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Abstract

This paper provides a direct understanding of the twin transition from the innovative activity domain.

It starts with a technological mapping of the technological innovations characterised by both climate

change mitigation/adaptation (green) and labour-saving attributes. To accomplish the task, we draw on

the universe of patent grants in the USPTO since 1976 to 2021 reporting the Y02-Y04S tagging scheme

and we identify those patents embedding an explicit labour-saving heuristic via a dependency parsing

algorithm. We characterise their technological, sectoral and time evolution. Finally, after constructing an

index of sectoral penetration of LS and non-LS green patents, we explore its impact on employment share

growth at state level in the US. Our evidence shows that employment shares in sectors characterised by

a higher exposure to LS (non-LS) technologies present an overall negative (positive) growth dynamics.
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1 Introduction

An increasing consensus, which encompasses also international financial institutions such as the IMF (In-

ternational Monetary Fund, 2022), is emerging on the urgency to tackle the climate crisis thorough the

mitigation of global warming, in particular with a substantial reduction in greenhouse gas (GHG) emissions.

The transition to a green economy is defined by UNEP as “ [. . . ] low carbon, resource efficient and socially

inclusive. In a green economy, growth in employment and income are driven by public and private in-

vestment into such economic activities, infrastructure and assets that allow reduced carbon emissions and

pollution, enhanced energy and resource efficiency, and prevention of the loss of biodiversity and ecosystem

services”.1 It therefore entails the effort of a plurality of actors, both private and public, in achieving a low

or even null level of climate impacts in terms of greenhouse emissions.2 Despite some serious limitations and

drawbacks that the green economy and green growth paradigms encompass, highlighted by various research

streams (Unmüßig et al., 2012; Van Vuuren et al., 2017; Hickel and Kallis, 2020; D’Alessandro et al., 2020),

they still represent the core in terms of both reflections for the academic community and implementation

for policy makers and business actors.

More recently, in order to achieve a sustained green growth, policy makers and particularly the European

Union, are focusing on the so called twin transition, defined as the conjunction between the digital transition,

aimed at increasing the overall productivity of the economy, and the effort to foster environmental processes

and technologies to achieve climate sustainability. Such efforts are somehow even intertwined with the stated

objective of promoting a just transition, according to which “[...] A solid knowledge base is needed to interlink

the digital and green transitions with the social dimension of the just transition and to ensure that ‘no one

is left behind’ ” (Stefan et al., 2021).

The two transformations entail a common threat: the possibility of losing jobs at the cost of gaining

in environmental sustainability on the one hand, and in productivity efficiency on the other. The costs

of such transitions are going to be heterogeneous across sectors and countries, especially according to the

identification of most exposed sectors and occupations. While the common understanding tends to identify

the green trajectory as mainly labour augmenting (International Labour Office, 2018), it is still lacking a

clear mapping of the underlying heuristics of innovators in the climate change domains in terms of labour-

efficiency processes. It might be the case that environmental innovations also come with lower labour-input

requirements, therefore challenging the common wisdom of the green transition as net job creator.

This paper intends to fill this gap providing a direct understanding of the twin transition from the

innovative activity domain. It starts with a technological mapping of innovations characterised by both

climate change mitigation/adaptation (green, thereafter) and labour-saving attributes. To accomplish this

task, we draw on the universe of patent grants by the USPTO from 1976 to 2021 with at least one CPC

1UNEP.org (access 08/03/2023).
2The Green New Deal, presented by the European Commission on 11th December 2019, represents one of the most ambitious

public plans on this respect (GreenNewDeal.EU).
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code of either Class Y02 or Subclass Y04S, which refer to green technologies.3 We identify those patents

embedding an explicit labour-saving (LS thereafter) heuristic via a dependency parsing algorithm. Next, we

characterise their technological, sectoral and time evolution. Finally, after constructing an index of sectoral

penetration of LS and non-LS green patents, we explore its impact on employment share growth at state

level in the US.

Our contribution puts forth a methodological advancement in studying and detecting the twin transition:

in fact, we depart from the task-based approach, which only accounts for the occupational components and

their inherent degree of “greenness”, and we move to a method based on patent full-texts, able to construct

a direct measure of technological penetration. Our methodological approach, which relies upon advanced

semantic analysis and natural language processing (Montobbio et al., 2022b), allows us to investigate the

inventors’ heuristics embedded in green patents and detect the extent to which they incorporate a true LS

trait and scope. Our method of analysis allows therefore to move from the technological domain to the

labour market domain, constructing a multi-layer and integrated interface of analysis.

Our results detect, first, a rapid increase of LS heuristics in the majority of green technological domains

considered, and, second, a negative significant impact upon employment shares growth in the sectors more

exposed to the use of these technologies, therefore validating ex-post the penetration of such heuristics.

In a nutshell, our findings challenge the common understanding of the “green transition” as only labour

augmenting. Potentially, the capacity of the “green” segment as a net labour-absorber might be weaker

than commonly expected. Direct policy interventions are therefore necessary beyond adaptation policies to

“green skills” currently envisaged by institutions.

The paper is organised as follows. Section 2 discusses the extant literature, while section 3 presents the

relevant data sources. Our methodology is outlined in section 4, where we describe the steps to identify LS

heuristics in green related patents, including the novel use of the spaCy neural network model (Honnibal

and Montani, 2017). After the identification of two sets of green related patents (either associated to LS

heuristics or not), we present our results in section 5, which includes descriptive statistics emerging from

our identification strategy (5.1) and the employment impacts related to the penetration of labour-saving

heuristics in different industrial sectors (5.2). Our conclusions are presented in section 6.

2 Technologies, labour markets and the green transition: state of

the art and open research questions

In order to study the twin transition, we mobilise two main research streams: the first studies the effects of

technological changes upon labour markets, with specific attention to digital and automation technologies,

3In particular, Y02 includes “Technologies or applications for mitigation or adaptation against climate change”, while Y04S

“Systems integrating technologies related to power network operation, communication or information technologies for improving
the electrical power generation, transmission, distribution, management or usage, i.e. smart grids”.
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while the second studies the characteristics of green jobs.

Reflections and concerns about possible negative effects of technological change upon the labour market

can be traced back to the dawn of the history of capitalism (Staccioli and Virgillito, 2021), where the vast

introduction of capital machines, at the beginning of the First Industrial Revolution, generated awareness

among workers of the possible pernicious impact on labour, with the Luddites movement representing a

paradigmatic example (Nuvolari et al., 2002). The challenging relationship between technological change

and labour persisted across the XX century (L. Barbieri et al., 2019), along with the adoption of the steam

engine and later with the ICT revolution (Noble, 1986; Zuboff, 1988). In the past decade, those worries

involved specifically the new technological trend dubbed Industry 4.0, spurring debates on the effects of

automated processes and industrial robots upon employment (Brynjolfsson and McAfee, 2014; Frey and

Osborne, 2017; Acemoglu and Restrepo, 2020). Results are however quite inconclusive and mostly depend

upon the level of aggregation considered and on the type of technological proxy used in the study (Montobbio

et al., 2022a).

The efforts to decarbonise economic products and processes in order to achieve better environmental

sustainability have gained increasing traction among scholars as an object of study. Empirical attempts

devoted both to analyse the characteristics and knowledge base of green technologies and the related labour

market have been rising. Green technologies and their characteristics have been largely studied at the

regional level (Tanner, 2014; Corradini, 2019; Quatraro and Scandura, 2019; Montresor and Quatraro, 2020;

N. Barbieri et al., 2021; Santoalha et al., 2021; N. Barbieri et al., 2022), sectoral level, for instance in the

automotive sector (Mazzei et al., 2022), and micro level (N. Barbieri et al., 2020).

To study green labour markets, numerous empirical methods concur (Bowen and Kuralbayeva, 2015), but

analyses which draw upon the task-based approach, in line with the literature on inequality and technologies,

are the most widespread and adopted (Dierdorff et al., 2009; Vona et al., 2018; Vona, 2021; International

Monetary Fund, 2022; Curtis and Marinescu, 2022). Contributions are increasingly providing new evidence,

especially from the O*NET-SOC database (Dierdorff et al., 2009). Vona et al. (2018) and Vona (2021) develop

a method, based on task contents and their level of greenness, to measure and define green employment.

Adopting the same approach, the IMF has recently dedicated a chapter to the green transition (Inter-

national Monetary Fund, 2022), documenting that the most green and most polluting-intensive jobs are

concentrated in terms of workforce and sectors, even if environmental characteristics of jobs are widely

dispersed both across and within sectors leaving scope for reallocation of workers. Second, green intensive

occupations tend to be associated with high skills and urban workers, as opposed to brown occupations,

therefore green jobs seem to show a higher degree of complexity. Third, transitioning from brown or neutral

to green jobs seems less likely than languishing in similar types of occupations. Finally, environmental polices

might prove effective in greening jobs, but only if well tailored.

