A North-South agent based model of segmented labour markets. The role of education and trade asymmetries

Lucrezia Fanti a
Marcelo C. Pereira b, c
Maria Enrica Virgillito c, a

a Department of Economic Policy, Università Cattolica del Sacro Cuore, Milan, Italy.
b Institute of Economics, University of Campinas, Brazil.
c Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy.
A North-South agent based model of segmented labour markets. The role of education and trade asymmetries*

Lucrezia Fanti†1, Marcelo C. Pereira‡2,3, and Maria Enrica Virgillito§3,1

1Università Cattolica del Sacro Cuore
2University of Campinas
3Scuola Superiore Sant’Anna

Abstract

Drawing on the labour-augmented K+S agent-based model, this paper develops a two-country North-South ABM wherein the leader and the laggard country interact through the international trade of capital goods. The model aims to address sources of asymmetries and possible converge patterns between two advanced economies that are initially differentiated in terms of the education level they are able to provide. Education is modeled as a national-level policy differently targeting the three usual levels, that is primary, secondary and tertiary. After being educated and entering the labour force, workers face a segmented market, divided into three types of job qualification, and the resulting position levels inside firms, i.e., elementary, technical and professional occupations. The three resulting labour market segments are heterogeneous in terms of both requested education level and offered wages. To address the role of trade and education, we experiment with different education-policy and trade settings. Ultimately, we are interested in understanding the coupling effects of asymmetries in education, which reverberate in segmented labour markets and differentiated growth patterns. Notably, our focus on capital-goods trade, rather than consumption goods, allows us to assess a direct link between productive capabilities in producing complex products and country growth prospects.

JEL classification: C63, J3, E24, O1

Keywords: Agent-Based Model; Education; International Trade; Technology Gap; Labour Market

*We thank participants to EAEPE 2022 annual conference, LH seminar series and ABM4Policy 2022 workshop. We gratefully acknowledge support from the Italian Ministry of University and Research (MUR), PRIN 2017 project: “Lost highway: skills, technology and trade in Italian economic growth, 1815-2018” (prot. 2017YLBYZE). – and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process No. 2015/24341-7.

†Corresponding author: Department of Economic Policy, Università Cattolica del Sacro Cuore, Via Lodovico Necchi 5, 20123, Milan (Italy). E-mail address: lucrezia.fanti@unicatt.it

‡Institute of Economics, University of Campinas, Rua Pitágoras 353, 13083-970, Campinas, SP (Brazil). E-mail address: mcper<at>unicamp.br

§Institute of Economics, Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’ 33, 56127, Pisa (Italy). E-mail address: m.virgillito<at>santannapisa.it
1 Introduction

Education and trade have been under the spotlight of economic growth theory in the past forty years, with special attention devoted to the accumulation of human capital and trade-oriented growth strategies (Lucas, 1988; Barro, 2013; Manning, 1982; Kim and Kim, 2000). According to a neoclassical perspective, while trade represents an opportunity to exploit comparative advantages and specialize in the production of goods derived from abundant endowments, education should allow to reap the benefits of human capital accumulation. Both elements are considered as potential sources for economic development, the so called missing X (Adelman, 2001). Notwithstanding the neoclassical prediction of growth convergence, economic asymmetries among countries have never been as significant since the WWII as they are nowadays, with the emergence of new core-periphery patterns, and China defining the shape of international trade since its entry to the WTO in 2001. Trade flows remain very polarized, and multilateral trade agreements are becoming less relevant than bilateral ones. Education remains also asymmetric, but there is historical evidence, such as the case of Germany, South Korea, and China, supporting the massive reorientation of the education policies to foster the qualification of the labour force in some countries.

From an evolutionary economics perspective, the role of international trade is not always an opportunity to virtuous growth trajectories, particularly when trade is based on comparative advantages and, at the same time, absolute disadvantages. Indeed, according to the getting the price wrong concept (Amsden, 1991), to achieve development the emphasis should lie on developing local learning capabilities and “disciplining” the capitalists’ short-termism. What matters is not the exchange itself but rather the accumulation of knowledge and productive capabilities in complex organizations to create growth opportunities. Therefore, asymmetries are quite probable, and path dependency from initial conditions is expected to affect growth trajectories, therefore convergence should not be expected. The role of composition – in a country’s bundle of exports – in affecting the growth process has been extensively addressed in this literature (Cimoli, 1988; Cimoli and Porcile, 2010). However, less attention has been devoted to the interaction between national education policies and international trade mechanisms in determining the long-term growth and the ensuing patterns of convergence versus divergence. Indeed, education, or the lack thereof, might affect workers’ learning opportunities and, in turn, the firm-level productivity.

How, and in which respect may education and trade interact to impact countries’ growth and convergence? Under which conditions do North-South or core-periphery structures amplify or, rather, fade away? Our work hypothesis is that the underlying propagation mechanism goes from education to the patterns of production and specialization, via cumulative innovation and learning opportunities, and ultimately, to growth. If countries differ in the level of education they are able to provide to most of the population, this will eventually impact upon the skills the labour force can absorb, and the job positions workers can fulfil in the labour market. Ultimately, education might impact the possible growth patterns by possibly constraining the type of technologies and products
in which the country is able to compete on international markets. Indeed, a leader country will be able to produce more advanced, high value-added goods, such as capital goods and sophisticated intermediate inputs, to serve the demand of the “laggard” countries. From this perspective, trade flows may therefore accelerate the crystallization of initial asymmetries driven by different national education policies (Dosi et al., 2009).

To assess these propagation mechanisms, we develop an Agent-Based Model (ABM thereafter) able to account for different stylized national education policies, segmented labour markets, and international trade of capital goods (or machines). Drawing on the labour-augmented Schumpeter Meeting Keynes (K+S) agent-based model (Dosi et al., 2010, 2017, 2020), this paper develops a new two-country, North-South ABM wherein the leader and the laggard country interact through the international trade of machines. The model aims to uncover the sources of asymmetries, and eventual convergence patterns, between two advanced economies which are initially differentiated in terms of the education level they ensure to the population. Education is modelled as a national policy targeting differently the three usual levels, that is primary, secondary and tertiary. After being educated, workers enter a segmented labour market, divided into three types of education-based job qualifications. When hired by a firm, workers join one of three occupations – elementary, technical or professional – according to the education level and firms’ demand. The three resulting market segments are heterogeneous in terms of both offered education levels and requested occupations, wages, and tenure skills.

To address the interactions between trade and education, we experiment with alternative model configurations. Ultimately, we are interested in understanding the effects of an educational asymmetry between countries, which reverberates in the segmented labour markets and, expectedly, on differentiated growth patterns. Notably, our focus on capital-goods trade, rather than consumption goods, allows us to assess a link between productive capabilities, and not just export volumes, and country growth prospects.

Our results show that primary-education workers are more exposed to occupational instability, therefore leading to differentiated aggregate labour market outcomes, such as higher unemployment and vacancy rates. A relatively weaker educational performance affects the laggard country in terms of both a backwards technological profile and slower productivity and output growth rates. Indeed, the model shows how differences in education policies can persistently affect country performance, trade balance and labour markets. This can be explained by dynamic feedbacks along different channels: (i) from education to innovation and productive capabilities; (ii) from education to labour market on fulfilling firm’s segmented demand and productivity potential; (iii) from innovation and productive capabilities to international trade; and (iv) from labour and capital-goods markets, including trade, to country output growth.

Surprisingly, when evaluating the potential for convergence of the imitation by domestic firms of the competitors abroad, the model suggests that imitation, instead of an equalizing mechanism between North and South countries, may become an amplifying factor of divergence. Indeed, trying to imitate firms that are distant from your technological and absorptive capabilities may end up in repetitive – and costly – imitation failures. Frequently, just trying to imitate other domestic firms, at the local technological frontier,
end ups in a higher rate of successful imitation, pushing firms following this strategy ahead of others pursuing the former path. In that respect, the development of gradually-evolving capabilities in country, rather than focusing on large, but less likely, external imitation leaps, showed to be a more viable path to at least partial convergence.

The paper is organized as follows. Section 2 reviews the literature on the three channels we analyse, namely, North-South technology asymmetries, the interplay between education, innovation and productivity dynamics, and the impact of differentiated education profiles on segmented labour markets and their aggregate outcomes. Section 3 presents the structure of our model and introduces the new channels we implement within the labour-augmented K+S ABM. After the model validation and stylized fact identification (Section 4), in Section 5 we propose two policy experiments aimed at evaluating the role of education and international trade on crucial macroeconomic outcome variables. Finally, in Section 6 we present our conclusions.

2 The roots of North-South asymmetries

In this Section we discuss the theoretical background of our model. In particular, we propose a brief review of the main contributions investigating the root causes of asymmetries between countries and economic areas (Subsection 2.1), and the role of education policy and international trade therein (Subsection 2.2).

2.1 Technological gap and international trade

From a theoretical standpoint we can identify three major approaches to explain the North-South development asymmetries and the role of international trade therein, namely neoclassical, structuralist/institutionalist, evolutionary/technological gap theories.

