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Abstract

This paper analyzes the sources of export volatility estimating a dynamic fac-

tor model on transaction-level data. Using an exhaustive dataset covering all

French export transactions over the period 1993-2017, we reconstruct the la-

tent factor space associated with global and destination-specific macroeconomic

shocks through a Quasi-Maximum likelihood approach that allows to accommo-

date both the high share of missing values and the high dimensionality of the

microeconomic time series. We then use the estimated model to provide a decom-

position of the volatility of both aggregate and firm-level export growth rates,

highlighting structural spatial patterns and drawing attention to geographical

diversification’s role in mitigating risks related to firms’ export activities.

Keywords: Dynamic Factor Models, International Trade Volatility, Export Di-

versification

JEL classification: C38, L25, F14
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1 Introduction

Finely disaggregated data have fostered a fast-growing body of research on microeco-

nomic trade flows and their influence on firm-level and aggregate growth rates, with

many empirical studies exploiting the granular information to investigate possible av-

enues of the micro-to-macro channel. However, as pointed by Armenter and Koren

(2014), a proper model of the trade activities of firms and countries should always

take into account some key structural properties of transaction-level datasets: the per-

vasive sparsity, intended as the number of zeros in trade flows at the microeconomic

level, and the skewness of cross-sectional distributions. Those aspects have fundamen-

tal implications for the design and the interpretation of trade models and their stylized

facts, gaining even more relevance when the focus lies on the dynamics of economic

interactions. This is certainly the case of the volatility models based on the micro-level

decomposition of the growth rates (di Giovanni et al., 2014; Kelly et al., 2013; Kramarz

et al., 2020).

In this context, our paper presents a novel approach to the decomposition of the

growth rates, based on the identification and estimation of global and local comove-

ments for high dimensional time series with arbitrary patterns of missing data. The

method requires the estimation of an approximate dynamic factor model (DFM) with

a block structure (or block-DFMs, see e.g. Hallin and Liška, 2011; Moench et al., 2013)

for the growth rates of export value at the firm-destination level for the universe of

French exporting firms. DFMs endowed with a block structure feature both global

and local factors to capture respectively the comovements common to all the time se-

ries and comovements within block of series. Thus, associating a block to each served

destination, we provide an additive decomposition of the growth rates into three or-

thogonal terms: the global component, embodying the contribution of a global latent

factor and the related loading, the destination-specific component, endowed again with

a related loading and capturing the influence of the local factor associated to the target

destination, and an idiosyncratic irreducible component.
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We estimate the model via a Quasi-maximum Likelihood (QML) approach imple-

mented through the Expectation Maximization (EM) algorithm (Watson and Engle,

1983; Doz et al., 2012), in line with the applications proposed by Bańbura and Mod-

ugno (2014). We extend their work giving the explicit derivation of the M-step for

models with a block structure and proposing a suitable initialization procedure based

on the sequential least square estimator of Breitung and Eickmeier (2015), recover-

ing consistent estimates of the global and local factors, the related loadings and the

idiosyncratic terms for highly dimensional time series in presence of missing values.

Macroeconomic applications of a similar estimation technique based on a block struc-

ture of the data are Coroneo et al. (2016) and Delle Chiaie et al. (2022) (see below for

details).

This allows to improve on the extant export volatility decompositions along three

main dimensions. First, in contrast to di Giovanni et al. (2014); Kramarz et al. (2020),

the macroeconomic determinants of the volatility — driven by global or destination-

specific factors — are explicitly modelled as autoregressive stochastic processes using

efficiently the information available at the microeconomic level. Second, DFMs cap-

ture the relevance of macroeconomic shocks, not only per se but also as drivers of

heterogeneous responses at the firm level. Indeed, global and destination-specific com-

ponents are defined as the product between the latent factors and the so-called factor

loadings, i.e. numeric time-invariant coefficients specific to each firm-destination cell.

These parameters represent the elasticity of firm-destination growth rates to common

movements encoded in the global and local factors. Third, this exercise can be per-

formed by increasing the time-frequency of the data without restricting the dataset

to persistent exporters only, because the estimation technique efficiently tames the

increasing number of missing values. We use here quarterly data on firm-destination

transactions for 144k firms exporting to 67 destinations from 1993 to 2017, a period

including relevant macroeconomic events (e.g. the trade collapse) and different phases

of the French export cycles. These yearly quarter-to-quarter growth rates allow work-

ing on long time series, at the same time mitigating the bias of partial-year effects for
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first-year export growth rates (Bernard et al., 2017).

We contribute to several streams of literature. First, we present a novel application

of dynamic factor models to firm-level and transaction-level data. To the best of our

knowledge, our work is the first to estimate a DFM on such disaggregated data, which

allows us to identify the interactions between macroeconomic factors and heteroge-

neous agents. Our approach is aligned with the literature on block-DFMs, postulating

global and local factors to capture hierarchical correlation structures within economic

and financial datasets. Existing papers in this area have applied similar models to

assess the relative importance of world, regional, and country-specific factors on coun-

tries’ business cycles (Kose et al., 2012; Mumtaz and Surico, 2012; Miranda-Agrippino

and Rey, 2020), to decompose the variance of commodity price indexes taming the

local cross-correlation within groups (Delle Chiaie et al., 2022), and to impose restric-

tions on the loadings of nominal and real variables (Coroneo et al., 2016). However,

our application differs in that it requires the estimation of a cross-section that is four

orders of magnitude larger and accommodates a high share of missing values, reaching

approximately 70% of the dataset. Thanks to the methodology we propose, the in-

complete firm-destination time series need not be excluded or imputed and the growth

rates’ comovements can be estimated by exploiting all available information overcom-

ing the concerns on the varying distribution of missing values at different time steps.

Second, acknowledging the prominent role of trade flows in contributing to GDP

volatility (see di Giovanni and Levchenko, 2009 and Figure 1a and 1b), we provide

new quantitative estimates of the granular component of the volatility of French ex-

ports, thanks to the decomposition of transaction-level growth rates. Starting from

the seminal work by Gabaix (2011), a rich stream of literature has shown that in a

granular economy, with a fat-tailed firm size distribution, idiosyncratic shocks to in-

dividual firms explain a significant part of the aggregate movements (Acemoglu et al.,

2012; Carvalho and Gabaix, 2013; Carvalho and Grassi, 2019)1. Those effects be-

1 First highlighted for firms’ size and aggregate GDP, that intuition applies to several economic

phenomena (see e.g. Mésonnier and Stevanovic, 2017; Amiti and Weinstein, 2018, for the macroe-

5



come increasingly relevant in international trade (di Giovanni and Levchenko, 2009; di

Giovanni et al., 2014; Di Giovanni et al., 2018; Bricongne et al., 2022), whereby the ex-

porters’ size distribution is even more skewed (among the others, Bernard et al., 2009,

2016). In such a context, we use the estimated BDFM to provide a decomposition of

the aggregate volatility into global, destination-specific and idiosyncratic components.

The adopted methodology based on the Kalman smoother aggregates data in an op-

timal way (in mean squared sense) by taking cross-sectional and dynamic weighted

averages of all observed time series. This is fundamentally different from taking sec-

toral (or destination-specific) averages to identify macroeconomic effects and isolate

the granular component (Gabaix (2011); Carvalho and Gabaix (2013); di Giovanni

et al. (2014); Bricongne et al. (2022)) since by dynamically aggregating the data we

allow for leading-lagging relations among time series which account for feedback ef-

fects from the level of global and local factors to the data and viceversa (see Figure

2). This is directly reflected in a better approximation of the time-varying behaviour

of the volatility measure itself. In fact, when considering the average volatility over

the time span, our results confirm the general wisdom that attributes a dominant role

to idiosyncratic shocks in explaining aggregate volatility; at the same time, our anal-

ysis highlights how the common component of the volatility can be as relevant as the

idiosyncratic one during the economic downturns (e.g. the trade collapse).

Third, using the same decomposition, we analyze the volatility at the firm level

providing new insights on the volatility-diversification nexus. Several contributions

find a dampening effect of diversification on volatility (see e.g. Herskovic et al., 2020).

In particular, firms selling multiple products to multiple destinations are those re-

sponsible for the largest share of a country’s export flows (Eaton et al., 2004; Bernard

et al., 2012) and they could reduce their volatility by diversifying their portfolio (di

Giovanni et al., 2014; Kramarz et al., 2020). We measure the effects of the three

distinct components on the firms’ volatility distribution, showing how the global and

the destination-specific terms generate a significant part of the risks inherent to ex-

conomic effects of microeconomic shocks in the banking sector).
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port growth, even though the impact of the idiosyncratic non-reducible components

is relatively higher. The decomposition is then used to understand how and to what

extent geographical diversification strategies help dampen export volatility overall and

the single components on their own. We find that while firms diversifying across dif-

ferent destinations succeed in mitigating the risks associated with the macroeconomic

cycle, a reverse U-shaped relation between diversification and idiosyncratic volatility

suggests that the same strategies do not dampen idiosyncratic risks until a certain

level of diversification is reached.

The remainder of the paper is structured as follows. Section 2 introduces the model

and gives a brief and concise description of the methodology. Section 3 offers a bird’s

eye view of the dataset characteristics, focusing on sparsity, the distribution across

destinations, and some firm-level statistics. Section 4 presents the reconstruction of

the latent factor space and the volatility decomposition at the aggregate and firm

levels. Section 5 concludes.

2 Model and methodology

This work provides an econometric framework to identify different sources of shocks

affecting international trade flows. The methodology guarantees a high degree of flex-

ibility as the structure that we impose a priori is kept to a minimum and is ultimately

derived from the fundamental composition of the disaggregated transaction data (see

Figure 3 below). The approach allows for identifying global and destination-specific

components of the growth rates of the exports and their influence on aggregate and

firm-level volatility. We build upon a widespread class of models that typically rep-

resent the growth rate of exporters as the sum of orthogonal terms, including macro

shocks, estimated statically from each cross-section, and micro perturbations (see e.g.

di Giovanni et al., 2014; Kramarz et al., 2020; Bricongne et al., 2022). In line with

these static orthogonal decomposition models (SODMs), we recover the growth rates

of the export sales directed to a given destination as the sum of three parts: two
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Figure 1: Our elaboration on the OECD Main Economic Indicators (MEI) dataset, including quar-
terly deseasonalized growth rates (measure GYSA) for the GDP and its main components: GDP
[NAEXKP01], Export [NAEXKP06], Investments [NAEXKP04], Governments [NAEXKP03], Con-
sumptions [NAEXKP02]. Figure (a): time series of France’s quarterly deseasonalized growth rates.
Figure (b): Gaussian kernel estimates of the pooled distribution of quarterly GRs for France, Italy,
Germany and Spain from 1993 to 2018.

terms accounting for the macroeconomic effects of a global and a destination-specific

component and a third microeconomic component that is specific to firm-destination

pairs.

The proposed methodology improves upon existing SODMs in the characterization

of the macroeconomic effects: we assume that firms-to-destination trade varies in re-
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sponse to macroeconomic movements common to all the firms (global) or affecting only

the firms exporting to a given destination (destination-specific). Those movements are

represented by latent global and destination-specific factors and come endowed with

their own dynamic specification. Moreover, the model is considerably richer since the

dynamics of the microeconomic growth rates are driven by heterogeneous responses

to the factors through elasticities (factor loadings) that depend on the specific match

between firms and destinations. In practical terms, this decomposition is achieved

by estimating a dynamic factor model with a block structure or block-DFM, induced

by geographical export patterns. Once estimated, the growth rate decomposition is

scaled up at different levels of aggregation, recovering the volatility decomposition for

the total export, the export to each specific destination, and the firms’ export.