Curtis and Marinescu (2022) move beyond the O*NET-SOC dataset and employ online vacancy data
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in the US collected by Burning Glass Technologies. In defining green jobs, the paper looks specifically at

the open positions in wind and solar sectors between 2010 and 2019. Both sub-sectors exhibit substantial

growth rates, especially since 2013. A relevant share of solar jobs (approximately one third) is in sales,

while a similar share is scattered across installation and maintenance: coherently with these results, the

most common industry for wind jobs is manufacturing (29%), while utilities play an important although less

relevant role for both categories of green jobs (about 15-16%). With regards to the pay premium, it is higher

for green jobs even when controlling for educational level, and for jobs that require lower education. Finally,

in the US, green jobs tend to be localised in specific areas characterised by a high share of oil & gas sectoral

employment. Other applications using BGT data are in Saussay et al. (2022), focussing on employment

reallocation across so called low-carbon and high-carbon jobs, and the ensuing cost of transition for affected

workers.

These recent studies are but an example of the growing efforts to map and better characterise the green

transition, which still begs for higher quality data and further research (Vona, 2021). According to our

reading, the main limitation of the task-based approach, together with deeper theoretical flaws discussed in

Staccioli and Virgillito (2021) and especially in the identification of green jobs, relies on the fact that the

degree of greenness can hardly be inferred by the content reported within O*NET task descriptions. The

approach to green occupations is based on Dierdorff et al. (2009), who define the Green Economy program

of O*NET that groups green jobs in:

• existing occupations that are expected to experience significant employment growth due to the greening

of the economy (Green Demand);

• existing occupations that are expected to undergo significant changes in terms of task content (Green

Enhanced Skills);

• new occupations that emerge as a response to specific needs of the green economy (Green Emerging).

Although this approach has potential in mapping green occupations, it essentially conceives ex-ante the

green economy as a net creator of new jobs, because it is understood to be a new growing sector. What

if, however, green applies not only to products/sectors, but also to processes? What if the greening of

a given existing sector implies essentially efficiency-enhancing processes, reducing input absorption, and

labour thereof? What if green technologies are not linked only to a new emerging economy but rather to

more efficient green processes? And, what happens to sectoral employment if production processes become

at the same time net saver of emissions and labour inputs? After all, to a larger extent, green processes are

essentially productivity-enhancing processes, and as such they might incorporate a LS trait (Rosenberg, 1976;

Dosi, 1988; Tunzelmann, 1995).

Adopting an evolutionary perspective on technological change and drawing upon Montobbio et al. (2022b),

we want to assess the extent to which patents meant to mitigate climate change present an explicit LS con-

5



tent. Patents indeed represent a viable proxy of codified technological knowledge within firms and thus

constitute a powerful tool to understand the rate and direction of innovative activities (Pavitt, 1985). The

willingness to focus on LS heuristics comes from the possibility to challenge the very notion of green skills,

since we question the existence of processes, and ensuing human skills, uniquely connected to the develop-

ment of green products; in so doing, we focus on the greenness of processes, rather than products. Moreover

our research question, differently from incumbent studies devoted to understanding the development of new

occupations within sectors, concerns the extent to which existing efforts in developing green technologies are

coupled with efforts in reducing labour inputs, via efficiency-enhancing processes. Should the twin transition

present a limited capability in the development of labour-friendly products, unfolding especially towards

labour-saving green processes, we shall argue that LS effects may prevail in the realisation of less polluting

new processes, also requiring less manpower.

3 Data description

The technological dataset is represented by USPTO data. We first retrieved from PatentsView4 all granted

patents published between 1976 and 2021 which contain at least one CPC code of either Class Y02 or Subclass

Y04S, which are intended to encompass green technologies (Veefkind et al., 2012; Angelucci et al., 2018). A

total of 475, 597 patents are found in this step, whose temporal evolution is depicted in figure 1. Given this

set, we will devise and apply a procedure to identify LS patents therein.

Figure 1: Number of green patents per year

The second dataset moves from technology, to sectors, to state level labour markets, in order to evaluate

the sectoral (industrial) penetration of LS technologies and their employment impacts at state level in the

US. In particular, we leverage upon:

• IPC-NACE concordance table: in order to match each single patent to a given industrial sector

(NACE)5, we adopt the concordance table provided by the European Patent Office, at 6-digits.6

4PatentsView.
5Nomenclature generale des Activites economiques dans les Communautes europeennes.
6NACE & IPC concordance.
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Figure 2: Employment share difference 2019 vs. 1999

• Sectoral employment data (US): for sectoral employment data we adopt the Statistics for US

Business (SUSB), collected and made available by the United States Census Bureau.7 We retrieve

state level data for three years, in particular 1999-2009-2019. Data are shown in figure 2, plotting

employment share change over twenty years. Remarkable differences emerge already at this stage in

terms of the geography of employment with net loosing and net gaining states. The map signals the

inner structural change in terms of manufacturing (Rust Belt) versus the coastal and southern areas

linked to both high end (California and Washington) and low end (Texas and Florida) services.

• NAICS-NACE concordance table: tables of concordance at 6-digits are made available by the

European Commission. Last table conversion is available for 20178.

• NAICS tables: over time there were different rounds of NAICS codes. Tables are made available by

the United States Census Bureau.9.

In section B of the Appendix we provide more details upon the concordance tables and the overall strategy

adopted to match the data.

7Details, descriptions and limitations of dataset can be found online at census.gov/methodology.
8NAICS-NACE concordance.
9Concordance tables link.
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4 Methodology

In order to identify LS heuristics inside green patents, we delve into natural language processing techniques.

Our approach relies on the textual analysis of the entire patent document text and constitutes an advance-

ment with respect to contributions that solely focus on patent titles and abstracts (see e.g. Webb, 2020).

Textual search is becoming increasingly applied in economics, while in other social sciences the sophisti-

cation and usage of NLP algorithm is spurring (Do et al., 2022). However, while some methodological

improvements and empirical application to specific sectors have been provided (Hain et al., 2020; Hain et

al., 2022), few contributions, at the best of our knowledge, are comparable to ours in terms of methodology.

In particular Mann and Püttmann (2021) establish a training sample with manual validation and then they

extend the identification through machine learning algorithm to classify the larger population of identified

patents. Dechezleprêtre et al. (2019) construct a composite identification strategy which involves both patent

classification and multiple keywords search.

Our empirical strategy entails first, the focus on semantic procedure rather than simple keywords search;

second, the implementation of natural language processing techniques to validate ex-post identified patents

to limit false positives. Third, the construction of alternative semantic constructs to enlarge the scope of

identification of true positive. Therefore, with our multi-steps approach we are able to isolate specific LS

heuristics inside green patents texts, representing a (conservative) picture of patents involved in the twin

transition, because explicitly embedding LS traits.

In subsection 4.1 we briefly describe the approach that leads to the identification of potential LS green

patents, combining the match of Y02-Y04S CPC patents (Veefkind et al., 2012; Angelucci et al., 2018)

and the textual approach developed in Montobbio et al. (2022b). However, we face a deep methodological

challenge that is the identification of true labour saving patents. Indeed, the validation procedure on which

we leverage upon, described in subsection 4.2, represents an advancement and novelty in the analysis of

patent texts, with only few exceptions in Meindl and Mendonça (2021), where the authors rely, as we do,

on the spaCy library (Honnibal and Montani, 2017), applied to Industry 4.0 patents. In figure 3 we present

the synthetic flow chart of our methodology.
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Figure 3: Flow chart of the methodology
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4.1 Identification of the patent set: potential LS green patents

We firstly retrieved, from the USPTO Bulk Data Storage System, all the patents from 1976 to 2021 containing

at least one CPC code of the Y02-Y04S category, that is all 475, 597 green patents. Then, in order to analyse

the potential LS effects embedded into these patents, we adopted the textual algorithm and procedure

described in Montobbio et al. (2022b). While we refer the reader to the paper for a full description of the

methodology, in figure 4 we show the structure of triplets to identify the LS traits. The algorithm entails to

consider the full-text of each green patent, after tokenisation, removal of stop words and stemming.10 The

algorithm looks for the joint occurrence of a triplet, which differently from trigrams does not require word

adjacency of words identified by the list, and assigns a flag as potential LS patent if one sentence contains

at least one of the k × j ×m triplets.


‘pred.1’

‘pred.2’

‘...’

‘pred.k’


︸ ︷︷ ︸

predicate

×


‘obj.1’

‘obj.2’

‘...’