The neoclassical explanation mainly relies on the hypothesis that countries’ asymmetries in productivity, growth rates, and the ensuing development patterns, are due to different endowments of production factors (i.e., capital, labour and natural resources) affecting, in turn, international trade (Hicks, 1953; Johnson, 1950). The role of international trade in an open economy is therefore defined in terms of comparative or absolute advantages and internal specialization profiles, depending on the endowments of such factors (the Heckscher-Ohlin theorem) or on relative prices (the Stolper-Samuelson theorem).

On a different direction, early structuralist approaches studied development and trade patterns in terms of institutional asymmetries governing labour and goods markets between developed and developing areas, leading to different income distributions (Rosentstein-Rodan, 1943; Lewis, 1954). A second generation of structuralist scholars has also highlighted the role of differentiated industrialization, structural change, and patterns of the productive structure in northern and southern areas, in order to explain the determinants of economic convergence and divergence (Dutt, 1989; Taylor, 2004; Botta, 2009; Dosi et al., 2021).

Finally, stemming from seminal contributions like Posner (1961); Nelson (1967); Dosi et al. (1990); Cimoli et al. (1990), and still in line with the institutional-structuralist tradi-
tion, evolutionary scholars have explained country asymmetries and trade flows as mainly driven by technological gaps (Fagerberg, 1987, 1994). On this ground, a crucial role is played by the heterogeneity in technological and capability spaces leading to different patterns of specialization. A more recent empirical strand of this literature has been devoted to the explanation of countries’ growth and development trajectories. The main source of heterogeneity is derived from the relative complexity of produced and exported goods, which depends on the different capability endowments of countries (Hidalgo et al., 2007; Tacchella et al., 2013), usually by exploiting the BACI trade database. Schumpeterian and Keynesian efficiency indicators, at product and country levels, have been proposed in Dosi et al. (2022) to assess growth rate, volatility, and crisis durations.

As highlighted by the dependency theory (Prebisch, 1950; Hirschman, 1958; Kvangraven, 2020), countries may achieve relatively weaker or stronger international positioning depending on their productive, technological, and learning capabilities, leading, in turn, to different profiles of goods production (Cimoli et al., 1990; Cimoli and Dosi, 1995; Cimoli and Porcile, 2014). As a consequence, countries producing and exporting more complex goods – embedding superior technological capabilities and advanced knowledge – prevail in the international competition, presenting robust growth and productivity patterns. On the contrary, laggard countries typically fall behind in terms of crucial macroeconomic variables due to both technological dependence and weaker capabilities of the workforce (Verspagen, 1993; Dosi et al., 2009).

The patterns described above not only relate to asymmetries between developed and developing countries, the North-South pattern, but also among developed areas, regions or countries, in a core-periphery pattern such as the case of Northern/Centre and Southern/Eastern European countries (Storm and Naastepad, 2015; Landesmann et al., 2015; Celi et al., 2019) linked by inter-sectoral dependency structures (Cresti and Virgillito, 2023). On this ground, Post-Keynesian scholars have investigated the effect of export-driven growth strategies on structural asymmetries, either between developed and developing countries (Palley, 2012), or inside Europe (Stockhammer, 2011). In particular, the progressive expansion of the European productive facilities towards the Eastern economies represents a further source of interdependence. This trend has the potential to foster the development of uneven patterns due to the fragmentation of a growing number of industrial activities along the value chains and the productive outsourcing (e.g., German automotive industry) (Simonazzi et al., 2013; Pavlínek, 2018; Cresti and Virgillito, 2022).

To summarize, a number of theoretical and empirical studies have shown that different intensities of the innovation and imitation processes within and between firms may lead, respectively, to divergence and convergence patterns among developed areas, or between these and developing regions that are catching-up (Fagerberg and Godinho, 2005; Lee, 2013). Nevertheless, heterogeneous institutional and labour market configuration may either foster or undermine the process of catching-up. This occurs because of the interaction between these structural components and the internal productive and technological configuration. Such interaction crucially determines the ability of a country to successfully absorb and employ imported technologies which would favour the convergence process (Verspagen, 2002; Dosi et al., 2009). On this ground, as highlighted by the evolutionary
literature on National and Sectoral Innovation Systems (NIN/SIS), policies oriented towards high-quality and universal education, knowledge accumulation, and worker-skills development represent a key element for laggard countries to pave the grounds for development and convergence (Lundvall, 1992; Freeman, 2002).

2.2 Education investment and segmented labour markets

Differences in education policies, and the segmentation of labour market associated with the rising productive complexity, represent another crucial source of asymmetries between regions and countries.

The neoclassical literature on education and its impact on growth, productivity and labour market dynamics has been traditionally rooted into both endogenous growth theory – from Lucas (1988) to the skill-biased technical change hypothesis (Acemoglu, 2002) – and human capital theory (Becker, 1962). This supply-side, individual-based approach considers labour productivity only in terms of workers’ marginal contribution to firms’ output by looking at individual skill and knowledge endowment as a production-function-augmenting analytical device. Therefore, education is only considered as a proxy for workers individual skills, and frequently as the only variable capturing the effect of knowledge accumulation on firms’ performance. In this theoretical perspective, possible gaps between worker’s individual characteristics and job requirements – the so-called skill or educational mismatch – represent just a metric by which the fitness of the workforce to meet the production needs can be evaluated (see, among others, Hersch (1991); Allen and van der Velden (2001)). Therefore, labour markets frictional issues in terms of required educational attainment and skills, or firms performance weaknesses, only lie on individual worker characteristics, regardless of firms’ organizational structure, productive processes, or technological trajectories (Fanti et al., 2021; Cetrulo et al., 2020). Moreover, educational prowess has been also identified as one of the key element determining country performance in neoclassical models of international trade and growth (see, among others, Manning (1982); Kim and Kim (2000)).

On an alternative perspective, the evolutionary tradition has also investigated the role of education profiles and workers skills. Authors in this stream interpret them as key elements shaping firms’ internal knowledge base because of the interaction between idiosyncratic learning processes and the dynamic accumulation of the capabilities developed during these procedures. Such complex and interactive processes affect the firm-level organizational, technological, and power structures (Dosi et al., 2001; Dosi and Marengo, 2015; Dosi et al., 2021).

Following the evolutionary literature, and looking at the process of worker skills accumulation/destruction as driven by job-tenure and learning-by-doing processes, and unemployment periods, Dosi et al. (2018, 2019) show how skills accumulation crucially affects both firm-level production processes and macroeconomic outcomes, such as hysteresis and crisis vulnerability. Evolving along this line, Fanti et al. (2022) recently highlight that heterogeneous labour market institutional architectures may also affect North-South productive divergence. The authors show that heterogeneity leads, in turn, to weaker
labour absorption and lower remuneration in the South, subsequently reverberating into asymmetric technological profiles and production patterns between regions and countries.

Countries’ education profiles are also relevant in terms of labour markets segmentation – seconded by other sources of worker heterogeneity (e.g., age, gender, race) – leading to differentiated occupational opportunities and wage potentials (Doeringer and Piore, 1985). On this respect, the empirical literature documents the persistent internal segmentation of labour markets (Reich et al., 1973). Such observations further undermine the neoclassical hypothesis under which leading competitive forces are supposed to absorb possible (temporary) frictional and market fragmentation issues, by the operation of rational profit-maximizing employers hiring workers only considering individual characteristics and relative wages. Indeed, the literature on Segmented Labour Markets (SLM), has extensively documented the usual dual structure of labour markets, i.e., divided into primary and secondary segments characterized by, respectively, better or worse occupational and wage conditions. The dualism crucially shapes the aggregate labour market outcomes, and can be driven by multiple factors, among others: (i) differences on the supply and demand of high- and low-skill workers (Taubman and Wachter, 1986), (ii) institutional factors as unionisation degree or minimum-wage regulations (Osterman, 1978), and (iii) the role of technical change and de-localization on the dominance of new high-skill and high-wage labour market segments while low-skill/wage workers are left behind (Hudson, 2007). Therefore, the SLM approach allows addressing crucial policy issues related to the employment and wage inequality conditions characterizing different workers categories. It provides insights that can drive targeted policy interventions – such as education strategies and training programs favouring worker transition from secondary to primary segments of the labour market – aimed at reducing inequality while enhancing aggregate countries performance and possible convergence strategies.

Thus, increasing educational attainment and skill-level of workers seem to be an important vector that dynamically interacts with heterogeneous firm-level technological, productive, and organizational capabilities, to drive sectoral trajectories and, therefore, country and region performance patterns (Dosi et al., 2009). In this respect, aggregate investment in education can be interpreted as one of the key elements to link workers’ capability profile and firms’ technological dynamics, within a segmented labour market, to allow for distinctive productivity and output growth trajectories (Winter, 1997; Dosi et al., 2001).

3 The model

The proposed model is based on the labour-augmented Schumpeter Meeting Keynes model (K+S) (Dosi et al., 2010, 2017, 2020), a general disequilibrium, stock-and-flow consistent, agent-based macroeconomic model.1 The K+S country economy is populated by workers, firms, and banks, which interact and behave according to bounded-rational rules. It is formally composed by four populations of heterogeneous agents, namely L_t^S.

