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Abstract

This paper studies market selection in an Arrow-Debreu economy with
complete markets where agents learn over misspecified models. Under model
misspecification, standard Bayesian learning loses its formal justification
and biased learning processes may provide a selection advantage. Given the
natural connection between selection outcomes and long-run asset prices,
understanding which biased learning processes are evolutionary fit is in-
strumental to build a parsimonious long-run asset valuation model robust
to misspecification. Leveraging two cases of model misspecification and
four learning processes, our analysis reveals a general difficulty in ranking
learning behaviors with respect to their survival prospects. For example, the
advantage of predictions averaging disappears when the true data generating
process does not belong to the same family of models agents use to learn.
Rules that generically guarantee survival, appear to require an unreasonable
amount of knowledge about all the agents that compose the market ecology.
The goal of a parsimonious long-run asset valuation model robust to model
misspecification remains out of reach.
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1 Introduction

The market selection hypothesis, applied to competitive environments where agents
are able to learn (i.e., update their beliefs according to given rules), implies that
only those who incorporate evidence into their probabilistic predictions according
to Bayes rule are able to survive and, thus, influence assets’ long-run evaluation
(see e.g. Blume and Easley, 2006, 2009a,b). Such a statement relies upon the
assumption that the learning problem is correctly specified (i.e., the true data
generating process belongs to the set of models over which agents are learning) or,
at least, a version of the complete class theorem holds. In those situations, traders
who learn in a Bayesian way are, indeed, able to drive non-Bayesian traders out
of the market (Sandroni, 2005). However, as reported by Gigerenzer and Gaiss-
maier (2011), Savage (1954) — the founder of Bayesian decision theory — used to
distinguish between situations in which there is perfect information (small worlds)
and situations in which relevant pieces of information are not available to decision
makers (large worlds). Gigerenzer and Gaissmaier (2011), among many others,
argue that real decision makers mostly face large-world situations and, thus, their
learning problems are seldom correctly specified. Indeed, the models on which they
have to rely are approximations or simplified versions of the real data generating
process, thus, they face model misspecification. In such a case, Bayesian learning
loses its formal justification and whether its selection advantage is conserved is not
clear.

A recent study by Massari (2020) shows that a learning bias known as under-
reaction — i.e., giving larger weight to the prior than what Bayesian learning pre-
scribes (Epstein et al., 2010)— provides a selection advantage over Bayesian learn-
ing in Arrow-Debreu economies characterized by model misspecification. That
is, while updating beliefs according to Bayes rule allows an agent to asymptoti-
cally be as accurate as the best model in its support (Berk, 1966), under-reaction
produces either the same beliefs of a Bayesian agent or more accurate ones gen-
erated by a persistent (but not fixed) mixture of models. Since competitive (and
complete) markets favor those who make accurate predictions (Sandroni, 2000),
an under-reacting agent facing a Bayesian one is always able to maintain a posi-
tive consumption share and, in generic cases, it can even asymptotically consume
all the aggregate endowment. Thus, under model misspecification, moving away
from Bayesian learning can be beneficial and under-reaction emerges as a robust
learning behavior in terms of survival. In a similar setting, Antico et al. (2023)
investigate the evolutionary fitness of a trader behaving according to the senti-
ment investor learning model of Barberis et al. (1998) when competing against
a Bayesian agent under model misspecification. The authors find that long-run
selection outcomes are profoundly related to the characteristics of the agents and
of the economy: depending on parameter settings, one can observe either that the



sentiment investor let the Bayesian trader vanish or vice-versa. Notwithstanding
those results, one may argue that, since under model misspecification Bayesian
updating is no-longer formally justified, selection outcomes derived from competi-
tion against a Bayesian trader may not be very informative about which learning
behavior is actually observed in the long-run and, thus, has a persistent influence
on asset evaluation. Indeed, one can imagine that the introduction of an ecology
of different learning rules may actually generate non-trivial selection results. Once
one acknowledges that, a related issue that immediately emerges is whether one
can devise a ranking of learning processes in terms of their fitness to survive under
model misspecification, since that would be instrumental to build a parsimonious
(i.e., that considers only a limited number of learning behaviors) long-run asset
valuation model that is fully robust to model misspecification.