‘obj.j’


︸ ︷︷ ︸

object

×


‘attr.1’

‘attr.2’

‘...’

‘attr.m’


︸ ︷︷ ︸

attribute

Figure 4: Structure of the labour-saving textual query

The preliminary steps of the identification strategy allow us to highlight 10430 patents as potential green

LS patents. A first manual validation of a 10% sample of data shows however a high level of false positives.

Two examples here below:

“The sHASEGPs or a soluble human hyaluronidase domain thereof or pharmaceutically acceptable deriva-

tives can be prepared with carriers that protect the soluble glycoprotein against rapid elimination from the

body, such as time release formulations or coatings” US9562223B2

10In order: tokenisation is obtained by means of a punctuation of regular expressions; the list of stop-words was specified by
the nltk Python library; from the same Python package we implement an advanced version of Porter (1980).
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“ [. . . ] for human consumption, soybean cultivar can be used to produce edible protein ingredients which

offer a healthier, less expensive replacement for animal protein in meats, as well as in dairy-type products”

US8076545B2

As it is possible to notice, despite the words highlighted belong broadly to the semantic area of LS tech-

nologies, the meaning of such phrases does not, showing two powerful examples of false LS green patents.

Thus, in order to isolate the true positive green LS patents, we initially perform an exploration based on

the exclusion of specific CPC associated to pharmaceutical and biotech technologies, also in line with Mann

and Püttmann (2021) that classify most of chemical and pharmaceutical patents as non-automation patents.

However, the distribution of false positives in our dataset does not show a strong concentration into specific

technological classes, but rather a wide dispersion around CPC codes. Therefore, in order to correctly pin-

point true positives, we move to the analysis of the semantic structure of statements, applying a dependency

parsing algorithms.

4.2 Identification of true LS green patents: dependency parsing analysis

Dependency parsing belongs to a family of grammar formalisms, whereby “[...], phrasal constituents and

phrase-structure rules do not play a direct role. Instead, the syntactic structure of a sentence is described

solely in terms of the words (or lemmas) in a sentence and an associated set of directed binary grammatical

relations that hold among the words” (Jurafsky and Martin, 2020: pag. 280). In order to achieve such result we

rely on spaCy11 (Honnibal and Montani, 2017), a specialised NLP library which leverages on neural networks

which is increasingly used both in industrial and academic applications, e.g. Meindl and Mendonça (2021).

The model represents texts through dependency parsing, which reconstructs the grammar relationship12

between words and the overall hierarchical structure of sentences. This allows to perform sophisticated text

queries which go beyond the simple co-occurrence of keywords. One of the very interesting features of the

spaCy algorithm is the possibility to deploy such grammatical structures through graphical representation of

dependency trees, as we do in figures 13, 14, 15, 16, 17, 18, where the arrows describe both the dependency

type (grammatical nature of a word in a specific phrase, e.g. adjectival modifiers) and the relationship

between words (how a noun is related to another one through an adjective or verb, for example). The usage

of ex-ante defined grammatical structure enables to rule out false positives like the examples provided in

section 4.1.

Two “ingredients” are therefore necessary to allow the algorithm to work: a dictionary of target keywords

and a specified dependency structure. We extend the keyword lists used in Montobbio et al. (2022b), as

reported in figure 5.

Together with the dictionary of target keywords, we require the relevant sentences of potential LS green

11spaCy.
12A more technical discussion on the various dependency types is offered in De Marneffe et al. (2014).
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

‘reduce’

‘reduction’

‘replace’

‘replacement’

‘eliminate’

‘elimination’

‘save’

‘saving’

‘lower’

‘substitute’

‘substitution’

‘automate’

‘automation’

‘efficiency’

‘less’

‘minimize’

‘minimal’

‘minimization’

‘without’

‘not require’


︸ ︷︷ ︸

predicate

×



‘worker’

‘labor’

‘human’

‘employee’

‘manpower’

‘job’

‘labour’

‘manual’


︸ ︷︷ ︸

object

×



‘cost’

‘expenditure’

‘expense’

‘hour’

‘intensity’

‘task’

‘time’

‘skill’

‘effort’

‘intervention’

‘amount’


︸ ︷︷ ︸

attribute

Figure 5: Dictionary lists for the dependency parsing model

patents (previously identified based on the triplets in figure 5) to exhibit either of the following dependency

structures:

• Baseline pattern: predicate → attribute → object

• Pattern I: predicate ← attribute → object

• Pattern II: predicate → object → attribute

• Pattern III: object → attribute → predicate

• Pattern IV: object → predicate → attribute

With the symbol→ or← we indicate the relationship between keywords and their semantic order within the

dependency tree. According to the baseline pattern (predicate → attribute → object), we ask the algorithm

to look for a semantic structure that starts with a predicate which connects to an attribute, and further to

an object. In order to read dependency trees, presented in Appendix A, we recall that the algorithm assigns

two types of tagging. Firstly, for each single word in the patent text, the algorithm assigns a tag identifying
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the core part-of-speech category, that is, its grammar definition (e.g. a noun, an adjective, a verb, etc.). Such

tag is called Universal Point of Speech (POS) tagging and is provided below each word represented in the

figures. The second tag instead characterises the grammatical relationship between words (dependency) and

is depicted along the connecting arrows; for instance, “attr” means that the word upon which the arrows

land is an attribute with respect to the the word from which the arrow starts. In particular, the algorithm

adopts the Universal Dependency (Dep) in terms of nomenclature. The POS tagging list is described in

more detail in Appendix E where we also provide the appropriate source to the interested reader concerning

the Dep nomenclature and description.

4.3 A snapshot of true LS green patents subset

Repeated random samples were hand-validated in order to gain an insight on the magnitude of algorithm

accuracy, which shows a level superior to 85%. To study the underlying technological content of the subset of

true LS green patents, we map the CPC associated to climate change-related patents, distinguishing between

LS and non-LS ones. Table 1 and 2 show, respectively, the top 20 CPC at 4 digits13 in terms of frequency for

LS and non-LS green patents. The frequency is computed as the number of times a certain code is specified

across all patents and takes into account the fact that the same 4-digit code may appear more than once

in each patent. In grey we show common CPC between LS and non-LS green patents, while coloured CPC

were the ones uniquely appearing in each list (green for the LS patents, orange for the non-LS ones): the

majority of them are shared among the two lists, a sign of pervasiveness of green technology both between

LS and not LS patents and also the lack of specific LS applications in some circumscribed domains.

In table 2 we notice specific non-LS CPC concerning medical/therapeutic areas (A61P, A61K), automo-

tive with a focus on combustion engine (F02D, F01N, B60W) and chemistry (B01J, C01B). The LS green

patents instead show more heterogeneous areas in terms of CPC, which include control systems (G05B),

data processing for administrative purposes (G60Q), heating system (H05B, F24S), telephonic communica-

tion (H04M), in line with the digital content of this set. The very fact the LS patents are not restricted to a

selected CPC but are rather widespread signals that LS heuristics are not a restricted phenomenon. How-

ever, this pervasiveness also highlights the fact that to be identified such hueristics require a more complex

procedure rather than only ex-ante focusing on specific CPC.

Notably, the algorithm correctly pinpoints technological applications related to human treatments as false

positive (non-LS); in addition, climate-change related innovation in automotive are concentrated in non-LS

patents rather than in LS ones. The latter evidence might hint at the fact that more innovative efforts in

the automotive sector are currently focusing on product, rather than process innovation, such as the electric

engine, the production of batteries and their internal components.