Our proposed application of DFM also improves upon existing techniques in yet

another way: the estimation of factors is based on the Kalman smoother, which aggre-

gates data optimally (in mean squared sense) by taking cross-sectional and dynamic

weighted averages of all observed time series. This is fundamentally different from

taking simple averages as in Gabaix (2011), Carvalho and Gabaix (2013), di Giovanni

et al. (2014), Bricongne et al. (2022) since by dynamically aggregating the data we

allow for leading-lagging relations among time series which account for feedback ef-

fects from the level of global and local factors to the data and vice versa. Consider

Figure 2, representing the information flow and the implied dynamics within the two

frameworks. For DFMs, along the vertical dimension, information flows are bidirec-

tional. In a two-step sequential estimation procedure, the estimated factors are used

to determine the loadings that are then exploited to update the factor estimates un-

til convergence. This interplay between the horizontal and vertical dimensions allows

for a full-fledged dynamic decomposition and a much more efficient handling of the

available information.

Model’s equations Working with flows of exports at the firm-country level, we

denote with yde,t the growth rate of the flow towards destination d by exporter e. We
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SODMs

δt δt+1

{yi,t} {yi,t+1}

DFMs

ft ft+1

{yi,t} {λi} {yi,t+1}

AR(1)

Figure 2: Two stylized examples for the SODMs and the DFMs methodologies. The diagrams
compare the information flowing directly (red arrows) or indirectly (blue arrows) in orthogonal de-
composition models (ODMs) and dynamic factor models (DFMs) for a generic time series of growth
rates {yi,t} (with i running over the number of flows). The symbols ft and λi denote respectively a
common latent factor, whose dynamics are described by an AR(1) process, and the associated load-
ings. Common components in ODMs are estimated using the information from single cross-sections
only, while in DFMs sequential time steps jointly concur to the formation of factors and loadings
estimates.

specify a simple model, featuring both macroeconomic shocks and destination-exporter

specific shocks, similar to di Giovanni et al. (2014). The model is described by the set

of equations:

yde,t = λde ft + ρde gd,t + ξde,t (1)

ft = af ft−1 + uf,t (2)

gd,t = ad gd,t−1 + ud,t (3)

With equation (1) we postulate the influence on yde,t of one latent factor common

to all the flows, ft, and one gd,t specific to the destination d. Factors are assumed to be

orthogonal, and we model the dynamics of each factor as autoregressive processes of

order one. The loadings λde and ρde reflect the response to the factor-related shocks, uf,t

and ud,t. Such loadings are specific to each firm-destination pair, thus embodying the

possible heterogeneous response of exporters to global and destination-specific shocks.2

Notice that, while the complete model features one global factor and D destination

factors, if we naively restrict the model to the space spanned by the series directed

to a given destination the model becomes a simple DFM with two factors, where the

variance explained by the second factor (the destination-specific one in the complete

2 The estimation of a model with AR processes of higher orders and with multiple common factors

or multiple destination-specific factors is possible and technically feasible. Nevertheless, we have

chosen a simpler structure to avoid parameters’ proliferation.
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representation) is residual with respect to that explained by the first one.

Estimation Dynamic factor models have an established tradition in macroecono-

metrics. Their early applications were based on the exact factor structure assumption

that all cross-correlations in the data could depend on a few common factors while

the idiosyncratic noise remained cross-sectionally uncorrelated (Quah et al., 1993; Sar-

gent et al., 1977). Unfortunately, this becomes an unrealistic hypothesis in the case

of interest to our research question, where the dataset’s cross-sections are very large,

favouring the emergence of idiosyncratic cross-sectional correlations. Estimation of

such approximate factor structures has been originally proposed in Stock and Watson

(2002) and Bai (2003) using classical principal component analysis and only global

factors. Estimation of local factors via principal components has been studied by

Onatski (2012), Breitung and Eickmeier (2015), and Freyaldenhoven (2021), among

others. These works show how in presence of a factor structure, a high-dimensional

dataset with high-dimensional blocks is precisely what allows to consistently estimate

the global and local factors and their loadings even in presence of (limited) cross-

correlation among idiosyncratic components, thus transforming a potential curse of

dimensionality into a blessing.

More recently, Doz et al. (2012) proposed to estimate DFMs via Quasi-Maximum

Likelihood (QML) implemented via the Expectation Maximization (EM) algorithm, a

method originally proposed by Watson and Engle (1983), Shumway and Stoffer (1982),

and Quah et al. (1993) for small size state space models. This approach is particu-

larly suited to deal with missing data (Mariano and Murasawa, 2003; Marcellino and

Schumacher, 2010; Bańbura and Modugno, 2014), yet it is widely used generally on

financial and economic applications (see e.g Coroneo et al., 2016; Delle Chiaie et al.,

2022). Building upon the literature on EM estimation of DFMs, we extend the frame-

work dealing with missing values and block structures simultaneously. We also propose

an ad hoc initialization procedure, based on a least square sequential estimator pro-

posed by Breitung and Eickmeier (2014, 2015) (see below and the Appendix A for the
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details). In addition, notice that, since we work with huge cross-sections (approaching

an order of magnitude of ∼ 106 units) and tens of factors, the estimation entails a con-

sistent memory overload, which cannot be tamed without an efficient handling of the

sparse matrices of input data and loadings.3 In this respect, the missing values share,

reaching the 70% (see Section 3 below for details), in the dataset allows to work with

a portion of the dataset actually reduced from those implied by the formal definition

of the model.

The EM algorithm consists of an iterated estimation procedure that converges

towards the QML estimates of the parameters in a sequence of steps. We briefly recall

here its fundamentals, referring to the Appendix A for a general description. Adopting

the synthetic notation, where F denotes the factors, the other parameters4 as θ and the

matrix of data as Y , we write the joint log-likelihood of data and factors as l (Y, F, θ),

and iterate the following two steps:

1. Given an estimate of the parameters θ(k−1), estimate the factors F (k−1) (jointly

with their covariance) via the Kalman smoother, then compute the expected

joint log-likelihood of Y and F :

L
(
θ; θ(k−1)

)
= Eθ(k−1)

[
l
(
Y, F (k−1), θ

)
|ΩT

]
,

where ΩT denotes the σ-field generated by Y and the expectation is taken using

the conditional distribution of the factors given ΩT and the estimated parameters

θ(k−1).

2. Obtain an update of the parameters by solving:

θ(k) = arg max
θ
L
(
θ; θ(k−1)

)
.

3 See https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

ZKNTUA for a publicly sample code.

4 Namely, the loadings matrix, the VAR coefficients and the relevant variance-covariance matrices.
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This cycle defines a sequence of increasing log-likelihood values

l
(
Y, F (0), θ(0)

)
→ l

(
Y, F (0), θ(1)

)
→ l

(
Y, F (1), θ(1)

)
and stops when an appropriate convergence condition is fulfilled. While typically the

algorithm is initialized by principal component estimates of loadings and factors, in

order to account for block-specific factors, we propose to initialize it using the follow-

ing iterative procedure: first, missing values are imputed using time-series medians

and moving average smoother, then a sequential least square estimator proposed by

Breitung and Eickmeier (2014, 2015) is applied on the ‘completed’ matrix to obtain

the block-by-block parameters initialization. In this respect, whereas applied on im-

puted data, we can exploit the well established asymptotic properties of the initializing

estimator (see propositions 2 and 3 of Choi et al., 2018).

Throughout, we employ a misspecified likelihood where the idiosyncratic com-

ponents are treated as if they were both cross-sectionally and serially uncorrelated

and normally distributed. This makes estimation fast and easy, and allows to have

analytical expressions for the solutions at the maximization step. Nevertheless, it

can be shown that, as both the total number of series,
∑D

d=1 nd, and the sample

size, T , grow to infinity, the consistency and efficiency of the estimated loadings and

factors are not affected by such misspecifications. Moreover, the estimated factors

are likely to be more efficient than those recovered by principal component analysis.

We refer to Bai and Li (2016) and Barigozzi and Luciani (2019) for more details on

the asymptotic properties of the estimators. Furthermore, we stress the robustness of

the methodology to deviations from Gaussianity of the idiosyncratic terms and the

factors’ innovations, collecting Monte Carlo evidence on the finite sample properties

under this and other misspecifications (see Appendix B) and joining several empirical

and numerical applications to leptokurtic or asymmetric distributed data (see e.g.

Reis and Watson, 2010). These results justify the application to the growth rates

of the export transactions whose distributional properties will be explored in the
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following section. Finally, notice that the estimation is performed on standardized

and demeaned series, then the estimated values are remapped to the original scales

before proceeding with aggregation.

Dataset subsampling. For this specific application of DFMs, given the significant

share of missing values, it is important to check that available information is sensibly

conveyed for the estimation and identification of the factor space and the other aggre-

gate volatility measures. Hence, we estimate the model on random subsamples of the

original dataset. We first build a predefined number of reduced datasets (H), selecting

at random a fixed number of firms (Nh) and keeping all the time-series associated

with those firms. Then we apply the estimation procedure to each reduced dataset,

obtaining H different estimates of the factors and the aggregate volatility coming from

the decomposition (1). The final estimates for the factors and the aggregate volatility

are thus averages of the H factors estimates and H volatility estimates and come along

with the relative confidence intervals.

Volatility estimates and decompositions Our approach aims to the identifica-

tion of idiosyncratic and macroeconomic shocks to export sales growth rates and to

the estimation of their impact on the volatility of the aggregate. While the model out-

lined in (1)-(3) differs from the existing identifying methodologies adopted by Gabaix

(2011), di Giovanni et al. (2014) and Kramarz et al. (2020), we apply an analogous

strategy for the mapping between the microeconomic decomposition and the chosen

aggregate.5 We report here a quick overview of the main lines.

Once estimated, the model main equation provides a decomposition of the logarithmic

growth rates of each exporter-destination cell

yde,t = λ̂de f̂t + ρ̂de ĝd,t + ξ̂de,t. (4)

5 For a thorough review of the possible strategies to recover the aggregates from microeconomic flows

decompositions, see Amiti and Weinstein (2018).
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These estimates will be used to assess the impact of any of the terms (or a combination

of two) on the aggregate fluctuations. In order to recover the aggregate we will make

use of size-based weights, encoding the share of the single exporter-destination cell

within a given aggregation level:

ωagg
de,t =

yde,t−1∑
d,e yde,t−1

. (5)

While summing up the contribution of the single flows to the aggregate, these weights

can be chosen to be fixed (di Giovanni et al., 2014) or time-varying (Kramarz et al.,

2020). Then one can recover the aggregate time series as:

γagg
t|τ =

∑
d,e

ωagg
de,τ

(
λ̂de · f̂t +

∑
d

ρ̂de,i · ĝd,t + ξ̂de,t

)
(6)

γagg
t =

∑
d,e

ωagg
de,t

(
λ̂de · f̂t +

∑
d

ρ̂de,i · ĝd,t + ξ̂de,t

)
(7)

where in the first equation we set up the weights to be fixed at a given time step τ ,

while in the second they are allowed to vary along the time series together with the

growth rates components. To construct a proxy of the aggregate volatility, we will

work with the variances and standard deviations of the quantities in (6) and (7). In

particular we define the actual or aggregate variance as σ2
agg,τ = Var

(
γagg
t|τ

)
and those

of the components as:

σ2
glob,τ = Var

(∑
d,e

ωagg
de,τ · λ̂de · f̂t

)
σ2

glob = Var

(∑
d,e

ωagg
de,t · λ̂de · f̂t

)

σ2
dest,τ = Var

(∑
d,e

ωagg
de,τ ·

∑
d

ρ̂de,i · ĝd,t

)
σ2

dest = Var

(∑
d,e

ωagg
de,t ·

∑
d

ρ̂de,i · ĝd,t

)

σ2
idio,τ = Var

(∑
d,e

ωagg
de,τ · ξ̂de,t

)
σ2

idio = Var

(∑
d,e

ωagg
de,t · ξ̂de,t

)

Let us emphasize a few points on the characteristics of these aggregate variances.

First, note that the aggregation with fixed weights provides T different estimates of
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the volatility, depending on the weight selected, so we will consider the time average

as the point estimate for the whole time span. Second, the variance of the aggregate

cannot be recovered as the simple sum of variances of the components, because of

the covariances of the paired terms. In this respect, non-null covariances between the

estimated components might emerge even though orthogonal decomposition models

(dynamic or static) assume their independence in population. Following the conven-

tion in the literature, throughout the paper we measure volatility as the standard

deviation and define the relative standard deviations or the relative volatility of the

global, destination-specific and idiosyncratic components as, respectively, the ratios of

the form σglob,τ/σagg,τ , σdest,τ/σagg,τ and σidio,τ/σagg,τ .