In this paper we investigate those issues considering an Arrow-Debreu pure-
exchange economy with complete markets, four different learning processes, and
two cases of model misspecification. With respect to learning processes, we extend
the framework of Massari (2020) adding to Bayesian learning and under-reaction
two new processes: limited memory Bayesian learning and moving average. The
first one consists in continuously resetting the Bayesian learning process. The
second one consists in averaging the predictions of a reference learning process.
With respect to the two cases of model of model misspecification, we consider
parametric and structural misspecification. The first case is obtained assuming
that the true probability measure belongs to the same class of probabilistic models
the agents use to learn, but with different parameter values. For simplicity, we
focus on i.i.d. true process and models. The second case consists in assuming that
the true probability measure has a more complex probabilistic structure than the
models agents use to learn. In our case, we consider a Markov true probability
measure and i.i.d. models.

Our analysis draws from two approaches to the study of market selection. The
first is characterized by general equilibrium, intertemporal utility maximization,
and complete markets (see e.g. Sandroni, 2000; Blume and Easley, 2006, 2009a;
Jouini and Napp, 2011; Kogan et al., 2006, 2017; Massari, 2017; Dindo and Mas-
sari, 2020; Beddock and Jouini, 2021; Bottazzi and Giachini, 2022). The second,
instead, relies upon temporary equilibrium, bounded rationality, evolutionary dy-
namics among investment rules (see e.g. Hens and Schenk-Hoppé, 2005; Evstigneev
et al., 2009, 2016; Holtfort, 2019; Bottazzi and Dindo, 2013, 2014; Bottazzi et al.,
2018, 2019; Bottazzi and Giachini, 2017, 2019b,a; Elmiger, 2020).! Indeed, we
combine the complete market Arrow-Debreu economy, characterizing most of the

!The two approaches are not separated, indeed there generically exist evolutionary models
that produce the same wealth dynamics of general equilibrium ones. The link is built by means
of effective beliefs, see Bottazzi et al. (2018), Dindo (2019), Giachini (2021).



contributions belonging to the first approach, with biased learning schemes, which
are closer to the second approach. Our choice is motivated by avoiding compen-
sation effects between non-optimality in investment rules and misspecification in
beliefs, as described in Bottazzi et al. (2018) and Giachini (2021).

Our analysis shows that the ecology of learning behaviors operating in the mar-
ket and the type of model misspecification characterizing the economy is of crucial
importance for selection results. Thus, a general difficulty emerges in providing a
ranking of learning processes in terms of their evolutionary robustness to model
misspecification. For instance, under-reaction shows a generic advantage in terms
of selection under parametric misspecification when the true probability measure
is a convex combination of the i.i.d. models the agents use to learn: increasing the
level of under-reaction lets the agent increase its accuracy. Indeed, a sufficiently
high under-reaction degree makes any agent whose beliefs are bounded away from
the truth — such as, for instance, the limited memory Bayesian learner — disap-
pear. Such a particular selection advantage is shared by a moving average agent
that leverages under-reaction. Indeed, our analysis suggest that, under parametric
misspecification, averaging predictions appears as a key mechanism in generating
a selection advantage. Such a mechanism, however, partially breaks down when
structural misspecification occurs. More specifically, a trade-off between how well
beliefs approximate the true Markov chain’s invariant distribution (i.e. the best
i.i.d. model) and how well fluctuations in conditional probabilities are captured,
seems to appear. For instance, on the one hand, averaging past predictions al-
lows an agent to better approximate the invariant distribution, but, on the other
hand, decreases the relevance of fresh information and the speed of adaptation to
changes. As a consequence, the averaging approaches can be generically outper-
formed by the limited memory Bayesian learning process. Finally, we discuss some
examples of learning rules that can survive no matter the form of model misspeci-
fication. Our discussion points out that the key feature of those rules is that they
exploit information about all the other market participants rather than efficiently
combining information about past realizations of the true data generating process.
This is, however, disruptive for the quest of a parsimonious long-run asset evalu-
ation model robust to model misspecification: one cannot dispense from knowing
important features of all the agents in the economy.

