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Abstract

The behavioral finance literature attributes the persistent market mis-
valuation observed in real data to the presence of deviations from rational
thinking of the actors involved. Cognitive biases and the use of simple
heuristics can be described using expected utility maximizing agents that
adopt incorrect beliefs. Along these lines, Barberis et al. (1998) introduce
a model which is able to replicate the behavior of both under-reaction and
over-reaction to news. The representative agent they consider is character-
ized by an imperfect learning model. An interesting question that emerges
is if, and to what degree, the heuristic mechanism they propose is evolu-
tionary stable, that is how resilient is their representative agent to other
agents possibly trading in the market. In fact, if the biased agent asymptot-
ically disappears from the market, then misvaluation patters generated by
its behavior do not survive in the long term. The present paper investigates
this question comparing the performance of the agent described in Barberis
et al. (1998) with the one of a pure Bayesian competitor.
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1 Introduction

In the last decades, Behavioral Finance has provided important contributions to
our understanding of financial markets’ dynamics. Its fundamental tenet, built
upon the ideas of Tversky and Kahneman (1974), is that pricing anomalies are
due to widespread cognitive biases, as they generate limited information percep-
tion and processing and imperfections in the decision making process (see Hir-
shleifer, 2015, for a recent review of the topic). Two of the most pervasive and
widely investigated pricing anomalies are short-run momentum and long-run re-
versal: extreme excess returns tend to be followed by excess returns with the same
sign over short time periods (3 to 12 months) and revert over longer horizons
(see, e.g., De Bondt and Thaler, 1985, 1987; Jegadeesh and Titman, 1993, 2001;
Rouwenhorst, 1998; Moskowitz and Grinblatt, 1999; Balvers et al., 2000; Gropp,
2004; Griffin et al., 2005; Chui et al., 2010; Mukherji, 2011; Asness et al., 2013).
These pieces of evidence, in striking contrast with the Efficient Market Hypothesis
of Fama (1970), sprinkled the interest of behavioral economists and generated a
breadth of behavioral theories explaining how the two effects originate (see, among
the others, Barberis et al., 1998; Daniel et al., 1998; Hong and Stein, 1999; Daniel
and Hirshleifer, 2015; Bottazzi et al., 2019; Luo et al., 2021).

Driven by psychological evidence, Barberis et al. (1998) - henceforth BSV -
present a model where the two anomalies are explained in terms of of conser-
vatism (Edwards, 1982) and representativeness heuristic (Tversky and Kahneman,
1974). Specifically, they assume a sentiment investor whose learning behavior is
characterized by both under- and overreaction and show that these behavioral
characteristics are able to replicate momentum and reversal in price dynamics.
Their sentiment investor is a representative agent and, as such, its cognitive pat-
terns perfectly translate into price dynamics. But what happens if another agent,
with a different behavior, enters the market? The answer is non trivial and the
issue is relevant, since the BSV sentiment investor may be driven out by the new-
comer and, hence, have a negligible influence on prices in the long run. Survival of
biased agents is not a new topic. It is one of the crucial research questions of the
literature stemming from Blume and Easley (1992) and investigating the Market
Selection Hypothesis of Alchian (1950) and Friedman (1953). The basic frame-
work is a pure-exchange economy with infinite horizon and infinite-lived agents
where prices are set according to Walrasian market clearing conditions under ei-
ther general equilibrium (see, e.g., Sandroni, 2000, 2005; Blume and Easley, 2006,
2009; Jouini and Napp, 2011; Kogan et al., 2006, 2017; Dindo and Massari, 2020;
Beddock and Jouini, 2021; Bottazzi and Giachini, 2022) or temporary equilibrium
(see, e.g., Evstigneev et al., 2009, 2016; Bottazzi et al., 2018; Bottazzi and Gi-
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achini, 2017, 2019a,b).1 One of the most important results is that, in a general
equilibrium model with complete markets, only the agents with the most accurate
beliefs survive in the long-run (Sandroni, 2000; Blume and Easley, 2006). Thus,
agents affected by behavioral biases in perceiving and processing information –
as in BSV – seems to be fated to vanish when an agent processing information
correctly – i.e. according to Bayes’s rule – enters such a market. This is explic-
itly investigated in Sandroni (2005) and the author shows that a Bayesian agent
eventually dominates over biased ones both in learnable and unlearnable settings.
Such a finding is challenged by Massari (2020), who shows that an under-reacting
agent never vanishes against a Bayesian one under model misspecification, that
is, when the true data generating process does not belong to the set of models
the agents believe possible. Thus, in such a case, a learning rule presenting some
behavioral bias can produce accurate beliefs and generate an advantage in the
selection struggle.