In analogy with the formulas for the aggregation over all the export transactions, it

is possible to generalize to different levels of aggregation. In this paper, we work both

with destination-specific and firm aggregates. The former is obtained by aggregating

the series targeting a specific destination d, thus the weighting can be restricted to the

set, Id, of flows targeting d,

ω
(d)
e,t =

yde,t−1∑
e∈Id yde,t−1

. (8)

On the same line, firm-specific volatility can be obtained as the standard deviation

associated to the sum of the transactions of each exporter directed to any destination.

Formally, taking the portfolio of the destinations for the exporter e (Ie), the weights

become

ω
(e)
d,t =

yde,t−1∑
d∈Ie yde,t−1

. (9)

Both for destination ad firm-level aggregates the same observations on the dynamic

and static weighting apply.

3 Data and stylized facts

To estimate the outlined model, we rely on transaction-level exports recorded by

the French customs office (Direction Générale des Douanes et des Droits Indirects,
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DGDDI).6 The dataset contains detailed information on export flows on a monthly

basis for each year from 1993 to 2017 for all French exporters. A unique official identi-

fication number identifies each exporter (SIREN code) and transactions report export

value, quantity, country of destination, and an 8-digit product code following the Eu-

ropean Union’s Combined Nomenclature (CN8). Our analysis relies on export values

at the firm-country level. We start by applying standard cleaning methodologies de-

scribed in Bergounhon et al. (2018). They include the harmonization of product codes,

constructing a coherent chain of HS system’s labels, and homogenization of registered

transactions. As to the latter, since the registration of the transactions below the

threshold of 1000 euros (or 1000 Kgs) was not compulsory before 2010, we opted for

the deletion of all the transactions below the threshold before and after 2010. In total,

we dropped around 1.5 millions of firm-product-destination-month tetrads per year,

accounting for a tiny fraction of the total export value (around 0.5%). This basic

cleaning leaves an average value of export per year of euros 340.99 billions and, after

aggregating along the product dimension, 3.2 millions of firm-destination pairs, which

constitute the units of our analysis. We then aggregate monthly data into quarterly

data and transform the panel of transactions into a matrix of time series, one for each

firm-destination pair. Notice that the dataset includes the universe of (legal) transac-

tions and it is originally provided in the so-called ‘long format’, where the id of each

firm gets repeated as many times as the number of transactions in a given year. When

creating a panel, we artificially generate missing values which we proceed to fill with

zeros. Figure 3 offers a visual representation of this operation. Let us notice that,

since our analysis focuses on the intensive margin of export flows, when estimating the

model on logarithmic growth rates, the imputed zeros generate NAs. Their incidence

and distribution need to be analyzed in order to proceed with estimation.

6 The data are directly provided to researchers by the DGDDI upon the approval of a research

proposal by the Comité du Secret Statistique.
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Figure 3: The transformed series. From the table at the bottom, yearly growth rates are calculated
on four points per years on a yearly basis, taking quarter-to-quarter logarithmic ratios.

Missing values and skewness along the country dimension The first relevant

issue arising in the estimation of the model (1) regards the sparsity of the dataset:

89.99% of all observations are missing. Moreover, available points are unevenly dis-

tributed across firm-destination pairs: Figure 4 shows that on a log-log scale the distri-

bution of available information follows a Pareto-like distribution. Within our interval

span the share of missing values in the cross-section has minor variations over time,

with a slightly improving situation in the more recent years. These changes along the

time dimension do not pose serious issues for the estimation because the maximum

observed spread is around 3%.

The second problem concerns the skewness along the country dimension. Among

the 259 countries included in the original dataset, only a few of them are relevant for

our analysis. For example, during the considered period only 67 countries report at

least 1000 active flows at any cross-section (out of potential 3.2 million of flows).

Time frequency and country restrictions Given the properties of the dataset,

the choice of the optimal time frequency and the selection of destination countries are

of strategic relevance. Concerning the frequency, we construct yearly growth rates by

taking quarter-to-quarter logarithmic growth rates on quarterly data in an attempt

to enhance the standard volatility analysis in two different aspects. First, quarterly
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Figure 4: Percentage of active flows (y axis in log10 scale) vs the percentage of available points in
the time span, i.e. number of active quarters (x axis in log10 scale). Two curves are proposed to
compare the missing value distribution before and after the filtering procedure implemented along
the country dimension.

data allow dealing with sufficiently long time series (96 points in yearly quarter-to-

quarter growth rates) providing the proper dimensionality for the identification of

common and destination factors. Notice that yearly quarter-to-quarter growth rates

are also functional in removing at best the seasonality in each time series without

adopting additional filtering procedures. Second, taking quarters in place of years

reduces possible biases due to the so-called partial-year effect (see e.g. Bernard et al.,

2017), which might lead to the overestimation of the growth rates between the first

and the second year (and therefore of the associated volatility) because firms start

exporting at different months during the first year of activity.

We next consider how to restrict the number of countries to exclude those least

interested by French flows of exports. In this respect, a robust and consistent

estimation of the destination-specific effects requires that factors have measurable

impacts both at the macroeconomic and microeconomic levels. We keep in the

dataset those countries that: i) are sufficiently represented in the firms’ portfolios;

ii) are relevant in terms of export value as a share of the total export. This leaves

us with 67 destinations, accounting for 88.25% of the total export value. As we are

ultimately interested in growth rates, we further drop firm-country flows that over

the whole span report data on three points or less (over 96). We are finally left with
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86.44% of the total export value and close to 900 thousand firm-destination pairs.

Not surprisingly, the operated spatial restriction induces a reduction in micro-level

sparsity to 70% (see Figure 4).7

4 Results

In this section, we outline an overview of the main results of our analysis, grouped

into two main categories. First, at the aggregate level, we show how dynamic factor

models provide a robust identification of macroeconomic comovements that, together

with firm-destination specific loadings, serve as the primary tool for the volatility de-

composition. Using the decomposition, we show how the volatility associated with

specific destinations distributes along geographical patterns typical of gravity models

for export flows. Second, at the firm level, we look at the distributions of the com-

ponents of firms’ volatility and then characterize the linkages between geographical

diversification and volatility trends.

4.1 Volatility at the aggregate level

Factor space reconstruction. The global factor is shown in Figure 5 where it

is compared with yearly quarter-to-quarter growth rates for French export from the

FRED database. Simple visual inspection suggests a good level of agreement between

the two independent measures of export growth, confirming that the comovements

of the microeconomic export flows encode enough information to reconstruct the be-

haviour of aggregate statistics. Before moving ahead, we complete the consistency

check implied by the sampling procedure applied. To check whether factors’ sample

estimates describe the same factor space we compute pairwise trace statistics with the

7 After imposing the restrictions, the number of firms in the dataset shrinks from around 167 thou-

sands to 140 thousands.
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Figure 5: The identified global factor (black solid line) with 90% and 99% confidence intervals,
compared with the aggregate growth rate of the French export from an independent source: our
elaboration of the series from Organization for Economic Co-operation and Development, Exports:
Value Goods for France [XTEXVA01FRQ664N], retrieved from FRED, Federal Reserve Bank of St.
Louis; https://fred.stlouisfed.org/series/XTEXVA01FRQ664N, December 3, 2020.

formula8:

Tr(k,h) =

Tr
(
F̂ (k)′F̂ (h)

(
F̂ (h)F̂ (h)′

)−1
F̂ (h)′F̂ (k)

)
Tr
(
F̂ (k)′F̂ (k)

)
The range of the trace statistics is [0, 1] and different factor spaces tend to be closer

when Tr(k,h) approaches the right limit. Trace statistics test for the equivalence of the

factor spaces estimated by running the EM algorithm on each sample. The estimated

matrices of factors from two different samples are compared by taking the related trace

statistics. The pairwise computed values for 20 samples have a minimum of 0.96 and

a maximum of 0.98, confirming a very good coherence of the different estimates.

Aggregate volatility and granularity. Before providing the point estimates of the

aggregate volatility components, we present a comparison between the growth rates

decomposition obtained via SODMs and DFMs. As a benchmark for the former we

8 F defines a (D+1)×T -matrix containing both the global and the destination-specific factors. With

a slight abuse of notation, we use the indices k and h to denote different samples of the dataset,

not to be confused with the indices denoting the steps of the EM steps.
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replicate on our dataset the decomposition methodology of di Giovanni et al. (2014).9

For a proper comparison, we analyze the common term of our decomposition, joining

the global and local factor and loadings (i.e the firs two terms of equation 1), vis a vis

the sector-destination shocks of di Giovanni et al. (2014) (the first term in equation

5, pag. 1309).10 Looking at Figure 6 we see in which direction our decomposition en-

riches the analysis of the variation in the export sales growth rates. Both estimates are

in line with previous findings highlighting that the variation induced by the idiosyn-

cratic shocks is dominant in magnitude over the common shocks for most of the time

span. Nevertheless, it is worth emphasizing two relevant differences: i) the common

components derived as the interplay between factors and the related firm responses

are i) significantly more volatile than common components extracted as sectoral and

destination averages; ii) this evidence is even more relevant across specific subsets of

the time span, with some cases in which the common component isolated through

DFMs approaches the idiosyncratic shocks in magnitude. These results highlight the

flexibility of DFMs in capturing non-trivial effects of the macroeconomic components

on the export growth rates at microeconomic level. This evidence leads to a partial re-

view of the standard results that most shocks hitting firms are firm-specific, suggesting

instead that also shocks common to all the firms can generate significant variations in

the growth rates because firms’ reactions are highly heterogeneous. Not surprisingly,

such a mechanism becomes particularly relevant during deep downturns and rapid

hypes.

After a first exploration of the decompositions of the growth rates, we move to the

analysis of the aggregate volatility to assess the differential impact of the decomposi-

tions. Using equation (6) the aggregate volatility estimates are determined not only

by the variation in growth rates components but also by the possible synchronization

9 The algorithms are adapted from those available at the link https://julian.digiovanni.ca/

Papers/FirmGranular_replication.zip.

10 In the following we will always specify if the calculations include both sectors and destinations

effect or only one of the two.
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Figure 6: The direct comparison of the aggregate volatility common (top) and idiosyncratic (bot-
tom) components obtained via dynamic factor models (top left) or the static orthogonal decomposition
models of di Giovanni et al. (2014) under different specifications, varying frequency and macroeco-
nomic effects. Solid lines denote the point estimate at each time step, while confidence intervals are
constructed using the components’ median (box centers), the first and third quartiles (box extremes)
and the first and last deciles (background shadowed area).

with the changes in the distribution of the size-based weights. In this respect, Figure 7

and Table 1 provide the aggregate volatility estimates respectively at each time step

and considering all the time span. The firm-destination specific component accounts

for the 0.84 of the actual volatility; the global and destination-specific volatility com-

ponents for the 0.30 and the 0.18 respectively. When both the business cycle terms are

combined to form the common component they reach a relative share of 0.37 over the

time span, in line with the outcomes of the SODM, setting around the 0.36 and 0.31

depending if both sector and destination effects are included or destination effects only.

As before, the comparison shows a significant difference when we zoom into the details

of the time variations. In fact, in our model the dynamic of the volatility is not only

driven by the variation of the relative size of the exporters or the exporter-destination

cells (as measured by the weights), as in di Giovanni et al. (2014), but also by the

significant variation in the growth rates and in particular by their synchronization.

This might induce relevant changes in the estimates of the aggregate volatility as the

time span changes: note, for example, how the common component of the volatility

surged during the trade collapse matching in magnitude the idiosyncratic one. These
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differences do not depend on the time-frequency nor on the set of effects that are

included in the benchmark decomposition (compare the four plots in Figure 7).

SODM − Destination effects − Quarterly SODM − Destination effects − Yearly

DFM − Global and destination factors − Quarterly SODM − Destination and sector effects − Quarterly 
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Figure 7: The direct comparison of the aggregate volatility estimates obtained decomposing the
growth rates via DFMs or the SODMs. The latter is presented under two different specifications,
namely including destination and sector terms in the common component, or destination effects only.
The SODM is estimated both on quarterly and yearly data to highlight the impact on the estimates of
a change in the measured frequency. Shadowed areas outline the 95% analytical confidence intervals
as provided in di Giovanni et al. (2014).

