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Abstract

The present chapter provides a historical reappraisal of labor-saving technologies. It
reviews and systematizes theoretical contributions and empirical findings document-
ing the presence of labor- and time-saving heuristics in innovative efforts back since
the First Industrial Revolution. More in detail, with the help of various patent analy-
ses, the chapter documents the presence of labor-saving heuristics in the latest wave of
technological innovation, detecting the human functions substituted by the underly-
ing technologies. Against a reductionist approach conceiving robots as the only threat
for labor displacement, it shall be argued that labor-saving technologies consist of a
complex and heterogeneous bundle of innovations uncovering a much wider set of
artifacts and functions. Motivated by the recurrent debate on the threats of automa-
tion occurring in the last couple of centuries, evidence is provided on the existence
of long waves and clusters in relevant innovations, discussing how the overall cluster
of labor-saving technologies consists of heterogeneous and often independent inno-
vations following remarkably different time-trajectories. The chapter closes with an
outline of potential future trends in labor-saving technologies and room for policy ac-
tions.
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1 Introduction

Fear of technological unemployment is a recurrent phenomenon which has characterized
various phases in the history of capitalism. Classical economists, such as David Ricardo
and Karl Marx, had clear the potential labor displacement threat deriving from the use
of mechanized machines. Indeed, the Luddites movement comes to mind, with British
manual workers destroying machines, such as the spinning jenny, at the beginning of the
19th century (Nuvolari, 2002): these machines were recognized to have the ability of in-
corporating workers’ knowledge, increasing productivity, and therefore being a potential
driver of labor expulsion.

Eventually, the image of Luddites turned out into the one of the Taylorist shop-floor,
with time-and-motion studies applied to the assembly line, and popularized by Charlie
Chaplin one century later. With mass-production coexisting with growing consumer de-
mand, deskilling and alienation, rather than outright labor expulsion, became the primary
workers’ concerns. Later on, car manufacturing and, in general, manufacturing of “white”
goods, turned into the symbol of the Fordist phase, wherein workers could afford to buy
what they produced. However, during that very phase, an important report on the impact
of automation on labor demand was commissioned by the U.S. government (National
Commission on Technology, Automation, and Economic Progress, 1966).

With the advent of microchips, with the increasing importance of immaterial goods,
and with the subsequent wave of globalization, open-space offices, equipped with com-
puters with black screens processing green and white symbols, became the new icon of
human-machine relationship. No more scientific management applied to assembly lines,
but rather white-collar workers and their own computers. As with the ICT revolution com-
puters were becoming the dominant technological design in workplaces, in 1980s alarm
bells about technology substituting humans started ringing again (Freeman et al., 1982).

Back to the present, technology has never been so widespread among humankind, in
various and differentiated forms, hugely investing both the production and reproduction
spheres. Internet takes the place of electricity, social media of television, and virtual life
appears as important as the real one. Given the purported benefits to societies from the use
of technology, a new wave of fear of technological unemployment would seem misplaced.
Nonetheless, the topic has received fresh attention in recent times.

Concerns are motivated by the emergence of artifacts embedding some forms of “intelli-
gent automation”. Among these, “intelligent robots” are of particular interest to academic
and public discourses. Once emotionless machines, in recent years these artifacts have
been equipped with learning algorithms able to process enormous amount of data in real-
time and perform functions like classification and interaction with humans. Since 2014
and after the Great Recession, a new literature has flourished, providing figures and fore-
casts about the future of work. The ground is clearly contested between techno-optimists
and techno-pessimists, both in general sharing a strong deterministic perspective on the
unfolding of technologies within sectors of activities, firms, and their impact upon labor.

However, a full understanding of the technological complexity underlying robotics and
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automation is still lacking. Indeed, robots are convoluted artifacts whose use may be either
labor-augmenting or labor-displacing. Moreover, there is lack of awareness of the actual
direction taken by innovative efforts and search heuristics targeting labor-saving activities.
An investigation of search heuristics within labor-saving production techniques allows
a genuine understanding of which exact human functions technologies are expected to
replace.