13In Appendix D we present similar tables but using full digits codes.
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Top 20 TRUE LS
CPC 4 dig. Rank Freq Description
H04L 1 3323 TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COM-

MUNICATION
H04W 2 2966 WIRELESS COMMUNICATION NETWORKS
G05B 3 2132 CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL EL-

EMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGE-
MENTS FOR SUCH SYSTEMS OR ELEMENTS

B29C 4 1994 SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN
A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-
TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING

G06Q 5 1744 DATA PROCESSING SYSTEMS ORMETHODS, SPECIALLY ADAPTED FOR
ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPER-
VISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPE-
CIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL,
MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTH-
ERWISE PROVIDED FOR

Y02E 6 1526 REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO EN-
ERGY GENERATION, TRANSMISSION OR DISTRIBUTION

G06F 7 1333 ELECTRIC DIGITAL DATA PROCESSING
Y02P 8 1304 CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION

OR PROCESSING OF GOODS
Y10T 9 1154 TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
H01L 10 1097 SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT

OTHERWISE PROVIDED FOR
F24S 11 1074 SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
H01M 12 1053 PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVER-

SION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
Y02T 13 1003 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-

PORTATION
H02J 14 971 CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DIS-

TRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC EN-
ERGY

Y02B 15 782 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILD-
INGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER AP-
PLICATIONS

B60L 16 764 PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES [. . . ];
SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF
ELECTRICALLY-PROPELLED VEHICLES[. . . ]; ELECTRODYNAMIC
BRAKE SYSTEMS FOR VEHICLES IN GENERAL[. . . ]; MAGNETIC SUS-
PENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING
VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC
SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES

C02F 17 745 TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
B01D 18 652 SEPARATION
H04M 19 624 TELEPHONIC COMMUNICATION
H05B 20 619 ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE

PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT
SOURCES, IN GENERAL

Table 1: TOP 20 CPC, true LS patents
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Top 20 FALSE LS
CPC 4 dig Rank Freq Description
H01M 1 403572 PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVER-

SION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
H01L 2 234719 SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT

OTHERWISE PROVIDED FOR
Y02E 3 202559 REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO EN-

ERGY GENERATION, TRANSMISSION OR DISTRIBUTION
Y02T 4 182576 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-

PORTATION
G06F 5 146749 ELECTRIC DIGITAL DATA PROCESSING
B60L 6 137688 PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING

ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-
PROPELLED VEHICLES ; ELECTRODYNAMIC BRAKE SYSTEMS FOR
VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITA-
TION FOR VEHICLES; MONITORING OPERATING VARIABLES OF
ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES
FOR ELECTRICALLY-PROPELLED VEHICLES

B01J 7 115215 CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID
CHEMISTRY; THEIR RELEVANT APPARATUS

B01D 8 114560 SEPARATION
H04W 9 114510 WIRELESS COMMUNICATION NETWORKS
Y02P 10 112623 CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION

OR PROCESSING OF GOODS
H02J 11 105938 CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DIS-

TRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC EN-
ERGY

F02D 12 104515 CONTROLLING COMBUSTION ENGINES
A61P 13 94281 SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR

MEDICINAL PREPARATIONS
H04L 14 91749 TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COM-

MUNICATION
F01N 15 86433 GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR

ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARA-
TUS FOR INTERNAL COMBUSTION ENGINES

B60W 16 84747 CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE
OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED
FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS
FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR
SUB-UNIT

Y10T 17 78931 TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
A61K 18 72087 PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
C01B 19 59927 NON-METALLIC ELEMENTS; COMPOUNDS THEREOF
Y02B 20 57705 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILD-

INGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER AP-
PLICATIONS

Table 2: TOP 20 CPC, non-LS patents
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5 Results

In the following, we present our results. We start discussing the temporal evolution and technological

composition of both LS and non-LS patents in subsection 5.1. Then, we move into the analysis of sectoral

penetration and employment impacts on US labour markets in subsection 5.2.

5.1 Temporal evolution and technological composition

This section presents the temporal evolution and technological composition of the overall number of patents

retrieved from the different steps of the algorithm, as shown in table 3. First, applying the procedure of

identification of LS patents developed in Montobbio et al. (2022b), we end up with potential 10430 patents

out of 475597 (about 2.29%). Second, applying the validation procedure via dependency parsing described

in section 4.2, we end up with 3901 true LS patents (about 0.8% of all green patents).

In terms of temporal trends, shown in figure 6, both sets present a steady increase up to 2008-2010, with

a fierce acceleration onward. In the third plot of figure 6, we report the relative share of LS patents over

time, in order to compare the relative trend of the two categories: notably, until the ’80, LS green patents

had a steeper increase with respect to the overall green patents while, since then, the share fluctuates around

0.8% across the years.

In tables 4 we show the Y02-Y04S CPC tags frequency associated to the identified patents. The overall

bulk of patents is classified into nine scopes of application, according to the USPTO definitions.14 The relative

distributions across categories appear coherent between LS and non-LS patents, with some notable exception.

For instance, while Energy and CSSD (“Climate Storage Sequestration or Disposal”) are respectively the

most and less frequent CPC tag in both groups, Digital shows a lower level of frequency for LS green patents

then the non-LS one. On the contrary, Smart grids CPC is relatively more prevalent in LS green patents

with respect to the total of patents. Although all patents are inside the climate-change related domain, these

technologies are characterised by different “stages of life-cycle”, namely, some are infant technologies while

some others are mature ones. Different stages in life-cycle might manifest in heterogeneous trends over time.

Type of patents Number of patent
All green patents 475597
Potential LS green patents 10430
True LS green patents 3901
False LS green patents 6529

Table 3: N° of patents along identification procedures

In order to draw a patent composition analysis, beyond tags, we rely on prevalent CPC associated to

each patent, which is the first CPC that appears for each granted patent. The bulk of green technologies

are concentrated in what we labeled “complementary green” patents, meaning that the primary associated

14The official labels and descriptions can be found at Espacenet.
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Tag
Comparison LS NO LS

Rank LS Rank non-LS Freq Rel. Freq. (%) Freq Rel. Freq. (%)
Energy 1 1 1526 24.13 202559 28.73
Transportation 3 2 1003 15.86 182576 25.9
Products & pro-
cesses

2 3 1304 20.62 112623 15.98

Building 4 4 782 12.37 57705 8.19
Digital 8 5 338 5.34 50529 7.17
Adaptation 5 6 539 8.52 46340 6.57
Waste 7 7 354 5.6 23612 3.35
Smart grids 6 8 463 7.32 22610 3.21
CSSD 9 9 15 0.24 6430 0.91

Table 4: Tag composition, LS vs. non-LS green patents

Figure 6: Patents’ trend: all patents vs. LS

17



CPC tag is different from the Y02-Y04S classification. Therefore, restricting the analysis to those patents

which present a green-tag as the first element (figure 7), in the non-LS set, energy, transportation, product

& process, digital and building patents do represent the majority of them with a steep increase since 2008

onward. In particular, digital and building patents show notable growth rates, while product & process

patents manifest a slowdown. The other technological classes instead have a more sluggish trend. Focusing

on LS green patents (bottom part of figure 7), the low numbers of patents per year generate more volatile

trends. In this subset we highlight the higher relative importance of product & process patents and the

lower importance of transportation ones.

From the temporal and composition analyses of green patents it emerges that, green technologies are

quite heterogeneous in themselves, with some technological domains almost disregarded, as waste. Energy

and transportation are the workhorse but they generally come as secondary scope and use. Indeed, it appears

that green technologies are more complementary rather than uniquely sourced, considering that the largest

fraction of patents do not report a green CPC as primary code. With reference to LS green technology, the

ubiquity across domains is evident, and even the temporal trend, although sluggish, is increasing.

Figure 7: Patents’ trend: non-LS patents vs. LS, only Y02-Y04S tags

Given the different life cycle of the underlying technologies, in figure 8 we present the temporal dynamics

of each specific share of technology. A higher temporal volatility derives from LS green patents as shown

in the bottom part of the figure where both LS and non-LS patents are considered together. If we focus on

the comparison between LS and non-LS green patents, we distinguish some specific patterns. Starting from
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non-LS patents we observe stable levels of patent shares in transportation and energy, even if the latter shows

a small decrease in the last decades. Adaptation and waste present a similar pattern, with a relative increase

until mid-1990s, followed by a constant decrease. Digital, smart grids and building patents instead have

acquired higher shares over time, in particular digital technologies. LS shares present remarkable differences

with respect to the non-LS ones: for instance, adaptation and product & process look to be more relevant

than respectively non-LS patents and, on the contrary, transportation LS patents do not have a very high

importance. Waste, digital patents and smart grids present similar (yet more volatile) patterns than non-LS

green patents. Smart grids technologies are relatively more important in the case of LS patents than in

non-LS one. It is however important to highlight that the bulk of innovative efforts are concentrated toward

the complementary green patents, as it is possible to notice in the right side of figure 8.

LS patents have shown to be a tiny fraction. However, what if new emerging green patents progressively

are born embedding LS heuristics? How does dynamically change the importance of LS heuristics? Tem-

porally weighted growth rates, where the weight is based on the lagged annual share of patents, allow to

account for the underlying behaviour. This measure is useful to capture different life cycle stages of green

technologies and it is constructed as follows, for both LS and non-LS patent sets, respectively defined by the

superscript H={LS; non-LS} to indicate the underlying heuristics:

1. For each green technological category i, we define the annual growth rate of patents:

growth
(H)
i,t =

n
(H)
i,t − n

(H)
i,t−1

n
(H)
i,t−1

(1)

2. For each single year, we compute the share of each specific technology, with respect to total green

patents:

Share
(H)
i,t =

n patents category
(H)
i,t∑k

i=1 n patents category
(H)
i,t

(2)

3. The weighted growth for each category is defined as the product between the yearly growth rate by

single category and its lagged year share, namely:

Weighted Growth
(H)
i,t = growth

(H)
i,t ∗ Share

(H)
i,t−1 (3)

4. Finally, we apply a five years rolling average to smooth the trends and we compute the cumulative

growth.