1For information on agent-based-modelling methodology in general, and particularly in macroeconomics, see (Cincotti et al., 2022; Dosi and Roventini, 2019).
workers/consumers, \(F_1 \) capital-good firms, \(F_2 \) consumption-good firms, and \(B \) banks, plus the central bank and the government.\(^2\).

Figure 1: Internal organization of each modelled country, agents indicated in bold typeface. Source: Dosi et al. (2017).

The original K+S is a closed-economy, single-country model organized as depicted in Figure 1. Capital-good firms invest in R&D and produce heterogeneous machine-tools whose stochastic productivity evolves endogenously over time. Consumption-good firms buy machines and combine them with labour in order to produce a homogeneous, quality-differentiated good for workers/consumers. The banking sector is represented by a fixed number of banks collecting deposits and providing interest-paying loans to finance firms’ production and investment plans. Workers apply for jobs, and firms hire workers according to their individual demand expectations. The central bank manages the monetary policy, imposes regulatory reserves to the banks, and bails out the failing ones. The government levies taxes on firms and banks profits, pays unemployment benefits, imposes a minimum wage, absorbs excess profits and losses from the central bank and keeps a non-explosive public debt trajectory in the long run. Further details on the base labour-augmented K+S model can be obtained in Dosi et al. (2020). From here we focus on the changes and additions implemented in the model to support the analysis presented next.

For the current analysis, we extend the K+S base to support open-economy countries that trade capital goods (machines) under a single currency, labour markets are segmented, governments are responsible for educational policies which define worker qualification distribution, and workers migrate to escape unemployment. In particular, we configure a two-country, North-South arrangement, wherein a laggard and a leader country interact. Both countries present identical internal organizations (Figure 1), differentiated only in terms of the government expenditure on education. A larger share of the GDP expended in educational policy translates into more years of schooling and higher qualification for future workers. Firms demand differentiated worker profiles, according to the

\(^2\)Subscript \(t \) stands for (discrete) time \(t = 1, 2, ..., T \). Agent-specific variables are denoted by subscript \(i \), for capital-good firms, \(j \), for consumption-good firms, \(k \), for banks, and \(\ell \), for workers.
technologies they master. Firms with more qualified workforce are able to exploit more productive techniques, and to be more competitive. Capital-good firms of both countries can export machines to consumption-good firms worldwide, as per Figure 2, and may try to imitate superior technologies developed by foreign firms.

![Figure 2: Operation of the North-South capital-goods trade.](image)

The model extension strategy is presented in Figure 3. In what follows, we describe in detail these extensions and the economic processes they involve, that is, the interplay between education development and productivity dynamics, the new segmented search-and-match labour market mechanism, and the international trade of machines.

Therefore, in each simulated period of the new model, the following events take place in order:

1. Educated workers enter the market, retire, or update their skills;
2. Machines ordered in the previous period (if any) are delivered;
3. Capital-good firms perform R&D and signal machines to consumption-good firms;
4. Consumption-good firms determine desired production, investment and workforce;
5. Firms allocate cash-flows and (if needed) borrow from banks to operate and invest;
6. Firms send/receive machine-tool orders for the next period (if applicable);
7. Job-seeking workers send job applications to firms;
8. Wages are set and job vacancies are partly or totally filled;
9. Firms pay wages/bonuses and government pays unemployment benefits;
10. Consumption market shares are allocated according to relative competitiveness;
11. Firms and banks compute their profits, pay taxes and repay (part of) their debt;
12. Exit takes place, near-zero share and bankrupt firms leave the market;
13. Prospective entrant firms decide to enter according to market conditions;
14. Aggregate variables are computed.
3.1 Education attainment and productivity

Workers in the model receive a variable level of formal education. The individual attainment is measured in terms of years of schooling \(ed_\ell \in [0, 16] \), attributed to each worker \(\ell \) in the labour market, and differentiated in three general levels of education: (1) primary \((ed_\ell \leq 8) \), (2) secondary \((8 < ed_\ell \leq 12) \), and (3) tertiary \((ed_\ell > 12) \).\(^3\) After schooling, workers enter the labour market having a fixed working lifetime \(T_r \in \mathbb{N} \), a parameter, before retiring. Every retired worker is replaced by a freshly-educated one.

Education is publicly and freely provided by the government by allocating a share \(G_{ed}^{t} \) of the GDP for public expenditure in education:

\[
G_{ed}^{t} = \epsilon_{ed} Y_{t-1},
\]

\(\epsilon_{ed} \in [0, 1] \) is a parameter, and \(Y_{t} \) is the nominal GDP. To obtain an educational attainment profile which is proper to an advanced country, the government must spend a share equal to \(\epsilon_{ad} \), a parameter in \([0, 1]\), every year.\(^4\) So, if the ratio \(\epsilon_{ed}/\epsilon_{ad} < 1 \), the expected educational attainment distribution is left-skewed in comparison to an advanced country, and conversely.

\(^3\)The maximum value corresponds to 16 years of schooling, excluding repetitions, which is the equivalent to achieving a bachelor degree in many countries. In very rough terms, the years of schooling are cumulatively composed by 8 years of primary (elementary) education, 4 of secondary (intermediary), and 4 of tertiary (university).

\(^4\)The advanced country profile used for calibrating the model assumes 16% of population has no or just primary education (complete or not), 58% achieved the secondary level, and 26%, the tertiary (Barro and Lee, 2013).
To represent the effect of public expenditure on education, for each worker ℓ entering the labour market in t, the education level is drawn from a Beta distribution with the support proportionally adjusted to the (past) government expenditure:

$$ed\ell \sim 16 \beta \left(g \alpha_{ed}, \beta_{ed} / g \right), \quad g = \left(\frac{\epsilon_{ed}}{\epsilon_{ad}} \right)^{\vartheta_{ed}},$$

(2)

where $(\alpha_{ed}, \beta_{ed}) \in \mathbb{R}_+^2$ are parameters defining the Beta probability density function that proxy the educational attainment distribution of an advanced country $(g = 1)$, mapped to the $[0, 16]$ support. $\vartheta_{ed} \in \mathbb{R}_+$, a parameter, is the sensitivity of the distribution shape when $\epsilon_{ed} \neq \epsilon_{ad}$. We empirically calibrate the parameters shaping the Beta distribution using data from Barro and Lee (2013).

Country R&D performance is influenced by the education expenditure, which modulates the probability for firm i to obtain access to innovation $(\theta_{in}^{i,t})$ and imitation $(\theta_{im}^{i,t})$:

$$\theta_{in}^{i,t} = 1 - e^{-\zeta_1 g_{IN}^i},$$

(3)

$$\theta_{im}^{i,t} = 1 - e^{-\zeta_2 g_{IM}^i},$$

(4)

$(\zeta_1, \zeta_2) \in \mathbb{R}_+^2$ are parameters, and $(IN_{i,t}^i, IM_{i,t}^i)$ are the standardized share of workers allocated to innovative and imitative R&D activities, respectively.5

Worker ℓ individual (fixed) education level $ed\ell$ drives consumption-good firm productivity and, together with the current accumulated skills $s_{\ell,t}$ (i.e. learning-by-doing), define her individual labour productivity:

$$A_{\ell,t} = \frac{s_{\ell,t}}{\bar{s}_t} A_T e^{\tau_{ed} \frac{ed\ell}{ed_{ad}}},$$

(5)

where \bar{s}_t is the average overall skill level, and A_T^τ, the standard notional productivity of the specific machinery vintage that the worker is using for the operation she is involved in.6 $\tau_{ed} \in \mathbb{R}_+$ a scaling parameter defining the intensity of a deviation from the expected education level of an advanced country $ed_{ad} = \frac{16 \alpha_{ed}}{(\alpha_{ed} + \beta_{ed})}$, as defined in Eq. 2.

Capital-good sector productivity is affected by labour force education as well:

$$B_{i,t} = B_{i}^\tau e^{\tau_{ed} \frac{ed_{1,t}}{ed_{ad}}},$$

(6)

where $B_{i,t}$ is the effective labour productivity of firm i to produce machines at time t, B_{i}^τ is the notional labour productivity to produce the current machine vintage (Dosi et al., 2010), and $ed_{1,t}$ the average education level of workers in capital-good sector.

3.2 Labour search-and-match dynamics

In the labour market, workers are grouped in three occupational categories $c = 1, 2, 3$, depending on the education level. Accordingly, firm labour demand $L_{j,t}^d$ in both capital- and consumption-good sectors (see Dosi et al. (2017) for details) is segmented:

$$L_{j,t}^{d,1} = (1 - \theta_2 - \theta_3) L_{j,t}^d, \quad L_{j,t}^{d,2} = \theta_2 L_{j,t}^d, \quad L_{j,t}^{d,3} = \theta_3 L_{j,t}^d,$$

(7)

5For details on otherwise unchanged technological dynamics on the K+S model, see Dosi et al. (2010).

6See Dosi et al. (2018) for details on the K+S learning-by-tenure process.
being $\theta_2, \theta_3 \in [0, 1]$, $\theta_2 + \theta_3 \leq 1$, parameters, $L_{j,t}^{d,c}$, $c = 1, 2, 3$, the labour demand of firm j at time t for workers with primary-, secondary-, and tertiary-education, roughly corresponding to elementary, technical, and professional occupations, respectively. R&D labour demand in capital-good sector consists of tertiary-education ($c = 3$) workers only.