2 The Model

Consider an Arrow-Debreu economy with infinite horizon and discrete time (in-
dexed by t = 0,1,...). There is a homogeneous consumption good and markets are
complete. Call s, € {1,2,...,S} the state realized at time ¢ > 0. We indicate with
o= (s1,82,...,5,...) a path and with o, = (s1, S2,...,s;) a partial history until



time ¢. The set of all the possible paths is > while Y; indicates the set of all partial
histories until time t. Let C(oy) = {0 € X|o = (0y,...)} be the cylinder with base
o, F; is the o-algebra generated by the cylinders C(o;). Then, by construction,
(F1)52, is a filtration and we indicate with F the o-algebra generated by the union
of filtrations. We indicate with p the true probability measure on (X, F), such that
(33,3, p) is a well-defined probability space. We assume that any partial history
has a positive probability of being realized, p(c;) > 0, Vo,. Expectation is denoted
with E and, when there is no subscript or superscript, it is computed with respect
to p.

The economy is populated by N agents indexed by ¢ = 1,2,..., N. Every
agent 7 is endowed with a stream of non-zero and uniformly bounded consumption
good for any path o, (e;(04))s2,. Agent i has a subjective probability measure p; on
(33, F). Denote with p;(s¢|oy—1) the (subjective) conditional probability attached to
the realization of s; after a partial history ;1 and with p;(o;) = Hizl pi(Srlor—1)
the (subjective) likelihood of partial history o;. Agent i chooses its consumption
plan (¢;(0¢))g2, solving

max ), [Zﬁfuz(cz(at))] 8.t Z Z q(ov) (ei(0r) — ci(or)) = 0,

; Vt,
{ci(or), Vt,0} t=0 o€

where ; € (0,1) is agent ¢’s discount factor, u; is the Bernoulli utility of con-
sumption of agent i, and ¢(o;) is the price of the Arrow-Debreu security paying
one if partial history oy is realized and zero otherwise. We will further assume
that individual probabilities p; are absolute continuous with respect to p and that
the Bernoulli utilities are continuously differentiable, increasing, strictly concave,
and satisfies the Inada condition at zero. With these hypotheses, a competitive
equilibrium exists unique and Yoy, ¢(oy) > 0, SN ¢i(0y) = 2N, es(0y) = e(oy).

2.1 Consumption asymptotic behavior

Our main goal is to evaluate the selection dynamics taking place in competitive
markets under different learning protocols. We need the following.

Definition 2.1. An agent ¢:

e vanishes if lim ¢;(o;) = 0, p-almost surely;
t—o0

e survives if lim sup¢;(o;) > 0, p-almost surely;
t—o00 ¢

e dominates if tlirn ci(oy)/ei(o) = 1, p-almost surely.
—00



The study of the asymptotic dynamics of the relative consumption of agents can
be reduced to the analysis of their individual probability measures and discount
factors by the following mathematical passage (Blume and Easley, 2006). From
the F.O.C. of the optimal consumption problem, Vi,j € 1,...,n

ui(ci(or)) (@)t Z-(at) een)

i (cj(o0)) Bi) pilor) w(ci(oo))’
that is
Lo uelo)) B ploy) 1, plor) 1, uilei(oo))
e R R R e

To describe the agent’s individual probabilities, consider K i.i.d. measure whose
conditional probabilities are the vectors 7y, ..., g, belong to the topological
interior of the (S — 1)-simplex, m; = (mx(1),m(2),...,7(S)) € AS™'. These
vectors are uniformly bounded away from zero and diverse, that is de, dm > 0 such
that m(s) > € and |7y — 74| > dm, Vs, k,h. To simplify our investigation we
assume the following.

