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Abstract

This paper studies market selection in an Arrow-Debreu economy with
complete markets where agents learn over misspeci�ed models. Under model
misspeci�cation, standard Bayesian learning loses its formal justi�cation
and biased learning processes may provide a selection advantage. Given the
natural connection between selection outcomes and long-run asset prices,
understanding which biased learning processes are evolutionary �t is in-
strumental to build a parsimonious long-run asset valuation model robust
to misspeci�cation. Leveraging two cases of model misspeci�cation and
four learning processes, our analysis reveals a general di�culty in ranking
learning behaviors with respect to their survival prospects. For example, the
advantage of predictions averaging disappears when the true data generating
process does not belong to the same family of models agents use to learn.
Rules that generically guarantee survival, appear to require an unreasonable
amount of knowledge about all the agents that compose the market ecology.
The goal of a parsimonious long-run asset valuation model robust to model
misspeci�cation remains out of reach.
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1 Introduction
The market selection hypothesis, applied to competitive environments where agents
are able to learn (i.e., update their beliefs according to given rules), implies that
only those who incorporate evidence into their probabilistic predictions according
to Bayes rule are able to survive and, thus, in
uence assets’ long-run evaluation
(see e.g. Blume and Easley, 2006, 2009a,b). Such a statement relies upon the
assumption that the learning problem is correctly speci�ed (i.e., the true data
generating process belongs to the set of models over which agents are learning) or,
at least, a version of the complete class theorem holds. In those situations, traders
who learn in a Bayesian way are, indeed, able to drive non-Bayesian traders out
of the market (Sandroni, 2005). However, as reported by Gigerenzer and Gaiss-
maier (2011), Savage (1954) { the founder of Bayesian decision theory { used to
distinguish between situations in which there is perfect information (small worlds)
and situations in which relevant pieces of information are not available to decision
makers (large worlds). Gigerenzer and Gaissmaier (2011), among many others,
argue that real decision makers mostly face large-world situations and, thus, their
learning problems are seldom correctly speci�ed. Indeed, the models on which they
have to rely are approximations or simpli�ed versions of the real data generating
process, thus, they facemodel misspeci�cation. In such a case, Bayesian learning
loses its formal justi�cation and whether its selection advantage is conserved is not
clear.

A recent study by Massari (2020) shows that a learning bias known asunder-
reaction { i.e., giving larger weight to the prior than what Bayesian learning pre-
scribes (Epstein et al., 2010){ provides a selection advantage over Bayesian learn-
ing in Arrow-Debreu economies characterized by model misspeci�cation. That
is, while updating beliefs according to Bayes rule allows an agent to asymptoti-
cally be as accurate as the best model in its support (Berk, 1966), under-reaction
produces either the same beliefs of a Bayesian agent or more accurate ones gen-
erated by a persistent (but not �xed) mixture of models. Since competitive (and
complete) markets favor those who make accurate predictions (Sandroni, 2000),
an under-reacting agent facing a Bayesian one is always able to maintain a posi-
tive consumption share and, in generic cases, it can even asymptotically consume
all the aggregate endowment. Thus, under model misspeci�cation, moving away
from Bayesian learning can be bene�cial and under-reaction emerges as a robust
learning behavior in terms of survival. In a similar setting, Antico et al. (2023)
investigate the evolutionary �tness of a trader behaving according to thesenti-
ment investor learning model of Barberis et al. (1998) when competing against
a Bayesian agent under model misspeci�cation. The authors �nd that long-run
selection outcomes are profoundly related to the characteristics of the agents and
of the economy: depending on parameter settings, one can observe either that the
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sentiment investor let the Bayesian trader vanish or vice-versa. Notwithstanding
those results, one may argue that, since under model misspeci�cation Bayesian
updating is no-longer formally justi�ed, selection outcomes derived from competi-
tion against a Bayesian trader may not be very informative about which learning
behavior is actually observed in the long-run and, thus, has a persistent in
uence
on asset evaluation. Indeed, one can imagine that the introduction of an ecology
of di�erent learning rules may actually generate non-trivial selection results. Once
one acknowledges that, a related issue that immediately emerges is whether one
can devise a ranking of learning processes in terms of their �tness to survive under
model misspeci�cation, since that would be instrumental to build a parsimonious
(i.e., that considers only a limited number of learning behaviors) long-run asset
valuation model that is fully robust to model misspeci�cation.

In this paper we investigate those issues considering an Arrow-Debreu pure-
exchange economy with complete markets, four di�erent learning processes, and
two cases of model misspeci�cation. With respect to learning processes, we extend
the framework of Massari (2020) adding to Bayesian learning and under-reaction
two new processes: limited memory Bayesian learning and moving average. The
�rst one consists in continuously resetting the Bayesian learning process. The
second one consists in averaging the predictions of a reference learning process.
With respect to the two cases of model of model misspeci�cation, we consider
parametric and structural misspeci�cation. The �rst case is obtained assuming
that the true probability measure belongs to the same class of probabilistic models
the agents use to learn, but with di�erent parameter values. For simplicity, we
focus on i.i.d. true process and models. The second case consists in assuming that
the true probability measure has a more complex probabilistic structure than the
models agents use to learn. In our case, we consider a Markov true probability
measure and i.i.d. models.

Our analysis draws from two approaches to the study of market selection. The
�rst is characterized by general equilibrium, intertemporal utility maximization,
and complete markets (see e.g. Sandroni, 2000; Blume and Easley, 2006, 2009a;
Jouini and Napp, 2011; Kogan et al., 2006, 2017; Massari, 2017; Dindo and Mas-
sari, 2020; Beddock and Jouini, 2021; Bottazzi and Giachini, 2022). The second,
instead, relies upon temporary equilibrium, bounded rationality, evolutionary dy-
namics among investment rules (see e.g. Hens and Schenk-Hopp�e, 2005; Evstigneev
et al., 2009, 2016; Holtfort, 2019; Bottazzi and Dindo, 2013, 2014; Bottazzi et al.,
2018, 2019; Bottazzi and Giachini, 2017, 2019b,a; Elmiger, 2020).1 Indeed, we
combine the complete market Arrow-Debreu economy, characterizing most of the

1The two approaches are not separated, indeed there generically exist evolutionary models
that produce the same wealth dynamics of general equilibrium ones. The link is built by means
of e�ective beliefs, see Bottazzi et al. (2018), Dindo (2019), Giachini (2021).
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contributions belonging to the �rst approach, with biased learning schemes, which
are closer to the second approach. Our choice is motivated by avoiding compen-
sation e�ects between non-optimality in investment rules and misspeci�cation in
beliefs, as described in Bottazzi et al. (2018) and Giachini (2021).