Firms in both sectors decide whether to hire (or fire) workers according to the expected production $Q_{i,t}$ or $Q_{j,t}^d$ (Dosi et al., 2010). If it is increasing, $\Delta L_{j,t}^{d,c} > 0$, $c = 1, 2, 3$, new workers on each category are (tentatively) hired in addition to the existing number $L_{j,t-1}^c$ in each category. Firm j (expectedly) gets in the candidates queue $\{\ell_{j,t}^c\}$ a fraction of the total applicant workers, proportional to firm market share $f_{j,t-1}$:

$$E(L_{j,t}^c) = [\omega(1 - U_{t-1}) + \omega_u U_{t-1}] L^S f_{j,t-1},$$

where $L^S \in \mathbb{N}$ is the (fixed) total labour supply, U_t is the unemployment rate and $(\omega, \omega_u) \in \mathbb{R}^2_+$ are parameters defining the number of applications each job seeker sends if employed or unemployed, respectively. Firms organize the candidate queues into three sub-queues, according to the worker category c. Considering the set of workers in the sub-queues $\{\ell_{j,t}^{s,c}\}$, each firm select the subsets of desired workers $\{\ell_{j,t}^{d,c}\}$ to make a job (wage) offer:

$$\{\ell_{j,t}^{d,c}\} = \{\ell_{j,t} \in \{\ell_{j,t}^{s,c}\} : w_{\ell,t}^{s,c} \leq w_{j,t}^{a,c}\}, \quad c = 1, 2, 3.$$

Firms in consumption-good sector target those workers that would accept the wage offer $w_{j,t}^{a,c}$ corresponding to the worker category, considering the wage $w_{\ell,t}^{s,c}$ requested by workers, if any. In the capital-good sector, firms top the wages offered by the consumer-good sector ($w_{j,t}^{s,c} = \max w_{j,t}^{a,c}$).

The hiring process takes place one category at a time, from higher to lower education level (i.e., $c = 3, 2, 1$). Remaining open positions in level $c + 1$ are transferred to the labour demand $L_{j,t}^{d,c}$ of the level c immediately below, if any.\(^7\) Firm j hires up to the total demand $L_{j,t}^{d,c}$ for each category or up to all workers in each sub-queue, whichever is lower. The total number of workers $L_{j,t} = \sum_{c=1}^3 L_{j,t}^c$ the firm will employ in t, given the current workforce $L_{j,t-1}$, is bound by:

$$0 \leq L_{j,t}^c \leq L_{j,t}^{d,c} \leq L_{j,t}^{s,c}, \quad L_{j,t}^{z,c} = L_{j,t-1}^c + \#\{\ell_{j,t}^{z,c}\}, \quad z = d, s, \quad c = 1, 2, 3.$$

The search, wage determination and firing processes differ according to the configuration. When there is no bargaining, firm j offers the wages:

$$w_{j,t}^{a,1} = \min \left(1 + WP_{j,t} w_{j,t-1}^{a,1}, \quad p_{j,t-1} A_{j,t-1}\right),$$

$$w_{j,t}^{a,c} = \max \left(1 + WP_{j,t} w_{j,t-1}^{a,c}, \quad [1 + \phi_c] w_{j,t-1}^{a,c-1}\right), \quad c = 2, 3,$$

that are accepted by the worker if she has no better offer. The upper bound for category 1 wages is the break-even wage (zero-unit-profit myopic expectation) defined by firm price $p_{j,t}$, and the labour notional (single-stage) average productivity $A_{j,t}$. ($\phi_2, \phi_3 \in \mathbb{R}^2_+$ are

\(^7\)Firms may hire a set of workers with lower education than desired, to reduce the production losses associated to an open position. However, by hiring a worse mix of categories, worker productivity $A_{j,t}$ is reduced, according Eq. (5), in comparison to the desired labour segmentation.
parameters defining a lower bound to the wage-category structure. The wage premium $WP_{j,t}$ is based on the current growth rate of productivity at firm j and the country, and follows the rules defined in Dosi et al. (2017) as well the workers’s reservation ($w_{r,t}^\ell$) and satisfying ($w_{s,t}^\ell$) wages.

An employed worker of category c accepts the best offer $w_{o,c}^{0,t}$, if any, she receives for this category, if higher than current wage w_{t}^ℓ. An unemployed worker always accepts the best offer if at least equal to the unemployment benefit $w_{u,t}$ and for a category c compatible with her education ed_t. She may also consider offers for categories below her education with probability $1 - \Delta c/2T_{u,t}$, where $\Delta c = 0, 1, 2$ is the category difference (actual vs. offered position), and $T_{u,t}$ is the number of periods the worker has been unemployed.

Laggard-country workers migrate to the leading one at a constant rate, so country y population evolves over time according to $\delta \in [-1,1]$, a parameter:

$$L_{y,t}^S = (1 + \delta_y) L_{y,t-1}^S, \quad y = 1, 2. \tag{13}$$

3.3 International trade and technical change

The two countries trade only capital goods (machines). Consumption-good exports are not considered. Countries share the same currency, so no exchange rate is required, and there are no import tariffs. Capital-good market operates under imperfect information, as suppliers send brochures to clients in all countries to advertise their machines, and prospect clients can only acquire machines from suppliers they got brochures. The origin country of machine is not considered, as there are no additional costs or delays for imported machines. Therefore, the machine market dynamics is similar to the one introduced in Dosi et al. (2010).

Machine exports $X_{1,y,t}$ by capital-good firms, and imports $I_{m,2}^{2,y,t}$, by consumption-good ones, define country y balance of trade (or net exports):

$$X_{net}^{net}_{y,t} = X_{1,y,t} - I_{m,2}^{2,y,t}, \quad \sum X_{net}^{net}_{y,t} = 0, \quad y = 1, 2. \tag{14}$$

As the model is stock-flow consistent at the world level, the total net exports must add up to one.

The technology of capital-good firms evolve in an international set-up. Firms may try to imitate machines developed in other countries, closely following the process defined in Dosi et al. (2010). The origin of technology has no effect in the imitation-search process. Imitation success probability is inversely proportional to the technological gap between imitating and imitated firms, but considering the international market to define the standardized references to machine price (p_t^*) and unit operating cost (c_t^*) for clients. However, once firm i succeeds on imitating a foreign firm h, the different education profiles between the host countries imply in distinct absorptive capacities:

$$A_{i,t}^{im} = \frac{g_i}{g_h} A_{h,t-1}, \tag{15}$$

$$B_{i,t}^{im} = \frac{g_i}{g_h} B_{h,t-1}. \tag{16}$$
\((A_{i,t}^{im}, B_{i,t}^{im}) \) are the productivities achieved by firm \(i \) when imitating firm \(h \) machines defined by \((A_{h,t-1}, B_{h,t-1}) \). \((g_i, g_h) \) are the relative-adjusted government expenditures \(g \) of the countries where firms \(i \) and \(h \) are established, as defined in Eq. 2.

This concludes the extensions introduced in the K+S models for this paper. An in-depth presentation of the remaining model behavioural rules, not modified here, can be found in Dosi et al. (2010, 2015, 2017, 2018).

In Appendix A, we perform an extensive sensitivity analysis of the extended model, to further understand the consequences of extensions and the impact of new and existing parameters on the new model’s results. The parameter and initial condition values, as well the stock-flow consistency matrices, are presented in Appendix B.

4 Model validation and stylized facts identification

The extended model proposed above is run for 500 time periods, which is sufficient to robustly characterize the statistical properties of interest.\(^8\) As the model includes stochastic (random) components, a multi-run Monte Carlo (MC) experiment is performed to properly assess results.\(^9\)

In order to validate the model set-up, we provide an overview of the results showing the asymmetries deriving from the only initial difference between countries, the value of parameter \(\epsilon_{ed} \) which governs the total educational expenditure. Figure 4 report systematic and persistent distributional differences in terms of GDP and productivity between the North (country 1) and the South (country 2). To understand how the model reacts to the different educational profiles, we show the density distribution of real GDP and aggregate labour productivity for both countries at period \(t = 200 \) (panel a) and period \(t = 300 \) (panel b), from a 50 Monte Carlo (MC) run experiment.\(^10\)

Notably, in Figure 4 panels (a) and (b), the GDP of the North (leader) country (North) presents more symmetric distributions and higher means as compared to South (laggard) country. The latter shows more right-skewed distributions, with pronounced left-tails. Looking at the aggregate productivity in panels (c) and (d), which include capital- and consumption-good firms, a similar skewness distinction characterizes the two countries, but with a less clear difference on the means, even on the long run. The access to high-productivity imported machines by the Southern firms that survive seems to prevent the divide here but cannot avoid the wider distribution supports. Despite these, a pattern of leader-laggard dynamics emerges in terms of comparative country performance, and in the South, with a more likely very low-end productive trajectory in a number of simulation.

\(^8\)The first 100 “warm-up” simulated periods are discarded these from the analysis, to allow for proper model “beak-in” from initial conditions before introducing country differentials. For convenience, in all references below, \(t = 1 \) effectively corresponds to period 101 of the simulation.