In this work we test whether the biased probability updating process described
by BSV and adapted to a general equilibrium setting by Antico et al. (2022)
can survive when competing against a Bayesian. More specifically, we consider an
Arrow-Debreu economy with complete markets where two agents seek to maximize
their expected utility of consumption over an infinite horizon under the beliefs
generated by their learning processes. Both agents rely upon two models of the
true data generating process. The first is a Markov chain where the probability of
changing state is larger than the one of persisting. The second is also a Markov
chain, but the probability of persisting is larger than the one of switching. The
first agent computes the weights assigned to the two models and the conditional
probabilities according to Bayes’ rule, while the second one uses the adapted BSV
rule. We assume that the states of nature are drawn according to a Bernoulli trial.
Thus, as in BSV, the true data generating process is different and simpler than
the two Markovian models the agents believe possible. Hence, our framework is
much closer to the setting of Massari (2020) than the one of Sandroni (2005). Our
analysis shows that the sentiment investor is able to dominate the Bayesian agent
for some combinations of parameter values while it is driven out of the market
for others. The main difference is that BSV’s rule prescribes to persistently mix
the two Markovian models, while Bayesian learning generically selects the best
(mispecified) model among those available. As a consequence, the BSV updating

1The topic has also been investigated in different frameworks. For instance, Benos (1998)
and Kyle and Wang (1997) base their model on Kyle (1985) and analyze the trading of a risky
security in a partial equilibrium setting with risk neutral traders. The price of the security is
decided by a risk neutral market maker, hence no Walrasian mechanism exists. In a one-stage
game, the authors show that an overconfident trader can attain a higher profit than a rational
one. Benos (1998) shows that the same result holds when the market maker is risk averse. The
choice of a non-Walrasian price fixing condition seems to be essential for these results.
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rule appears more advantageous when the transition probabilities characterizing
the Markov models are heavily misspecified but taking a convex combination of
them one gets close to the truth. Thus, our results are in-between those of Sandroni
(2005) and Massari (2020). On the one hand, the nature of model misspecification
we assume decreases the evolutionary fitness Bayesian learning has in well specified
settings. On the other, the peculiar learning behavior of the sentiment investor
makes its beliefs very accurate in some cases and particularly incorrect in others.

2 Intertemporal consumption model

Consider a pure-exchange economy in discrete time (indexed by t = 0, 1, . . .),
where N agents trade in complete markets over an infinite horizon and consume
an homogeneous good in every period. At each time t > 0 the economy can be
in one between two states, denoted by st ∈ {0, 1}. The infinite sequence of states
σ = (s1, s2, . . . , st, . . .) is a path or history of the economy and σt = (s1, s2, . . . , st)
is the partial history until time t included. The set of all the possible paths is
denoted by Σ while Σt is the set of the 2T partial histories until time t. The
cylinder with base σt is C(σt) = {σ ∈ Σ|σ = (σt, . . .)} and Ft is the σ-algebra
generated by the cylinders C(σt). Thus, (Ft)

∞
t=0 is a filtration and F is the σ-algebra

generated by the union of filtrations. In accordance with the assumptions of BSV
on (Σ,F), we assume an i.i.d. probability measure p such that the realization of a
state does not depend on the partial history, p(st = 1|σt) = π ∀t, σ. The operator
E denotes the expectation and, when there is no subsbcript or superscript, it is
computed with respect to p. Each agent i has a subjective probability measure pi
on (Σ,F), discussed in Section 3. We impose that subjective probability measures
are absolutely continuous with respect to the true measure, that is pi(σt) > 0 for
any partial history σt.