The results offer a clear accounting of the technological pervasiveness of LS heuristics in the development

of new green technologies across the majority of domains. Figure 9 represents the cumulative weighted

growth, distinguished by the Y02-Y04S technological tag schemes and dividing between LS and non-LS

patents. With the exception of CSSD technologies, digital and partly smart grids, the weighted cumula-
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Figure 8: Share of patents, LS vs. non-LS
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Figure 9: % Cumulative weighted growth, LS vs. non-LS by green component
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tive growths of all other remaining technologies are much higher for the LS set of patents with respect

to the non-LS one. The result highlights that green patents progressively arrive embedding labour-saving

heuristics, therefore, although relatively low in number, LS patents show to be concentrated in newly de-

veloped technologies. Indeed, such heuristics, if at a first approximation might appear a secondary concern,

once concentrating in newly emerging technologies, and during the last period, might reveal to be far more

relevant.

This evidence raises the question about the job creation capacity of the green paradigm. While new jobs

might arrive because of new product creation, technological upgrading and greenifying technologies might

embrace a labour saving content potentially able to expel labour force. In the next subsection we are going

to go deeper into the link between technological penetration of LS green technologies, at the geographical

level, and the related employment growth trends.

5.2 Penetration of green LS technologies on employment growth

We now move to analyse the nexus between employment growth and LS heuristics’ penetration, at the

sectoral and state level in the US. With this scope, we first link patents to sectors, and then, controlling for

state level sectoral composition of employment, we link sectoral penetration of technologies to employment

dynamics.

The first step entails mapping the relevance of LS patents among sectors: to accomplish the task, we

use the concordance table between IPCs and NACE sectors provided by the European Patent Office which

can also be adopted for CPC.15 The concordance table allows to map each patent i with its NACE codes

(thereafter, sectoral codes) and weights associated, such that for each patent i the sectoral weights sum up

to one.

After associating CPC to sectoral codes, we build a sectoral penetration index (normalised between zero

and one) associated to each sector j, which represents the overall sectoral exposure to each of the two patent

sets (LS vs. non-LS). For instance, a level close to one of such indicator in the non-LS patent set characterises

a sector not exposed to LS technological penetration, therefore in which the majority of non-LS patents are

concentrated.

To construct an indicator of sectoral penetration we firstly build an identifier composed by each patent ID

and sectoral weights associated, and we then uniquely select the rows based on such identifier. Afterwards,

for each j sectoral code, we build the average, according to the following procedure:

Avg. Sectoral penetration
(H)
j =

∑nj

i=1 Sector weight
(H)
i,j

n
(H)
j

(4)

where nj is the number of patents in sector j, and Sector weighti,j is the weight associated to patent i in

15Excel concordance tables and metadata can be found atNACE & IPC concordance table.
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sector j.

Such procedure however equally weights more and less prevalent CPC, thus presenting potential biases.

In order to make this measure meaningful for intersectoral comparison, we weight the average sectoral

penetration for the patent share in each sector:

Sectoral patent share
(H)
j =

n
(H)
j∑k

j=1 n
(H)
j

(5)

These sectoral shares assume higher values for sectors characterised by higher patent intensity of a specific

CPC, and vice-versa. Finally, we build a Sectoral penetration index which allows for weighted comparisons

between sectors:

Sectoral penetration index
(H)
j = Avg. Sectoral penetration

(H)
j ∗ Sectoral patent share(H)

j (6)

The attributions of technological penetration to sectors are shown in figure 10 and in the third column of

tables 5 and 6 for non-LS and LS patents respectively. If we consider the top twenty more exposed sectors,

it is possible to notice a high level of overlapping between the two sets, in line with the results on CPC

prevalence. Restricting the attention to the top five sectors, we highlight the relative less importance of

automotive/transportation sector in LS technologies with respect to the non-LS green patents. In fact, in

the 1st and 3rd positions in the set of non-LS green patents we find respectively sector 27.2 (“Manufacture of

batteries and accumulators”) and 29.1 (“Manufacture of motor vehicles”), while the same industrial sectors

are in the 7th and 13th positions for the LS patents set. Such results are indeed not surprising and signal a

lack of specific concentration of LS heuristics in some specific sectors, and therefore the ensuing pervasiveness

all but limited to specific sectors/technology. Indeed, the pervasiveness of LS heuristics might be considered

a potential warning of the embedded labour-saving effects. Recall that the majority of the identified patents

are “complementary green”, therefore the presence of sectors not strictly related to green products should

not come as a surprise. In addition, this evidence suggests the relevance of interpreting the usage of the

underlying patented technologies also in terms of green processes.

We now move from sectoral to employment penetration at the geographical level. In the US, the sectoral

employment composition deeply differs across states. Therefore, we can compare state by state the change

in employment shares in more versus less exposed sectors to LS patents, where the exposure is measured by

the sectoral penetration index presented in tables 5 and 6, and then aggregated at the state level. Indeed,

the analysis is meant to understand the extent to which states that do present an employment composi-

tion in sectors more exposed to LS patents record a different dynamics vis-à-vis states whose employment

composition is less concentrated in sectors exposed to LS technologies.

We employ SUSB data from the United States Census Bureau and the concordance table (reported in the

fourth column of tables 5 and 6), linking therefore each sector to the level of employment in 2019. In order
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Table 5: TOP 20 sectoral codes, non-LS green patents

Sectoral code Sectoral code description Sectoral penetration index EMPL sector
(absolute values)

Rank Emp

27,2 Manufacture of batteries and accumulators 1 449911 3
29,1 Manufacture of motor vehicles 0,892928 453170 2
26,3 Manufacture of communication equipment 0,564028 77046 22
26,2 Manufacture of computers and peripheral equipment 0,527544 39505 30
28,29 Manufacture of other general-purpose machinery

n.e.c.
0,354456 640863 1

28,11 Manufacture of engines and turbines, except aircraft,
vehicle and cycle engines

0,30955 137586 16

27,9 Manufacture of other electrical equipment 0,234689 319205 7
27,12 Manufacture of electricity distribution and control

apparatus
0,231457 68926 24

26,51 Manufacture of instruments and appliances for mea-
suring, testing and navigation

0,168164 4685 5

25,3 Manufacture of steam generators, except central
heating hot water boilers

0,154136 61724 25

28,3 Manufacture of agricultural and forestry machinery 0,079312 181638 13
28,25 Manufacture of non-domestic cooling and ventilation

equipment
0,074527 301782 8

32,5 Manufacture of medical and dental instruments and
supplies

0,056016 426927 4

28,23 Manufacture of office machinery and equipment (ex-
cept computers and peripheral equipment)

0,055596 78223 21

27,33 Manufacture of wiring devices 0,054702 40303 29
27,4 Manufacture of electric lighting equipment 0,048128 103335 18
28,99 Manufacture of other special-purpose machinery

n.e.c.
0,037413 230878 9

42,91 Construction of water projects 0,030119 72980 23
26,7 Manufacture of optical instruments and photo-

graphic equipment
0,024796 19414 34

26,4 Manufacture of consumer electronics 0,023935 15533 35

Table 6: TOP 20 sectoral codes, LS green patents

Sectoral code Sectoral code description Sectoral penetration index EMPL sector
(absolute values)

Rank Empl

26,2 Manufacture of computers and peripheral equipment 1 39505 28
26,3 Manufacture of communication equipment 0,875315519 77046 21
26,51 Manufacture of instruments and appliances for mea-

suring, testing and navigation
0,556333898 373743 5

27,2 Manufacture of batteries and accumulators 0,433191707 449911 3
28,3 Manufacture of agricultural and forestry machinery 0,393741431 181638 13
28,29 Manufacture of other general-purpose machinery

n.e.c.
0,367832238 640863 1

29,1 Manufacture of motor vehicles 0,330763648 453170 2
27,12 Manufacture of electricity distribution and control

apparatus
0,234918604 68926 23

25,3 Manufacture of steam generators, except central
heating hot water boilers

0,173308396 61724 24

28,23 Manufacture of office machinery and equipment (ex-
cept computers and peripheral equipment)

0,147993413 78223 20

27,4 Manufacture of electric lighting equipment 0,14345348 103335 18
28,11 Manufacture of engines and turbines, except aircraft,

vehicle and cycle engines
0,114136857 137586 16

28,25 Manufacture of non-domestic cooling and ventilation
equipment

0,102149119 301782 8

27,9 Manufacture of other electrical equipment 0,098981025 319205 7
32,5 Manufacture of medical and dental instruments and

supplies
0,09572913 426927 4

27,33 Manufacture of wiring devices 0,08913564 40303 27
28,99 Manufacture of other special-purpose machinery

n.e.c.
0,072506004 230878 9

42,91 Construction of water projects 0,053415885 72980 22
20,2 Manufacture of pesticides and other agrochemical

products
0,031378868 27457 30

28,22 Manufacture of lifting and handling equipment 0,028898217 353483 6
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Figure 10: Most prevalent sectoral codes, normalised values

25



to map if and the extent to which the sectoral penetration of LS patents has an impact on employment share

growth, and eventually a differentiated one with respect to non-LS patents, we set up a quantile regression

analysis, conducted at the state-sectoral level.

