (0.045) (0.096)

10 -0.222*** -0.1 -0.217*** -0.146 -0.206*** -0.205* -0.205*** -0.077
(0.048) (0.104) (0.047) (0.101) (0.048) (0.087) (0.048) (0.103)

County fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State-level trends ✓ ✓ ✓ ✓
Climatic controls ✓ ✓ ✓ ✓

Adjusted R2 0.05 0.05 0.05 0.05
Observations 45752 45752 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table C.4: Cumulative effects of severe thunderstorms (Ĉτ ), in percentage, for one standard devia-
tion of pooled exposure measure, on Income per capita, as estimated by Model 9 in the manuscript
with dummies Dit capturing county-year pairs with FEMA interventions. In Model (1), the
storm-disaster matching procedure (identifying Dit; see also Figure A.2) encompasses only disas-
ter declarations strictly related to storms. Model (2) replicates Model (1) but focuses on declara-
tions related to storms and secondary hazards (floods and landslides) in the storm-disaster match-
ing procedure. Model (3) replicates Model (1) but focuses on declarations related to all wind-
water-related events in the storm-disaster matching procedure. Model (4) augments Model (1)
by including, at all lags, a binary dummy Fi,t variable indicating the presence of a non-wind-
water FEMA intervention in that specific year-county combination. Model (4) is thus given by
yi,t =

∑p
ℓ=0 βℓ,Di

(Si,t−ℓ ×Di,t−ℓ) +
∑p

ℓ=0 θℓFi,t−ℓ + γXi,t + αi + ϕt + λSit+ ϵi,t. The exposure mea-
sure is S(4) (Equations 5 and 6 in the manuscript). The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and aver-
age temperatures. Serial correlation and heteroskedasticity-robust standard errors (Arellano, 1987)
are reported between parenthesis. See also Figure 8B in the manuscript.

Income per capita

Baseline
Storms

(1)

Storms and
secondary hazards

(2)

All wind-water
hazards

(3)

Baseline plus
non-wind-water hazards

(4)

Years since
storm exposure

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

No FEMA
intervention

FEMA
intervention

0 -0.106*** -0.049 -0.105*** -0.07. -0.096*** -0.11** -0.099*** -0.046
(0.024) (0.042) (0.024) (0.04) (0.024) (0.036) (0.023) (0.042)

1 -0.14*** -0.042 -0.141*** -0.055 -0.143*** -0.07 -0.138*** -0.049
(0.031) (0.059) (0.032) (0.056) (0.032) (0.05) (0.031) (0.058)

2 -0.184*** -0.072 -0.181*** -0.105 -0.173*** -0.146* -0.179*** -0.082
(0.038) (0.07) (0.038) (0.067) (0.038) (0.061) (0.038) (0.07)

3 -0.222*** 0.008 -0.206*** -0.094 -0.188*** -0.18* -0.215*** 0.001
(0.043) (0.082) (0.043) (0.078) (0.043) (0.071) (0.043) (0.082)

4 -0.175*** 0 -0.157*** -0.113 -0.137** -0.193* -0.167*** -0.011
(0.045) (0.09) (0.045) (0.085) (0.045) (0.076) (0.045) (0.089)

5 -0.179*** 0.086 -0.152** -0.075 -0.129** -0.168* -0.175*** 0.067
(0.048) (0.102) (0.048) (0.096) (0.048) (0.084) (0.048) (0.101)

6 -0.129* 0.069 -0.114* -0.045 -0.089. -0.142 -0.118* 0.054
(0.052) (0.111) (0.052) (0.106) (0.052) (0.094) (0.051) (0.11)

7 -0.087 0.065 -0.062 -0.091 -0.042 -0.161 -0.076 0.053
(0.056) (0.122) (0.056) (0.117) (0.056) (0.102) (0.056) (0.121)

8 -0.121* -0.005 -0.099. -0.147 -0.075 -0.223* -0.106. -0.013
(0.059) (0.132) (0.059) (0.126) (0.059) (0.111) (0.058) (0.131)

9 -0.054 -0.055 -0.037 -0.162 -0.008 -0.236* -0.038 -0.056
(0.061) (0.143) (0.061) (0.137) (0.062) (0.12) (0.061) (0.142)

10 -0.03 0.002 -0.015 -0.09 0.016 -0.185 -0.018 0.001
(0.067) (0.155) (0.068) (0.148) (0.068) (0.13) (0.068) (0.154)

County fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State-level trends ✓ ✓ ✓ ✓
Climatic controls ✓ ✓ ✓ ✓

Adjusted R2 0.09 0.09 0.09 0.09
Observations 45752 45752 45752 45752

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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Table C.5: Cumulative effects of hailstorms (ĈT ), in percentage, for one pooled standard deviation
of the exposure measure, on Annual Average Pay (wages) and Income per capita, as estimated by
Model 7 in the manuscript. The exposure measure is H3, as defined in Equations 5 and 6 in the
manuscript, using hail size (in cm) as magnitude. The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and average
temperatures. Serial correlation and heteroskedasticity-robust standard errors (Arellano, 1987) are
reported in parentheses. See also Figure 6 in the manuscript.

Annual Average Pay Income per capita

Years since storm exposure Cumulative effect Ĉτ Cumulative effect Ĉτ

0 -0.025. -0.009
(0.015) (0.025)

1 -0.048* -0.036
(0.022) (0.034)

2 -0.069** -0.051
(0.027) (0.042)

3 -0.061. -0.006
(0.031) (0.048)

4 -0.061. 0.044
(0.034) (0.057)

5 -0.071. 0.008
(0.036) (0.062)

6 -0.068. 0.095
(0.04) (0.068)

7 -0.079. 0.109
(0.045) (0.071)

8 -0.083 0.109
(0.051) (0.079)

9 -0.075 0.104
(0.054) (0.085)

10 -0.038 0.081
(0.058) (0.092)

Climatic controls ✓ ✓
County fixed effects ✓ ✓

Year fixed effects ✓ ✓
State-level trends ✓ ✓

Adjusted R2 0.05 0.09
Observations 41895 41895

Wald (χ2) test λSi = 0 (p-value) <0.001 <0.001
F-test λSi = 0 (p-value) <0.001 <0.001

Note: ∗∗∗p< 0.001, ∗∗p< 0.01, ∗p< 0.05, .p< 0.1
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