Figure 8 reports the main result of the paper: the time series of the estimates of

the components of the volatility associated to growth rates decomposition outlined in

(1)-(3). The common component is replaced by its subcomponents, the global and

destination specific, and presented together with the idiosyncratic one. Destination

and global components are comparable in magnitudes except for a few spikes of the

global component standing out during downturns of the cycles. The idiosyncratic

component is dominant in magnitude, as mentioned before. This pattern is reflected

in the point estimates of the volatility associated to the time-span in table 1, top panel.

Destination-specific patterns. Looking at the destination-specific volatility asso-

ciated to the aggregate French export, we can identify gravity-like patterns showing

that country specific effects mitigate the risks attached to high volatile trade connec-

tions. Figure 9 shows a simple bivariate relation between the measure of volatility

associated to a given destination and its GDP level. In the right panel, where the
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Constant weighted aggregation

DFM (sampled) SODM

Dest. Dest. Dest. + Sec.
(Quarterly) (Quarterly) (Yearly) (Quarterly) (Yearly)

Common 0.3753
(0.3579,0.3913) 0.3173 0.2608 0.3630 0.2913

Global 0.3049
(0.2594,0.3405)

Destination 0.1800
(0.1539,0.2063)

Idiosyncratic 0.8444
(0.8369,0.8506) 0.8915 0.9073 0.8498 0.8722

Dynamic weighted aggregation

DFM (sampled) SODM

Dest. Dest. Dest. + Sec.
(Quarterly) (Quarterly) (Yearly) (Quarterly) (Yearly)

Common 0.7853
(0.7431,0.8188) 0.6484 0.5414 0.7171 0.5786

Global 0.684
(0.5992,0.7651)

Destination 0.3683
(0.3150,0.4399)

Idiosyncratic 0.7873
(0.7653,0.8106) 0.7904 0.5367 0.7235 0.5108

Table 1: The volatility explained by each component in relation to the actual aggregate volatility as
measured by the DFMs and the benchmark SODMs. The statistics and confidence intervals for the
DFM are computed out of 20 estimations of the same model over random subsamples of the original
dataset (each subsample is constructed selecting 80k firms at random).

0.00

0.05

0.10

0.15

0.20

Ja
n 

19
94

Ja
n 

19
96

Ja
n 

19
98

Ja
n 

20
00

Ja
n 

20
02

Ja
n 

20
04

Ja
n 

20
06

Ja
n 

20
08

Ja
n 

20
10

Ja
n 

20
12

Ja
n 

20
14

Ja
n 

20
16

Ja
n 

20
18

Idiosyncratic Global Destination

Volatility components

Figure 8: The estimates of the aggregate volatility components, global, destination-specific and
idiosyncratic components obtained via dynamic factor models, aggregating with constant weights
defined at different time steps (95% theoretical confidence interval derived as in di Giovanni et al.
(2014)).

analysis is restricted to EU countries, a clear inverse correlation emerges between

volatility and GDP. Indeed, the outliers, if any, are EU commercial partners joining
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the European Union in the second half of our time window.11

Similar considerations apply to the patterns on the left panel: an inverse relation-

ship is apparent among the Extra-EU countries, which is however obscured by the

presence of specific group of countries which are likely to experience less volatile trade

flows from French firms, for a given level of GDP. This is the case, for example, of

former French colonies status, which reduce the risks associated to trade relationships

with low income countries.

To provide a more quantitative assessment of these trends, we ran a simple OLS

regression of destination specific volatility on GDP, further adding controls accounting

for geographical distance, free trade agreements, former French colonies, EU countries.

Results, presented in Table 2, confirm the main finding from Figure 9: when accounting

for additional covariates, the relationship between (log) GDP and (log) destination-

specific volatility becomes negative and significant (see columns 2 and 3).
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Figure 9: Destination-specific volatility vs destination GDP for extra-EU (left panel) and intra-EU
(right panel) trade relations.

11 Slovakia and Lithuania joined the EU single market in 2004, while the analyzed time window spans

from 1993 and 2017.
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Log. dest. vol.

(1) (2) (3)

Log. dist. 0.123∗∗∗ 0.096∗∗∗ 0.097∗∗∗
(0.029) (0.034) (0.031)

Log. GDP 0.004 −0.053∗∗∗ −0.040∗∗
(0.014) (0.017) (0.017)

EU+Colonies controls No Yes No

FTA+Colonies controls No No Yes

Constant −1.994∗∗∗ −0.172 −0.513
(0.444) (0.553) (0.486)

Observations 65 65 65
R2 0.231 0.460 0.501
Adjusted R2 0.206 0.415 0.430
Residual Std. Error 0.218 (df = 62) 0.187 (df = 59) 0.185 (df = 56)
F Statistic 9.309∗∗∗ (df = 2; 62) 10.064∗∗∗ (df = 5; 59) 7.029∗∗∗ (df = 8; 56)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: OLS estimates of gravity-like regressions for the volatility associated to
each destination. GDP values and distances are the variables distw and gdp_d
with France taken as origin country from the CEPII GeoDist database (available at
http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id6̄ and described in Head et al.,
2010; Mayer and Zignago, 2011). EU+Col controls include the variables eu_d, col45 and, colony,
whereas for FTA+Col eu_d is replaced by fta_bb; the latter includes information on the participation
in a common market or in the same currency union.

4.2 Volatility at the firm level

In order to establish the role of the different components of volatility at the firm level,

Figure 10 shows the distributions of firm-level volatility where one or two terms of

Equation 4 have been set to zero before aggregating using the dynamic weights of the

form (9), in the spirit of Kramarz et al. (2020). The global and destination-specific

components have similar impacts on firms’ volatility distribution, both in terms of

magnitude and direction: once muted singularly, there is a visible shift to the left

of the second and third quartile threshold and, to a lesser extent, of the first one;

the effect is almost identical for both components. On the other hand, if we exclude

the idiosyncratic component, we observe a relevant left-shift of all quartile thresholds

and a substantial narrowing of the right tail. More precisely, the median reduction

obtained removing the macroeconomic components is around 50% (from 0.78 to 0.37

or 0.39). In contrast, the impact of the microeconomic (idiosyncratic) contribution

amounts to a dampening of 83% (from 0.78 to 0.13), confirming the prominent role
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of the idiosyncratic component, yet showing that global and destination-specific terms

have a non-negligible effect as drivers of volatility. This means that exporters, even

though mostly exposed to idiosyncratic risks, face also the risk of relevant global

and destination-specific shocks. In the remainder, the focus will move on the role of

diversification in mitigating the effects of these shocks.

Total vol.

Global muted

Dest. muted

Idio. muted

0 0.5 1 1.5 2

10th pct. 25th pct. 50th pct 75th pct. 90th pct.
Total vol. 0.1754 0.3723 0.7835 1.5758 2.9223
Glo. muted 0.0351 (-80%) 0.1149 (-69%) 0.3714 (-53%) 1.1051 (-29%) 3.0645 (+5%)
Dest. muted 0.0371 (-79%) 0.1198 (-68%) 0.3881 (-50%) 1.1588 (-26%) 3.2063 (+ 9%)
Idio. muted 0.0182 (-89%) 0.0478 (-87%) 0.1301 (-83%) 0.3497 (-78%) 0.8725 (-70%)

Figure 10: Gaussian kernel densities for ‘counterfactual’ volatility distributions compared with the
volatility distribution. On each panel a fit of the empirical distributions is obtained silencing the
idiosyncratic component (top panel) and the macroeconomic effects: destination-specific component
and global component (middle panels). The table below provides a quantitative assessment of the
shift of the quantile thresholds for the same distributions.

Measuring diversification. To investigate the relationship between export growth

volatility and firm diversification, we start by defining a set of diversification measures

that have been used in the literature: the number of destination markets (Dest. Mkts.),

the share of firm exports accounted for by the most important market (Top Share),

and the Herfindahl-Hirschman Index (HHI) of export shares (see, among many others,

Braakmann and Wagner, 2011; di Giovanni et al., 2014; Vannoorenberghe et al., 2016;

Kramarz et al., 2020). We add to this indices also a diversification measure constructed

using the inverse of the HHI. For each of these variables, we compute the firm average

over time on a quarterly basis and then report basic descriptive statistics (Table 3).
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We observe a consistent level of skewness in all the relevant distributions, in line with

the previous evidence of Eaton et al. (2004) on French exporters.

N Obs. Mean SD Skew. Kurt. Median 1st pc. 10th pc. 90th pc. 99th pc.
Dest. Mkts. 143194 2.12 4.98 6.89 76.52 0.58 0.07 0.13 5.09 24.21
Top Share 143194 0.28 0.18 1.01 0.54 0.24 0.05 0.09 0.55 0.81
HH Ind. 143194 0.74 0.17 -1.16 1.21 0.79 0.23 0.50 0.92 0.96
Div. Ind. 143194 1.69 1.30 3.43 16.75 1.12 1.00 1.00 3.14 7.25

Table 3: Summary statistics for the distributions of four key diversification indicators: the number
of destination markets, the share (of value) of the principal destination market in the firm’s portfolio,
the Herfindahl–Hirschman Index (HHI) and a diversification index constructed using the inverse of
the HHI. The synthetic information is computed as an average over the active time span for each
single exporter.

σ Dest. Mkts. Top Share HH Ind.
Dest. Mkts. -0.1627
Top Share -0.0893 0.1592
HH Ind. 0.0489 -0.0292 -0.9824
Div. Ind. -0.2230 0.8022 0.0072 0.1268

Table 4: Correlation matrix of the diversification indicators. Different diversification measures and
log weighted volatility.

Volatility components and diversification The preceding analysis has one main

implication: the idiosyncratic component of the firm-level volatility has a promi-

nent role compared to the macroeconomic ones, i.e the global component and the

destination-specific component. How do diversification strategies help firms reduce

trade risks related to the different components? Start by noting that standard portfolio

theory would imply a negative relationship between firm-level volatility and the degree

of diversification in the destination markets (Hirsch and Lev, 1971; Vannoorenberghe

et al., 2016). Table 4, showing pairwise correlations among the different diversifica-

tion indicators and firm-level volatility, provides a descriptive confirmation that more

diversified firms tend indeed to experience less volatile export growth patterns.

To dig deeper into these correlations, we look at the distributional properties of

the volatility components for classes of firms grouped by diversification quantiles, in

Figures 11 (for all firms) and 12 (focusing only high and low volatile firms). First,

the macroeconomic volatility components move together with a downward trend in

29



logs. Second, the idiosyncratic component moves along two opposite trends if we look

at exporters that diversify below or above the median. Indeed, looking at the first

half of the diversification spectrum, the volatility lies on a steady path, whereas on the

second half moves along the expected inverse linear path, meaning that risk mitigation

becomes relevant only after a certain threshold. This diversification limit is indeed

relatively high for the population of French exporters, corresponding to a diversification

index of around 3. On our data, the median value of the diversification index is

1.12, and only the 10% most diversified firms reach that limit (See Table 3, bottom).

Figure 12, which focuses only on the most and the least volatile firms, additionally

confirms that the idiosyncratic component dwarfs the other two in magnitude.

One concern raised by Figures 11 and 12 is that they do not control for size effects:

as more diversified firms are also larger, the negative relationship between diversifi-

cation and volatility could be due to an underlying size effect. To account for this,

Figures 13 shows the relationship between volatility and its components and the resid-

uals from a OLS regression of each of these components on size percentiles. The main

message does not change: there is a sharp negative relationship between diversification

and the common and destination-specific components of volatility. On the other hand,

the idiosyncratic component is much less responsive to diversification.