In this chapter, the current debate on human-machine relationship is reviewed, giving
space also to critical perspectives on the dominant approach put forth by traditional labor
economics. Then, incumbent literature is discussed, focusing on search heuristics within
labor-saving technologies and on their historical roots. Finally, future possible trends re-
garding human-machine relationship are envisioned.

2 Human-machine relationship in the current debate

The massive introduction of robotized work certainly characterizes the manufacturing
sector, with robotic devices able to substitute for repetitive and “routinized” activities.
Investment in automation, however, reached a saturation level, particularly along assem-
bly lines, already in 1990s (Krzywdzinski, 2020). More recently, artificial intelligence and
other computational breakthroughs have become increasingly relevant also to the service
sector, which nowadays employs the largest share of workforce. As a direct consequence,
robotization and artificial intelligence represent a threat not only to blue-collar workers,
but for white-collars as well. While the ability of the Deep Blue supercomputer to defeat
chess grandmaster Garry Kasparov in 1997 did not come as a great surprise, the chal-
lenge undertaken by IBM in 2004 to develop a question-answering machine, Watson, to
beat human champions in Jeopardy!, is more eye-opening. Unlike chess, Jeopardy! is an
open domain game which requires pronounced learning, linguistic, semantic, and asso-
ciation skills. These cognitive abilities are not usual characteristics of computers at all.
The victory of Watson in 2011 over champions Brad Rutter and Ken Jennings confirms
the possibility that machines are not only able to compute, but, to a certain extent, also to
understand, learn, and react to mutable environments and information. In other words,
machines seem to be on the way of becoming “intelligent”. Algorithms are nowadays able
to compose music, paint artworks, write newspaper articles, and engage in other previ-
ously unthinkable activities. All in all, not only low cognitive abilities, but also higher
ones may be potentially replaced by technology.

Is this a good news? In fact, many emerging companies in the Silicon Valley or other
high-tech districts are explicitly devoted to creating and developing technologies able to
entirely substitute human labor. For instance, Momentum Machines Co., incorporated in
2013, has the goal of completely automatizing production of gourmet hamburgers. Its
founders explicitly state how their device is not simply meant to increase labor efficiency,
but rather to get rid of human labor force (Ford, 2015).

Conversely, sectors like medicine and healthcare are still at an early adoption stage of
robots and machine learning algorithms, whose massive usage could be complementary
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to human activity, rather than replacing it. Potentially, there is ample room to go well
beyond the use of robots and artificial intelligence in already standardized and highly
productive sectors, like fast-food preparation and delivery, to less standardized sectors,
like medicine and healthcare, whose cost curves are disproportionately steep, threatening
healthcare access by a soaring fraction of the population, both in countries which have
universal coverage (e.g. most European countries) and those which do not (e.g. the U.S.).

Does all this constitute a “Fourth Industrial Revolution”, or is it rather part of some in-
cremental deepening and convergence of pre-existing technological paradigms? The ques-
tion is very important as it stands at the core of the analysis of continuities and discontinu-
ities of knowledge bases, of firms and institutions generating and supporting them, and
of the nationality of leading actors. It is crucial distinguishing between so-called “Indus-
try 4.0” (I4.0) managerial and policy strategies on the one hand, and the evidence which
might support the arrival of a breakthrough technological revolution, on the other (Dosi
and Virgillito, 2019).