\(^9\)Considering the properties of the time series of interest here, a MC sample of size 50 was deemed sufficient for the current analysis.

\(^10\)The different parametrization between countries is only introduced at \(t = 1 \). To ensure an unbiased comparison, machine trade and migration are enabled also at this time.
Figure 4: Country asymmetries in GDP and productivity distributions. Results from 50 Monte Carlo runs, $t = 200, 400$ (upper, lower), means at dotted line.

The leader-laggard patterns are empirically in line with the advanced economies experiencing relative slowdown and weakening of (part of) the productive structure (Berlingieri et al., 2017). In such cases, forms of neo-dualism seem embedded both within industries and across geographical areas. Therefore, the coexistence of a group of dynamic firms, the so called “gazelles”, and a larger group of less performing ones, the “turtles” (Dosi et al., 2012, 2021), undermines the overall country growth performance.

The distinctive macro-level trajectories are shown in Figure 5 where GDP, and domestic and international demand components are presented. The artificial time series show distinct growth paths over time, with increasing divergence in both internal aggregate demand components, i.e., consumption and investment. However, the macro-level dynamics is also affected by the imports and exports of machines. Indeed, the North completely and quickly dominates the exports of capital-goods, while the South becomes mainly a machine importer, despite the persistence of a few small domestic producers.

The initial results hint that the North benefits from an absolute factor advantage out of the education of the workforce, and the ensuing labour market operation. Higher overall years of schooling bring an increased probability to successfully innovate and, in particular, imitate, due to superior absorptive capabilities. This pushes the productivity ladder
Figure 5: Country asymmetries in macro-variable time trajectories.
Medians from 50 Monte Carlo runs, excluding warm-up period.
Country colour: North (1) black, South (2) blue.

worldwide, because of the technology-embedded machine exports, despite the stronger
domestic effects reducing the low-end productivity dispersion. Yet, new technology dis-
coversies are completely concentrated in the North, letting the southern capital-good pro-
ducers dependent on (unlikely) imitation of northern competitors. However, the import
of capital-goods by the southern consumption-good firms also represents a possibility for
the South to benefit from innovations of the North. This is the main reason for, although a
persistent leader-laggard dynamics in the international trade of machines, the South still
presents a comparable growth trajectory in the internal components of demand dominated
by consumption goods.

We now investigate the asymmetric trajectories of the North and the South using a
measure of the relative gap, computed for each country as the ratio of the difference be-
tween the variable of interest in the North (Var_N) and in the South (Var_S), using the level
in the North as reference. So, \(gap_N = \frac{Var_N - Var_S}{Var_N} \) is the gap from the North
country perspective and, conversely, \(gap_S = -gap_N \) is the South’s take. An increasing
trend of the absolute gap indicates a growing divergence.

Starting from Figure 6, the persistent gaps in terms of aggregate performance out-
comes, that is GDP (panel a)\(^{11}\), and labour productivity on capital-good sector (panel b)
are evident. The model endogenously reproduces a North-South or leader-laggard dy-
namics in line with the evolutionary theory on technology gaps and growth differentials
across countries (Fagerberg, 1987; Cimoli, 1988; Fagerberg, 1994; Botta, 2009).

The North-South pattern is also reflected in the labour market outcomes, such as the
unemployment and vacancy rates for each type of occupations (elementary, technical, pro-
fessional) based on the education attainment (primary, secondary, tertiary), as shown in
Figure 7. In particular, at the country level the model reproduces a persistent structural un-
employment rate for lower-level occupations in the laggard country matched. Associated

\(^{11}\)The initial GDP advantage of the South is due to the mismatch of the firms demand for specialized labour,
because of the change in educational expenditure, leading to short-term (technical/professional) labour short-
ages in the consumption-good sector of the North, the largest contributor to the GDP.
to a reduced number of vacancies, there is a negative correlation between unemployment and vacancy rates, in line with the empirical evidence on the Beveridge curve, and with the usual results of the original labour-augmented K+S model (Dosi et al., 2017).

At the cross-country level, Figure 7 presents a considerable gap between the leader and the laggard in terms of unemployment rate (panel a), negatively correlated with the occupation level. It also shows a persistent but slowly shrinking gap in vacancy rates (panel b). The gap is particularly pronounced for technical occupations requiring secondary or higher education, highlighting the limited capacity for absorption of technical workers in the southern labour market, mainly due to the mismatch produced by the scarcity of professional workers required by the more advanced technologies. Therefore, the segmented labour market reveals to be an adequate set-up in order to characterize the different exposure to unemployment according to the occupational status. While professional-occupation categories are almost insensitive to unemployment, low elementary workers are those most exposed to the negative labour market outcomes (Biagi and Lucifora, 2008; Riddell and Song, 2011; Berghammer and Adserà, 2022).

Looking at trade imbalances between the two countries (Figure 8), a persistent North-South dynamics with an emerging net exporter (or importer) manifests (panel a) (Cimoli et al., 1990; Cimoli and Porcile, 2010). Notably, the North (South) is also the country recording a relatively higher (lower) wage share (panel b), with a persistent functional gap in income distribution (Fanti, 2021; Riccio et al., 2022). What factors trigger such dynamics? The lower education expenditure in the South results in a worse workforce occupational profile, with a lower share of qualified workers and the prevalence of a primary-education, low-pay working class. At the macroeconomic level, the labour market segmentation leads, in turn, to a higher probability for the laggard country of being technologically dependent in terms of the capital goods required to produce the consumption ones. Machines are indeed mostly imported instead of being domestically produced. The channel from structural, supply-side conditions, that is workforce qualification and technological advancement, reverberate into demand-side outcomes, that is, the import of machines.

Figure 6: Country gaps in GDP and productivity.
Time-series medians from 50 Monte Carlo runs, excluding warm-up period.
Country colour: North (1) black, South (2) blue.
and, notably, a different pattern of income distribution, biased in disfavour of workers in the South.

The South country does indeed try to catch up via imitation activities, even though they most frequently are not successful. Indeed, the inferior absorptive capabilities (Equations 15 and 16), derived from the lower domestic education expenditure, will lead firms to face higher constraints to innovate and imitate. As a result, southern firms are typically in a disadvantage position to compete in the domestic and international markets. These results are corroborated by the distinct innovation and the imitation rates of the two countries. According to Figure 9, northern capital-good firms show, on median, a substantially higher innovation rate (panel a) when compared to the southern ones. Nevertheless, the latter try to catch up with the former through (international) imitation, slightly more effective in the South (panel b). However, a higher imitation rate simply means this is the main progress path to southern firms, given the structural constraint on innovation. The
composed technical advancement pace (share of innovating plus imitating firms) is still considerably more favourable to the North.

Figure 9: Country share of innovating and imitating firms in capital-good sector. Distributions from 50 Monte Carlo runs, $t \in [201 - 400]$. Bar: medians, box: 2nd/3rd quartiles, whiskers: minimum/maximum, points: outliers. Country number: North (1), South (2).

According to this first battery of results, differentiated long-term aggregate levels of public expenditure in education significantly affect segmented labour markets, by means of worker educational attainment, the corresponding occupation qualifications, and, endogenously, the differentiated exposure to unemployment. In addition, the education-induced asymmetries between countries result in the technological dependence of the South, which falls behind the North in terms of macroeconomic performance. To summarize, vis-à-vis the original labour-augmented K+S model’s set of stylized facts (SFs), the new model extension allows the match of the following set of additional SFs:

- SF1: technological dependence as a source of weaker aggregated performance;
- SF2: negative correlation between educational attainment and unemployment;
- SF3: technological innovation as a source of divergence among countries;
- SF4: negative correlation between the wage share and the level of development;
- SF5: failure of catching-up via technology-embedded import strategies.

5 Policy experiments: the role of education and international imitation

Given the important role played by parameter ϵ_{ed} (share of GDP expended in education) on the model dynamics, we now perform a set of policy experiments based on it. Firstly, we investigate its role on the main macroeconomic variables in the South.

Figure 10 shows the distribution of GDP growth volatility (panel a) and trade balance (panel b) for four levels of expenditure, $\epsilon_{ed} = 0.025, 0.03, 0.04, 0.05$, in the South country. We compare the baseline value (0.04) used in the analysis above with three alternative scenarios: the same expenditure as in the North (0.05), and two lower values (0.03 and 0.025). The different gaps in education level affect the volatility of GDP growth, measured as the
standard deviation, which shows an overall negative correlation. Such result replicates only partially in the case of the balance of trade (exports minus imports), as the distribution supports of net exports increased as the education expenditures shrank. The median net exports, however, remained relatively constant across scenarios. The very fact that trade balance presents a negative value even under the same education levels reflects the inner idiosyncratic dynamics of trade in the model, that endogenously reproduces and accumulates asymmetries as an emergent property, even in the absence of initial differences among countries. Therefore, the trade dynamics is also the result of a self-reinforcing, path-dependent phenomenon occurring by the cumulative stratification of loosing and winning positions between countries, in line with (Dosi et al., 2019).