Agents have logarithmic Bernoulli utility and a common anc constant intertem-
poral utility discount factor β > 0. Let ei(σt) > 0 be the endowment of agent i at
partial history σt. The optimal consumption plan ci(σt) > 0 of agent i solves

max
{ci(σt), ∀t,σ}

Ui =
∞∑
t=0

∑
σt∈Σt

βtpi(σt) log (ci(σt))

subject to
∞∑
t=0

∑
σt∈Σt

q(σt) (ei(σt)− ci(σt)) ≥ 0 ,

(1)

where q(σt) is the price of the Arrow-Debreu security paying 1 if partial history
σt is realized and zero otherwise. We shall perform our analysis under general
equilibrium: consumption plans solve the problem in (1) for any i ∈ {1, 2, . . . , N}
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and markets clear in every period,

N∑
i=1

ci(σt) =
N∑
i=1

ei(σt) . (2)

Assuming that agents have constant and homogeneous endowment, ei(σt) = e
∀i, σt, the optimal consumption plans can be explicitly derived (Bottazzi and Gi-
achini, 2022)

ci(σt) =
pi(σt)∑N
j=1 pj(σt)

N e, (3)

while the Arrow-Debreu security price reads

q(σt) =
βt

N

N∑
i=1

pi(σt). (4)

3 Beliefs structure

Agents base their individual probability models on two Markovian models de-
scribed by the transition matrices

Mh :

st+1 = 0 st+1 = 1( )
st = 0 πh 1− πh
st = 1 1− πh πh

, h = 1, 2 . (5)

Denoting with Mh(st+1 | st) the probability of observing the state st+1 realized
after the state st according to model h = 1, 2, it is Mh(st+1 = st | st) = πh and
Mh(st+1 6= st | st) = 1 − πh. Following BSV, we assume π1 < 0.5 < π2, such that
model 1 assigns a larger probability to remaining in the same state, while model 2
assign s larger probability to switching to the other state with respect to the one
lastly realized. At time t, if the partial history σt is realized, agent i builds its
prediction about the next state as a convex weighting of the two models

pi(st+1|σt) =
2∑

h=1

wi,h(σt)Mh(st+1|st) (6)

with wi,h(σt) ∈ [0, 1],
∑2

h=1wi,h(σt) = 1, and pi(σt) =
∏t

τ=1 pi(sτ |στ−1). While
agents share the same baseline Markov models, they differ in the way they derive
their weights. In particular, we shall consider two alternative weight updating
rules. The first rule is the standard Bayesian learning, while the second rule is
derived from the under-reaction/over-reaction behavioral bias model introduced
by BSV and adapted to a general equilibrium setting by Antico et al. (2022).
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3.1 Bayesian agent

A Bayesian agent i assigns the weight proportionally to the likelihood of the mod-
els. Let Lh(σt) =

∏t
t=1Mh(sτ+1 | sτ ) be the likelihood of model Mh, then it

is

wi,h(σt) =
wi,h(σ0)Lh(σt)∑2
k=1wi,k(σ0)Lk(σt)

. (7)

Given the Markov property of the two models one can easily derive a recursive
definition

wi,1(σt+1) =
wi,1(σt)M1(st+1|st)∑2
k=1wi,k(σt)Mk(st+1|st)

(8)

and wi,2(σt+1) = 1 − wi,1(σt+1). Notice that if on a given history σ it is, on
average, M1(st|st−1) > M2(st|st−1) (or equivalently limt→∞ L2(σt)/L1(σt) = 0),
then limt→∞wi,1(σt) = 1. That is, the Bayesian agent assigns all the weight to the
best model in terms of likelihood. This is always the case if only one among the
considered models is correct.

3.2 BSV agent

Following the prescription of BSV and its adaptation in Antico et al. (2022), we
consider an alternative weights updating process which depends on two parameters
λ1, λ2 ∈ [0, 1]:2

wi,1(σt+1) =
C1−λ1,λ2(wi,1(σt))M1(st+1|st)

C1−λ1,λ2(wi,1(σt))M1(st+1|st) + Cλ1,1−λ2(wi,1(σt))M2(st+1|st)
, (9)

with Cα,β(x) = αx + β (1− x). This rule generalizes (8), which can be recovered
setting λ1 = λ2 = 0.3 The values of λ1 and λ2 determine how the rule behaves (see
the proof of proposition 2 of BSV and Section 4 of Antico et al., 2022, for further
discussions). Here we focus on two cases: 0 < λ1 + λ2 < 1 and λ1 + λ2 = 1.4 If
0 < λ1 + λ2 < 1 holds, then there exists two numbers 0 < w < w < 1 such that

w = C1−λ1,λ2(w) π1/ (C1−λ1,λ2(w)π1 + Cλ1,1−λ2(w) π2) ,

2In the notation of BSV the weight wi,1(σt) is the quantity qt reported at the end of page
322.