2.1 Tasks vs. humans in productive activities

The dominant framework for the explanation of humane-machine relationship relies on
the so-called task-based approach. Popularized by Autor et al. (2003), it considers the bun-
dle of tasks executed by each worker as the most-important dimension upon which tech-
nological change and, particularly in earlier versions, the use of computer at work, shapes
the dynamics of occupations. Notably, the routine vs. non-routine dichotomy has become
mainstream in economic literature. The underlying idea is that some human tasks can
be more easily substituted by technological change, represented by the use of comput-
ers, while others are less so. The degree of substitutability depends on the amount of
codified knowledge required to execute a given task. In Autor et al. (2003), which lever-
ages on the U.S. DOT dictionary of occupations, tasks considered to be substitutable by
technological change include “setting limits, tolerances, or standards”, and “finger dexter-
ity”, while complementary tasks include knowledge of mathematics, “direction, control,
planning”, and “eye hand foot coordination”. The first two activities are called “routine
cognitive” and “routine manual”, while the remaining three are “non-routine analytical”,
“non-routine interactive”, and “non-routine manual” respectively. It is noteworthy that
the task-based approach is rooted on the previous conceived skill-biased technical change
(SBTC) approach.

A few years later, Acemoglu and Autor (2011) proclaim on the Handbook of Labor Eco-
nomics the defeat of SBTC theory, defined thereby as the “canonical” model. The latter
was developed during 1990s mainly by Katz and Murphy (1992) to account for U.S. wage
inequality, explained via different premia on behalf of low- and college-educated workers.
According to Acemoglu and Autor (2011), although this framework has the merit of explic-
itly encompassing the skill-biased nature of technical change, explaining the college/high-
school earning gap, it has the shortcoming of predicting an increase in economy-wide av-
erage wage and real wage of each skill group, unless supply becomes more abundant, as a
result of factor augmenting technical change. In this respect, the canonical supply-demand
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model is not able to account for a declining earnings, in absolute term, of low skilled work-
ers, because of the absence of a comparative advantage mechanism, and to account for
the different behavior of the earning distribution across quantiles, the so-called “polariza-
tion”. Additionally, by focusing only on two skill types, SBTC is unable to account for
declining labor demand in so-called “middle” occupations. Third, being based on skills
rather than tasks, SBTC cannot aptly account for true human-machine interaction: while
skills are a worker’s attribute, tasks depends on the technology in use. Finally, by predict-
ing the ultimate effect of technology as productivity-enhancing via a factor-augmenting
form, substitution effects are entirely neglected. Aimed at overcoming these limitations,
the routine-biased technical change (RBTC) theory becomes the dominant framework, distin-
guishing three types of task, high-, medium-, and low-skill, and the comparative advan-
tage of workers belonging to each category, allowing for substitutability of those facing
a comparative disadvantage because of task-biased technology, and of their respective
earning. Empirically, it generally adopts, as proxy of technical change, the sectoral share
of workers equipped by computer, and as tasks’ measure, versions of the dictionary of
occupations or alternatively of O*NET for the U.S., PIAAC for OECD countries, EWCS for
Europe, BIBB/IAB for Germany (Biagi and Sebastian, 2020).

From computers to robots, automation regains attention after the Great Recession, also
popularized by contributions like Brynjolfsson and McAfee (2014) and Ford (2015), which
anticipate that machines will win the race against humans and put forward dystopian
scenarios of human-free workplaces. As a result, a number of recent studies rely on a new
variable to account for technical change, namely the sectoral share of robots per number of
employees. Indeed, the RBTC framework, previously used to account for digitalization,
is reoriented towards the analysis of automation. In this respect, distinctions between
computer-human vs. machine-human relationships are never truly investigated.

Acemoglu and Restrepo (2018, 2019, 2020) are among the contributions relying on the
share of robots per employee as a proxy of technological change, and refining the model
in Acemoglu and Autor (2011) in order to account for two separate effects of automation:
a so-called reinstatement effect, according to which new tasks are created by automation
technologies to be executed by humans, and a substitution effect, where tasks previously
attributed to labor move to capital. These industry-level studies, based on local labor mar-
kets analyses, generally predict that a higher number of robots per employee decreases
wages and occupations for low-wage workers. Nonetheless, a cross-country study at the
industry level does find positive impact of robotic adoption on labor productivity, and less
clear-cut evidence on employment reduction (Graetz and Michaels, 2018). Labor-shedding
effects are found for low-skilled rather than medium-skilled workers. However, studies
adopting firm-level data provide a different picture: in general, robotic adoption, or alter-
natively, imported capital equipment, are not found to produce labor expulsion, but rather
employment growth (Domini et al., 2020; Koch et al., 2019). On the contrary, dispropor-
tionate figures on employment losses are reported by Frey and Osborne (2017), relying
on the Delphi method in defining technological bottlenecks and on the RBTC approach,
subsequently downward reviewed by Arntz et al. (2016).
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2.2 Beyond RBTC theory