Given the lack of sectoral employment data at the state level, we build state level employment weights

to impute the share of each sector (available at federal level) for each state, that is:

stateweight
(H)
i,t =

Employment state
(H)
i,t

Federal Employment
(H)
t

(7)

with i = 1, ..., 50 that represents state dummies, and t = {1999, 2009, 2019} years considered. For both sets

we then compute the share of employment in state i, in sector j, at time t:

Total share
(H)
i,j,t =

Federal Employment sector
(H)
j,t

Federal Employment
(H)
t

∗ stateweight(H)
i,t (8)

We finally calculate ten-year growth rates of the implied sectoral employment shares in order to have a

relatively long time span to capture any structural change process. We perform the following quantile

regression estimation for each of the two sectoral penetration indices of patents (as usual for both LS and

non-LS sets), including both a linear and a quadratic term:

Empl Share growth
(τ)(H)
θ,i,j =β

(τ)(H)
1 Sectoral penetration indexi,j + β

(τ)(H)
2 Sectoral penetration index2

i,j

+ α
(τ)(H)
i + ϵ

(τ)(H)
i,j,θ

(9)

with τ = 0.5, indicating the proportion of the population having scores below the quantile at τ ; θ

represents the interval periods considered (2019 vs. 2009, 2009 vs. 1999, 2019 vs. 1999), for which we

perform distinct regressions; i=1,...,50, indicating one of the US states; j the sector. State level fixed effects

were included to account for geographical heterogeneity and to counterbalance the fixed within sectoral

composition across states (see equation 7). Finally, the inclusion of the quadratic term allows for a non

linear relationship and a more flexible regression estimate.

In table 7 we present the results of the regression exercise and in figure 11 we plot the intensity of the

coefficients along the distribution of the sectoral penetration index. Both OLS and quantile regression at the

median estimates are reported, while each point represents the sectoral-state share of employment in each

year of the estimation period.

Results are in line with our expectations. Along the distribution of the sectoral penetration index,

between zero and one, the coefficients show an overall negative concave relationship between the relevance

of LS patents across sectors and employment share growth, while the opposite holds for the non-LS patents

set. Notably, the quadratic relationship signals the existence of a non linear-threshold behaviour that is

26



in general around a penetration index of 0.5. Indeed, sectors/states with high sectoral penetration are not

the majority of observed points but, whenever the index of penetration is high, negative effects for sectoral

employment share growth are strong.

Our dependent variable informs about changes in the structural composition across sectors, being both

services and manufacturing included in the overall employment. A robustness test is conducted in Ap-

pendix C, restricting the analysis to manufacturing shares only, confirming the result: whenever the within-

manufacturing sectoral employment is more exposed to LS green patents, employment shares in that sector

decline.

According to these results, first, our identification methodology of LS heuristics looks to be ex-post

validated given that sectors which are exposed to a large number of LS green patents do present decreasing

share growth, and therefore manifest LS effects on employment. Notably, the opposite result holds for non-LS

patents. In addition, despite the low number of LS patents, results are significant and robust to the inclusion

of a different dependent variable, that is employment share across manufacturing. Finally, the nexus between

the unfolding of green technology upon employment strengthens in the last decade (2009-2019), while in the

first (1999-2009) does not show any significant result in either set (LS vs. non-LS).

In order to account for geographical heterogeneity, in figure 12 we plot the estimated beta coefficients

at the state level. From the maps, the depressed Rust Belt area and the inner Wyoming and Missisipi

states notably stand out. These states record negative employment growth shares in sectors more exposed

to LS green technologies, given the differences between the two maps (left-hand side vs. right-hand side).

Winning states are instead located into the east and southern areas. Notably, states with higher sectoral

exposure to non-LS patents record positive employment share growth, as shown in the left-hand side figure.

Another striking result is that the distinction between LS and non-LS technologies becomes relevant in the

second decade (2009-2019), while the dynamics in the decade 1999-2009 shows an almost overlapping pattern

between the two sets of technologies. Considering that the sectoral penetration index of LS technologies is a

time-invariant indicator, the intensification of the effects over time can only be attributed to a retardation,

time to display-effect, of both LS and non-LS technologies over time.

In a nutshell, the most exposed sector to LS patents is manufacturing of computers and peripheral

equipments, while, at the opposite, the most exposed sector to non-LS technologies is manufacturing of

batteries and accumulators. The two most exposed sectors are a clear distinct example of the different

effects that process vs. product innovation can exert on employment even in the green segment.
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Table 7: Quantile regression results (0.5), LS vs. non-LS patents

NACE Employment total share growth, LS vs. non-LS patents

2019vs1999 2009vs1999 2019vs2009 2019vs1999 2009vs1999 2019vs2009
LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index 0.244288∗∗ −0.065534 0.719042∗∗∗ −3.076947∗∗∗ −0.741661∗ −0.210307∗∗∗
(0.120790) (0.230282) (0.066488) (0.480215) (0.413646) (0.054767)

Sectoral penetration index2̂ −1.051315∗∗∗ −0.188366 −1.262192∗∗∗ 3.158888∗∗∗ 0.613342 0.275940∗∗∗

(0.140848) (0.227818) (0.073499) (1.168288) (1.193818) (0.054104)

Observations 1,785 1,785 1,785 2,091 2,091 2,091

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Total share growth, 2019 vs. 1999

(b) Total share growth, 2009 vs. 1999 (c) Total share growth, 2019 vs. 2009

Figure 11: Regression plots
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(a) LS patents, 2019 vs. 1999 (b) Non-LS patents, 2019 vs. 1999

(c) LS patents, 2009 vs. 1999 (d) Non-LS patents, 2009 vs. 1999

(e) LS patents, 2019 vs. 2009 (f) Non-LS patents, 2019 vs. 2009

Figure 12: State level coefficients, empl. share growth
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6 Conclusions

Climate change urges for policy actions: green transition and digitalisation/automation efforts are seen as

pivotal and are currently under the lens of practitioners and scholars. However, while recognised as part

of a common transition, defined as twin transition, green and digitalisation/automation impacts are often

treated separately, especially with respect to labour markets. The literature currently tends to emphasise

the job creation effects of the green paradigm (IRENA and ILO, 2021) and the job-destruction effects of

automation, digitalisation, and more recently AI (Montobbio et al., 2022a). However, there is still no clear

understanding of the couple dynamics between green technologies, which should support the green transition,

and labour-saving heuristics embedded in innovative green efforts.

Given the extant literature, the first contribution of this paper is to detect the existence of LS heuristics in

climate change mitigation/adaptation patents, therefore to link these two countervailing forces upon labour

market restructuring. To empirically accomplish the task, we delve into the analysis of textual contents

of patents relying on Natural Language Processing (NLP) techniques. In addition, we adopt a semantic

analysis validation method, dependency parsing, allowing to produce quite restrictive but reliable results.

The methodological advancement in identifying LS green patents represents our second contribution.

We then construct a direct measure of sectoral technological penetration linking patents, distinguished

into LS and non-LS, and connected to sectors via the patent-sector concordance table. The sectoral exposure

allows then to move to state level labour markets, accounting for sectoral employment distributions and the

net effects deriving from LS penetration. The construction of a direct measure of technological exposure

linked to labour markets is an innovative advancement with respect to the literature on green jobs, which

until now has adopted indirect measures of degrees of greeness at the task-level unit of analysis, inheriting the

approach from the Routine-Biased Technical Change literature, the latter lacking of the actual measurement

of technology in use. In addition, the green jobs literature, so far, has not delved into understanding green

as a process but rather as a product or new emerging sector. The construction of a penetration index

connecting technology-sectors-employment, together with the focus on green as a process, represents our

third contribution.

According to our results, first, LS and non-LS patents do manifest differences in terms of technological

composition (Y02-Y04S main tag): for instance the transport (Y02T) and digital sectors (Y02D) exert a

less relevant role in LS green patents than in non-LS ones, while product & process (Y02P) and smart grids

are relatively more important in LS patents. More remarkably, from the patterns of cumulative weighted

growth in the two different sets, it emerges a clear evidence that LS patents are becoming progressively more

pervasive in recent technological applications, considering that the measure accounts for the maturity stage

of technologies.