Our analysis shows that the ecology of learning behaviors operating in the mar-
ket and the type of model misspeci�cation characterizing the economy is of crucial
importance for selection results. Thus, a general di�culty emerges in providing a
ranking of learning processes in terms of their evolutionary robustness to model
misspeci�cation. For instance, under-reaction shows ageneric advantagein terms
of selection under parametric misspeci�cation when the true probability measure
is a convex combination of the i.i.d. models the agents use to learn: increasing the
level of under-reaction lets the agent increase its accuracy. Indeed, a su�ciently
high under-reaction degree makes any agent whose beliefs are bounded away from
the truth { such as, for instance, the limited memory Bayesian learner { disap-
pear. Such a particular selection advantage is shared by a moving average agent
that leverages under-reaction. Indeed, our analysis suggest that, under parametric
misspeci�cation, averaging predictions appears as a key mechanism in generating
a selection advantage. Such a mechanism, however, partially breaks down when
structural misspeci�cation occurs. More speci�cally, a trade-o� between how well
beliefs approximate the true Markov chain’s invariant distribution (i.e. the best
i.i.d. model) and how well 
uctuations in conditional probabilities are captured,
seems to appear. For instance, on the one hand, averaging past predictions al-
lows an agent to better approximate the invariant distribution, but, on the other
hand, decreases the relevance of fresh information and the speed of adaptation to
changes. As a consequence, the averaging approaches can be generically outper-
formed by the limited memory Bayesian learning process. Finally, we discuss some
examples of learning rules that can survive no matter the form of model misspeci-
�cation. Our discussion points out that the key feature of those rules is that they
exploit information about all the other market participants rather than e�ciently
combining information about past realizations of the true data generating process.
This is, however, disruptive for the quest of a parsimonious long-run asset evalu-
ation model robust to model misspeci�cation: one cannot dispense from knowing
important features of all the agents in the economy.

2 The Model
Consider an Arrow-Debreu economy with in�nite horizon and discrete time (in-
dexed byt = 0 ; 1; : : :). There is a homogeneous consumption good and markets are
complete. Callst 2 f 1; 2; : : : ; Sg the state realized at timet > 0. We indicate with
� = ( s1; s2; : : : ; st ; : : :) a path and with � t = ( s1; s2; : : : ; st ) a partial history until
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time t. The set of all the possible paths is � while � t indicates the set of all partial
histories until time t. Let C(� t ) = f � 2 � j� = ( � t ; : : :)g be the cylinder with base
� t , Ft is the � -algebra generated by the cylindersC(� t ). Then, by construction,
(Ft )1

t=0 is a �ltration and we indicate with F the � -algebra generated by the union
of �ltrations. We indicate with p the true probability measure on (� ; F), such that
(� ; F; p) is a well-de�ned probability space. We assume that any partial history
has a positive probability of being realized,p(� t ) > 0, 8� t . Expectation is denoted
with E and, when there is no subscript or superscript, it is computed with respect
to p.

The economy is populated byN agents indexed byi = 1 ; 2; : : : ; N . Every
agent i is endowed with a stream of non-zero and uniformly bounded consumption
good for any path� , (ei (� t ))1

t=0 . Agent i has a subjective probability measurepi on
(� ; F). Denote with pi (st j� t � 1) the (subjective) conditional probability attached to
the realization ofst after a partial history � t � 1 and with pi (� t ) =

Q t
� =1 pi (s� j� � � 1)

the (subjective) likelihood of partial history � t . Agent i chooses its consumption
plan (ci (� t ))1

t=0 solving

max
f ci ( � t ); 8t;� g

Epi

"
1X

t=0

� t
i ui (ci (� t ))

#

s.t.
1X

t=0

X

� t 2 � t

q(� t ) (ei (� t ) � ci (� t )) � 0;

where � i 2 (0; 1) is agent i ’s discount factor, ui is the Bernoulli utility of con-
sumption of agent i , and q(� t ) is the price of the Arrow-Debreu security paying
one if partial history � t is realized and zero otherwise. We will further assume
that individual probabilities pi are absolute continuous with respect top and that
the Bernoulli utilities are continuously di�erentiable, increasing, strictly concave,
and satis�es the Inada condition at zero. With these hypotheses, a competitive
equilibrium exists unique and8� t , q(� t ) > 0,

P N
i =1 ci (� t ) =

P N
i =1 ei (� t ) = e(� t ).

2.1 Consumption asymptotic behavior
Our main goal is to evaluate the selection dynamics taking place in competitive
markets under di�erent learning protocols. We need the following.

De�nition 2.1. An agent i :

� vanishesif lim
t !1

ci (� t ) = 0, p-almost surely;

� survives if lim
t !1

sup
t

ci (� t ) > 0, p-almost surely;

� dominates if lim
t !1

ci (� t )=et (� ) = 1, p-almost surely.
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The study of the asymptotic dynamics of the relative consumption of agents can
be reduced to the analysis of their individual probability measures and discount
factors by the following mathematical passage (Blume and Easley, 2006). From
the F.O.C. of the optimal consumption problem,8i; j 2 1; : : : ; n,

u0
i (ci (� t ))

u0
j (cj (� t ))

=
�

� j

� i

� t pj (� t )
pi (� t )

u0
i (ci (� 0))

u0
j (cj (� 0))

;

that is

1
t

log
u0

i (ci (� t ))
u0

j (cj (� t ))
= log

� j

� i
+

1
t

log
p(� t )
pi (� t )

�
1
t

log
p(� t )
pj (� t )

+
1
t

log
u0

i (ci (� 0))
u0

j (cj (� 0))
: (1)

To describe the agent’s individual probabilities, considerK i.i.d. measure whose
conditional probabilities are the vectors� 1, . . . , � K , belong to the topological
interior of the (S � 1)-simplex, � k = ( � k(1); � k(2); : : : ; � (S)) 2 � S� 1

+ . These
vectors are uniformly bounded away from zero and diverse, that is9�; d� > 0 such
that � k(s) > � and k� k � � hk > d� , 8s; k; h. To simplify our investigation we
assume the following.

Assumption 1. Agents’ individual conditional probabilities belong to the convex
hull HK generated by the conditional probabilities of theK models,

pi (s j � t ) 2 HK =

(
KX

k=1

� k � k j
KX

k=1

� k = 1 ; � k � 0

)

� � S� 1
+ ; 8s; � t :

Note that the previous assumption guarantees that individual probabilities
have conditionals uniformly bounded away from zero,pi (s j � t ) > � , 8� t ; s. Denote
the (conditional) relative entropy of the individual probability measurepi with
respect to the truth p given partial history � t and its partial average as

Dpjpi (� t ) =
SX

s=1

p(s j � t ) log
p(s j � t )
pi (s j � t )

and D pjpi (� t ) =
1

t + 1

tX

� =0

Dpjpi (� � ) :

By Assumption 1, these quantities are bounded,Dpjpi (� t ); D pjpi (� t ) 2 [0; � log � ].
We shall use the partial average of the relative entropy as a measure of accuracy,
for instance, we will say that an agentj is more accurate than an agenti at � t if
D pjpj (� t ) < D pjpi (� t ). Moreover, we have the following.

Theorem 2.1. Under Assumption 1, 8i = 1 ; : : : ; N and 8� < 1=2, p-almost
surely,

1
t

log
p(� t )
pi (� t )

= D pjpi (� t � 1) + o
�

1
t �

�
:
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Proof. De�ne zi (s j � � � 1) = log ( p(sj� � � 1)=pi (sj� � � 1)) � Dpjpi (� � � 1), so that

log
p(� t )
pi (� t )

=
tX

� =1

log
p(s� j � � � 1)
pi (s� j � � � 1)

=
tX

� =1

zi (s� j � � � 1) +
tX

� =1

Dpjpi (� � � 1):

By Assumption 1, and by the fact that the maximum of the functionx log2 x for
x 2 [0; 1] is 4e� 2,

E[z2
i j � t ] =

SX

s=1

p(s j � t ) log2 p(s j � t )
pi (s j � t )

� Dpjpi (� t )2 � 4e� 2S � log �:

Hence, if � < 1=2,
P 1

t=1 t2� � 2E [z2
i j � t � 1] < + 1 . Since E[z i j � t � 1] = 0, 8� t ,

by Theorem 3, p. 243, in Feller (1971),p-almost surely, limt !1 t � � 1 P t
� =1 zi (s� j

� � � 1) = 0. This implies that, p-almost surely, logp(� t )=pi (� t ) � tD pjpi (� t � 1) =
o(t1� � ). Dividing by t proves the assertion.