The effects of educational policy on labour market is also important, as shown in Figure 11, whereby (panel a) there is a clear negative correlation between the overall unemployment rate and education attainments. When looking at inequality among workers (panel b), however, the Gini index shows a U-shaped relation with education. This result broadly mimics the known relationship between inequality and stage of development (Imbs and Wacziarg, 2003), hereby using the education as proxy. Such observation derives, in the model, from the relative concentration, in the South, of higher wages among the (few) employed vis-à-vis the (many) unemployed workers (as per panel a in Figure 7).

In a second analytical step, we investigate the role of international imitation for the build-up of countries asymmetries and divergence. For that, we introduce a counterfactual set-up, that is, a scenario wherein international imitation (the model baseline) is not allowed. We look at the effect of international or domestic-only imitation on crucial macroeconomic outcomes, as GDP growth, trade balance, and successful innovation and imitation rates, of the South.

Figure 12 shows that, in the baseline scenario (international imitation), the persistent technological dependence from the North implies on the South falling systematically behind in regard to both growth and exports. A classic path-dependent lock-in situation is
established here (Arthur, 1989), with little opportunity for the laggard country to reclaim the leading position.

However, counter-intuitively, when southern firms only have the possibility of imitating the machines produced by a domestic leader technologically closer to them, they have a higher probability of imitation success because of the reduced requirements in terms of absorptive capabilities. Indeed, Figure 13 shows a more than two-fold increase in the share of firms that successfully imitate (panel a). In turn, a larger population of firms closer to the (domestic) technological frontier increase also the probability of successful innovations (panel b). In aggregate terms, this continuous feedback process may induce a virtuous development pattern with the possibility of the country not only reaching technological independence, at a certain point, but also of becoming the leader in international
trade. The South technological “segregation” may help it on avoiding the lock-in, in a similar process to the one described by the local productive arrangement literature (Lastres and Cassiolato, 2005). Indeed, as pointed in Figure 12, a dense network of local imitation may turn out to be effective in reverting the trade balance deficit in this case (panel a) and spur growth (panel b).

![Figure 13](image)

Figure 13: South-country innovative performance for alternative technological imitation scenarios (international/baseline vs. domestic only).

Distributions from 50 Monte Carlo runs, \(t \in [201 - 400] \).

From a policy perspective, these results are in line with the evolutionary literature suggesting the relevance of policy programs aimed at favouring industrial interventions targeted to country- and sector-specific technological and capability profiles (Cimoli et al., 1990; Dosi et al., 2009) within comprehensive institutional ecosystems, such as National or Sectoral Innovation Systems (Lundvall, 1992; Freeman, 2002).

6 Conclusions

Building on the labour-augmented K+S model, we propose one of the first agent-based models able to investigate the role of education and international trade on North-South type of asymmetries, and on the convergence-divergence patterns between leader and laggard countries. We start by differentiating the two regions/countries in terms of the aggregate investment in education in order to study how different educational profiles of the workforce may reverberate on both technological and production aggregate performance and labour market structure and dynamics.

To this purpose, we explicitly introduce segmented labour markets leading to different dynamics in terms of market outcomes. Our results show that differences in the educational attainments of workers persistently affect North-South asymmetries in terms of macroeconomic performance, balance of trade and labour market operation. In particular, the dynamic feedback effects endogenously reproduced by the simulation model propagate through different and interrelated channels, that is from education to imitation-innovation processes and to labour market operation; from innovation to international
trade patterns; and from labour market and trade to GDP and aggregate productivity growth trajectories.

We perform some policy experiments based on the amount of public expenditure in education. This way, we can corroborate the negative impact exerted by lower educational attainments on aggregate performance and, particularly on GDP growth volatility and trade deficits, innovation and imitation success rates, and labour market outcomes. We also investigate the role of international or domestic-only imitation to study possible catching-up opportunities. We show that, when restricting international imitation, a reverse specialization pattern may emerge, with the South reclaiming a leadership position on the trade of machines while spurring growth. Notably, this result is the outcome of a laggard country which indeed posses industrial and productive capabilities at a crossroad: should it try to rebuild the internal productive structure, or abandon it in favour of external technological dependence?

Indeed, in terms of the validity of the model results, and the ensuing policy implications, the recent Inflation Recovery Act and the Chips and Science Act, promoted by the US, are nothing else than industrial policies aimed at rebuilding the internal industry capabilities, in order to regain international relevance in the production and trade of strategic industrial intermediate products, now largely dominated by China. In this respect, our North and South regions should be interpreted as two relatively advanced countries, rather than a rich and a poor one. Here, the South is threatened by the possibility of being trapped into a middle-income stage, as occurred for many Latin-American and southern European countries. Notably, our South may represent also the possibility of successful catching-up strategies, as the Asian Tigers and China did, and, to a lesser extent, Mexico and the Visegrad countries.

Future extensions of the present model should entail the analysis of the effect of different policy-oriented strategies, in order to better explore into the alternatives of catching-up, and, at the opposite side, the risk of lock-ins.

References

Appendix A

In addition to the empirical validation of the model, presented above, we perform a global sensitivity analysis (SA) to understand how alternative model parametrizations affect our main findings.\(^{12}\)

Global sensitivity analysis (SA) is performed for \(t \in [200, 400]\) on a set of output variables (the “metrics”) relevant to the current discussion, namely net export \((X_{net}^t)\) and unemployment rate for workers holding primary- \((U_1^t)\), secondary- \((U_2^t)\) and tertiary- \((U_3^t)\) education.\(^{13}\) All the model’s parameter and initial condition values, test ranges, and SA statistics are presented in Table 1 on Appendix B. SA is performed across the entire parametric space, inside the closed ranges defined by Table 1 (columns Min. and Max.), and the synthetic SA statistics are reported (columns \(\mu^*, \text{DIRECT and INTERACTION}\)) for the most sensitive among the tested output variables, that is the unemployment rate for primary educated workers \((U_1^t)\) (results for the remaining variables can be requested to the authors). Two SA methodologies are employed, elementary effects (EE) and Sobol variance decomposition (SVD).

EE analysis is summarized by the \(\mu^*\) statistic in Table 1, which is a measure of the direct absolute effects of each factor (parameter or initial condition) on the chosen output variable, being the parametric space rescaled to the \([0, 1]\) interval on each dimension. The statistical significance of this statistic, the probability of not rejecting \(H_0: \mu^*_i = 0\) is also evaluated and indicated by the usual asterisk convention. The EE computation is performed directly over model samples from an optimized 10-trajectory one-at-a-time design of experiments (DoE). Each DoE sampling point is sampled three times, to compensate for stochastic components in the model.

The SVD analysis is reported in Table 1 by two statistics: (DIRECT column) the decomposition of the direct influence of each factor on the variance of the tested output variable (adding up to 1), and (INTERACTION column) its indirect influence share, by interacting with other factors (non-linear/non-additive effects). The SVD analysis is performed using a Kriging meta-model fitted using samples from a near-orthogonal Latin hypercube DoE. Each DoE point is sampled 10 times. For all parameters and initial conditions reported in Table1 (the “factors”) in this K+S version, as a first step we apply the Morris elementary effects (EE) method.\(^{14}\) This is important because it allows identifying those factors which

\(^{12}\)This procedure addresses a frequent criticism to ABM’s concerning the importance of “lucky” parameter choices for the results. On the validation of agent-based models, see Fagiolo et al. (2017). For technical details on the employed SA methodology, see Dosi et al. (2018).

\(^{13}\)Other relevant metrics, like macro aggregates, inequality measures, and industrial performance indicators were already SA-tested in previous papers based on the labour-augmented K+S model and are not be replicated here. The general results from these past analyses indicate a relatively small dependence of the model qualitative results on the chosen parametrization.

\(^{14}\)Briefly, EE proposes both a specific design of experiments, to efficiently sample the parametric space under a multi-path, one-factor-at-a-time strategy, and a absolute importance statistic to evaluate direct and indirect (non-linear/non-additive) effects of the parameters on model results and their statistical significance (Morris, 1991; Saltelli et al., 2008).
significantly affect the selected model metrics. The EE analysis (Table 1) indicates that U_t^1 is the metric significantly sensitive to the larger number of factors (14).\footnote{The selection criteria is to consider the top 80\% EE contributors at 5\% significance.}

In order to quantify the effect of each relevant factor over the selected metrics, directly or in interaction with other factors, as a second step we perform a Sobol Variance Decomposition (SVD).\footnote{The SVD is a variance-based, global SA method consisting in the decomposition of the chosen metrics variance into shares according to the contribution of the variances of the factors selected for analysis. This methodology deals better with non-linearities and non-additive interactions than EE or the traditional local SA methods. It allows to precisely disentangle both direct and interaction quantitative effects of the factors over the entire parametric space (Sobol, 1993; Saltelli et al., 2008).} Because of the high computational cost to produce the SVD using the original simulation model, a simplified version of it — a meta-model — is estimated using the Kriging method and employed for the SVD.\footnote{To summarize, the Kriging meta-model “mimics” the K+S model using a simpler, mathematically-tractable approximation, fitted over a representative sample of the original model response surface. Kriging is a spatial interpolation method that under fairly general assumptions provides the best linear unbiased predictors for the response of complex, non-linear computer simulation models (Rasmussen and Williams, 2006; Salle and Yildizoglu, 2014).} The meta-model is estimated by numerical maximum likelihood using a set of observations multi-sampled from the original model using a high-efficiency, nearly-orthogonal Latin hypercube design of experiments (Cioppa and Lucas, 2007).