Finally, we explore the effect of penetration of the two different sets of technology on employment (SUSB

data) at the sector/state level. We study changes in the share of of employment along the last ten and twenty
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years. Our evidence shows that employment shares in sectors characterised by a higher exposure to LS (non-

LS) technologies present an overall negative (positive) growth dynamics. Such results are robust when using

manufacturing shares instead of overall employment, and provide further validation of the identification

steps of LS heuristics embedded into green technologies. Remarkable state level heterogeneity emerges in

the second decade, hinting at a time-to-display effect of technologies upon employment, with the Rust Belt

area dramatically loosing in contrast with Texas and California gaining employment shares, with reference

to non-LS patents.

The flexibility of the index is a such that it can be distinctively adopted to measure both labour expelling

but also labour creating effects of the green paradigm. Our concern here has been towards labour expelling

patterns, however labour creation effects might be studied as well. This represents a natural continuation of

our work. In addition, cosine similarity measures of textual contents might be applied linking patents and

tasks embedded into occupations, via O*NET, along the line of Montobbio et al. (2021). The latter would

represent a second avenue of research. The study of the effects upon wage and functional inequality would be

a third realm of investigation. Further extensions may include the distinction between product and process

innovation, together with a more fine-grained decomposition of the geographical distribution.

There are however a number of limitations: patent data are not the unique proxy of technological

innovation, and they do not exhaust the multidimensional aspects of innovation realm and scope. Secondly,

our study deals with technological penetration but it does not address the actual adoption of such technologies

by firms: our results, therefore, must be interpreted in terms of potential LS impacts and not as realised ones.

Finally, other NLP methods are spurring and may be considered valuable alternatives, especially supervised

machine learning techniques (Mann and Püttmann, 2021; Do et al., 2022).
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Saussay, Aurélien, Misato Sato, Francesco Vona, and Layla O’Kane (2022). Who’s fit for the low-carbon

transition?: Emerging skills and wage gaps in job and data. Tech. rep. Fondazione Eni Enrico Mattei

(FEEM).

Staccioli, Jacopo and Maria Enrica Virgillito (2021). “The present, past, and future of labor-saving tech-

nologies”. In: Handbook of Labor, Human Resources and Population Economics. Springer, pp. 1–16.

Stefan, Muench, Stoermer Eckhard, Jensen Kathrine, Asikainen Tommi, Salvi Maurizio, and Scapolo Fabiana

(2021). Towards a green digital future. Tech. rep. EUR 31075 EN, Publications Office of the European

Union, JRC129319.

Tanner, Anne Nygaard (2014). “Regional branching reconsidered: Emergence of the fuel cell industry in

European regions”. In: Economic Geography 90(4), pp. 403–427.

Tunzelmann, G. Nicholas von (1995). “Time-saving technical change: the cotton industry in the English

Industrial Revolution”. In: Explorations in Economic History 32(1), pp. 1–27.
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A Pattern examples

Pattern I: predicate ← attribute → objects

The first example is represented by patent US9062327B2 and the section of the text identified is the follow-

ing:

“ [. . . ] there is also less total operational expense, even assuming that the operational expense for a single

ear corn harvester is the same as that for a single combine; and there is less total labor expense.” Figure

Figure 13: Example 1, pattern I

13 shows the portion of the dependency tree containing our target keywords. Here, we see that the word

“expense” (NOUN) is connected to both “labor” (NOUN, “compound” of “expense”) and “less” (ADJective,

also identified as an adjective modifier, “amod”). The word “expense” belongs to the attribute list, “labor”

to object and “less” to predicate.

The second example we provide is patent US10005267B1 and we focus on this section of text:

“ [. . . ] this translates to reduced assembly time and labor for quicker and more cost effective manufacture.”

Here the keyword is “time” which is connected to both the conjuction (“conj”) “labor” and the adjective

modifier “reduced”. Again, “time” is in the attribute list, while the other two terms are respectively in the

object and in the predicate lists.
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Figure 14: Example 2, pattern I

Pattern II: predicate → object → attribute

As first example of the pattern presented, we show the following patent US10003090B2:

“ [. . . ] this reduces labor and expenses associated with assembly [sic] a cell stack assembly”

Figure 15: Example 1, pattern II

The graph in figure 15 appears more complex, but it is possible to see that it starts from the word “re-

duces”, passing through “assembly” (“dobj”: direct object), then “labor” (“nmod”: nominal modifier) and

finally concludes with “expenses” (“conj”: conjunction). The structure is therefore predicate (“reduces”) →

[assembly] → object (“labor”) → attribute (“expenses”).

Another example, with a simpler semantic structure, is in patent US10010936B2:

“[..]accordingly, improved methods and articles of manufacture are needed to reduce labor and time required

for fabrication and to improve the quality of the part.”

The structure of figure 16 is indeed the following: from “reduce” (predicate) the link is directed to “la-

bor”(object) which is connected to “time” (attribute).
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Figure 16: Example 2, pattern II

Pattern III: object → attribute → predicate

The text belongs to patent US8410636B2:

“ [. . . ] installation of solar panels integrated with wireless power transfer may require less skilled labor since

fewer electrical contacts need to be made.” Here, in figure 17 we have a minimalist structure starting from

Figure 17: Example 1, pattern III

the word “labor” (object), connected through the adjective modifier “skilled” (attribute) which is connected

with the adverbial modifier “less” (predicate).

Pattern IV: object → predicate → attribute

Patent US4723220A presents a more convoluted structure. As usual, we start from the text: “the invention

results in significant investment, installation labor and time savings.”

Figure 18: Example 1, pattern IV

The structure we are interested in starts with “labor” (object), connected through the conjunction “sav-

39

https://patents.google.com/patent/US8410636B2
https://patents.google.com/patent/US4723220A


ings (predicate) to the compound “time” (attribute).

B Employment data and concordance tables

Figure 19: NAICS update and NACE concordance

The American classification for industrial activities (NAICS) is different from the European one (NACE):

thus the concordance table used for this work 16 is the NACE2-NAICS concordance table at 6-digits level,

referred at 2017. A second issue regards the release of revised NAICS classifications over time, as well

described in US Census site (census.gov). We use employment data for three different years, 1999, 2009 and

2019, each belonging to a specific NAICS classification, in particular: year 1999 with NAICS 1997; year 2009

with NAICS 2007; year 2019 with NAICS 2017. Subsequent releases of NAICS classification (see upper part

of 19) were used to uniform the data.

C Robustness check: manufacturing shares

We replicate the regression exercise of section 5.2 exclusively using employment in manufacturing. The

exercise allows to capture within-manufacturing share changes. In addition, we can assess the robustness of

16The table used was downloaded during October 2022 at Eurostat-RAMON, while a new versions in now available.
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our identification and empirical strategy. We construct the following variable:

Manuf sharei,j,t =
Employment sectorj,t

Manufacture Federal Employmentt
∗ state weighti,t (10)

The regression coefficients are shown in table 8 and plotted in figure 20: results are all in line with the

baseline specification.

Table 8: Quantile regression results (0.5), LS vs. non-LS patents

NACE Employment manufacturing share growth, LS vs. non-LS patents

2019vs1999 2009vs1999 2019vs2009 2019vs1999 2009vs1999 2019vs2009
LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index 1.061473∗∗∗ 0.074066 0.824139∗∗∗ −4.983590∗∗∗ −1.122979∗ −0.261887∗∗∗
(0.211299) (0.351547) (0.072674) (0.750901) (0.618508) (0.065887)

Sectoral penetration index2̂ −2.480830∗∗∗ −0.551530 −1.457756∗∗∗ 5.118344∗∗∗ 0.928259 0.337653∗∗∗

(0.228018) (0.347845) (0.076132) (1.834030) (1.736114) (0.065147)

Observations 1,785 1,785 1,785 2,091 2,091 2,091

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Manufacture share growth, 2019 vs. 1999

(b) Manufacture share growth, 2009 vs. 1999 (c) Manufacture share growth, 2019 vs. 2009

Figure 20: Regression plots, manufacturing
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D Full digits CPC, LS vs. non-LS green patents

Top 20 TRUE LS
CPC Freq Description
Y02P90/02 341 Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions

mitigation: Total factory control, e.g. smart factories, flexible manufacturing systems [FMS]
or integrated manufacturing systems [IMS]

Y02E10/50 270 Energy generation through renewable energy sources: Photovoltaic [PV] energy
Y02P70/50 178 Climate change mitigation technologies in the production process for final industrial or

consumer products: Manufacturing or production processes characterised by the final man-
ufactured product