In particular, the previous Theorem applies to theK i.i.d. models of Assump-
tion 1. Substituting the statement of Theorem 2.1 in (1),

1
t

log
u0

i (ci (� t ))
u0

j (cj (� t ))
=

�
log � j � D pjpj (� t � 1)

�
�

�
log � i � D pjpi (� t � 1)

�
+ o

�
1
t �

�
:

The asymptotic behavior of the quantities inside the parentheses in the right-hand
side determine the asymptotic behavior of the relative marginal utilities of the two
agents. Some results of the literature trivially follow (Sandroni, 2000; Blume and
Easley, 2006; Dindo and Massari, 2020).

Corollary 2.1. Assume there exist two agentsi and j such that,p-almost surely,
exist D pjpi (� ) = lim t !1 D pjpi (� t ) and D pjpj (� ) = lim t !1 D pjpj (� t ). Then, if As-
sumptions 1 applies and,p-almost surely,

log � j � D pjpj (� ) > log � i � D pjpi (� );

agent i vanishes.

Proof. By hypothesis, we can apply Theorem 2.1, so that

lim
t !1

1
t

log
u0

i (ci (� t ))
u0

j (cj (� t ))
=

�
log � j � D pjpi (� )

�
�

�
log � i � D pjpi (� )

�
> 0;

which implies limt !1 logu0
i (ci (� t ))=u0

j (cj (� t )) = + 1 From the boundedness of
the endowment, the quantitiesu0

i (ci (� t )) are bounded from above. Thus, it must
be limt !1 logu0

i (ci (� t )) = + 1 . According to the Inada condition, this, in turn,
implies that lim t !1 ci (� t ) = 0.
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Note that the hypothesis of Corollary 2.1 are not trivial, as Assumption 1 is not
su�cient to guarantee the existence of the limit of D pjpi (� t ) and D pjpj (� t ). How-
ever, the existence of these limits is not necessary. One can, for example, realize
that agent i vanishes if,p-a.s., � j � D pjpj (� t ) > log � i � D pjpi (� t ) for su�ciently
large t.

3 Learning processes
According to Assumption 1,8� t agents individual probabilities can be written as

pi (sj� t ) =
KX

k=1

wi;k (� t ) � k(s); wi;k (� t ) � 0; 8k;
KX

k=1

wi;k (� t ) = 1 ; (2)

werewi;k (� t ) denotes the weight agenti attaches to modelk after having observed
the partial history � t . Agents di�er on how they compute their wights. We will
consider four learning processes: Bayesian learning, learning with under-reaction,
limited memory Bayesian learning, and moving average of an underlying model.

Bayesian learning The Bayesian learning process can be considered the cor-
nerstone of online learning. Weights are updated according to Bayes rule,

wi;k (� t ) =
� k(st ) wi;k (� t � 1)

pi (st j� t � 1)
=

� k(� t )
pi (� t )

wi;k (� 0) 8k; t; � : (3)

The weight wi;k (� t ) can be considered the probability agenti attaches to the event
\model k is the true one" conditional upon the observation of partial history� t .
The key property of Bayesian learning is that it makes an agent as accurate as the
model with highest likelihood in its set at anyt su�ciently large (see also Berk,
1966, for further detail).

Proposition 3.1. De�ne k�
t = argmaxk2f 1;:::;K gf � k(� t )g. For any Bayesian agent

i and 8� < 1=2, p-almost surely

���D pjpi (� t � 1) � D pj� k �
t
(� t � 1)

��� � o
�

1
t �

�
:

Proof. By iteratively substituting (3) in (2),

pi (� t ) =
KX

k=1

� k(� t )wi;k (� 0):
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Thus, � k �
t
(� t )wi;k �

t
(� 0) � pi (� t ) � � k �

t
(� t ) and, as a consequence,

1
t

log
p(� t )

� k �
t
(� t )

�
1
t

log
p(� t )
pi (� t )

�
1
t

log
p(� t )

� k �
t
(� t )

�
1
t

logwi;k �
t
(� 0) :

The statement follows by applying Theorem 2.1 to the individual probabilitypi
and the measure� k �

t
.

Notice that, in general, the model with highest likelihood at a datet depends
on the speci�c realization � t . Moreover, without further assumptions on the true
probability p, we are not guaranteed that the Bayesian agent will asymptotically
follow one speci�c model in the set.

Learning with under-reaction This learning process consists in a modi�cation
of (3) according to the notion of under-reaction in Epstein et al. (2010) and Massari
(2020). This learning protocol can be considered a form of \moderate" Bayesian
learning where the probability attached to the event \modelk is the true one" in
obtained taking a convex combination of Bayes rule with the prior probability:

wi;k (� t ) = � i wi;k (� t � 1) + (1 � � i )
� k(st ) wi;k (� t � 1)

pi (st j� t � 1)
8k; t; � ; (4)

with � i 2 [0; 1). Setting � i = 0, Bayesian learning is recovered. Learning with
under-reaction entails a form of averaging. The probabilistic prediction of an
under-reacting agent i for state st+1 after a partial history � t can be seen as
the convex combination of the probabilistic prediction agenti would make after
the partial history � t � 1 and the Bayesian prediction given a priorw i (� t � 1) =
(wi; 1(� t � 1); : : : ; wi;K (� t � 1)) and the observation of statest (Epstein et al., 2010;
Giachini, 2021). Under-reaction represents a robust learning strategy. In case
of model misspeci�cation it can outperform Bayesian learning (Massari, 2020).
Moreover, this rule is equivalent to theSoft-Bayes algorithm of Orseau et al.
(2017), match the dynamics of prices and wealth in the prediction market model
of Bottazzi and Giachini (2017, 2019b), and describe the risk neutral probabilities
and consumption shares in the pure exchange economy model analyzed by Dindo
and Massari (2020). The following proposition adapts a result on under-reaction
by Massari (2020) to our framework.2 It shows that an under-reacting agent is at
least as accurate as the most accurate model in its set fort su�ciently large.

Proposition 3.2. For any under-reacting agenti and 8� < 1=2, it is p-almost
surely

2The result by Massari (2020) makes use of the notion ofempirical distribution of states while
we state it with respect to the true measure p. If p describes an i.i.d. process, then the two
statements are equivalent.
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i ) D pjpi (� t � 1) � D pj� i;k (� t � 1) + o(t � � ) 8k 2 f 1; 2; : : : ; K g,

ii ) D pj� i;k (� t � 1) � D pj� k (� t � 1) + o(t � � ) 8k 2 f 1; 2; : : : ; K g;

where � i;k (st+1 j� t ) = � i pi (st+1 j� t ) + (1 � � i ) � k(st+1 ).