Assumption 1. Agents’ individual conditional probabilities belong to the convex
hull Hx generated by the conditional probabilities of the K models,

K K
pi(S | Ot) - HK = {Z?’]kﬂ'k | an = 1,77k 2 O} g Ai_l,Vs,at.

k=1 k=1

Note that the previous assumption guarantees that individual probabilities
have conditionals uniformly bounded away from zero, p;(s | o) > €, Vo, s. Denote
the (conditional) relative entropy of the individual probability measure p; with
respect to the truth p given partial history o; and its partial average as

S

p(s|o
Dypp,(01) = ZP(S | 01) log]% and Dp\pz o) = —— Z plp: (Or) -
s=1 ¢

By Assumption 1, these quantities are bounded, Dy, (1), Dy, (0¢) € [0, —log€].
We shall use the partial average of the relative entropy as a measure of accuracy,
for instance, we will say that an agent j is more accurate than an agent i at o, if
Dy, (01) < Dyjp, (o). Moreover, we have the following.

Theorem 2.1. Under Assumption 1, ¥i = 1,...,N and Ya < 1/2, p-almost
surely,

1 p(O't) e 1
1 —D., (o, .
s pi(ot) v (91-1) 0 (ta)

6



Proof. Define z;(s | 0,-1) = log (p(s|o-—1)/pi(s|0+-1)) — Dpjp,(07-1), so that

t

t
p(sr | o7
Zlo : || - 11)) Sz [ or) + Y Dyppy(07-1).-

T=1 T=1

By Assumption 1, and by the fact that the maximum of the function xlog? z for
z € [0,1] is 472,

p(s|o
2} | o] Zp s | 1) log? ((S || (jt)) Dyjp;(04)* < 4e™2S — loge.

Hence, if o < 1/2, 327 t**?E[2? | 04-1] < +oo. Since E[z; | 04-1] = 0, Voy,
by Theorem 3, p. 243, in Feller (1971), p-almost surely, lim, ., 1130 2(s, |
0,—1) = 0. This implies that, p-almost surely, logp(o;)/pi(01) — tDpjp, (01-1) =
o(t'=*). Dividing by t proves the assertion. O

In particular, the previous Theorem applies to the K i.i.d. models of Assump-
tion 1. Substituting the statement of Theorem 2.1 in (1),

L g thlei(e1)

t 7 uji(ci(o))
The asymptotic behavior of the quantities inside the parentheses in the right-hand
side determine the asymptotic behavior of the relative marginal utilities of the two

agents. Some results of the literature trivially follow (Sandroni, 2000; Blume and
Easley, 2006; Dindo and Massari, 2020).

(log B — plpg (Ut—l)) (log Bi — p|p,<0t 1)) +o <tio‘> )

Corollary 2.1. Assume _there exist two agents i and j such that, p-almost surely,
exist Dy, (0) = limy_yo0 Dyjp, (01) and Dy, (0) = limy_o0 Dy, (0¢). Then, if As-
sumptions 1 applies and, p-almost surely,

log B; — plpj( o) > log i — plpz( o),

agent v vanishes.

Proof. By hypothesis, we can apply Theorem 2.1, so that
1 u(ci(or))

lim —log log B; — log 3; — > 0,
oo 1 u;(cj(at)) ( J plp (o )) ( p\p (o ))
which implies lim; ., logui(ci(o¢))/u}(cj(0r)) = +oo From the boundedness of

the endowment, the quantities u}(c¢;(0¢)) are bounded from above. Thus, it must
be limy_, log u}(c;(0¢)) = +00. According to the Inada condition, this, in turn,
implies that lim; ., ¢;(0y) = 0. O



Note that the hypothesis of Corollary 2.1 are not trivial, as Assumption 1 is not
sufficient to guarantee the existence of the limit of D, (c;) and D, (0;). How-
ever, the existence of these limits is not necessary. One can, for example, realize
that agent ¢ vanishes if, p-a.s., 8; — Dy, (0y) > log 8; — Dy, (0y) for sufficiently
large t.