3BSV justify the prescription in (9) as a simil-Bayesian updating with respect to a fictional
two-state model the agent has in mind. This justification, admittedly unconvincing, is immaterial
for the present analysis. In other terms, we discuss the merits of the behavioral model described
by (9) without discussing its degree of rationality with respect to some mental model possibly
adopted by the agent.

4The case λ1 + λ2 > 1 is not considered because it generates a paradoxical behavior: the
higher the evidence in favor of one model the lower the weight attached to it, see also Antico
et al. (2022).
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w = C1−λ1,λ2(w) (1− π1)/ (C1−λ1,λ2(w) (1− π1) + Cλ1,1−λ2(w) (1− π2)) .

If wi,1(σ0) ∈ (w,w) then wi,1(σt) ∈ (w,w) ∀σt and the updating rule in (9) de-
fines a reinforcement learning process (Barberis et al., 1998). We shall assume
wi,1(σ0) ∈ (w,w) when 0 < λ1 + λ2 < 1. Hence, irrespective of the realization of
the process, the BSV learning rule never converges to a single model, even when
the realized sequence heavily favors one model over the other. This particular
feature of the BSV updating is in striking contrast with Bayesian learning and can
provide some evolutionary advantage in cases of model misspecification as the one
we are considering here. If, instead, λ1 + λ2 = 1 holds, the updating rule becomes

wi,1(σt+1) =
λM1(st+1|st)

λM1(st+1|st) + (1− λ)M2(st+1|st)
(10)

with λ = λ2 = 1− λ1. Thus, in this case, the weights attached to the two models
do not change over time. Hence, no matter the sequence of states observed, the
agent will maintain the same mixture of models.

4 Market selection and evolutionary stability

Our analysis aims at characterizing the asymptotic distribution of consumption
shares of a BSV agent when it is not alone in the market (as, for instance, in the
setting of Barberis et al., 1998). In particular, we want to evaluate its evolutionary
stability – that is, its ability to asymptotically maintain a positive consumption
share – when it trades with a Bayesian. We start our investigation with a numerical
exercise. We assume N = 2 and impose that agent 1 is Bayesian and updates
its weights according to (8). Agent 2, instead, follows the BSV behavioral bias
model updating its weights as in (9). In Figure 1 we report some example of the
time behavior of c2(σt)/(2e), the consumption share of the BSV agent. Each plot
contains ten independent simulations. In all the examples we keep π = 0.5. In
panel 1a and 1b we assume λ1 +λ2 = 1, while in panel 1c it is λ1 +λ2 < 1. Notice
that, sooner or later, the consumption share converges to 1 for some parameter
values and to 0 for other parameter values. That is, fluctuations in consumption
share disappear over time letting either agent 1 or agent 2 – depending on the
parameter settings – consume the whole aggregate endowment. Comparing the
moment in which fluctuations fade out, one also notices that parameter values
influence the speed of convergence toward the final consumption share distribution.

Before analyzing asymptotic consumption dynamics in detail, we need to clarify
the meaning of some terms we shall use to indicate the different selection outcomes.
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(a) (b) (c)

Figure 1: Consumption share dynamics of agent 2. Parameter values: (a):
π = 0.5, π1 = 0.3, π2 = 0.8, λ1 = 0.25, λ2 = 0.75; (b): π = 0.5, π1 = 0.2, π2 = 0.6,
λ1 = 0.25, λ2 = 0.75; (c): π = 0.5, π1 = 0.49, π2 = 0.51, λ1 = 0.2, λ2 = 0.2.

Definition 4.1. Agent i vanishes on a path σ if and only if

lim
t→∞

ci(σt) = 0 .

Agent survives on a path σ if and only if

lim sup
t→∞

ci(σt) > 0 .

Agent i dominates on a path σ if and only if

lim
t→∞

ci(σt) = 2e .

If the previous limits hold p-almost surely, we say, respectively, that agent i van-
ishes, agent i survives, agent i dominates.

From (3) we have that ci(σt)/ci(σt) = pi(σt)/pj(σt). The probability pi(σt) is
the likelihood of path σt in the model used by agent i. More accurate models have
an higher likelihood.

Definition 4.2. If on path σ it is limt→∞ pj(σt)/pi(σt) = 0 then agent i is more
accurate than agent j on σ. Agent i is more accurate than agent j if the previous
limit applies p-almost surely, that is over a set of paths σ of measure one.