Proof. Note that wi;k (� t ) = wi;k (� t � 1)� i;k (st j� t � 1)=pi (st j� t � 1). Iterative substitu-
tion with the previous equation gives

pi (� t ) = pi (� t � 1)
KX

k=1

� i;k (st j� t � 1)wi;k (� t � 1) = � � � =
KX

k=1

� i;k (� t ) wi;k (� 0);

where � i;k (� t ) =
Q t � 1

� =1 � i;k (s� +1 j� � ). Hence,8k, pi (� t ) � � i;k (� t ) wi;k (� 0), and

log
p(� t )
pi (� t )

� log
p(� t )

� i;k (� t )
� logwi;k (� 0) �

� i log
p(� t )
pi (� t )

+ (1 � � i ) log
p(� t )
� k(� t )

� logwi;k (� 0);

where we have used the inequality log� i;k (� t ) � � i logpi (� t ) + (1 � � i ) log � k(� t ).
Note that, by de�nition, � i;k (s j � t ) 2 HK , thus applying Theorem 2.1 topi , � i;k
and � k , the statements are recovered.

Again, the most accurate model at a datet depends on the speci�c realization
� t and Proposition 3.2 does not imply the asymptotic convergence of the under-
reacting agent to a single i.i.d. model.

Limited memory Bayesian learning The limited memory Bayesian learning
is a version of the standard Bayesian learning process in which the agent delib-
erately forgets observations in the past. Here we consider the version with the
shortest possible memory, that is a memory of one. In this case, the weight as-
signed to modelk after a partial history � t reads

wi;k (� t ) =
� k(st )wi;k (� 0)

P K
k0=1 � k0(st )wi;k 0(� 0)

(5)

In any period t, agent i is forgetting all the sequence of states occurred un-
til t � 2 (included) and restarts its Bayesian learning procedure simply consid-
ering the previous state and the initial prior distribution of weights w i (� 0) =
(wi; 1(� 0); wi; 2(� 0); : : : ; wi;K (� 0)). The i.i.d. nature of the models on which the
agent learns makes the limited memory Bayesian learner have a simple Markov
structure. This process also displays a strong dependence on initial weights.
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Moving average learning The moving average learning process consists in tak-
ing a reference learning processp� and applying a moving average to the sequence
of probabilistic predictions generated for every state. Assume agenti adopts a
moving average learning with memoryM i , then

pi (s j � t ) =

8
>><

>>:

p� (s j � t ) if t < M i � 1 ;

M � 1
i

M iP
m=1

p� (s j � t � m+1 ) if t � M i � 1 :
(6)

If the underlying learning process follows Assumption 1, the same thing can be

restated in terms of weights withwi;k (� t ) = M � 1
i

M iP
m=1

w�
k(� t � m+1 ) if t � M i � 1.

The moving average learning represents a further layer of \smoothing" over the
predictions of the underlying process.

4 Misspeci�ed models
In what follows, we study the performance of the learning processes described
above in a competitive environment where theK i.i.d models they use are mis-
speci�ed. We investigate two speci�c cases of mispeci�cation. We start with an
i.i.d. true measure that does not belong to the set of models the agents can learn.
In this case the i.i.d. models the agent use belong to the same class of the true
measure, but their parameters are, generically, not correct. We call this casepara-
metric misspeci�cation. In the second case, the properstructural misspeci�cation
case, we assume that the true measure is Markov. In this case, the models em-
ployed by the agents belong to a di�erent, and less general, class than the truth.

4.1 Parametric misspeci�cation
We assume that states of nature follow an i.i.d. process, such that the models
agents use belong to the same family of the truth but have misspeci�ed parameters.
Formally,

Assumption 2. The true measurep is an i.i.d. process whose conditional dis-
tribution are described by the vector � = ( � (1); � (2); : : : ; � (S)) 2 � S� 1

+ , such
that p(st j � t � 1) = � (st ). Agents’ models are misspeci�ed: k� k � � k > 0
8k 2 f 1; 2; : : : ; K g.

We �rst present some analytic results about the behavior of the di�erent learn-
ing models under this assumption. Then, we propose some numerical simulation
to clarify their relative performances.
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Bayesian learning. Under Assumption 2,p-almost surely

lim
t !1

D pj� k (� t ) = D � j� k =
SX

s=1

� (s) log
� (s)
� k(s)

> 0:

Assuming that modelk, on which the Bayesian agenti learns, has the lowest rela-
tive entropy of all K models, then, according to Proposition 3.1, limt !1 D pjpi (� t ) =
D � j� k , which implies that limt !1 wi;k (� t ) = 1. The convergence of the weights,
however, is not otherwise guaranteed. In any case, the Bayesian learner is as
accurate as the most accurate model available.

Learning with under-reaction. From Proposition 3.2 it follows that also the
under-reacting agent is never less accurate than a Bayesian learner. Massari (2020)
proves that when the parameter� is large enough and the conditional probability of
the true i.i.d. model belongs toHK , an agent that learns with under-reaction has a
selection advantage over a Bayesian learner. This represents aspeci�c advantage of
the under-reacting versus the Bayesian agent. Inspired by the results of Bottazzi
and Giachini (2017) and Dindo and Massari (2020), the following Proposition
extends the analysis proving the existence of ageneric advantage of an under-
reacting agent.

Proposition 4.1. Suppose there exists aK -dimensional vector� with � k � 0 andP K
k=1 � k = 1 , such that � =

P K
k=1 � k � k . Then, for any under-reacting agenti and

8� < 1=2, it is p-almost surely

D pjpi (� t ) �
1 � � i

2(� i + � )2 +
o(t � � )
1 � � i

:

Proof. Setting � = 1 � � i > 0 and using the �rst order Taylor expansion with
Lagrange remainder of the logarithmic function, for each realization� � ,

Dpjpi (� � )�
KX

k=1

� k Dpj� i;k (� � ) = �
SX

s=1

� (s)
�

� (s)
pi (sj� t )

� 1
�

�
� 2

2

KX

k=1

� k

SX

s=1

� (s)
(� k(s) � pi (sj� t ))2

(� k;s(� � )� k(s) + (1 � � k;s(� � )) pi (sj� t ))2 ;

for some� k;s(� � ) 2 [0; � ]. Thus, by Assumption 1,

KX

k=1

� k

SX

s=1

� (s)
(� k(s) � pi (sj� t ))2

(� k;s(� � ) � k(s) + (1 � � k;s(� � )) pi (sj� t ))2 �
1

(1 � � + � )2 ;
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and becausex � 1 � logx,

SX

s=1

� (s)
�

� (s)
pi (sj� � )

� 1
�

� Dpjpi (� � );

so that

Dpjpi (� � ) �
KX

k=1

� k Dpj� i;k (� � ) � (1 � � i )Dpjpi (� � ) �
(1 � � i )2

2(� i + � )2 :

Summing on� from 0 to t � 1 and dividing by t, according to point i ) of Proposi-
tion 3.2, the left-hand side is lower theno(t � � ), and the statement follows.

Hence, when the truth belongs toHK , an under-reacting agent becomes ex-
tremely accurate as its level of under-reaction increases and, as a consequence,
obtains a survival advantage with respect to other traders. To see it, consider
a market in which there is discount factor homogeneity and agent 1 is under-
reacting with parameter� 1. Any trader i for which it is p-almost surelyD pjpi (� t ) >
(1 � � 1)=(2(� 1 + � )2) for t su�ciently large will vanish. If all traders apart the
under-reacting one are bounded away from the truth,D pjpi (� t ) > � > 0, for i > 1,
then the under-reacting agent dominates if its parameter is su�ciently large. For
instance, a su�cient condition is

� 1 2
� p

1 + 8� � 1
4�

; 1
�

:

Limited memory Bayesian learning. Under Assumption 2, the limited mem-
ory Bayesian agent’s conditionals only depend on the last realized state of nature.
Thus, one hasDpjpi (� t ) = Dpjpi (st ) and a straightforward application of the Strong
Law of Large Numbers delivers the following.