The SVD results (Table 1) indicate a smaller subset of 4 important factors for two of the chosen metrics (U_t^1 and U_t^3).\footnote{The selection criteria is to consider the top 80\% SVD contributors.} These factors, in overall order of importance, define: (i) the amount of public expenditure in education which is proper to an advanced economy (ϵ_{ad}), (ii) the amount of public expenditure in education (ϵ_{ed}); iii) the shape of the Beta distribution from which the productivity of new entrant firms is randomly drawn (β_2); iv) the maximum technological advantage for new entrants in the capital-good sector (x_5). The first two factors were introduced for this version of the model and were expected to be relevant, as it is now confirmed. The last two parameters are usual important factors for many K+S variables, as identified by the literature (Dosi et al., 2018, 2021). The remaining two metrics (X_t^{net} and U_t^2) are not significantly sensitive to any factor in direct effect.

In summary, the model appears to be remarkably robust to different parametrizations, except for a few selected structural parameters. However, even the parameters which directly influence the analysed outcomes do that in a rather marginal manner.
Appendix B

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Min.</th>
<th>Max.</th>
<th>μ^*</th>
<th>Direct</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{ed}</td>
<td>Public education expenditure as share of GDP</td>
<td>0.050</td>
<td>0.010</td>
<td>0.100</td>
<td>0.584</td>
<td>0.258</td>
<td>0.001</td>
</tr>
<tr>
<td>ϵ_{ad}</td>
<td>Education expenditure of advanced country (%GDP)</td>
<td>0.050</td>
<td>0.040</td>
<td>0.100</td>
<td>0.584</td>
<td>0.276</td>
<td>0.001</td>
</tr>
<tr>
<td>ϑ_{ed}</td>
<td>Sensitivity of education attainment to expenditure</td>
<td>0.500</td>
<td>0.000</td>
<td>2.000</td>
<td>0.285</td>
<td>0.027</td>
<td>0.001</td>
</tr>
<tr>
<td>τ_{ed}</td>
<td>Leverage of education on productivity</td>
<td>0.500</td>
<td>0.000</td>
<td>2.000</td>
<td>0.160</td>
<td>0.010</td>
<td>0.001</td>
</tr>
<tr>
<td>$(\alpha_{ed}, \beta_{ed})$</td>
<td>Beta distribution parameters (education attainment)</td>
<td>(6.560,3.600)</td>
<td>(4.000,5.000)</td>
<td>(9.000,2.000)</td>
<td>(0.055,0.080)</td>
<td>(0.047,0.000)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>(θ_{2}, θ_{3})</td>
<td>Labour demand share for secondary/tertiary education</td>
<td>(0.550,0.250)</td>
<td>(0.300,0.100)</td>
<td>(0.700,0.300)</td>
<td>(0.053,0.065)</td>
<td>(0.000,0.000)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>(ϕ_{2}, ϕ_{3})</td>
<td>Wage premium from secondary/tertiary education</td>
<td>(0.250,0.200)</td>
<td>(0.000,0.000)</td>
<td>(1.000,1.000)</td>
<td>(0.065,0.107)</td>
<td>(0.000,0.003)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>δ</td>
<td>Growth rate of worker population (country 1/2)</td>
<td>(0.001,-0.001)</td>
<td>0.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ϵ</td>
<td>Minimum desired wage increase rate</td>
<td>0.020</td>
<td>0.005</td>
<td>0.200</td>
<td>0.020</td>
<td>0.007</td>
<td>0.001</td>
</tr>
<tr>
<td>τ_T</td>
<td>Skills accumulation rate on tenure</td>
<td>0.010</td>
<td>0.001</td>
<td>0.100</td>
<td>0.020</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>τ_U</td>
<td>Skills deterioration rate on unemployment</td>
<td>0.010</td>
<td>0.001</td>
<td>0.100</td>
<td>0.065</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>T_r</td>
<td>Number of periods before retirement (work life)</td>
<td>120</td>
<td>60</td>
<td>240</td>
<td>0.096</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>T_s</td>
<td>Number of wage memory periods</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>0.082</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>ω</td>
<td>Number of firms to send applications (employed)</td>
<td>5</td>
<td>1</td>
<td>20</td>
<td>0.035</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ω_u</td>
<td>Number of firms to send applications (unempl.)</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>0.086</td>
<td>0.021</td>
<td>0.001</td>
</tr>
<tr>
<td>ψ_2</td>
<td>Aggregate productivity pass-through</td>
<td>1.000</td>
<td>0.950</td>
<td>1.050</td>
<td>0.210</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>ψ_4</td>
<td>Firm-level productivity pass-through</td>
<td>0.500</td>
<td>0.000</td>
<td>1.000</td>
<td>0.077</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>ψ_6</td>
<td>Share of firm free cash flow paid as bonus</td>
<td>0.200</td>
<td>0.000</td>
<td>0.500</td>
<td>0.010</td>
<td>0.004</td>
<td>0.001</td>
</tr>
</tbody>
</table>

(continue...)

30
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>MIN.</th>
<th>MAX.</th>
<th>μ^*</th>
<th>DIRECT</th>
<th>INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ^b</td>
<td>Bail-out reference as share of incumbent net wealth</td>
<td>0.500</td>
<td>0.000</td>
<td>1.000</td>
<td>0.081</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>ϕ</td>
<td>Unemployment subsidy rate on average wage</td>
<td>0.400</td>
<td>0.000</td>
<td>1.000</td>
<td>0.063</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>tr</td>
<td>Tax rate</td>
<td>0.100</td>
<td>0.000</td>
<td>0.300</td>
<td>0.090</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>r</td>
<td>Prime interest rate</td>
<td>0.010</td>
<td>0.005</td>
<td>0.050</td>
<td>0.025</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>μ_{deb}</td>
<td>Mark-up of interest on debt over prime rate</td>
<td>0.300</td>
<td>0.100</td>
<td>0.500</td>
<td>0.047</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>μ_{res}</td>
<td>Mark-up of interest on reserve to prime rate</td>
<td>-0.500</td>
<td>-0.200</td>
<td>-1.000</td>
<td>0.101</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Λ</td>
<td>Prudential limit on debt (sales multiple)</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0.055</td>
<td>0.000</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Technology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Min.</th>
<th>Max.</th>
<th>μ^*</th>
<th>Direct</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Maximum machine-tools useful life</td>
<td>19</td>
<td>10</td>
<td>40</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>ν</td>
<td>R&D investment propensity over sales</td>
<td>0.040</td>
<td>0.010</td>
<td>0.200</td>
<td>0.068</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ξ</td>
<td>Share of R&D expenditure in imitation</td>
<td>0.500</td>
<td>0.200</td>
<td>0.800</td>
<td>0.016</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>b</td>
<td>Payback period for machine replacement</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>0.053</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>m_1</td>
<td>Capital productivity in capital-good sector</td>
<td>1</td>
<td>0.1</td>
<td>10</td>
<td>0.039</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>m_2</td>
<td>Capital productivity in consumer-good industries</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>0.066</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>(α_1, β_1)</td>
<td>Beta distribution parameters (innovation process)</td>
<td>(3,3)</td>
<td>(1,1)</td>
<td>(5,5)</td>
<td>(0.089,0.137)</td>
<td>(0.002,0.008)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>(α_2, β_2)</td>
<td>Beta distribution parameters (entrant productivity)</td>
<td>(2,4)</td>
<td>(1,1)</td>
<td>(5,5)</td>
<td>(0.199,0.137)</td>
<td>(0.060,0.280)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>(ζ_1, ζ_2)</td>
<td>Search capabilities for innovation/imitation</td>
<td>(0.100,0.100)</td>
<td>(0.050,0.050)</td>
<td>(0.200,0.200)</td>
<td>(0.064,0.010)</td>
<td>(0.000,0.000)</td>
<td>(0.001,0.001)</td>
</tr>
<tr>
<td>$[z_1, \bar{z}_1]$</td>
<td>Beta distribution support (innovation process)</td>
<td>[-0.150,0.150]</td>
<td>[-0.300,0.100]</td>
<td>[-0.100,0.300]</td>
<td>(0.050,0.046)</td>
<td>(0.022,0.019)</td>
<td>(0.001,0.001)</td>
</tr>
</tbody>
</table>