Y02E60/10 177 Enabling technologies; Technologies with a potential or indirect contribution to GHG emis-
sions mitigation: Energy storage using batteries

Y02E10/47 175 Energy generation through renewable energy sources: Mountings or tracking
Y02D10/00 169 Energy efficient computing, e.g. low power processors, power management or

thermal management
Y02P90/80 159 Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions

mitigation: Management or planning
Y02B10/10 141 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS,

e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICA-
TIONS:Integration of renewable energy sources in buildings: Photovoltaic

Y02T50/40 138 Aeronautics or air transport: Aeronautics or air transport; Weight reduction
Y02T10/70 126 Road transport of goods or passengers: Energy storage systems for electromobility, e.g.

batteries
Y02D30/70 125 Reducing energy consumption in communication networks: in wireless commu-

nication networks
G06Q10/06 110 DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMIN-

ISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORE-
CASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR AD-
MINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR
FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR: Administration;
Management; Resources, workflows, human or project management

Y02E10/72 104 REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY
GENERATION, TRANSMISSION OR DISTRIBUTION: Energy generation through re-
newable energy sources Wind turbines with rotation axis in wind direction

Y02T10/7072 103 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTA-
TION: Road transport of goods or passengers, Electromobility specific charging systems or
methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Y02B10/20 102 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g.
HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS: Inte-
gration of renewable energy sources in buildings Solar thermal

Y02B20/40 100 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g.
HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS: Energy
efficient lighting technologies, e.g. halogen lamps or gas discharge lamps; Control techniques
providing energy savings, e.g. smart controller or presence detection

Y02A90/10 94 TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE: Technologies having
an indirect contribution to adaptation to climate change; Information and communication
technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or
climate simulation

H04W84/12 92 WIRELESS COMMUNICATION NETWORKS: Network topologies WLAN [Wireless Local
Area Networks]

H04L9/3247 89 TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICA-
TION: arrangements for secret or secure communications; Network security protocols in-
volving digital signatures

H04W88/08 89 WIRELESS COMMUNICATION NETWORKS: Devices specially adapted for wireless com-
munication networks, e.g. terminals, base stations or access point devices; Access point
devices
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Top 20 FALSE LS
CPC Freq Description
Y02E60/10 51758 Enabling technologies; Technologies with a potential or indirect contribution to GHG

emissions mitigation: Energy storage using batteries
Y02P70/50 33856 Climate change mitigation technologies in the production process for final industrial

or consumer products: Manufacturing or production processes characterised by the
final manufactured product

Y02T10/12 31863 Road transport of goods or passengers: Improving ICE efficiencies
Y02T10/70 24847 Road transport of goods or passengers: Energy storage systems for electromobility,

e.g. batteries
Y02E60/50 24069 Enabling technologies; Technologies with a potential or indirect contribution to GHG

emissions mitigation: Fuel cells
Y02D10/00 22434 Energy efficient computing, e.g. low power processors, power management or thermal

management
Y02D30/70 21575 Reducing energy consumption in communication networks: in wireless communication

networks
Y02T10/40 17578 Road transport of goods or passengers: Engine management systems
Y02A50/30 15603 TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE: in human health

protection, e.g. against extreme weather; Against vector-borne diseases, e.g.
mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacer-
bated by climate change

Y02T50/60 14617 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-
PORTATION: Aeronautics or air transport; Efficient propulsion technologies, e.g.
for aircraft

Y02T10/7072 13348 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-
PORTATION: Road transport of goods or passengers, Electromobility specific charg-
ing systems or methods for batteries, ultracapacitors, supercapacitors or double-layer
capacitors

H01M10/0525 11996 PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION
OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY: Secondary cells; Man-
ufacture thereof; Rocking-chair batteries, i.e. batteries with lithium insertion or in-
tercalation in both electrodes; Lithium-ion batteries

Y02B70/10 11904 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILD-
INGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLI-
CATIONS: Technologies for an efficient end-user side electric power management and
consumption; Technologies improving the efficiency by using switched-mode power
supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correc-
tion or reduction of losses in power supplies or efficient standby modes

Y02T10/62 11875 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-
PORTATION: Road transport of goods or passengers; Hybrid vehicles

Y02E10/50 11087 Energy generation through renewable energy sources: Photovoltaic [PV] energy
Y02T10/72 10037 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-

PORTATION: Road transport of goods or passengers; Electromobility specific charg-
ing systems or methods for batteries, ultracapacitors, supercapacitors or double-layer
capacitors

H01M10/052 9256 PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION
OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY: Secondary cells; Man-
ufacture thereof; Li-accumulators

Y02E30/30 9124 REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO EN-
ERGY GENERATION, TRANSMISSION OR DISTRIBUTION: Energy generation
of nuclear origin; Nuclear fission reactors

Y02E10/72 8982 REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO EN-
ERGY GENERATION, TRANSMISSION OR DISTRIBUTION; Energy generation
through renewable energy sources Wind turbines with rotation axis in wind direction

Y02T10/64 8794 CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANS-
PORTATION; Road transport of goods or passengers; Electric machine technologies
in electromobility
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E Tagging legend

POS tagging of spaCy is based on the Universal POS tags. Here we show the list:

• ADJ: adjective

• ADP: adposition

• ADV: adverb

• AUX: auxiliary

• CCONJ: coordinating conjunction

• DET: determiner

• INTJ: interjection

• NOUN: noun

• NUM: mnumeral

• PART: particle

• PRON: pronoun

• PROPN: proper noun

• PUNCT: puncuation

• SCONJ: subordinating conjuction

• SYM: Symbol

• VERB: verb

• X: Other

For what concerns the Universal Dependency, we refer to the table at Universal Dependency for the

complete list and full description. Here we report only some of the acronyms of the examples shown in the

paper:

• amod : adjective modifier → “An adjectival modifier of a noun (or pronoun) is any adjectival phrase

that serves to modify the noun (or pronoun). The relation applies whether the meaning of the noun is

modified in a compositional way (e.g., large house) or an idiomatic way (hot dogs). An amod dependent

may have its own modifiers (e.g., very large house) but the dependent should not be a clause. If it is

a clause, then acl should be used”
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• acl:attr : attributive adnominal clause → The acl:attr subtype of the acl relation is used for adnominal

clause with attributive morphology 17

• compound : compound → “The compound relation is one of three relations for multiword expressions

(MWEs) (the other two being fixed and flat). It is used:

– “for any kind of X0 compounding: noun compounds (e.g., phone book), but also verb and adjective

compounds that are more common in other languages (such as Persian or Japanese light verb

constructions) [. . . ]”

– “for particle verbs (with the subtype compound:prt)”

– “for serial verbs (with the subtype compound:svc)”.

The compound relation (nor any subtype thereof) is not used to link an inherently reflexive verb with

the reflexive morpheme, despite the similarity of this construction to particle verbs. The current UD

guideline is to use an appropriate subtype of the expl relation. Each language that uses compound

should develop its own specific criteria based on morphosyntax (rather than lexicalisation or semantic

idiomaticity), though elsewhere the terms “compound” and “multiword expression” may be used more

broadly [. . . ]”

• conj : conjunct → “A conjunct is the relation between two elements connected by a coordinating

conjunction, such as and, or, etc. We treat conjunctions asymmetrically: The head of the relation is

the first conjunct and all the other conjuncts depend on it via the conj relation.”

• dobj : direct object → “The direct object of a VP is the noun phrase which is the (accusative) object

of the verb.” 18

• nmod : nominal modifier → “The nmod relation is used for nominal dependents of another noun or

noun phrase and functionally corresponds to an attribute, or genitive complement [. . . ]”

• advmod : adverbial modifier → “An adverbial modifier of a word is a (non-clausal) adverb or adverbial

phrase that serves to modify a predicate or a modifier word.

In some contexts and languages, a limited set of adverbs can also modify nominals (e.g., only on

Monday). The advmod relation or its subtype has to be used in such cases, too (see also advmod:emph).

Note that in some grammatical traditions, the term adverbial modifier covers constituents that function

like adverbs regardless whether they are realised by adverbs, adpositional phrases, or nouns in particular

morphological cases. We differentiate adverbials realised as adverbs (advmod) and adverbials realised

by noun phrases or adpositional phrases (obl). However, we do not differentiate between modifiers

17https://universaldependencies.org/ckt/dep/acl-attr.html
18https://universaldependencies.org/docs/en/dep/dobj.html
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of predicates (adverbials in a narrow sense) and modifiers of other modifier words like adjectives or

adverbs (sometime called qualifiers). These functions are all subsumed under advmod.”
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