Corollary 4.1. For any agent i that uses the limited memory Bayesian learning
process, it isD pjpi (� ) = lim t !1 D pjpi (� t ) =

P S
s=1 � (s)Dpjpi (s) p-almost surely.

Hence, alternating among di�erent convex combinations of models depending
on the last realized state, the accuracy of the limited memory Bayesian agent de-
pends upon how accurate those convex combinations are on average. A straightfor-
ward implication of Corollary 4.1 is that Dpjpi (sm ) � D pjpi (� ) � Dpjpi (sM ) where
sm = argmin sf Dpjpi (s)g and sM = argmaxsf Dpjpi (s)g. Thus, a limited memory
Bayesian agent can be maximally accurate only when all of its convex combina-
tions match the true probabilities. This is never possible, for instance, if theK
models on which the agent learns are linearly independent.
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Moving average learning. Under Assumption 2, the smoothing in condition-
als applied by an agent following the moving average learning process re
ects
into its average relative entropy. De�ne the moving window average� (s; � t ) =P M � 1

m=0 p� (s j � t � m )=M and variance� 2(s; � t ) =
P M � 1

m=0 (p� (s j � t � m ) � � (s; � t ))2 =M
of the conditional probability of the underlying model.

Proposition 4.2. Consider the conditional expected variance of the prediction
� 2(� t ) =

P S
s=1 � (s)� 2(s; � t ), then, 8� t and for any agenti using the moving av-

erage learning process, it is

1
M

M � 1X

m=0

Dpjp� (� t � m ) � Dpjpi (� t ) �
� 2(� t )

2 (1 � � )
:

If D pjp� (� ) = lim t !1 D pjp� (� t ) exists, then lim supt !1 D pjpi (� t ) � D pjp� (� ), with
strict inequality if 9" > 0 such that � 2(� t ) > " .

Proof. Using the result on the bounds of the arithmetic and geometric means
inequality in Perisastry and Murty (1982), and the bounds on the probability
models in Assumption 1,8s; � � ,

� 2(s; � � )
2 (1 � � )

� log

 
1

M

M � 1X

m=0

p� (s j � � � m )

!

�
1

M

M � 1X

m=0

logp� (s j � � � m ) �
� 2(s; � � )

2 �
:

Focusing on the inequality on the left, adding and subtracting log� (s) to the
central member, multiplying by � (s), and summing overs, one obtains the �rst
assertion.

Averaging from � = M � 1 to � = t � 1 and adjusting in order to obtain the
de�nitions of average relative entropy, one has

1
M

M � 1X

m=0

t � m
t

D pjp� (� t � m � 1) � D pjpi (� t � 1) �
1
t

tX

� = M

� 2(� � � 1)
2(1 � � )

� o
�

1
t

�
;

that proves the second assertion.

Proposition 4.2 suggests that an evolutionary advantage can be extracted from
averaging predictions. In this case, the moving average learning process is never
less accurate than the learning process it leverages ifD pjp� (� ) exists. In fact, if
the underlying modelp� convergesp-almost surely to a constant conditional prob-
ability p� (sj� t ), like Bayesian learning in the presence of a best model, then from
Proposition 4.2 one hasp-almost surely that limt !1 D pjpi (� t ) = D pjp� (� ). Thus,
assuming that the underlying reference model is adopted by other traders in the
market, averaging does not lead to any long-run advantage over them. If, instead,
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the underlying model entails some sort of persistent 
uctuation in conditionals,
moving average brings a de�nite advantage over other traders adopting the refer-
ence model. In any case, the moving average learning model never under-performs
when compared to the underlying model on which its predictions are built.

Despite providing useful information about the inner workings of the di�erent
learning models, the previous results do not allow to devise any general ranking
among them. The generic advantage that under-reaction learning enjoys depends
upon the degree of under-reaction and the truth belonging to the convex hull of
models. However, Proposition 4.1 does not imply, for instance, that increasing�
one increases accuracy. The moving average approach has an advantage when the
reference learning process does not converge. Thus, it may be e�ective when it
leverages (and competes against) an under-reacting agent characterized by persis-
tent 
uctuations in beliefs (Massari, 2020). However that advantage generically
disappears when it competes against a Bayesian learner. For generic initial weights,
the limited memory Bayesian learner can never be maximally accurate. This does
not mean that it is the worst learning approach. Indeed, by resetting the learning
process every time, the agent constantly mixes the misspeci�ed i.i.d. models and
never converges to a single one. This might represent an advantage. The numeri-
cal exercises proposed in the next section exemplify the di�culties in ranking and
provide some new insights about the relative performances of the models matter
of study.

4.1.1 Numerical exploration

We consider an economy with two possible states of the world,S = 2, driven by
an i.i.d. true process. Hence, slightly abusing notation, we setp(1j� t ) = p 8t; �
with p 2 (0; 1), that is � = ( p;1 � p). Agents learn on two models (i.e.K = 2)
with respective probabilities� 1 = ( � 1; 1� � 1) and � 2 = ( � 2; 1� � 2); � 1; � 2 2 (0; 1).
The performances of the di�erent learning models are expressed in terms of their
average relative entropyD pjpi (� t ) and are reported in Figure 1. The Bayesian
model � i = 0 (darker and thicker solid line) always converge to the best model (c.f.
Proposition 3.1) and the average relative entropy can be computed analytically. Its
value is zero when the true probability matches one of the two underlying models,
i.e. p = 0 :3 and p = 0 :8. In the case of an under-reacting agent an analytical
expression is not available. Thus, the average value ofD pjpi (� t ) is computed for
di�erent values of � i over 102 independent random partial histories of lengtht = 2 �
104 (thinner and lighter lines).3 It is worth to remark that, following Theorem 2.1,
the number we report for each given combination of parameters can be understood

3The �rst 10 4 steps of each independent replication have been discarded to mitigate the initial
condition bias.
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Figure 1: Average relative entropy of the di�erent learning models as a function
of p, i.e. the true probability of the realization of state 1. Parameter settings are
� 1 = 0 :3, � 2 = 0 :8, and, for the moving average model,M j = 10. For estimated
values, standard errors are in the order of 10� 4 or smaller.

as an estimate of the value to whicht � 1 log(p(� t )=pi (� t )) is close fort su�ciently
large. Moreover,D pjpi (� t ) appears extremely stable across the independent replicas
of the cases we consider, suggesting that the selection argument of Corollary 2.1
can be applied. Whenp � � 1 or p � � 2, under-reaction learning is equivalent to
Bayesian learning, irrespective of the value of� i . In the parameter domain where
Proposition 4.1 applies,p 2 (� 1; � 2), the average relative entropy decreases as the
degree of under-reaction increases. This monotonic decreasing relationship is a
novelty; it is a fresh new feature, not prescribed by the results of the previous
Section. The performances of the moving average learning process, built on top of
the considered under-reaction processes, are reported as dotted lines in Figure 1.
When the under-reacting reference persistently mixes the two models, the usage
of a moving average learning process is fruitful. On the contrary, when the under-
reacting reference settles on the best i.i.d. model, the moving average process does
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Figure 2: Average relative entropy of an under-reacting agent as a function of� i
and for di�erent values of p. Parameter settings: � 1 = 0 :3, � 2 = 0 :8. The values
of p has been chosen such thatD pj� 2 (� ) < D pj� 1 (� ) holds. Standard errors are in
the order of 10� 4 or smaller.

not deliver any selection advantage. Finally, because the two considered models are
linearly independent, the average relative entropy of the limited memory Bayesian
learner is bounded away from zero (black dashed line in Figure 1). It is worth to
point out that, in case p belongs to a speci�c sub-interval of (� 1; � 2) and discount
factor homogeneity holds, this simple model is able to make a Bayesian agent
vanish. Anyhow, it succumbs to an agent showing a su�ciently high level of
under-reaction.