(continue...)
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>MIN.</th>
<th>MAX.</th>
<th>μ^*</th>
<th>DIRECT</th>
<th>INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Share of new customers for capital-good firm</td>
<td>0.500</td>
<td>0.200</td>
<td>0.800</td>
<td>0.016</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>ι</td>
<td>Desired inventories share</td>
<td>0.100</td>
<td>0.000</td>
<td>0.300</td>
<td>0.019</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>κ_{max}</td>
<td>Maximum threshold to capital expansion</td>
<td>0.500</td>
<td>0.100</td>
<td>1.000</td>
<td>0.076</td>
<td>0.039</td>
<td>0.001</td>
</tr>
<tr>
<td>μ_1</td>
<td>Mark-up in capital-good sector</td>
<td>0.100</td>
<td>0.010</td>
<td>0.200</td>
<td>0.020</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ω_1</td>
<td>Firm competitiveness weight for price</td>
<td>1.000</td>
<td>0.200</td>
<td>5.000</td>
<td>0.060</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>ω_2</td>
<td>Firm competitiveness weight for unfilled demand</td>
<td>1.000</td>
<td>0.200</td>
<td>5.000</td>
<td>0.005</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ω_3</td>
<td>Firm competitiveness weight for quality</td>
<td>1.000</td>
<td>0.200</td>
<td>5.000</td>
<td>0.051</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>χ</td>
<td>Replicator dynamics coefficient (inter-firm)</td>
<td>1.000</td>
<td>0.200</td>
<td>5.000</td>
<td>0.065</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>υ</td>
<td>Mark-up adjustment coefficient</td>
<td>0.040</td>
<td>0.010</td>
<td>0.100</td>
<td>0.012</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>f_{min}^2</td>
<td>Min share to firm stay in consumption-good industry</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
<td>0.064</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>o</td>
<td>Weight of market conditions for entry decision</td>
<td>0.500</td>
<td>0.000</td>
<td>1.000</td>
<td>0.040</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>u</td>
<td>Planned utilization by consumption-good entrant</td>
<td>0.750</td>
<td>0.500</td>
<td>1.000</td>
<td>0.056</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>μ_0</td>
<td>Initial mark-up in consumption-good industries</td>
<td>(0.2,0.3)</td>
<td>(0.1,0.1)</td>
<td>(0.5,1.0)</td>
<td>0.073</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>w_0^min</td>
<td>Initial minimum wage and social benefit floor</td>
<td>0.500</td>
<td>0.100</td>
<td>1.000</td>
<td>0.023</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>L_s</td>
<td>Number of workers</td>
<td>2.5105</td>
<td>1.3105</td>
<td>5.0105</td>
<td>0.119</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Λ_0</td>
<td>Prudential limit on debt (initial fixed floor)</td>
<td>1000</td>
<td>500</td>
<td>2000</td>
<td>0.103</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>B</td>
<td>Number of banks</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>0.030</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>NW_0^b</td>
<td>Multiple on minimum initial net wealth of banks</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>0.004</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>F_0^c,F_0^c</td>
<td>Initial number of capital/consumption-good firms</td>
<td>(10,50)</td>
<td>(5,20)</td>
<td>(20,200)</td>
<td>0.026,0.118</td>
<td>0.000,0.001</td>
<td>0.001,0.001</td>
</tr>
<tr>
<td>NW_0^c, NW_0^c</td>
<td>Multiple on initial net wealth for capital/consumption</td>
<td>(1,2)</td>
<td>(0,0)</td>
<td>(10,10)</td>
<td>0.066,0.050</td>
<td>0.001,0.001</td>
<td>0.001,0.001</td>
</tr>
</tbody>
</table>

Table 1: Model parameters and initial conditions, calibration values, minimum-maximum range for sensitivity analysis, elementary effects μ^* statistic ($n = 780$ samples) and Sobol decomposition direct and interaction effects indexes ($n = 1000$ samples).

Baseline values. Sensitivity analysis statistics relative to Unemployment rate for primary educated workers (U^1_1) (the most sensitive variable).

μ^* statistic estimated using factors rescaled to $[0, 1]$. μ^* significance: *** 0.1% | ** 1% | * 5% | (no asterisk) not significant at 5% level.
<table>
<thead>
<tr>
<th></th>
<th>Workers (households)</th>
<th>Firms</th>
<th>Banks</th>
<th>Central bank</th>
<th>Government</th>
<th>Foreign firms</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed capital</td>
<td>+K^nom_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equities</td>
<td>+Eq_t</td>
<td>-Eq^1_t</td>
<td>-Eq^2_t</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Deposits</td>
<td>+Sav^{acc}_{t}</td>
<td>+NW^1_t</td>
<td>+NW^2_t</td>
<td>-Depo_t</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td>-Deb^1_t</td>
<td>-Deb^2_t</td>
<td></td>
<td>+Loans_t</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Monetary base</td>
<td>+MB_t</td>
<td>-MB_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Reserves (required)</td>
<td>+Res_t</td>
<td>-Res_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Excess reserves</td>
<td>+ExRes_t</td>
<td>-ExRes_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Liquidity facilities</td>
<td>-Loans^{cb}_{t}</td>
<td>+Loans^{cb}_{t}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Government bonds</td>
<td>+Bonds^b_t</td>
<td>+Bonds^{cb}_{t}</td>
<td>-Deb_t</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Government deposits</td>
<td>-Depo^g_t</td>
<td>+Depo^g_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>International reserves</td>
<td>-IntRes_t</td>
<td></td>
<td></td>
<td>+IntRes_t</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Balance</td>
<td>-Bal^b_t</td>
<td>-Bal^{g}_{t}</td>
<td>-Bal^{l}_{t}</td>
<td>-Bal^{cb}_{t}</td>
<td>-Bal^{g}_{t}</td>
<td>-Bal^{w}_{t}</td>
<td>-K^nom_t</td>
</tr>
<tr>
<td>∑</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Stock-flow consistency: balance-sheet matrix, single country view.
<table>
<thead>
<tr>
<th>Transactions</th>
<th>Workers</th>
<th>Capital-good firms</th>
<th>Consumption-good firms</th>
<th>Banks</th>
<th>Central bank</th>
<th>Government</th>
<th>Foreign firms</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumers</td>
<td>-G_1</td>
<td>+S^1_1 + S^2_1</td>
<td>+S^1_2 + S^2_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Investment</td>
<td>+G_2</td>
<td>-W^1_1 - W^2_1</td>
<td>-W^1_2 - W^2_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Government expenditure</td>
<td>+G_3</td>
<td>-Tax^a_1 + Tax^b_1</td>
<td>-Tax^a_2 + Tax^b_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wages</td>
<td>+W_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Taxes</td>
<td>-Tax^a_1 - Tax^b_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Trade, imports</td>
<td>+X^1_1</td>
<td>-I_m^1_1 - I_m^2_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Trade, exports</td>
<td>+X^1_1</td>
<td>-I_m^1_1 - I_m^2_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Profits, firms and banks</td>
<td>- net Π^1_1 + net Π^2_1</td>
<td>- net Π^3_1 + net Π^3_2</td>
<td>- net Π^5_1 + net Π^5_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Op. profit, central bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bonuses</td>
<td>+Bon_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Dividends</td>
<td>+Div_1</td>
<td>-Div^a_1 - Div^b_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>New equity</td>
<td>-Entry_1</td>
<td>+Entry^a_1 + Entry^b_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Liquidation equity</td>
<td>+Exit_1</td>
<td>-Exit^a_1 - Exit^b_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bad debt</td>
<td>+BadDeb_1</td>
<td>+BadDeb^a_1 + BadDeb^b_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bail-out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, deposits</td>
<td>+D^1_1 NDep_1</td>
<td>+D^2_1 NDep_2</td>
<td>-D^1_1 NDep_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, loans</td>
<td>+D^1_1 LDep_1</td>
<td>+D^2_1 LDep_2</td>
<td>-D^1_1 LDep_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, reserves</td>
<td>+D^1_1 Res_1</td>
<td>+D^2_1 Res_2</td>
<td>-D^1_1 Res_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, liq. facilities</td>
<td>+D^1_1 LDep_1</td>
<td>+D^2_1 LDep_2</td>
<td>-D^1_1 LDep_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, govt. bonds</td>
<td>+D^1_1 Bond_1</td>
<td>+D^2_1 Bond_2</td>
<td>-D^1_1 Bond_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest, govt. deposits</td>
<td>+D^1_1 Depo_1</td>
<td>+D^2_1 Depo_2</td>
<td>-D^1_1 Depo_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Flow of funds									
Change, deposits	-ΔS_1_1	-ΔS_1_1	-ΔS_1_2	+ΔDep_1					0
Change, loans	+ΔDep_1	+ΔDep_2	+ΔDep_2		-ΔLoan_1				0
Change, monetary base		+ΔMB_1	-ΔMB_1						0
Change, reserves	-ΔRes_1	+ΔRes_1	+ΔRes_1						0
Change, excess reserves		-ΔExRes_1	+ΔExRes_1						0
Change, liq. facilities		+ΔLoan_1	-ΔLoan_1	+ΔDep_1	+ΔDep_2				0
Change, govt. bonds		+ΔBond_1	-ΔBond_1	+ΔDep_1					0
Change, govt. deposits		+ΔDepo_1	-ΔDepo_2	+ΔDepo_1					0
Change, int'l reserves		+ΔIntRes_1	-ΔIntRes_1	+ΔIntRes_1					0

| ∑ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 3: Stock-flow consistency: transaction-flow matrix for a single country.

To ensure consistency for the world, if C is the number of countries, \(\sum ΔIntRes_c = 0 \), \(c = 1, 2, ..., C \).

\[\Delta X_t = X_t - X_{t-1}, \]
\[\text{net} \ Π_t = Π_t - Tax_t, \ z = 1, 2, b, \]
\[S^{1,d}_t = S_t - X_t, \]
\[T^{nom,d}_t = T^{nom}_t - T^{int}_t. \]