The recent findings on robots/automation adoption against employment patterns mimic
a long research tradition in the economics of innovation which, starting with the seminal
work by Chris Freeman and associates in 1980s (Clark et al., 1981; Freeman and Soete,
1987), distinguishes between alternative effects of technical change on employment, the-
oretically discussing different compensation mechanisms balancing labor-saving effects
of innovation (Piva and Vivarelli, 2018; Simonetti et al., 2000; Vivarelli, 1995). In gen-
eral, survey-based studies conducted on the pre-robots era seem to confirm that sectoral
analyses on the impact of process innovation, indeed including robotics and automation,
highlight a negative employment impact. On the contrary, firm-level studies are found to
report positive effects of process innovation (Calvino and Virgillito, 2018). The firm-sector
ambiguity derives from the undergoing competitive and selection processes occurring in
the market. A firm gaining market share, e.g. because of investments in robotic, automa-
tion, and in general of process innovation, might well increase its labor demand because
of higher sales. However, the underlying sector might witness an overall decrease in em-
ployment growth if the firm is able to increase its market share at the expense of existing
competitors (Dosi and Mohnen, 2019).

The underlying element, relied upon by both RBTC and the task-based approach, is
the existence of a given degree of substitutability between labor and capital along iso-
quants. The relative cost of labor vs. capital ultimately defines the direction of technical
change, whether labor-saving or labor-augmenting. However, the existence of inputs sub-
stitutability is anything but a resolved issue in economics. An alternative perspective
comes from the evolutionary theory of technical change and the capability-based theory
of the firm. According to these approaches, first, the degree of substitutability between
human and machines is fixed along a given technological trajectory. Therefore, eventual
labor displacing or augmenting effects of technology have to be understood not just along
a given technique of production, but rather in light of the introduction of a new technique
which requires less labor vis-à-vis capital. Second, technology has to be understood as an
ensemble of recipes, consisting of both codified and non-codified knowledge. What reg-
ulates the space of human intervention on the production process is not simply the pace
of technological change, but rather organizational routines, namely the ensemble of if/then
conditions occurring among the members of a given organization (Dosi and Nelson, 2010).
The routine/non-routine dichotomy poorly explains which tasks are ex-ante expected to
be substituted and which to be augmented by technologies, once organizational practices
are taken into account. For instance, the so-called “Toyota-way” of production has always
kept a low degree of automation inside Toyota manufacturing plants, independently of
occurring innovative waves. Third, according to the Schumpeterian distinction between
product and process innovation, nowadays rephrased as reinstatement vs. displacement,
what innovation creates or destroys is not tasks, but rather products or sectors of activity
(Freeman and Soete, 1987) at the macro level, and divisions and units at the firm-level,
because of internal product-diversification and economies of scale (DuPont Chandler Jr.,
1993). After all, labor demand is not divisible by tasks. Fourth, the very nature of techni-
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cal change, whether embodied or disembodied, impacts upon the underlying relationship
with employment (Dosi et al., 2019). Fifth, activities such as planning, machines set up,
process and equipment control are hardly routinized and require precision, distributed at-
tention, and selective knowledge (Pfeiffer, 2018). Empirical evidence in favor of the coexis-
tence of cognitive and manual dexterity in manufacturing process are reported in Cetrulo
et al. (2019) which, well beyond the routine/non-routine dichotomy, identify internal hi-
erarchies and power attributes as the most relevant dimension to define what people do
at work.