If the value of the parameterp characterizing the true measure is close to the
one of the two models,� 1 or � 2, the reduction of the relative entropy due to
under-reaction does not seem to click-in immediately when reducing� . To further
investigate this point, in Figure 2 we report the average relative entropy of an
under-reacting agenti as a function of � i , for di�erent values of p. We consider
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Figure 3: Left : consumption share dynamics of agent 1 (B), agent 2 (UR), agent 3
(LMB), agent 4 (MA). Center : p1(1j� t ) (B) and p3(1j� t ) (LMB) for the �rst 150
time steps. Right : p2(1j� t ) (UR) and p4(1j� t ) (MA) for the �rst 150 time steps.
Black dots represent on 1 represent the occurrence ofst = 1, while black dots on
0 representst = 2.

the same number and length of partial histories used for Figure 1. For any value of
p, it seems that there exists a threshold value� i such that, as� i increases beyond
it, the monotonically decreasing behavior appears. For� i � � i , the under-reacting
model behaves exactly as the Bayesian one (i.e.� i = 0). Indeed, when� i ! 0, the
under-reacting agent behaves as a Bayesian one and converges to a single model.
Thus, the threshold � i represents the point in which under-reaction starts to play
a role and the agent starts persistently mixing both models. Intuitively (see also
the discussion in Massari, 2020), this should happen when the mixing coe�cient� i
is large enough for the mixture of the two models to start having a lower average
entropy then the best model. Thus, considering the case in whichDpj� 2 < D pj� 1 ,
the threshold value � i should solve the equationDpj� i � 2+(1 � � i ) � 1 = Dpj� 2 . Since
� 1 < p , Dpj� 2 is a decreasing function of� 1, thus there exists a number ~� 1 2 (� 1; p)
such that Dpj~� 1 = Dpj� 2 . By direct substitution one can verify that the value
� i = (~� 1 � � 1)=(� 2 � � 1), which is reported as a dashed line in Figure 2, ful�lls the
requirement.

4.1.2 Dynamics of consumption shares and subjective probabilities

To study how the characteristics of the learning process we have seen above shape
the dynamics of consumption shares we conduct a market selection exercise. As
in the previous Subsection, we setK = S = 2, � 1 = 0 :3, � 2 = 0 :8. The market is
populated by 4 agents: agent 1 is Bayesian; agent 2 under-reacts with� 2 = 0 :65,
agent 3 is a limited memory Bayesian learner, agent 4 uses the moving average
learning process withM 4 = 10 exploiting the predictions of the under-reaction
learning process of agent 2. Following Bottazzi and Giachini (2022), we assume
ei (� t ) = e > 0 8i; t; � and ui (c) = (1 � � ) log(c=e) 8i , with � the homogeneous
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Figure 4: Left : consumption share dynamics of agent 1 (B), agent 2 (UR), agent
3 (LMB), agent 4 (MA). Center :p1(1j� t ) (B) and p3(1j� t ) (LMB) for the �rst 100
time steps. Right : p2(1j� t ) (UR) and p4(1j� t ) (MA) for the �rst 100 time steps.
Black dots represent on 1 represent the occurrence ofst = 1, while black dots on
0 representst = 2.

discount factor. Hence, the consumption share of agenti at � t+1 is

~ci (� t+1 ) =
ci (� t+1 )

4e
=

pi (st+1 j� t )ci (� t )P 4
j =1 pj (st+1 j� t )cj (� t )

8i; t; � ; (7)

with ~ci (� 0) = 0 :25. A random sequence of states is drawn assuming that the true
probability process is i.i.d. with p(1j� t ) = p 2 (0; 1) 8t; � . For our �rst exercise,
we setp = 0 :6, such that, from Figure 1, one has that agent 4 (moving average)
is the most accurate trader in the market. Accordingly, Figure 3 left panel shows
the convergence towards 1 of agent 4’s consumption share. On the other hand,
agent 1 is the �rst to approach a null consumption share, while the last to vanish
appears to be agent 2. Looking at subjective probabilities attached to state 1
(Figure 3 center and right panels), one notices that agent 1 converges to model 2
quite quickly. Agents 2, 3, and 4, instead, persistently 
uctuate. However, while
agents 2 and 4 tend to stay between the truth and the best model displaying a
rather smooth path, agent 3 strongly jumps between its two levels.

For the second exercise, we draw the random sequence of states settingp = 0 :25.
In this case, Figure 1 shows that agents 1, 2, and 4 achieve the same level of average
relative entropy, while agent 3 is less accurate than them. As one can observe in
Figure 4, consumption shares stabilize quite quickly on their long-run level and,
while agents 1, 2, and 4 show a strictly positive share, agent 3 vanishes. Looking
at subjective probabilities, one notices that agents 1, 2, and 4 converge to model 1,
while agent 3 
uctuate between its two levels in the (� 1; � 2) interval. Sincep < � 1,
selecting model 1 is the best possible choice and only those agents able to do that
survive.
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4.2 Structural misspeci�cation
A more general process for the true probability measure is now considered. Indeed,
here we assume that the states of nature follow a Markov process with transition
matrix composed by strictly positive entries.

Assumption 3. The true measurep follows a discrete-time Markov chain with
transition matrix P : p(st+1 j� t ) = Pst ;st +1 8t; � and p(sj� 0) = ps;0 with ps;0 > 0
8s 2 f 1; 2; : : : ; Sg. For any (s; s0) 2 f 1; 2; : : : ; Sg � f 1; 2; : : : ; Sg, it is Ps;s0 > 0.

The strict positiveness of the transition matrix’s entries implies that the Markov
chain de�ning the true probability measurep is irreducible and, as a consequence,
the invariant probability distribution � = ( � (1); � (2); : : : ; � (S)), with � (s) > 0 8s,
exists unique (see Feller, 1968, page 393). The invariant distribution emerges in
the computation of models’ average relative entropy and, in turn, this is useful to
understand the accuracy of Bayesian learning.

Bayesian Learning. When the truth follows a Markov chain as in Assumption
3, one can explicitly compute the limiting value of the average relative entropy of
any i.i.d. model. Indeed, the following holds.