Summing up, the risk exposure is reduced for firms that diversify their activities

on the destination markets. Log-linear risk dampening effects seem to work only for

shocks originated by macroeconomic induced fluctuations, with no remarkable differ-

ence between global and destination-specific shocks. On the contrary, the idiosyncratic

component of the growth rate generates a volatility distribution at the firm level that

does not change substantially while firms diversify more until a certain level. Beyond

the threshold, diversification strategies give a consistent reduction helping firms to

approach less volatile growth paths.
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Figure 11: Diversification versus volatility components. The population of firms is divided into 50
groups, one for each 50tile of diversification indicator (Div. Ind. as per Table 3). The graphs display
the boxplot associated with the distribution of the volatility components of each group, ordered from
the least to the most diversified.

5 Conclusions

This paper proposes a dynamic factor model approach to the decomposition of aggre-

gate and firm-level volatility. This allows to reconstruct the latent space of macroe-

conomic factors and decompose the growth rate of firm-destination cells into three

orthogonal components: a global component, a destination-specific component and an

idiosyncratic component. This provides the first application of dynamic factor models
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Figure 12: Diversification versus volatility, quantile-quantile plot. On the left panel, restricted to the
most volatile firms (top 10%), the plot shows the three different volatility components vs percentiles
of inverse Herfindahl index (average on the time window). On the right panel, the analogous graph
for the least volatile firms (bottom 10%).

Figure 13: The residuals of the regression ln(Vol) ∼ ln(Size) + Size percentiles plotted against the
diversification index. As explained variable we take each component of the volatility and the volatility
itself at the firm-level.

to transaction level data and requires an estimation based on the Expectation Max-

imization algorithm to accommodate both the prevalence of missing values and the

high number of time series.

The decomposition is then mapped at the aggregate and at the firm level measuring

the contribution of the three components to the total export’s and firms’ volatility. Our

method gives new insights on the impact of the granular component of the aggregate

export volatility and its measurement. In particular, we find that macroeconomic
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shocks play a bigger role in generating aggregate volatility than it is usually recognized.

When analyzing the volatility associated with firms’ growth, we show that the

global and destination-specific components have a comparable effect on the first and

second moments of the volatility distribution and show how diversification across des-

tination markets can protect firms from shocks coming from macroeconomic events

but seems to have contrasting effects on the idiosyncratic shocks.

33



References

Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012):

“The network origins of aggregate fluctuations,” Econometrica, 80, 1977–2016.

Amiti, M. and D. E. Weinstein (2018): “How much do idiosyncratic bank shocks

affect investment? Evidence from matched bank-firm loan data,” Journal of Political

Economy, 126, 525–587.

Armenter, R. and M. Koren (2014): “A balls-and-bins model of trade,” American

Economic Review, 104, 2127–51.

Bai, J. (2003): “Inferential theory for factor models of large dimensions,” Economet-

rica, 71, 135–171.

Bai, J. and K. Li (2016): “Maximum likelihood estimation and inference for approx-

imate factor models of high dimension,” Review of Economics and Statistics, 98,

298–309.

Bańbura, M. and M. Modugno (2014): “Maximum likelihood estimation of factor

models on datasets with arbitrary pattern of missing data,” Journal of Applied

Econometrics, 29, 133–160.

Barigozzi, M. and M. Luciani (2019): “Quasi maximum likelihood estimation and

inference of large approximate dynamic factor models via the EM algorithm,” arXiv

preprint arXiv:1910.03821.

Bergounhon, F., C. Lenoir, and I. Mejean (2018): “A guideline to French firm-

level trade data,” Tech. rep., mimeo Polytechnique.

Bernard, A. B., E. A. Boler, R. Massari, J.-D. Reyes, and D. Taglioni

(2017): “Exporter dynamics and partial-year effects,” American Economic Review,

107, 3211–28.

34



Bernard, A. B., J. B. Jensen, S. J. Redding, and P. K. Schott (2009): “The

Margins of US Trade,” American Economic Review, 99, 487–93.

——— (2012): “The Empirics of Firm Heterogeneity and International Trade,” Annual

Review of Economics, 4, 283–313.

——— (2016): “Global Firms,” CEP Discussion Papers dp1420, Centre for Economic

Performance, LSE.

Braakmann, N. and J. Wagner (2011): “Product diversification and stability of

employment and sales: first evidence from German manufacturing firms,” Applied

Economics, 43, 3977–3985.

Breitung, J. and S. Eickmeier (2014): “Analyzing Business and Financial Cycles

Using Multi-Level Factor Models,” Bundesbank Discussion Paper.

——— (2015): “Analyzing business cycle asymmetries in a multi-level factor model,”

Economics Letters, 127, 31–34.

Bricongne, J.-C., J. Carluccio, L. G. Fontagné, G. Gaulier, and S. Stump-

ner (2022): “From Macro to Micro: Large Exporters Coping with Common Shocks,”

CESifo Working Paper.

Carvalho, V. and X. Gabaix (2013): “The Great Diversification and Its Undoing,”

American Economic Review, 103, 1697–1727.

Carvalho, V. M. and B. Grassi (2019): “Large firm dynamics and the business

cycle,” American Economic Review, 109, 1375–1425.

Choi, I., D. Kim, Y. J. Kim, and N.-S. Kwark (2018): “A multilevel factor model:

Identification, asymptotic theory and applications,” Journal of Applied Economet-

rics, 33, 355–377.

Coroneo, L., D. Giannone, and M. Modugno (2016): “Unspanned macroeco-

nomic factors in the yield curve,” Journal of Business & Economic Statistics, 34,

472–485.

35



Delle Chiaie, S., L. Ferrara, and D. Giannone (2022): “Common factors of

commodity prices,” Journal of Applied Econometrics, 37, 461–476.

di Giovanni, J., A. Levchenko, and I. Mejean (2014): “Firms, Destinations,

and Aggregate Fluctuations,” NBER Working Papers 20061, National Bureau of

Economic Research, Inc.

di Giovanni, J. and A. A. Levchenko (2009): “Trade Openness and Volatility,”

The Review of Economics and Statistics, 91, 558–585.

di Giovanni, J., A. A. Levchenko, and I. Mejean (2014): “Firms, Destinations,

and Aggregate Fluctuations,” Econometrica, 82, 1303–1340.

Di Giovanni, J., A. A. Levchenko, and I. Mejean (2018): “The micro origins of

international business-cycle comovement,” American Economic Review, 108, 82–108.

Doz, C., D. Giannone, and L. Reichlin (2012): “A quasi–maximum likelihood

approach for large, approximate dynamic factor models,” Review of economics and

statistics, 94, 1014–1024.

Durbin, J. and S. J. Koopman (2012): Time series analysis by state space methods,

Oxford university press.

Eaton, J., S. Kortum, and F. Kramarz (2004): “Dissecting Trade: Firms, In-

dustries, and Export Destinations,” American Economic Review, 94, 150–154.

Freyaldenhoven, S. (2021): “Factor models with local factors—Determining the

number of relevant factors,” Journal of Econometrics.

Gabaix, X. (2011): “The Granular Origins of Aggregate Fluctuations,” Econometrica,

79, 733–772.

Hallin, M. and R. Liška (2011): “Dynamic factors in the presence of blocks,”

Journal of Econometrics, 163, 29–41.

36



Head, K., T. Mayer, and J. Ries (2010): “The erosion of colonial trade linkages

after independence,” Journal of international Economics, 81, 1–14.

Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh (2020): “Firm

volatility in granular networks,” Journal of Political Economy, 128, 4097–4162.

Hirsch, S. and B. Lev (1971): “Sales Stabilization Through Export Diversification,”

The Review of Economics and Statistics, 53, 270–77.

Kelly, B., H. Lustig, and S. V. Nieuwerburgh (2013): “Firm Volatility in

Granular Networks,” NBER Working Papers 19466, National Bureau of Economic

Research, Inc.

Kose, M. A., C. Otrok, and E. Prasad (2012): “Global business cycles: conver-

gence or decoupling?” International economic review, 53, 511–538.

Kramarz, F., J. Martin, and I. Mejean (2020): “Volatility in the small and in

the large: The lack of diversification in international trade,” Journal of International

Economics, 122, 103276.

Marcellino, M. and C. Schumacher (2010): “Factor MIDAS for nowcasting and

forecasting with ragged-edge data: A model comparison for German GDP,” Oxford

Bulletin of Economics and Statistics, 72, 518–550.

Mariano, R. S. and Y. Murasawa (2003): “A new coincident index of business

cycles based on monthly and quarterly series,” Journal of applied Econometrics, 18,

427–443.

Mayer, T. and S. Zignago (2011): “Notes on CEPII’s distances measures: The

GeoDist database,” CEPII working paper.

Mésonnier, J.-S. and D. Stevanovic (2017): “The macroeconomic effects of

shocks to large banks’ capital,” Oxford Bulletin of Economics and Statistics, 79,

546–569.

37



Miranda-Agrippino, S. and H. Rey (2020): “US monetary policy and the global

financial cycle,” The Review of Economic Studies, 87, 2754–2776.

Moench, E., S. Ng, and S. Potter (2013): “Dynamic hierarchical factor models,”

Review of Economics and Statistics, 95, 1811–1817.

Mumtaz, H. and P. Surico (2012): “Evolving international inflation dynamics:

world and country-specific factors,” Journal of the European Economic Association,

10, 716–734.

Onatski, A. (2012): “Asymptotics of the principal components estimator of large

factor models with weakly influential factors,” Journal of Econometrics, 168, 244–

258.

Quah, D., T. J. Sargent, et al. (1993): “A Dynamic Index Model for Large Cross

Sections,” NBER Chapters, 285–310.

Reis, R. and M. W. Watson (2010): “Relative goods’ prices, pure inflation, and

the Phillips correlation,” American Economic Journal: Macroeconomics, 2, 128–57.

Sargent, T. J., C. A. Sims, et al. (1977): “Business cycle modeling without

pretending to have too much a priori economic theory,” New methods in business

cycle research, 1, 145–168.

Shumway, R. H. and D. S. Stoffer (1982): “An approach to time series smoothing

and forecasting using the EM algorithm,” Journal of time series analysis, 3, 253–264.

Stock, J. H. and M. W. Watson (2002): “Forecasting using principal components

from a large number of predictors,” Journal of the American statistical association,

97, 1167–1179.

Vannoorenberghe, G., Z. Wang, and Z. Yu (2016): “Volatility and diversifica-

tion of exports: Firm-level theory and evidence,” European Economic Review, 89,

216 – 247.

38



Watson, M. W. and R. F. Engle (1983): “Alternative algorithms for the estimation

of dynamic factor, mimic and varying coefficient regression models,” Journal of

Econometrics, 23, 385–400.

39



A Estimation strategy: technical details

In the appendices, we present the technical details of the estimation procedure for

a dynamic factor model with an imposed block structure and missing data. For the

technical analysis we rewrite the model adopting the vectorized notation:

yt = ΛG FG
t +

D∑
d=1

Λd Fd
t + ξt

FG
t = AG(L) FG

t + uGt

Fd
t = Ad(L) Fd

t + udt d = 1, . . . , D

(10)

The model is analyzed allowing for an arbitrary number of common factors (K) and

an arbitrary number of factors per block (Kd with d = 1, . . . , D)12. We drop here the

multi-index notation used in the paper and rely on two indices only, running over the

number of firm-destination pairs, i = 1, . . . , N and over the time steps t = 1, . . . , T .

Each block includes nd flows and N =
∑D

d=1 nd. Defining the (rG × 1) global factors

vector FG
t and the D destination specific (rd × 1) factor vectors Fd. ΛG and Λd are

loading matrices of size (N × rG) and (N × rd). The dynamics of the factor is encoded

in the matrix polynomials AG(L) and Ad(L) of order pG and pd respectively. For the

sake of the synthesis, throughout we limit the exposition to the case pG = pd = 1 and

no serial correlation of the idiosyncratic component.