From sectors to firms, based on an anti-deterministic perspective on technology and
stressing the role of the combination of technological and organizational changes as
drivers of transformation in terms of human-machine relationship, Cirillo et al. (2020)
hardly detect any sign of emergence of revolutionary change inside automotive facto-
ries adopting I4.0 technologies. In general, organizational changes accompanied with
the adoption of I4.0 technologies find a pattern of continuity with the lean production
paradigm, and the I4.0 strategy, fostering ‘leanness’ in the production system, hardly rep-
resents a paradigm shift. In fact, the ‘new’ I4.0 tension towards customization, reduction of
inventories, elimination of bottlenecks, tracking of errors, intensification and saturation of
working time, and in general of process and organizational innovation, overlaps remark-
ably with the first wave of lean production begun in late 1970s. A similar reasoning is put
forward by Cetrulo and Nuvolari (2019) and Pardi et al. (2020), who consider the current
I4.0 wave more as a hype than a revolution, fostered by national industrial policies aimed
at bolstering digital manufacturing. More importantly, rather than towards automation,
I4.0 seems to be oriented towards digitalization and interconnection. Indeed, what Cirillo
et al. (2020) emphasize is that more complex processes in terms of task-standardization
rather than task-substitution are ongoing in the manufacturing sector. In favor of reduc-
ing anxiety versus automation, Krzywdzinski (2020) argues that the number of robots
per worker is not a very telling figure of the degree of technological change in place in
automotive factories, which are instead more directed towards the achievement of digi-
talization. For example, assembly line robots declined, as a fraction of overall industrial
robots in Germany between 1993 and 2015, while their stock remained fairly constant dur-
ing the same period. Notably, studies based on field-work analyses are in general able
to detect heterogeneous impacts of automation at the department level. Therefore, while
welding, machining, and material handling were already highly automatized in 1990s, la-
bor disappeared neither from assembly lines, nor from quality control and testing units.
In this respect, the human-based component inside factories still remains predominant.
Additionally, by looking at the share of production (blue-collar) workers over total em-
ployment in the automotive industry, the author finds that country heterogeneity is rather
strong (comparing Germany, Japan, and U.S.) and that the trend is not uniquely declining.

2.3 Technologies in social reproduction

A fresh hint of a possible paradigmatic change concerns the pervasiveness of collection
and use of data to achieve control over the social reproduction spheres of individuals. In
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2014, the State Council of China released a document launching a new pilot project, the
Social Credit System. The project, whose name simply recalls some form of welfare state
intervention, actually represents the first Government-endorsed program wherein “Big
Data meets Big Brother”, intended to rank individual citizens with respect to their degree
of social conformity (Wired, 2017). By means of a massive collection of individual data,
mapping the entire social spheres of people, the program intends to condition the possi-
bility of, for instance, getting the desired job, choosing the school for one’s own children,
and enjoying freedom of traveling abroad, on the individual degree of trustworthiness.
For obvious reasons, the ranking algorithm is closed source and proprietary, although five
factors are known to be at play: being a good tax-payer, a good borrower (in the sense
of meeting deadlines), personal and interpersonal characteristics, and preferences and be-
havior. The system provides both rewards (such as free loans) and punishments (such as
restricting mobility) and is managed by a credit service company related to Alibaba Group
Holding Limited. Clearly, the possibility, leveraged by big-data collection and analytics,
of regulating the entire social sphere of individuals represents the most extreme form of
digital control.