Since the consumption of agents is bounded, we have the following.

Proposition 4.1. If agent i is more accurate than agent j on path σ, than agent j
vanishes on path σ. If agent i is more accurate than agent j, than agent j vanishes.
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If there are only two agents i = 1, 2, and agent 1 vanishes, then agent 2
dominates and vice-versa. Thus, the analysis of the relative consumption patterns
in a pairwise comparison of agents is reduced to the analysis of the relative accuracy
of their respective learning models. In the next section we will investigate agents’
relative accuracy using a mix of analytical and numerical results. The analytical
investigation is facilitated by the following consideration (Sandroni, 2000; Blume
and Easley, 2006). Define the average relative entropy of agent i on history σ as

Dp(pi, σ) = lim
t→∞

1

t

t∑
τ=1

log
p(sτ |στ−1)

pi(sτ |στ−1)
. (11)

The expression in (13) is always non-negative and it is zero only if the agent’ s
beliefs asymptotically converge to the true probabilities. If the limit in (11) exists
for both agent i and j, then it is

lim
t→∞

1

t
log

pi(σt)

pj(σt)
= lim

t→∞

1

t

t∑
τ=1

(log pi(sτ |στ−1)− log pj(sτ |στ−1)) =

Dp(pj, σ)−Dp(pi, σ), (12)

where we have added and subtracted the logarithm of true probability p(sτ |στ−1).
The average relative entropy in (11) can be considered a measure of accuracy of
agent i’s beliefs along path σ and can be used instead of the likelihood to compute
models’ relative accuracy. If agent i has p-almost surely a lower relative entropy
than agent j, then agent j vanishes. The advantage of using the relative entropy
as a measure of accuracy is that in the case of an i.i.d. true process like ours,
applying the Strong Law of Large Numbers for Martingale Differences, one has

Dp(pi, σ) = lim
t→∞

1

t

t∑
τ=1

π log
π

pi(1|στ−1)
+ (1− π) log

1− π
pi(0|στ−1)

, (13)

which is generally an easier quantity to compute.

4.1 Bayes accuracy

As already mentioned, a Bayesian learner selects the model with larger likelihood
on a path. An immediate consequence of this is that the Bayesian agent asymptoti-
cally selects the most accurate model. If for k, j ∈ {1, 2} it is limt→∞ Lk(σt)/Lj(σt) =
0, then from (7) it is limt→∞wi,h(σt) → 1. Thus, the Bayesian agent is as accu-
rate as the most accurate model. Computing the average relative entropy of the
underlying Markov models is relatively easy. From (13) it is

Dp(Mh, σ) = π2 log
π

πh
+ π(1− π) log

π(1− π)

(1− πh)2
+ (1− π)2 log

1− π
πh

. (14)
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It follows that, to compute the relative entropy of a Bayesian agent it is enough to
compute (14) for h = 1, 2, rank the two, and assign to the agent the lowest one.

4.2 BSV accuracy

Computing the average relative entropy of the BSV agent is more difficult. Indeed,
as argued, an agent that follows the BSV weight updating never converges to a
single model but keeps mixing the two. As already mentioned, its conditional
probability can eventually converge to a fixed mixture of the two model, but that
only happens along paths with zero measure, such as sequences of all equal states
or perfectly alternated states. In the case λ1 + λ2 = 1, we are able to analytically
compute the average relative entropy along sequences with full probability. That is
made possible by the particular structure of weights which does not depend upon
the previous weighting but only on the last realized states. For the more general
case λ1 + λ2 < 1, instead, we shall rely on a numerical exercise.

4.2.1 Case λ1 + λ2 = 1

Setting λ2 = 1− λ1 = λ and substituting (10) in (6), one gets

p2(st+1|σt) = p2(st+1|(st, st−1)) =

λM1(st|st−1)M1(st+1|st) + (1− λ)M2(st|st−1)M2(st+1|st)
λM1(st|st−1) + (1− λ)M2(st|st−1)

.

From (13) it is

Dp(p2, σ) = lim
t→∞

1

t

t∑
τ=1

(
π log

π

p2(1|(st, st−1))
+ (1− π) log

1− π
p2(0|(st, st−1))

)
,

that, since the true process is i.i.d., reduces p-almost surely to

Dp(p2, σ) = π2Dp(p2, (1, 1))

+ π(1− π) (Dp(p2, (1, 0)) +Dp(pi, (0, 1))) + (1− π)2Dp(p2, (0, 0)),
(15)

with

Dp(p2, (st, st−1)) = π log
π

p2(1|(st, st−1))
+ (1− π) log

1− π
p2(0|(st, st−1))

.