A.1 Estimation algorithm

Given the formulation (10) and assuming gaussianity of the idiosyncratic components

and the innovations ξt ∼ N (0,Σξ), uct ∼ N (0,ΣuG
), udt ∼ N (0,Σud

), together with

their mutual independence, the log-likelihood given the observed series and the latent

12 The estimation of the model (1) is obtained taking K = Kd = 1 ∀d, thus restricting the analysis

to one global factor and D destination-specific factors, one per each destination. Notice that while

preserving the notation of the main text the index d can generally run over any partition of the

cross-section into blocks. Thus in the following we will more generally refer to blocks.
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factors is:

l(Y, F ; θ) ' −T − 1

2
log |ΣuG| − 1

2
tr

[
(ΣuG

)
−1

T∑
t=2

(
FG
t −AGFG

t−1
) (

FG
t −AGFG

t−1
)′]

−
D∑
d=1

[
T − 1

2
log |Σud|+ 1

2
tr

[
(Σud

)
−1

T∑
t=2

(
Fd
t −AdFd

t−1
) (

Fd
t −AdFd

t−1
)′]]

− T − 1

2
log |Σξ| − 1

2
tr

[
(Σξ)

−1
T∑
t=1

(yt −ΛFt) (yt −ΛFt)
′

]
(11)

Where Λ is the (N × (rG +
∑

d r
d)) composed loading matrix: Λ =

(
ΛG Λ1 · · · ΛD

)
related to the composed factor vector Ft = (FG

t F1
t · · · FD

t ). We recall that [Λd]is = 0

if the index i do not belong to the block of series relative to destination d. Then,

the two steps procedure is started updating sequentially i) the factors’ estimates given

the model’s parameters (E-step), ii) the parameters estimates given the estimates of

factors (M-step). This defines a sequence of increasing log-likelihood values

l
(
Y, F (0), θ(0)

)
→ l

(
Y, F (0), θ(1)

)
→ l

(
Y, F (1), θ(1)

)
that needs a proper initialization and stops when an appropriate convergence condition

(we adopt a standard in the literature see Bańbura and Modugno, 2014; Barigozzi and

Luciani, 2019). We define the k-th increment as:

∆lk =
|l
(
Y, F (k+1), θ(k+1)

)
− l
(
Y, F (k), θ(k)

)
|

(|l (Y, F (k+1), θ(k+1))|+ |l (Y, F (k), θ(k))|) /2
(12)

and stop the algorithm at k = k such that ∆lk ≤ ε, where ε is a predefined tolerance

threshold13

Initialization algorithm. The procedure is initialized computing the sequential

least square estimator proposed by Breitung and Eickmeier (2014) on a ‘complete’

matrix of data and is composed of the following steps:

13 Throughout this paper, for all the estimation runs we settle ε = 10−4. This is sufficient to get an

estimation before the maximum iterations limit is reached kmax = 100.
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1. We fill the missing values of the original dataset with series medians, then we

smooth the outcome taking the moving averages of the series so that we can

work with the filled matrix Y .

2. As proposed by, we apply the CCA estimator to initialize the global factors.

Within a block d, this consists in estimating by PC rd∗ = rG + rd yielding

the rd∗-vectors of factors F∗d,t. Then we search the global components among

the rG maximally correlated common components between the blocks: cycling

all the couples of blocks v, w, we apply a Canonical Correlation Analysis to

determine the linear combinations that maximizes the correlation between the

quantities14: τ ′vF∗v,t, τ ′wF∗w,t. Thus, we have a first estimator of the global factors

F̂G
t = (τ 1,

′
v F∗v,t, . . . , τ

rG,′
v F∗v,t)

′

.

3. We solve a least square problem to compute the block specific factors by means

of principal components. In other words, principal components is applied to the

residuals of the regression yt ∼ ΛGF̂G
t .

4. A sequential least square estimator is applied starting from the estimates of the

global and local factors of the previous step. Also in this case we rely on a

sequential procedure iterating over two main steps. At step k, given the factor

estimates FG(k−1)
t ,Fd(k−1)

t , via the block-level regressions15:

ιd(yt) = ιd(Λ
G) F̂

G,(k−1)
t + ιd(Λ

d) F̂
d,(k−1)
t + εdt . (13)

one obtains the estimates of the relative factor loadings so that the estimated

block-matrix can be composed Λ̂(k). Then the (k+1)-th update of the estimators

of the factors are obtained from the twin least square regression of yt on Λ(k).

14 The number of possible pairs for the CCA is D2(D− 1)/2. The problem is solved for each pairs of

blocks and then the pair that maximises the CCA is chosen.

15 Here the operator ιd(·) is applied to an object with N rows to restricting to the nd rows relative

to block d.
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The iteration procedure stops when a convergence condition analogous to (12) is veri-

fied. The last estimates of factors and parameters are used to start the EM algorithm.

E-step. From model parameters to factors: Kalman Filter and Smoother

algorithms. Throughout, we work with the quantities Ft = (FG
t F1

t · · · FD
t ) and

A = blkdiag(AG A1 · · · AD). At iteration k, KF and KS are two sequential procedures

on the time dimension t = 1, . . . , T . These are used to compute the KF estimator,

Ft|t = Projθ[Ft|yt] and the associated mean squared error (MSE), Pt|s = Eθ[(Ft −

Ft|s)(Ft − Ft|s)
′|ys]. When s = t and s = T we obtain respectively the KF MSE and

KS MSE. First we have to state the initial conditions F0|0 and P0|0. At the very first

step we set the same conditions as Barigozzi and Luciani (2019), for the following EM

iterations one can settle P
(k)
0|0 = P

(k−1)
1|T ) (see Durbin and Koopman, 2012, for details).

From now on, to deal with missing values, parameters are restricted in each time step

to the portion with available information. Hence, the “NA” index or suffix denotes the

matrix/vector cleaned of rows, columns or elements corresponding to NA entries at

time t. Moreover to keep the notation as clean as possible we omit the step-index for

the quantities associated with the factor.

We have the filtering sequential equations:

Ft|t−1 = A(k)Ft−1|t−1 ; Pt|t−1 = A(k)Pt−1|t−1A
(k)′ + Σu(k)

Ft|t = Ft|t−1 + Pt|t−1 Λ
(k)
NA,t

′
G−1t

(
yNA
t −Λ

(k)
NA,tFt|t−1

)
Pt|t = Pt|t−1 + Pt|t−1 Λ

(k)
NA,t

′
Q−1t Λ

(k)
NA,tP

′
t|t−1

(14)

where Q(k)
t = Λ

(k)
NA,tPt|t−1Λ

(k)
NA,t

′
+ Σ

ξ(k)
NA,t. With the estimates of Ft|t and Pt|t we can

initialize the KS to obtain the smoothed estimates Ft|T and (Pt|T for t = T, . . . , 1 via

the inverse recursion, starting from FT |T and PT |T :

Ft|T = Ft|t + Pt|t A
(k)
′

P−1t+1|t
(
Ft+1|T − Ft+1|t

)
Pt|T = Pt|t + Pt|t A

′
P−1t+1|t

(
Pt+1|T −Pt+1|t

) (
Pt+1|t A

(k)
′

P−1t|t

)′ (15)
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To set up the M-step we will use the KS estimates only, in order to keep the

notation as concise as possible we will denote F̃t = Ft|T , P̃t = Pt|T and

P̃−1,t = Pt|t (Pt|tA
(k)
′

P−1t|t )
′

+ (Pt|tA
(k)
′

P−1t+1|t) (Pt|T −A(k)Pt|t) (Pt|tA
(k)
′

P−1t|t ) (16)

The latter three quantities are then used to compute16:

Eθ(k)
[
FtFt−1

′ |ΩT

]
=

T∑
t=2

F̃tF̃
′
t−1 + P̃−1,t ; Eθ(k) [FtFt−1

′|ΩT ] =
T∑
t=1

F̃tF̃
′
t−1 + P̃−1,t

(17)

M-step. From latent factors to model parameters. Given the initial values,

the EM algorithm is started. The proposed solution consist in the maximixation of the

expectation of the loglikelihood, given an ansatz of the parameters17. In practice, θ(k+1)

are the solutions to the system of first order conditions ∂
∂θ
Eθ(k)

[
l(Y, F (k), θ)|ΩT

]
= 0

where ΩT denotes the available information that in our application is constrained by

the presence of missing values in the observed data. From the explicit form of l we

get18:

ÂG,(k+1) =

(
T∑
t=2

F̃G
t F̃

G
′
t−1 + P̃G−1,t

)(
T∑
t=2

F̃G
t−1F̃G

′
t−1 + P̃G

t

)−1
(18)

Q̂G,(k+1) =
1

T

(
T∑
t=2

F̃G
tF̃G

′
t + P̃G

t

)
− Â

G,(k+1)

T

(
T∑
t=1

F̃G
t F̃

G
′
t−1 + P̃G−1,t

)′
(19)

The derivation of the updated estimates for the loadings matrix is quite a complex

task, mainly because the matrix with the incomplete observations enters the solution

16 In the following we will equally refer to the quantities restricted to the space of global and local

factors: F̃G
t , F̃

d
t , P̃

G
t, P̃ d

t, P̃G−1,t, P̃ d−1,t

17 Throughout the section we give some fundamental formulas without deriving it. The explicit

derivation are generalization of Bańbura and Modugno (2014) and Barigozzi and Luciani (2019) to

the case of block-DFMs.

18 We give the formulas only for the common factors, yet those for the local factors are equivalent.
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of the first-order condition. One way to see this step is to calculate Λ as the NA-

corrected OLS solutions of the block-by-block regressions (see Bańbura and Modugno,

2014, pag. 138, eq. (11))1920

ybt = ιb(yt) = ιb(Λ
G)F̃G

t + ι(Λd)F̃d
t + vt d = 1, . . . , D (20)

vec
(
ιd(Λ

G)|ιd(Λd))
)

=

(
T∑
t=1

F̃Gd
t F̃Gd

t
′ ⊗ IndNA

t

)−1
vec

(
T∑
t=1

yd,NA
t F̃

′

t

)
(21)

where the matrix F̃Gd
t = (F̃G

t F̃
d
t ). This step concludes with the covariance matrix of

idiosyncratic terms that is estimated only in its diagonal elements (in line with the

eq.(12) at p. 138 of Bańbura and Modugno (2014)):

diagΣ̂ξ
(k+1)

=
1

T

T∑
t=1

(
yNA
t − IndNA

t Λ̂(k+1) F̃t

)(
yNA
t − IndNA

t Λ̂(k+1) F̃t

)′
+

IndNA
t Λ̂(k+1) P̃t Λ̂

(k+1)′ IndNA
t +

(
In − IndNA

t

)
diagΣ̂ξ

(k) (
In − IndNA

t

)
(22)

B Estimation strategy: finite sample properties from

Monte Carlo simulations

The theoretical properties of the QML estimator for DFMs have been thoroughly

explored in the seminal work of Doz et al. (2012) and in more recent papers (see

Barigozzi and Luciani, 2019). Those studies openly state the possibility to model a

block structure for DFMs, but devote less attention to the implications of modelling

a block structure for datasets with arbitrary patterns of missing values, on the lines

Bańbura and Modugno (2014) for ordinary DFMs. In this appendix, we answer some

of the natural questions regarding the estimation methodology applied in this paper

19 In line with the notation introduced above, IndNA
t denotes a diagonal matrix with ones when the

corresponding element is available in the cross section t and a zero when it is not.

20 Here again we denote ιd(Λd) as Λd
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and assess its performances varying the structural conditions of the data generating

process (also DGP in the following). Throughout, the data is simulated according to

(10) with a set of benchmark specifications, summarized in these few points:

• We limit the evolution of the rG global factors to a VAR process of order one

(pG = 1). The matrix ruling the process is generated as in Barigozzi and Luciani

(2019) according to the expression A = κÃ
(
||Ã||

)−1
, where [Ã]jj ∼ U [0.5, 0.8],

while [Ã]jk ∼ U [0, 0.3], and κ = 0.521. The dynamics of the rb local factors is

simulated with the same characteristics.

• We simulate the data taking either homogeneous or heterogeneous block dimen-

sions ({nd} for d = 1 . . . , D). With the former specification we intend that all

the nd are equal when possible, i.e. when n = 0 (mod nd), or differ of few units.

Heterogeneous blocks are generated selecting a D-tuple at random among all the

(n1, . . . , nD) s.t.
∑

d n
d = n.