3 Learning processes

According to Assumption 1, Vo; agents individual probabilities can be written as
(s|oy) = szk o) Tr(s w;(or) > 0, VE, Zw,k o) (2)

were w; (o) denotes the weight agent ¢ attaches to model k after having observed
the partial history o;. Agents differ on how they compute their wights. We will
consider four learning processes: Bayesian learning, learning with under-reaction,
limited memory Bayesian learning, and moving average of an underlying model.

Bayesian learning The Bayesian learning process can be considered the cor-
nerstone of online learning. Weights are updated according to Bayes rule,

Wk(St) wz‘,k(Ut—1) _ Wk(Ut)
pi(siloi—1) pi(oy)

wi,k(at) = wi’k(O'()) Vk, t, o. (3)
The weight w; (0:) can be considered the probability agent ¢ attaches to the event
“model k£ is the true one” conditional upon the observation of partial history o;.
The key property of Bayesian learning is that it makes an agent as accurate as the

model with highest likelihood in its set at any ¢ sufficiently large (see also Berk,
1966, for further detail).

Proposition 3.1. Define ki = argmazeqy gy {mi(0r)}. For any Bayesian agent
i and Yo < 1/2, p-almost surely

i) - 1
Dplpi(at—l) - Dp|7rk; (Ut—l)‘ <o <to‘> .

Proof. By iteratively substituting (3) in (2),



Thus, 74 (04)w; g (00) < pi(oy) < T (o) and, as a consequence,

llog p(oi)

p(Ut) 1
— =1 ik )
t Wk;‘((ft) 08 Wi; (90)

Tk (o¢)

<

(
1 <11
— —lo
t =708

The statement follows by applying Theorem 2.1 to the individual probability p;
and the measure 7. O

Notice that, in general, the model with highest likelihood at a date ¢ depends
on the specific realization o,. Moreover, without further assumptions on the true
probability p, we are not guaranteed that the Bayesian agent will asymptotically
follow one specific model in the set.

Learning with under-reaction This learning process consists in a modification
of (3) according to the notion of under-reaction in Epstein et al. (2010) and Massari
(2020). This learning protocol can be considered a form of “moderate” Bayesian
learning where the probability attached to the event “model k is the true one” in
obtained taking a convex combination of Bayes rule with the prior probability:

7Tk<3t> wi,k(th)
pi($t|0t—1)

w; k(o) = N wik(o—1) + (1 —N;) Vk,t, o, (4)
with A; € [0,1). Setting A\; = 0, Bayesian learning is recovered. Learning with
under-reaction entails a form of averaging. The probabilistic prediction of an
under-reacting agent ¢ for state s;;; after a partial history o; can be seen as
the convex combination of the probabilistic prediction agent ¢ would make after
the partial history o;_; and the Bayesian prediction given a prior w;(o;_1) =
(wi1(0t-1), ..., w; k(or—1)) and the observation of state s; (Epstein et al., 2010;
Giachini, 2021). Under-reaction represents a robust learning strategy. In case
of model misspecification it can outperform Bayesian learning (Massari, 2020).
Moreover, this rule is equivalent to the Soft-Bayes algorithm of Orseau et al.
(2017), match the dynamics of prices and wealth in the prediction market model
of Bottazzi and Giachini (2017, 2019b), and describe the risk neutral probabilities
and consumption shares in the pure exchange economy model analyzed by Dindo
and Massari (2020). The following proposition adapts a result on under-reaction
by Massari (2020) to our framework.? It shows that an under-reacting agent is at
least as accurate as the most accurate model in its set for ¢ sufficiently large.