Proposition 4.3. Ror any i.i.d. model k, it is p-almost surely

lim
t !1

D pj� k (� t ) = D pj� k (� ) =
SX

s=1

� (s) log
� (s)
� k(s)

+
SX

s0=1

� (s0)
SX

s=1

Ps0;s log
Ps0;s

� (s)
: (8)

Proof. From the de�nition of D pj� k (� t ) one hasp-almost surely

D pj� k (� ) = lim
t !1

1
t

tX

� =1

SX

s=1

p(sj� � ) log
p(sj� � )
� k(s)

= lim
t !1

1
t

tX

� =1

SX

s=1

Ps� ;s log
Ps� ;s

� k(s)
=

= lim
t !1

1
t

tX

� =1

SX

s0=1

1 s0;s�

SX

s=1

Ps0;s log
Ps0;s

� k(s)
=

SX

s0=1

� (s0)
SX

s=1

Ps0;s log
Ps0;s

� k(s)
;

where 1 s0;s represents the indicator function (1 s0;s = 1 if and only if s0 = s and
0 otherwise) and the last equality is an application of the Strong Law of Large
Numbers. The equation in the statement directly follows adding and subtractingP S

s=1 � (s) log � (s) and exploiting the properties of the invariant distribution, i.e.
� (s) =

P S
s0=1 Ps0;s� (s0) 8s.
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Proposition 4.3 shows that the average relative entropy of an i.i.d. model in
a Markov world results from the sum of two components: the relative entropy of
the model with respect to the \best" i.i.d. distribution { the invariant distribution
of the chain { and the average relative entropy of the \best" i.i.d. model with
respect to the transition probabilities. Thus, from Proposition 3.1, one has that
a Bayesian agent is asymptotically as accurate as the i.i.d. model with the lowest
relative entropy with respect to the invariant distribution. Moreover, a Bayesian
becomes increasingly inaccurate as the true Markov model is increasingly divergent
from the invariant distribution. This can eb understood as the loss of accuracy a
Bayesian agent su�ers because of structural misspeci�cation.

Learning with under-reaction. Concerning under-reaction, an application of
Proposition 3.2 combined with the results of Massari (2020) delivers that the
under-reacting agent maintains aspeci�c advantage over the Bayesian one. How-
ever, we cannot provide an extension to the Markovian case of itsgenericadvantage
delivered by Proposition 4.1 in the parametric misspeci�cation case. The intuition
here is that unconditionally averaging predictions becomes less fruitful when the
truth is Markov. Indeed, in so doing one is combining predictions without dis-
criminating the fact that probabilities change depending on the realized state.
Thus, a trade-o� emerges: on the one hand, some form of averaging may allow the
learner to get closer to the best i.i.d model (i.e. the invariant distribution), but,
on the other hand, dampening 
uctuations may be counterproductive when the
true probabilities naturally 
uctuate.

Limited memory Bayesian learning. Concerning the limited memory Bayesian
learning process, the situation is rather di�erent. Indeed, the limitation in the
number of observations the agent adopts makes its predictions show the Marko-
vian property. Thus, in those cases in which the i.i.d. models and the initial
weights are such that the resulting probabilistic prediction are close to true tran-
sition probabilities, it can show an high level of accuracy. More speci�cally, under
Assumption 3 and for an agenti that uses the limited memory Bayes protocol in
eq. (5), it is p-almost surely

lim
t !1

D pjpi (� t ) = D pjpi (� ) =
SX

s0=1

� (s0)
SX

s=1

Ps0;s log
Ps0;s

KP

k=1
� k(s)

� k(s0)wi;k (� 0)
KP

k0=1
� k0(s0)wi;k 0(� 0)

:

(9)
Hence, if the transition probabilities can be written as a particular convex combi-
nation of the i.i.d. models, then the average relative entropy of the limited memory
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Bayesian agent is zero. That is,D pjpi (� ) = 0 if Ps0;s =
P K

k=1 zk;s0� k(s) 8s0; s, with

zk;s0 =
� k(s0)wi;k (� 0)

KP

k0=1
� k0(s0)wi;k 0(� 0)

8s0; k :

As a consequence, learning processes that do not provide relevant selection advan-
tages in the parameter misspeci�cation case, may become e�ective as structural
misspeci�cation occurs. In the case of the limited memory Bayesian, the key is its
continuous resetting of the learning process. Such a peculiar behavior conveys a
structure to predictions that cannot be recovered otherwise.

Moving average learning. The argument used in Proposition 4.2 to show the
advantage of the moving average approach under parametric misspeci�cation can-
not be generically extended when Assumption 3 holds. Since the basic mechanism
underlying moving average learning is, again, smoothing, the intuition follows the
same logic of the one provided for learning with under-reaction: a trade-o� be-
tween getting closer to the the invariant distribution and matching 
uctuations
emerges. Hence, it could be generically possible that smoothing the conditional
of the underlying model, a moving average learning agent under-performs with
respect to its reference.

Summarizing, structural misspeci�cation makes the task of ranking learning
processes in terms of survival prospects even harder. Indeed, the aforementioned
trade-o�s let the selection picture become much blurrier than the case of paramet-
ric misspeci�cation. To support, validate, and better understand the intuitions
provided here, in the following section we perform a numerical exercise. It clearly
shows that selection outcomes can generically and profoundly change depending
on how one sets the parameters of the true Markov chain.

4.2.1 Numerical exploration

For our numerical exercise, we consider the same settings used in subsection 4.1.1
with the exception of the true probability. That is, we set K = S = 2, � 1 =
(� 1; 1 � � 1), � 2 = ( � 2; 1 � � 2), and states of nature appear according to a Markov
chain with transition matrix

P =
�
P1;1 1 � P1;1
P2;1 1 � P2;1

�
:

Thus, p(1j� t ) = p(1jst ) = Pst ;1 8t; � . The invariant distribution reads

� =
�

P2;1

1 � P1;1 + P2;1
;

1 � P1;1

1 � P1;1 + P2;1

�
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Figure 5: Average relative entropy of the invariant distribution (left) and of a
Bayesian agent (right) for di�erent combinations ofP1;1 and P2;1. Parameter set-
tings: � 1 = 0 :3, � 2 = 0 :8.

and we shall use its average relative entropy as a reference point throughout the
analysis. Such a quantity can be analytically computed and in left panel of Figure
5 one can read its values for di�erent combinations of (P1;1; P2;1). In the right
panel, instead, the average relative entropy of a Bayesian agent is showed. One
immediately notices that the loss in accuracy one su�ers by using the best i.i.d.
model when the truth is Markov progressively grows as we move away from the
P2;1 = P1;1 line. In the case of a Bayesian agent, one recovers the shape of the
solid black line in Figure 1 along theP2;1 = P1;1 line. Moving towards the corners
(P1;1; P2;1) = (0 ; 1) and (P1;1; P2;1) = (1 ; 0), the average relative entropy progres-
sively grows as a consequence of structural misspeci�cation.