On the other side of the world, this possibility is currently massively adopted by high-
tech companies. Recently, Zuboff (2015) introduced the notion of a new regime of capital
organization, called “surveillance capitalism”. In this respect, the Chinese “Big Brother”
takes the form of the American “Big Other”: at the core of this new accumulation regime
lies the process of data generation/extraction, analysis, and sale. The first layer is largely a
human-intense activity which ranges from consumer unintended data generation, when-
ever transactions on individual consumption patterns occur, up to piece-work activity
based on click farms or generically crowdwork platforms and micro-work activities (such
as Amazon Mechanical Turk) (Casilli, 2017; Huws, 2014). Not only humans, but even ma-
chines, and particularly robots, when integrated by means of sensors, become data gen-
erators. Such a pattern is particularly relevant for the industrial sector. This is basically
an activity of extraction, as in the majority of cases data are simply appropriated, even
by means of intrusive and brute-force practices, like data storage or illegal penetration
on individual privacy. In this sense, the current phase of capital accumulation appears
closer to a rentier-economy than to a productive capitalist economy, wherein both produc-
ers and consumer/workers enjoy the benefits of the value creation process. The second
layer consists of massive profiling of consumers/users by means of artificial intelligence,
a computationally intensive process mainly relying on supervised and unsupervised ma-
chine learning techniques.

The final layer is data sale: generated profiles are bundled and sold to other compa-
nies who then attempt to manipulate individual behavior through targeted advertising.
All this brings the usual capitalist tendency of creating new consumer needs to a higher,
unprecedented level, delivering ads and contents directly to those consumers who are al-
ready known to exhibit the highest profit potential. The Big Other turns out to be at least as
coercive as the Big Brother: in fact, power becomes so pervasive that a given set of actions
is not chosen because of the fear of control, implying self-control or a sense of conformity,
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but is perceived as one’s own personal idea, for instance regarding the best restaurant,
travel destination, accommodation, political preference, etc. This occurs because the algo-
rithm is influencing and predefining the repertoire not only of admissible actions, but also
of conceivable ones.

Although the social and the productive spheres might appear unrelated, Moro et al.
(2019) do find evidence of increasing potential space of control inside firms adopting I4.0
technological artifacts. With strong emphasis towards digitalization and interconnection,
the underlying technological artifacts deployed, like the Manufacturing Execution Sys-
tem, allow to collect real-time data on bottlenecks, errors along the production process,
and workers productivity. Still far from the electronic bracelet wore by some Amazon
warehouse workers, monitoring spaces are dramatically fed by digitalization processes,
merging together personal, bureaucratic, and social forms of control.

3 The present mapping into the past: long waves of labor-saving
innovations

The existence of labor-saving (hereafter, LS) heuristics driving the rate and direction of
technological change is a documented pattern, since the inception of the First Industrial
Revolution. Reducing the time of operations, increasing the saturation of takt-times, and
speeding up processes and execution of functions, are the core drivers of mechanization
and automation.

In the tradition of the economics of innovation, the First Industrial Revolution had been
a combination of time-saving heuristics, enabled by the mechanization process, and the
division of labor inside factories, together with the emergence of innovative artifacts. The
role played by time-saving heuristics in shaping the direction of mechanization has been
emphasized by von Tunzelmann (1995) with reference to the cotton industry in the British
Industrial Revolution: the massive increase in labor productivity resulted from the use
of innovation and discovery, through which a spinner was able to produce in a day as
much yarn as previously a full year of work without mechanization (the author refers in
particular to Baines, 1835).

Freeman (2019) conceptualizes the First Industrial Revolution as a paradigmatic shift
emerging from the combination of time-saving heuristics on the one hand, and a new clear
demarcation between working- and life-time for the working class on the other hand, an
attitude absent in pre-industrial societies (Thompson, 1963), allowing workers discipline
and ensuring their participation to productive activities, e.g. by turning Monday into a
working, rather than a drinking, day. As corroborating evidence, using a detailed and
quite granular report, the Hand and Machine Labor Study commissioned by the Depart-
ment of Labor in 1899 to detect the impact of mechanization on labor productivity, Atack
et al. (2020) estimate that only one-third of the increase in labor productivity (measured
as time spent in a given operation) in the late 19th century was due to ‘inanimate power’,
while the rest unexplained component remains attributed to the division of labor.