Proposition 3.2. For any under-reacting agent i and Yo < 1/2, it is p-almost
surely

2The result by Massari (2020) makes use of the notion of empirical distribution of states while
we state it with respect to the true measure p. If p describes an i.i.d. process, then the two
statements are equivalent.



i) Dyppp;(0t-1) < Dyjp, (01-1) +0(t7*) Vk € {1,2,..., K},

i1) Dyjp; (01-1) < Dpjmy (00-1) + 0 (%) VEk € {1,2,..., K};
where p; k(Se410t) = Xi pi(Se1|oe) + (1 = Xg) mr(Se41).

Proof. Note that w; x(0r) = w;k(0t—1)pik(st|oi—1)/pi(st|oe—1). Iterative substitu-
tion with the previous equation gives

K

pi(at) = pi(Ut—l) Zpi,k(3t|0t—1)wi,k(0t—1) == Zpi,kz((ft) wi,k<00)a

k=1 k=1

where pi,k(Ut) = HtT_:ll Pi,k(37+1|07)- Hence, Vk, pi<0t) > pi,k(0t> wi,k<0-0)7 and

M < log —p<0t>

lo — logw; 1(0g) <
gpi(o-t) pi,k(o-t) g ,k( 0)

P(Ut) p(Ut)
A lo + (1 —X\)lo — log w; 1 (09),
8 () ( ) 8 oy o8 k(00)

where we have used the inequality log p; x(0¢) > A;logpi(or) + (1 — \;) log 7 (o).
Note that, by definition, p; (s | 0¢) € Hg, thus applying Theorem 2.1 to p;, pix
and 7, the statements are recovered. O

Again, the most accurate model at a date ¢ depends on the specific realization
o; and Proposition 3.2 does not imply the asymptotic convergence of the under-
reacting agent to a single i.i.d. model.

Limited memory Bayesian learning The limited memory Bayesian learning
is a version of the standard Bayesian learning process in which the agent delib-
erately forgets observations in the past. Here we consider the version with the
shortest possible memory, that is a memory of one. In this case, the weight as-
signed to model k after a partial history o; reads

win(or) = T (Se) Wik (00) (5)

Z§=1 ”k/(st)wi,k/(%)

In any period t, agent ¢ is forgetting all the sequence of states occurred un-
til ¢ — 2 (included) and restarts its Bayesian learning procedure simply consid-
ering the previous state and the initial prior distribution of weights w;(oy) =
(wia(00), wi2(00), ..., w;i k(o). The iid. nature of the models on which the
agent learns makes the limited memory Bayesian learner have a simple Markov
structure. This process also displays a strong dependence on initial weights.

10



Moving average learning The moving average learning process consists in tak-
ing a reference learning process p* and applying a moving average to the sequence
of probabilistic predictions generated for every state. Assume agent ¢ adopts a
moving average learning with memory M;, then

p*(s | o¢) ift <M, —1,

pi(s | ov) = M, (6)
MY S p*(s | 0pmyr) ift>M;—1.
m=1

If the underlying learning process follows Assumptlon 1, the same thing can be
restated in terms of weights with w; x(o;) = Mt E Wi (Op—myr) it > M; — 1.

The moving average learning represents a further layer of “smoothing” over the
predictions of the underlying process.

4 Misspecified models

In what follows, we study the performance of the learning processes described
above in a competitive environment where the K i.i.d models they use are mis-
specified. We investigate two specific cases of mispecification. We start with an
i.i.d. true measure that does not belong to the set of models the agents can learn.
In this case the i.i.d. models the agent use belong to the same class of the true
measure, but their parameters are, generically, not correct. We call this case para-
metric misspecification. In the second case, the proper structural misspecification
case, we assume that the true measure is Markov. In this case, the models em-
ployed by the agents belong to a different, and less general, class than the truth.