Next, we show in Figure 6 the di�erence between the average relative entropy of
each learning process and the average relative entropy of the invariant distribution.
To compute the average relative entropy of the under-reacting agent and of the
moving average agent, we rely upon a numerical estimation, details are provided
in the caption of each Figure. Even in this case, the reported numbers can be
understood as estimates of the values to whicht � 1 log(p(� t )=pi (� t )) is close for t
su�ciently large and, given the extremely stability across replicas, the selection
argument of Corollary 2.1 can be applied. As expected, the Bayesian agent cannot
be more accurate than the invariant distribution and, thus, the surface shown in the
top-left panel is completely in the positive part of the graph. Comparing under-
reaction (top-right panel) with moving average built on it (bottom-left panel),
one appreciates the trade-o� between dampening 
uctuations in predictions to
get closer to the best i.i.d. model and keeping changing predictions in order to
match transition probabilities. Focusing on the regions of the (P1;1; P2;1) space
where the Markov chain favors switching,P1;1 ’ 0 and P2;1 ’ 1, one notices that
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Figure 6: Di�erences between average relative entropy of the learning process and
the average relative entropy of the invariant distribution. Top-left : Bayesian
learning. Top-right : under-reaction with � = 0 :65. Bottom-left : moving aver-
age agent withM = 20 exploiting the under-reaction with � = 0 :65. Bottom-
right : limited memory Bayesian learning. Parameter settings:� 1 = 0 :3, � 2 = 0 :8,
wi; 1(� 0) = wi; 2(� 0) = 0 :5. The average relative entropy of under-reaction and mov-
ing average have been estimated over 200 independent realizations of 2500 steps
each. For estimated values, standard errors are in the order of 10� 4 or smaller.
The plots are rotated of 90� clockwise with respect to Figure 5 in order to improve
the visualization of results.

moving average is more accurate than the under-reacting process it is exploiting.
Thus, averaging seems to provide a gain in accuracy when the underlying process
jumps frequently between states. In such a situation, the trade-o� is solved in
favor of averaging. At the same time, the accuracy of the invariant distribution
appears as an upper bound: the two learning processes cannot improve upon the
best i.i.d. model. In the opposite case of a persistent Markov chain averaging
appears less advantageous and letting predictions 
uctuate can provide superior
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Figure 7: Most accurate processes over the (P1;1; P2;1) space. White : Multiple
maximally accurate processes or the di�erence between the two lowest average
relative entropy processes is not signi�cant at� 99% con�dence level. Light
gray : under-reaction with � = 0 :65 is the most accurate.Dark gray : moving
average with M = 20 exploiting under-reaction is the most accurate. Black :
limited memory Bayesian learning is the most accurate.

outcomes. Indeed, whenP1;1 ’ 1 andP2;1 ’ 0, under-reaction outperforms moving
average and can even be more accurate than the invariant distribution. Hence, the
trade-o� is solved towards matching the 
uctuations of true probabilities. This is
even clearer looking at the performance of the limited memory Bayesian process
(bottom-right panel). Such a learning rule provides the best outcome in terms of
accuracy { outperforming each other learning process and the invariant distribution
{ when the underlying Markov chain is su�ciently (and symmetrically) persistent.
At the same time, the limited memory Bayesian learning process presents the
most extreme levels of average relative entropy: when the true Markov chain is
not su�ciently persistent it performs worse than the other rules.

To complement and further support the previous analysis, Figure 7 shows the
identity of the most accurate agent over the (P1;1; P2;1) space. As argued in ad-
vance, the moving average process exploiting under-reaction is the most accurate
when the true Markov chain frequently switches between states, while the limited

25



memory Bayesian process is the most accurate when the Markov chain is persistent
and close to be bi-stochastic. Interestingly, under-reaction prevails over a region
in which P1;1 ’ 0:8 and P2;1 ’ 0:6. Following our intuition about the trade-o�, in
that region under-reaction is able to achieve the best combination between averag-
ing to get close to the invariant and 
uctuating to follow transition probabilities.
In the regions aroundP1;1 = P2;1 = 0 and P1;1 = P2;1 = 1 and spanning for most of
the white areas in the plot, from a direct comparison with Figure 6, one can con-
clude that Bayes, under-reaction, and moving average achieve the same (maximal)
accuracy level.

4.2.2 Consumption shares dynamics

Finally, we propose some market selection exercises along the same lines of Subsec-
tion 4.1.2 but assuming that the true data generating process is a Markov chain
as in Subsection 4.2.1. That is, we setK = S = 2, � 1 = 0 :3, � 2 = 0 :8 and
we populate the market with the same 4 agents of Subsection 4.1.2. Thus, the
consumption share of agenti at � t+1 remains as in equation (7).

For our �rst exercise we consider a random sequence of states generated setting
P1;1 = 0 :15 and P2;1 = 0 :75. From Figure 7, one immediately notice that such a
point belongs to the region where the moving average agent (agent 4) has the lowest
average relative entropy. As a consequence of Corollary 2.1 and given discount
factor homogeneity, we shall observe that agent 4 dominates. The left panel of
Figure 8 shows the evolution of agents’ consumption shares in the �rst 300 steps.
Consistently with our results, one observes that the consumption share of agent
4 approaches one around time-step 200 and stabilizes on such a level afterwards.
One also notice that the order in which agents approach zero consumption is: �rst
agent 3, second agent 1, and third agent 2. Looking at how the predictions for state
1 of the agents evolve over the �rst 100 time steps (central and right panel of Figure
8), one notices that agent 1 approaches model 1 quite quickly, agent 2 shows small

uctuations around a sort of long-run trend, agent 3 strongly 
uctuates between
its two predictions, agent 4 captures the long-run trend of agent 2.

Next, we draw our random sequence of states settingP1;1 = 0 :75 and P2;1 =
0:15, such that the underlying Markov chain is highly persistent and close to be
bistochastic. Figure 7 indicates that the limited memory Bayesian learning process
generates the lowest average relative entropy. Indeed, as expected, in Figure 9 left
panel, agent 3 attains a (almost) unitary consumption share in less than 100 steps.
Looking at how beliefs evolve { Figure 9 center and right panels {, one notices
that agent 1 settles on model 1 after few 
uctuations; agent 2 and 4 persistently

uctuate but the persistence of states do not allow them to rapidly adapt when
a switch occurs; agent 3, instead, quickly moves and remains close to the true
probabilities as sequences of equal states alternate.
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Figure 8: Left : consumption share dynamics of agent 1 (B), agent 2 (UR), agent
3 (LMB), agent 4 (MA). Center :p1(1j� t ) (B) and p3(1j� t ) (LMB) for the �rst 100
time steps. Right : p2(1j� t ) (UR) and p4(1j� t ) (MA) for the �rst 100 time steps.
Black dots represent on 1 represent the occurrence ofst = 1, while black dots on
0 representst = 2.

Figure 9: Left : consumption share dynamics of agent 1 (B), agent 2 (UR), agent 3
(LMB), agent 4 (MA). Center : p1(1j� t ) (B) and p3(1j� t ) (LMB) for the �rst 100
time steps. Right : p2(1j� t ) (UR) and p4(1j� t ) (MA) for the �rst 100 time steps.
Black dots represent on 1 represent the occurrence ofst = 1, while black dots on
0 representst = 2.

Finally, we setP1;1 = 0 :35 andP2;1 = 0 :2 such that we are in a case of multiple
survivors according to Figure 7. Figure 10 left panel con�rms that: in less than
100 steps agent 1, 2, and 4 stabilize on positive and heterogeneous consumption
shares. Interestingly, the under-reacting agent is the one achieving the highest
share. Agent 3’s consumption share, instead, goes to zero and the reason for that
is evident from the center and right panels of Figure 10. Indeed, the probability
that agent 3 assigns to state 1 continues to 
uctuate between two levels that are
outside the range de�ned by the transition probabilities. The other agents, instead,
converge to model 1, whose predictions, lying in-between transition probabilities,
turn out as the most accurate. This also explains why their consumption shares
stabilize: they become identical.
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