4.2.2 Case 0 < λ1 + λ2 < 1

When 0 < λ1 + λ2 < 1, we cannot compute the average relative entropy of the
BSV agent in closed form. Hence, we estimate Dp(p2, σ) numerically. The use
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Figure 2: Selection outcomes for several combinations of (π1, π2), for π ∈
{0.25, 0.5}, and for λ ∈ {0.25, 0.5, 0.75}. White: BSV dominates (∆ < 0); Black:
Bayes dominates (∆ > 0).

of the relative entropy instead of the likelihood is preferred to easy the compar-
ison with the analytical expressions obtained for the other learning models. We
set a time horizon T sufficiently large and we draw the sequences of realizations
σr,T = (sr,1, sr,2, . . . , sr,T ) with r = 1, 2, . . . , R. For every sequence r we iterate (9)
and compute Dp(p2, σr,t) ∀t ∈ {1, 2, . . . , T}. Then, we approximate the average
relative entropy of the BSV agent along any sequence truncating the infinite aver-
age involved to T . We refine our estimate averaging over R independent sequences
to obtain an estimated average relative entropy

D̂p(p2) =
1

TR

R∑
r=1

T∑
t=1

Dp(p2, σr,t) . (16)

4.3 Survival and dominance of sentiment investor

In this section we perform a series of pairwise comparison on the asymptotic be-
havior of agents’ consumption. We first focus on the case λ1 + λ2 = 1, exploiting
the closed form solution for the relative entropy of both agents. Consider the dif-
ference of the relative entropy of the learning models of the two agents on a given

11



path σ
∆ = Dp(p2, σ)−Dp(p1, σ). (17)

The quantity Dp(p2, σ) is as in (15), while, as discussed in Section 4.1, it is
Dp(p1, σ) = min{Dp(M1, σ), Dp(M2, σ)}. If it is ∆ > 0 then agent 1 is more
accurate than agent 2 and, by Proposition 4.1, agent 1 dominates and agent 2
vanishes. If, instead, ∆ < 0 it is the other way round: agent 2 is more accurate
than agent 1 and agent 2 dominates and agent 1 vanishes. Due to the bi-stochastic
nature of the transitions matrices defining the underlying Markov models, the rel-
ative entropy of both agents do not change if π is replaced with 1 − π (this is
equivalent to relabeling the states of nature). Thus, it is sufficient to investigate
the system for 0 < π ≤ 0.5. In Figure 2 we report the selection outcomes based
on the sign of ∆ for several combinations of (π1, π2), for π ∈ {0.25, 0.5}, and for
λ ∈ {0.25, 0.5}. Generically, there exist regions of the parameter space in which
one agent dominates over the other and vice-versa. That is, the particular choice
of the models’ transition probabilities determines the final fate of the traders. An-
other implication that clearly emerges is that there are no regions in which both
agents survive. This is generally trues and directly implied by Proposition 4.1
combined with the analytic solutions in (14) and (15). Indeed, by direct inspec-
tion, one notices that, apart from hairline cases, ∆ has a definite sign. Focusing
on top row, that is, the cases in which π = 0.5, one notices that agent 2 dominates
when the transition probabilities of the models are (more or less) evenly spread
around the truth, that is π2 ' 1− π1. In the case of less evenly spread transition
probabilities, bottom row, the behavioral parameter λ influences more strongly the
results, with λ = 0.25 favoring agent 2 over a larger set of (π1, π2) with π1 < 1−π2.
The salient feature is that, increasing the value of λ, agent 2 decreases its region of
dominance. In the extreme case λ = 1, agent 2 gives full weight to model 1. This
obviously favors agent 1, whose Bayesian learning ensures that it asymptotically
converges to the most accurate model.