4.1 Parametric misspecification

We assume that states of nature follow an i.i.d. process, such that the models
agents use belong to the same family of the truth but have misspecified parameters.
Formally,

Assumption 2. The true measure p is an i.i.d. process whose conditional dis-
tribution are described by the vector w = (7(1),7(2),...,7(S)) € AS™!, such
that p(s; | o4—1) = m(st). Agents’ models are misspecified: |7, — w|| > 0
Vk e {1,2,...,K}.

We first present some analytic results about the behavior of the different learn-
ing models under this assumption. Then, we propose some numerical simulation
to clarify their relative performances.

11



Bayesian learning. Under Assumption 2, p-almost surely

S
lim Dy, (0) = Dajr, = Zw(s) log m(s) > 0.

t—o0 = 7Tk‘<8)

Assuming that model %k, on which the Bayesian agent 7 learns, has the lowest rela-
tive entropy of all K models, then, according to Proposition 3.1, lim;_, ﬁplpi (o) =
Dxjx,,, which implies that lim; . w; (o) = 1. The convergence of the weights,
however, is not otherwise guaranteed. In any case, the Bayesian learner is as
accurate as the most accurate model available.

Learning with under-reaction. From Proposition 3.2 it follows that also the
under-reacting agent is never less accurate than a Bayesian learner. Massari (2020)
proves that when the parameter A is large enough and the conditional probability of
the true i.i.d. model belongs to Hg, an agent that learns with under-reaction has a
selection advantage over a Bayesian learner. This represents a specific advantage of
the under-reacting versus the Bayesian agent. Inspired by the results of Bottazzi
and Giachini (2017) and Dindo and Massari (2020), the following Proposition
extends the analysis proving the existence of a generic advantage of an under-
reacting agent.

Proposition 4.1. Suppose there exists a K-dimensional vector  with ¢, > 0 and
Zle Cr = 1, such that w = Zle (i . Then, for any under-reacting agent v and
Vo < 1/2, it is p-almost surely

— 1=\ o(t™)

Proof. Setting § = 1 — \; > 0 and using the first order Taylor expansion with
Lagrange remainder of the logarithmic function, for each realization o,

T 7' - -1
Dyjp, (o Z(’f ploi i (O 4 ( (s]o0) )

Mo:

PN N (mi(s) = pislr))?
2 ;@Z ()( (o) mk(s) + (1 = 1is(07)) pi(slor))*’

s=1 Nk, s\ O 1

for some 7. s(o;) € [0, 6]. Thus, by Assumption 1,

K S
(s (mx(s) = pilslor))? 1
; “ ; ( )<nk7s(aT) Te(s) 4+ (1 = nis(0,)) pils|oy))? = (1—60+¢€)?

12



and because r — 1 > log x,

i” ( Iol) - 1) > Dpjp,(97),

s=1

so that

(1—N)?
Dyjp,(07) ZC’v ploi (07) 2 (1= Xi) Dpjp, (077) — 20+
Summing on 7 from 0 to ¢ — 1 and dividing by ¢, according to point 7) of Proposi-
tion 3.2, the left-hand side is lower then o (t~%), and the statement follows. ]

Hence, when the truth belongs to Hg, an under-reacting agent becomes ex-
tremely accurate as its level of under-reaction increases and, as a consequence,
obtains a survival advantage with respect to other traders. To see it, consider
a market in which there is discount factor homogeneity and agent 1 is under-
reacting with parameter \;. Any trader i for which it is p-almost surely D, (o) >
(1 — X1)/(2(A\1 + €)?) for ¢t sufficiently large will vanish. If all traders apart the
under-reacting one are bounded away from the truth, Ep‘pi (o) >0 >0, fori>1,
then the under-reacting agent dominates if its parameter is sufficiently large. For
instance, a sufficient condition is

)\1 c (—W71) .
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Limited memory Bayesian learning. Under Assumption 2, the limited mem-
ory Bayesian agent’s conditionals only depend on the last realized state of nature.
Thus, one has Dy, (01) = Dpjp,(s¢) and a straightforward application of the Strong
Law of Large Numbers delivers the following.