• Both factor loadings relative to the global and the local factors are simulated

from a normal distribution. This means that
[
ΛG
]
ij

iid∼ N (0, 1), while
[
Λd
]
ij

iid∼

N (0, 1) if i ∈ Ib and
[
Λd
]
ij

= 0 if i /∈ Id.

• The innovations to global and block-specific factors are simulated with nor-

mal, Student-t or Laplace distributions. Namely, uGt
iid∼ N (0rG , IrG) and

udt
iid∼ N (0rd , Ird) , ∀b, or uGt

iid∼ t3 (0rG , IrG) and udt
iid∼ t3 (0rd , Ird) ∀b, or

uGt
iid∼ L (0rG , IrG) and udt

iid∼ L (0rd , Ird) , ∀d.

• The idiosyncratic components can be cross-correlated but the autocorrelation is

not modelled. To measure the cross correlation the idiosyncratic components

distributes as ξt
iid∼ N

(
0n,Σ

ξ
)
or iid∼ t3

(
0n,Σ

ξ
)
(or ξt

iid∼ L
(
0n,Σ

ξ
)
), where

the elements of the covariance matrix are such that
[
Σξ
]
ii
∼ U [0.5, 1.5] and[

Σξ
]
ii
∼ τ |i−j|, defining a Toeplitz matrix where the magnitude of the paired

correlations is ruled by τ .

21 Here || · || denotes the Frobenius norm.
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• The noise-to-signal ratio is controlled by scaling the common component χ̃i,t =

1
ωi
χi,t

√
Var(ξi,t)
Var(χi,t)

where ωi is drawn from a uniform distribution centered around

the parameter ω (U([ω − 0.2, ω + 0.2])).

• After constructing the data matrix Y we remove at random a fraction δ (in [0, 1))

of elements.

For each experiment we consider a fixed number of replications simulating a fixed

number of data matrices and then run the estimation procedure. As already noticed

even if the data are generated from a range of distributions and the covariance matrix

has the generic Toeplitz form defined above, we estimate the model under gaussianity

and independence of the idiosyncratic terms, which is a misspecified model. This will

also serve to test its robustness with respect to the misspecification.

In order to evaluate the performance of the estimator we analyze the estimated factors,

the estimated factor loadings or the estimated common components χ̂it =
[
Λ̂
′
F̂t

]
i

and compute the trace statistics against the true values and take the averages over the

replications. For the vectors of the common components we take into account the mean

standard error with respect to the true value: MSEχ = 1
nT

∑n
i=1

∑T
t=1 (χ̂it − χit)2

Notice that the trace statistic takes values in [0, 1] and that the closer it is to one the

better is the approximation of the true value. Clearly, the interpretation of the MSE

goes in the opposite direction, as it indicates a better approximation when its value

is low in the domain of the positive reals.

In the context outlined, we first compare the estimated outputs with the true

values. Table 5 shows that it is possible to get satisfactory estimates of the factor

space even in extreme cases (high shares of missing values) for large cross-sections and

as the number series is high within each block. In a sense, the blessing of dimensionality

helps contain the negative effects of missing information. The presence of non-modelled

cross-correlation seems to have a mild impact on the estimations, even for high levels

of τ , biting more as the number of series in some of the blocks is limited.
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δ = 0 τ = 0.1 δ = 0 τ = 0.4 δ = 0 τ = 0.8

T n D TSΛ TSF MSEχ TSΛ TSF MSEχ TSΛ TSF MSEχ

100 100 2 0.7152 0.9781 0.7899 0.7364 0.9813 0.7631 0.7441 0.9719 0.7403
100 1000 2 0.7142 0.9959 0.7614 0.7156 0.9962 0.7574 0.7220 0.9963 0.7338
100 1000 10 0.7402 0.9900 0.7171 0.7447 0.9896 0.6966 0.7528 0.9878 0.6761
100 1000 20 0.7435 0.9836 0.7232 0.7474 0.9831 0.7081 0.7547 0.9737 0.7019
100 2000 2 0.7213 0.9969 0.7469 0.7138 0.9971 0.7566 0.7281 0.9968 0.7250
100 2000 10 0.7384 0.9936 0.7069 0.7433 0.9935 0.6920 0.7509 0.9930 0.6807
100 2000 20 0.7404 0.9905 0.7109 0.7449 0.9905 0.6917 0.7516 0.9885 0.6775
150 100 2 0.7255 0.9787 0.7674 0.7295 0.9824 0.7722 0.7324 0.9687 0.7747
150 1000 2 0.7138 0.9972 0.7635 0.7196 0.9973 0.7476 0.7175 0.9969 0.7538
150 1000 10 0.7422 0.9910 0.7084 0.7495 0.9907 0.6898 0.7571 0.9887 0.6669
150 1000 20 0.7476 0.9838 0.7134 0.7508 0.9831 0.6961 0.7589 0.9730 0.6903
150 2000 2 0.7070 0.9980 0.7702 0.7134 0.9979 0.7637 0.7118 0.9981 0.7625
150 2000 10 0.7435 0.9949 0.6966 0.7478 0.9950 0.6828 0.7556 0.9945 0.6631
150 2000 20 0.7450 0.9912 0.6927 0.7486 0.9911 0.6805 0.7569 0.9890 0.6653
200 100 2 0.7268 0.9812 0.7792 0.7236 0.9812 0.7913 0.7470 0.9743 0.7298
200 1000 2 0.7131 0.9977 0.7669 0.7156 0.9978 0.7584 0.7151 0.9976 0.7522
200 1000 10 0.7458 0.9914 0.6971 0.7512 0.9911 0.6840 0.7600 0.9893 0.6583
200 1000 20 0.7476 0.9837 0.7061 0.7526 0.9829 0.6958 0.7595 0.9729 0.6893
200 2000 2 0.7083 0.9985 0.7744 0.7132 0.9986 0.7632 0.7144 0.9985 0.7560
200 2000 10 0.7445 0.9954 0.6906 0.7499 0.9953 0.6741 0.7583 0.9948 0.6566
200 2000 20 0.7472 0.9915 0.6898 0.7516 0.9913 0.6730 0.7603 0.9894 0.6567

δ = 0 τ = 0.1 δ = 0.75 τ = 0.1 δ = 0.9 τ = 0.1

T n D TSΛ TSF MSEχ TSΛ TSF MSEχ TSΛ TSF MSEχ

100 100 2 0.7407 0.9656 0.7781 0.7106 0.9235 0.9095 0.4151 0.5646 2.5081
100 1000 2 0.7336 0.9943 0.7165 0.7159 0.9875 0.8708 0.6057 0.9573 1.7641
100 1000 10 0.7349 0.9815 0.7400 0.7161 0.9608 0.8286 0.6018 0.8523 1.5459
100 1000 20 0.7358 0.9678 0.7616 0.7182 0.9314 0.8659 0.5740 0.7557 2.1724
100 2000 2 0.7296 0.9961 0.7277 0.7091 0.9889 1.1536 0.5851 0.9608 2.8379
100 2000 10 0.7321 0.9895 0.7357 0.7156 0.9793 0.7940 0.6151 0.9194 1.6059
100 2000 20 0.7329 0.9826 0.7404 0.7158 0.9639 0.8187 0.5892 0.8625 8.6763
150 100 2 0.7401 0.9672 0.7760 0.7333 0.9262 0.8673 0.6252 0.7331 32.3138
150 1000 2 0.7376 0.9957 0.7074 0.7270 0.9913 0.7422 0.6860 0.9765 0.9080
150 1000 10 0.7402 0.9827 0.7248 0.7275 0.9636 0.7891 0.6787 0.8836 1.0466
150 1000 20 0.7420 0.9675 0.7481 0.7310 0.9315 0.8259 0.6699 0.7930 1.3204
150 2000 2 0.7366 0.9972 0.7099 0.7278 0.9956 0.7416 0.6864 0.9803 0.9436
150 2000 10 0.7378 0.9908 0.7146 0.7280 0.9812 0.7582 0.6834 0.9403 0.9841
150 2000 20 0.7402 0.9832 0.7236 0.7279 0.9648 0.7859 0.6788 0.8895 1.0593
200 100 2 0.7475 0.9666 0.7440 0.7377 0.9289 0.8345 0.6899 0.7927 1.2493
200 1000 2 0.7402 0.9962 0.6998 0.7309 0.9900 0.7368 0.7004 0.9754 0.8543
200 1000 10 0.7442 0.9829 0.7063 0.7353 0.9644 0.7646 0.7023 0.8952 0.9493
200 1000 20 0.7457 0.9672 0.7371 0.7364 0.9315 0.8064 0.6976 0.8072 1.0764
200 2000 2 0.7346 0.9979 0.7131 0.7341 0.9961 0.7177 0.7040 0.9866 0.8241
200 2000 10 0.7417 0.9911 0.7055 0.7339 0.9820 0.7393 0.7046 0.9472 0.8724
200 2000 20 0.7433 0.9832 0.7110 0.7346 0.9650 0.7611 0.7012 0.8984 1.3568

Table 5: The estimation evaluated with respect to the true model’s parameters. The simulation
parameters not explicitly stated are: µ = 0.5, ξt ∼ N (0,Σξ), ω = 0.5, rG = 1, rd = 1∀d, η = 0.2.
Blocks are homogeneous.
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Block-estimators. Here we study our estimator, hereafter BQML estimator in

short, in comparison with the estimator proposed by Breitung and Eickmeier (2014)

(EB estimator in the following), looking at the performances of the two methods under

different model’s design: spanning from an excess of residual cross-correlation of the

idiosyncratic component to the characteristics of the block structure.

We furthermore show the benefits of the possibility to run the estimation procedure

in the presence of missing values. We compare the BQML estimator with the EB

estimated on a dataset where the few missing observations are imputed or the series

deleted from the dataset. Notice that the EB estimator with imputed data is in fact

used to initialize the BQML algorithm (see Appendix A). When dealing with missing

values in the dataset, rather than a fair horse race between competing methodologies,

this test aims to measure the effective gains of applying the EM algorithm as a cor-

rection to the EB estimator on imputed datasets.

The following steps compose the simulation experiment: i) the data are simulated

from the benchmark model varying along a set of parameters: the number of series,

the number of observations, the number of blocks and their composition, the level of

cross-correlation, the number of factors and the share of missing values. ii) Then the

EB estimator and the BQML estimator are applied to the generated dataset and their

results are compared. Notice that we take the ratio between the trace statistics of the

BQML estimators (against the true model) with respect to the trace statistics (against

the true model) of the EB estimator. To ease readability the ratio for the MSE of the

common components is inverted so that the direction of the change has an analogous

interpretation for the three considered indicators.

Table 6 compares EB and BQML performances for different values of idiosyncratic

cross-correlation. Here the parameter τ models the correlation in excess to the one

generated by local factors. We see that the two models reconstruct the factors space

with the same level of accuracy for different time series and blocks dimensions. In a

sense, the gain we obtain running the EM algorithm on top of an initialization based

on the EB estimator is limited. However, the advantages become more evident when it
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comes to the estimation of the factor loadings and the common component, improving

the estimates of 30% or more in most of the cases (reaching 60% at the highest points

obtained for very large cross-sections). These observations almost equally apply to a

context of homogeneous and heterogeneous, with BQML improving the results as the

cross-section increases and the structure of the blocks is heterogeneous. If we look at

table 7 having in mind the absolute efficiency measures of table 5, we infer that our

methodology provides good approximations of the factors and the loadings even in the

most extreme cases, while any estimate based on data imputation or removal would

fail. A few exceptions are the outcomes at the bottom-right of table 7, signalling that

the 90% of missing values is the very limit of the methodology, at least for a setting

with a number of observations and variables analogous to that considered. This fact is

relevant for practical applications, for which time series frequency and numerosity are

not linearly linked to the missing values share: in that context, increasing the number

of variables or taking the maximal frequency might inflate the value of δ above the

critical threshold. These considerations explain the choices made while preparing the

dataset as presented in Section 3.

Fat-tailed distributions. A major constraint to the theoretical derivation of the

BQML estimator is that in the maximization step, an explicit form of the maximum

likelihood is derived under gaussianity of the idiosyncratic component and of the inno-

vations of the autoregressive processes ruling the factors’ dynamics. This assumption,

together with the misspecification of the covariance matrix of the idiosyncratic terms,

is crucial in order to get closed-form solution of the estimators of the parameters, avoid

proliferation of the parameters and reduce consistently the computational complexity.