Next, we investigate the more general case λ1 +λ2 < 1. In this case we evaluate
selection results observing the sign of

∆̂ = D̂p(p2)−Dp(p1, σ) , (18)

where D̂p(p2) is as in (16) and Dp(p1, σ) is as described in advance. In particu-
lar, for our numerical exercises we set T = 250000 and R = 5.5 The selection
outcomes based on the sign of ∆̂ are reported in Figure 3. The value of π and

5Such a low number of independent replications is due to the extremely low volatility of
the estimated average relative entropy across different replicas of 250000 time steps each. In the
different replica, we obtain standard errors in order of 10−5. As expected from an ergodic process.
o single sufficiently long sequence is basically enough to obtain reliable estimates (Vandin et al.,
2020).
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Figure 3: Survival outcomes for several combinations of (π1, π2), for π = 0.5, and
for the same values of λ1 and λ2 used in Figure 2 of Barberis et al. (1998). White:
BSV dominates (∆̂ < 0), Black: Bayes dominates (∆̂ > 0).

the combinations of λ1 and λ2 have been chosen to match those used in Figure 2
of BSV. As one can notice, even with λ1 + λ2 < 1, for π = 0.5 agent 2 tends to
dominate over those regions of the parameter space in which π2 ' 1 − π1. Those
regions are broadly consistent (but not identical) with those that BSV indicate
as delivering under-reaction and over-reaction.6 In Figure 4 we repeat the same
exercise of Figure 3 setting π = 0.25. Even in this case there exist regions of the
parameter space where agent 2 dominates over agent 1 and vice-versa. Except

6This statement has to be taken with a pinch of salt. The pricing model of BSV is not exactly
consistent with the Arrow-Debreu economy we consider here. See Antico et al. (2022) for an
investigation of the occurrence of under-reaction and over-reaction in an Arrow-Debreu economy
where agents update their beliefs as in (9). Comparing the combinations of values generating
both under-reaction and over-reaction the authors report with the selection outcomes presented
here, we notice, again, an overall accordance characterized by imperfect superposition.
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Figure 4: Survival outcomes for several combinations of (π1, π2), for π = 0.25, and
for the same values of λ1 and λ2 used in Figure 2 of Barberis et al. (1998). White:
BSV dominates (∆̂ < 0), Black: Bayes dominates (∆̂ > 0).

for π1 ' 0.5, low values of π2 appear detrimental for agent 2 and beneficial for
agent 1. Moreover, values of π1 roughly included in the interval (0.2, 0.45) seem
to favor agent 1 over agent 2. This shows that evenly spread transition probabili-
ties around the truth favor agent 2 only when the two states of nature are (more
or less) equally probable. Indeed, what generically emerges is that ranking the
level of accuracy of the two agents is difficult because of model misspecification.
Both the behavioral parameters λ1, λ2 and the true probability π are important
in deciding the selection outcome that is eventually reached in the economy.

Intuitively, the BSV learning algorithm has an advantage when models are
sufficiently misspecified and by taking a convex combination of them one gets
close to the truth. Indeed, when the convex combinations of models provides
an advantage in terms of accuracy, the weight updating derived by BSV has an
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evolutionary edge with respect to other more selective learning processes, such as
the Bayesian one. This intuition is confirmed by observing that BSV dominates
in the upper-left corner of every plot we presented (π1 ' 0 and π2 ' 1). Along the
same lines, Bayesian learning has an evolutionary advantage over BSV when one
of the two models is much better than the other and combining the two models
one does not achieve an improvement in accuracy. This is true, for instance, in
the bottom-left and top-right corners of the plots where π = 0.5.

5 Conclusions

The limited-rationality learning model proposed by BSV and adapted to an Arrow-
Debreu economy by Antico et al. (2022) seems to display a good degree of evolu-
tionary stability when compared to a Bayesian learner in the presence of model
misspecification. The reason is that while the agent following the Bayes prescrip-
tion asymptotically obtains its prediction from a single (wrong) model, the limited-
rationality agent persistently uses a convex combination of more models. In this
way, it obtains less extreme predictions and, consequently, makes more balanced
portfolio choices, ultimately increasing its probability to survive and dominate. In
this respect, the learning model derived from BSV is similar to other non-Bayesian
learning models explored in the literature (Epstein et al., 2010; Massari, 2020) and
shares many of their properties. A question that remains to be investigated is the
exact impact that the requirement of being evolutionary stable has on the price
misvaluation the original model was actually designed to replicate. This can be
done by a thorough analysis of the intersection between the survival areas pre-
sented here and the combinations of parameter values that let the misspricing
patterns emerge in Antico et al. (2022). Moreover, one might wonder if the same
capability is shared by other non-Bayesian learning behaviors and what the ag-
gregate effect of the presence of more than one of those behaviors in the market
might be.
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