Corollary 4.1. For any agent i that uses the limited memory Bayesian learning
process, it is Dyjp, (0) = limy_00 Dy, (o) = D 7(8) Dypip, (s) p-almost surely.

Hence, alternating among different convex combinations of models depending
on the last realized state, the accuracy of the limited memory Bayesian agent de-
pends upon how accurate those convex combinations are on average. A straightfor-
ward implication of Corollary 4.1 is that Dy, (Sm) < Dypjp:(0) < Dypjpi(sar) where
Sm = argmin { Dpp, (s)} and sy = argmax,{ Dy, (s)}. Thus, a limited memory
Bayesian agent can be maximally accurate only when all of its convex combina-
tions match the true probabilities. This is never possible, for instance, if the K
models on which the agent learns are linearly independent.
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Moving average learning. Under Assumption 2, the smoothing in condition-
als applied by an agent following the moving average learning process reflects
into its average relative entropy. Define the moving window average pu(s,o;) =
S ML (s | 010) /M and variance o2(s, 00) = S0 (p*(s | 01-1n) — p(s.00))° /M
of the conditional probability of the underlying model.

Proposition 4.2. Consider the conditional expected variance of the prediction
o?(oy) = 25:1 m(s)o%(s,04), then, Yo, and for any agent i using the moving av-
erage learning process, it is

Uz(at)

2(1—¢)’

ME

Dyjp (Ot—m _Dp\pi(at> >

m=0

If Dpjpe(0) = limy00 Dy (0y) exists, then limsup,_,.. Dyppi(01) < Dyppe(0), with
strict inequality if 3 > 0 such that o*(o;) > €.

Proof. Using the result on the bounds of the arithmetic and geometric means
inequality in Perisastry and Murty (1982), and the bounds on the probability
models in Assumption 1, Vs, o,

o?(s,0 a’(s,07)
2<1—_6<10g< ZP 5‘07m>——210gp (5|0 m)—2—€

Focusing on the inequality on the left, adding and subtracting log7(s) to the
central member, multiplying by 7(s), and summing over s, one obtains the first
assertion.

Averaging from 7 = M — 1 to 7 =t — 1 and adjusting in order to obtain the
definitions of average relative entropy, one has

M—1 t
1 t—m— — 1 o%(0,_1) 1
M I Doy (0t—m-1) = Dpjp, (01-1) = n Z m o3 )
m=0 =M
that proves the second assertion. O

Proposition 4.2 suggests that an evolutionary advantage can be extracted from
averaging predictions. In this case, the moving average learning process is never
less accurate than the learning process it leverages if Dyy,«(0) exists. In fact, if
the underlying model p* converges p-almost surely to a constant conditional prob-
ability p*(s|o;), like Bayesian learning in the presence of a best model, then from
Proposition 4.2 one has p-almost surely that lim;_, ﬁp‘pi(at) = ﬁﬂp* (o). Thus,
assuming that the underlying reference model is adopted by other traders in the
market, averaging does not lead to any long-run advantage over them. If, instead,
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the underlying model entails some sort of persistent fluctuation in conditionals,
moving average brings a definite advantage over other traders adopting the refer-
ence model. In any case, the moving average learning model never under-performs
when compared to the underlying model on which its predictions are built.

Despite providing useful information about the inner workings of the different
learning models, the previous results do not allow to devise any general ranking
among them. The generic advantage that under-reaction learning enjoys depends
upon the degree of under-reaction and the truth belonging to the convex hull of
models. However, Proposition 4.1 does not imply, for instance, that increasing A
one increases accuracy. The moving average approach has an 