On the latter however, in many cases of interest, the gaussianity of the idiosyncratic

components and the factors’ innovations is not granted. Therefore, we simulate the

benchmark model imposing the distribution of the idiosyncratic components to be nor-

mal, Student-t or Laplace distributed. The efficiency of the estimator in this context
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One global factor (rG = 1)

Homogeneous blocks Heterogeneous blocks

T n D TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ
100 1000 5 1.3579 1.0005 1.7358 1.3276 0.9999 1.6897
100 1000 10 1.4548 1.0006 1.8851 1.3953 0.9987 1.7800
100 1000 20 1.4334 1.0002 1.8648 1.4593 0.9978 1.8840
100 5000 5 1.4354 1.0001 1.8506 1.3322 1.0001 1.6900
100 5000 10 1.4488 1.0001 1.8578 1.4447 1.0001 1.8556
100 5000 20 1.5202 1.0002 1.9382 1.5208 1.0001 1.9490
100 5000 50 1.5211 1.0002 1.9658 1.4997 1.0002 1.9399
150 1000 5 1.4188 1.0006 1.8455 1.3356 1.0000 1.7318
150 1000 10 1.3850 1.0005 1.8064 1.3791 0.9990 1.7816
150 1000 20 1.3919 1.0002 1.8052 1.4009 0.9978 1.8259
150 5000 5 1.4469 1.0001 1.8980 1.3046 1.0001 1.6697
150 5000 10 1.5096 1.0002 1.9828 1.3831 1.0001 1.8151
150 5000 20 1.4772 1.0002 1.9409 1.5116 1.0001 1.9794
150 5000 50 1.4479 1.0002 1.8909 1.4958 1.0002 1.9440

Two global factors (rG = 2)

Homogeneous blocks Heterogeneous blocks

T n D TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ
100 1000 5 1.3571 1.0008 1.5358 1.2694 0.9997 1.4142
100 1000 10 1.4117 1.0012 1.5561 1.3488 0.9988 1.5166
100 1000 20 1.3885 1.0008 1.5511 1.3973 0.9978 1.5653
100 5000 5 1.3668 1.0002 1.5312 1.2583 1.0001 1.3900
100 5000 10 1.4226 1.0003 1.5981 1.3512 1.0001 1.5003
100 5000 20 1.4619 1.0004 1.6295 1.4085 1.0002 1.5314
100 5000 50 1.4475 1.0005 1.6460 1.4708 1.0004 1.6508
150 1000 5 1.3537 1.0008 1.5042 1.2751 1.0000 1.4216
150 1000 10 1.4131 1.0012 1.6059 1.3373 0.9989 1.4987
150 1000 20 1.3826 1.0008 1.5647 1.3917 0.9976 1.5354
150 5000 5 1.3648 1.0002 1.5542 1.2837 1.0001 1.4570
150 5000 10 1.4264 1.0003 1.5925 1.3379 1.0001 1.4951
150 5000 20 1.4595 1.0004 1.6194 1.4104 1.0002 1.5679
150 5000 50 1.4476 1.0004 1.6527 1.4573 1.0004 1.6387

Table 6: Results from Monte Carlo simulations comparing the BQML estimator with the EB
estimator. No missing values. The ratio of the BQML over the EB indicators: trace statistics for the
factor and factor loadings, MSE for the common component. For example: TSRΛ = TSBQML

Λ /TSEB
Λ

and MSERχ = MSEEB
χ /MSEBQML

χ . The other parameters are fixed to µ = 0.5, ξt ∼ N (0,Σξ),
τ = 0.1, δ = 0, ω = 0.5, rG = 1 and rd = 1∀d.
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τ = 0.3 δ = 0 τ = 0.3 δ = 0.4 τ = 0 δ = 0.6

T n TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 100 1.2237 0.9978 1.4729 1.2290 1.0480 1.9618 1.3438 1.1282 1.9618
100 500 1.2604 1.0009 1.5247 1.2397 1.0308 2.0388 1.3112 1.0767 2.0388
100 500 1.3240 1.0008 1.6668 1.2683 1.0431 2.0952 1.3918 1.1014 2.0952
100 500 1.4017 1.0008 1.7920 1.5295 1.0521 2.1467 1.5236 1.1308 2.1467
100 1000 1.1805 1.0003 1.3684 1.2652 1.0285 2.0123 1.3077 1.0693 2.0123
100 1000 1.3142 1.0006 1.6423 1.3811 1.0348 2.1176 1.4061 1.0857 2.1176
100 1000 1.4323 1.0008 1.8266 1.4039 1.0386 2.1482 1.4712 1.0978 2.1482
150 100 1.2318 1.0030 1.4899 1.2172 1.0494 1.8864 1.2340 1.1022 1.8864
150 500 1.2157 1.0007 1.4368 1.2300 1.0284 2.0466 1.2676 1.0697 2.0466
150 500 1.3677 1.0005 1.7538 1.3134 1.0420 2.2103 1.4200 1.0974 2.2103
150 500 1.4368 1.0011 1.8464 1.4318 1.0531 2.1417 1.4226 1.1193 2.1417
150 1000 1.1577 1.0003 1.3241 1.2444 1.0288 2.0978 1.2787 1.0646 2.0978
150 1000 1.3473 1.0008 1.7405 1.3203 1.0337 2.1493 1.3477 1.0799 2.1493
150 1000 1.4244 1.0009 1.8410 1.4725 1.0404 2.2453 1.4614 1.0930 2.2453

τ = 0.6 δ = 0 τ = 0.6 δ = 0.4 τ = 0.6 δ = 0.6

T n TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ TSRΛ TSRF MSERχ

100 100 1.1929 0.9972 1.4305 1.2397 1.0420 1.6502 1.2901 1.1215 1.9083
100 500 1.2069 0.9998 1.4396 1.2333 1.0311 1.6848 1.2971 1.0781 2.0672
100 500 1.2769 0.9954 1.5939 1.3518 1.0361 1.8373 1.4727 1.0989 2.1972
100 500 1.3818 0.9905 1.7483 1.4149 1.0412 1.9117 1.4436 1.1113 2.1231
100 1000 1.2082 1.0002 1.4365 1.2853 1.0286 1.7733 1.2788 1.0676 2.0592
100 1000 1.3243 0.9981 1.6885 1.3303 1.0320 1.8611 1.3779 1.0814 2.1592
100 1000 1.4354 0.9973 1.8451 1.3723 1.0351 1.8752 1.4945 1.0931 2.2238
150 100 1.2184 0.9992 1.4694 1.2153 1.0456 1.6521 1.2516 1.1060 1.9080
150 500 1.2125 0.9984 1.4486 1.2315 1.0293 1.6932 1.2718 1.0690 2.0797
150 500 1.3094 0.9971 1.6684 1.3398 1.0388 1.8943 1.3965 1.0886 2.2488
150 500 1.3857 0.9888 1.7839 1.4462 1.0435 2.0126 1.4160 1.1047 2.1749
150 1000 1.2366 1.0003 1.4993 1.2349 1.0283 1.7111 1.2649 1.0637 2.1154
150 1000 1.3130 0.9992 1.6967 1.3726 1.0328 1.9508 1.4062 1.0770 2.2765
150 1000 1.4359 0.9971 1.8765 1.4245 1.0353 2.0250 1.5187 1.0872 2.3329

Table 7: Results from Monte Carlo simulations comparing the BQML estimator with the EB
estimator. The ratios of the BQML over the EB indicators are defined as for Table 6. The other
parameters are fixed to be µ = 0.5, ξt ∼ N (0,Σξ), B = 5, ω = 0.5, rG = 1 and rd = 1∀d.
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is analyzed both in absolute terms and relative to the EB estimator (see table 8). The

estimate of the factors’ space seems not to be affected by the excess of mass in the tails

of the generating distributions, since the trace statistics outcomes are comparable to

those obtained under gaussianity (as in table 5), and the gains with respect to the EB

estimator are not significant. The major difference is observed for the factor loadings

that are anyway estimated efficiently while being between 4 and 8 percentage points

below the reference values of table 5. In summary, for application to the dataset with

Laplace distributed observations the estimator of factor models via BQML seems not

to be problematic if the limiting conditions for the estimator holds true both con-

sidering the whole cross-section (n → ∞) and only the series relative to each block

(nd →∞).
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Cross-correlations and missing values: τ = 0.1 δ = 0

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF
100 100 0.7560 0.9237 0.7145 0.9240 1.2841 1.0093 1.3000 1.0258
100 1000 0.7426 0.9889 0.6932 0.9877 1.3248 1.0008 1.3382 1.0089
100 2000 0.7415 0.9934 0.6877 0.9932 1.3288 1.0003 1.3625 1.0056
150 100 0.7589 0.9281 0.7253 0.9255 1.3345 1.0104 1.3010 1.0234
150 1000 0.7470 0.9905 0.7022 0.9884 1.3017 1.0009 1.3449 1.0080
150 2000 0.7453 0.9945 0.6985 0.9930 1.3530 1.0004 1.3732 1.0050

Cross-correlations and missing values: τ = 0.1 δ = 0.5

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF
100 100 0.7456 0.8635 0.7150 0.8526 1.3642 1.1451 1.3960 1.2143
100 1000 0.7328 0.9782 0.6847 0.9785 1.3991 1.0540 1.4048 1.0924
100 2000 0.7352 0.9884 0.6836 0.9890 1.3649 1.0452 1.4193 1.0651
150 100 0.7552 0.8608 0.7164 0.8546 1.3301 1.1412 1.3677 1.2045
150 1000 0.7419 0.9816 0.6948 0.9811 1.4028 1.0525 1.4091 1.0784
150 2000 0.7406 0.9897 0.6995 0.9894 1.3682 1.0443 1.3962 1.0629

Cross-correlations and missing values: τ = 0.5 δ = 0

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF
100 100 0.7611 0.9114 0.7323 0.9012 1.3176 0.9886 1.3460 0.9975
100 1000 0.7487 0.9871 0.7126 0.9865 1.3264 0.9997 1.3468 1.0030
100 2000 0.7464 0.9924 0.7053 0.9931 1.3415 1.0000 1.3392 1.0040
150 100 0.7648 0.9009 0.7357 0.9006 1.3302 0.9901 1.2801 0.9936
150 1000 0.7516 0.9893 0.7182 0.9887 1.3143 0.9999 1.3579 1.0041
150 2000 0.7501 0.9940 0.7151 0.9940 1.3690 1.0000 1.3074 1.0032

Cross-correlations and missing values: τ = 0.5 δ = 0.5

Laplace Student-t (3) Laplace Student-t (3)

T n TSΛ TSF TSΛ TSF TSRΛ TSRF TSRΛ TSRF
100 100 0.7528 0.8466 0.7234 0.8477 1.4040 1.1300 1.3672 1.1743
100 1000 0.7385 0.9789 0.7040 0.9778 1.3408 1.0525 1.4390 1.0735
100 2000 0.7393 0.9877 0.7021 0.9875 1.3599 1.0443 1.4216 1.0571
150 100 0.7591 0.8501 0.7332 0.8480 1.4125 1.1236 1.3575 1.1742
150 1000 0.7465 0.9803 0.7157 0.9811 1.3349 1.0510 1.3569 1.0726
150 2000 0.7462 0.9891 0.7116 0.9894 1.4181 1.0439 1.3635 1.0564

Table 8: Monte Carlo simulations with data generated under fat-tailed distributions. TS denotes
the trace statistics of the BQML estimates against the true model. TSR is the ratio of the BQML
indicators over the EB indicators as for Table 6. Under Laplace: ξt ∼ L(0,Σξ) and ut ∼ L(0,Σu)
(both for global and local factors). Under Student-t (3): ξt ∼ t3

(
0n,Σ

ξ
)
and ut ∼ t3(0,Σ

u) (both
for global and local factors). The other parameters are fixed to be µ = 0.5, B = 5, ω = 0.5, rG = 1
and rd = 1∀d.
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