Speeding up the production process clearly maps into the need of reducing human ac-
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tive participation to the process itself. Therefore, time-saving and LS heuristics have been
considered by economic historians as potential focussing devices (Rosenberg, 1976) guiding
the search process, however of a very particular type. In general, in the development of
a new artifact, inventors face technical trade-offs and bottlenecks which have to be over-
ridden. Search heuristics might have various natures and directions (Cohen et al., 1996),
going from the “make it smaller” for microprocessors, to the “make it faster” for vehicles,
even to the “make it more exclusive” for status goods (such as nowadays smartphones).
Indeed, focusing devices are rather heterogeneous among inventors, and as such they lo-
cally guide the search and discovery process, defining the technological trajectory inside
a given established paradigm (Dosi, 1982). This is not the case for LS heuristics which,
rather than local, appear to be a generalized feature of the history of innovation and in
general of capitalism.

Are these LS heuristics empirically detectable? Attempts to infer heuristics and knowl-
edge bases appear e.g. in Castaldi et al. (2009) at the artifact level, focusing on the tank
technology and the evolution of its attributes over time, but also in Martinelli (2012), who
uses patent-citation networks to infer the emergence of new paradigms by changes in bot-
tlenecks and search heuristics, therefore at the so-called knowledge level. Recently, Taalbi
(2017), relying on specialistic trade journals, collected information about drivers of inno-
vative activities supposed to be relevant by innovators, and investigates eventual distinct
patterns across industry and over time.

Currently, heuristics are usually inferred from the technical engineering literature and
related case-studies. However, patents and their textual content also provide a good
source of information to detect codified knowledge and the ensuing search heuristics. Re-
latedly, the use of text mining techniques enables a comprehensive study of large scale
textual dataset. By looking at the full-text content of robotic patents over the last decade,
Montobbio et al. (2020) are able to isolate the ones which clearly embed a LS trait. The
identification of LS patents, done by natural language processing which includes proba-
bilistic topic modeling, leads to a clear definition of the set of technological artifacts behind
LS robotic patents published by the USPTO between 2009 and 2018.

After identifying patents explicitly containing LS heuristics in robotic patent applica-
tions, Montobbio et al. (2020) infer the type of human activities that the technology con-
tained in LS patents is intended to replace, by capturing both the formal technological
content of the invention using patent classification codes, and the substantial purpose of
broader robotic innovations, using the vector of words which characterizes each topic.
Thanks to this twofold analysis, they describe those fields and activities which are more
exposed to LS innovations. LS patents appear to be concentrated in particular in the fol-
lowing fields: (i) Transport, Storage and Packaging, (ii) Diagnosis and Therapy, (iii) Trans-
mission of Digital Information, (iv) Optical elements, (v) Chemical or Physical Laboratory
Apparatus (measuring and testing in chemistry), and (vi) Moving Parts.

The authors propose a taxonomy wherein it emerges that the typical tasks on which LS
research effort is focused include (i) dexterity and manipulations, as in packing, storing,
conveying, and handling packages in the logistics industry; (ii) activities entailing social
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intelligence, such as taking care of patients and the elders; (iii), activities requiring cogni-
tive intelligence and complex reasoning, e.g. the ability of predicting, learning, classifying,
and evaluating, typical of high-level professional segments. Notably, the analysis shows
that the overall bundle of technologies behind LS heuristics is not simply related to robots
stricto sensu, but encompasses a wider set of technologies, functions, and operations. In
this respect, rather than interpreting the new wave of LS technologies as the next GPT
(Trajtenberg, 2019), in order to genuinely account for the unfolding of the latest wave of
LS technologies, a “technological constellation” perspective à la Freeman would be more
informative.

In a subsequent paper, Staccioli and Virgillito (2020) move ahead by delving into the
past, i.e. by adopting a historical technological constellation perspective and looking at
the emergence and evolution of the bundle of technologies behind current LS heuristics
detected in robotic technologies. Indeed, they show that mechanization and automation
are not the result of a single dominant product design, but rather of a bundle of technolog-
ical artifacts, which experience patterns of co-movements, anti-comovements, explosion,
and dissipation. The empirical investigation, which looks at historical patent data over
the period 1790–2019 vindicates, first, the underlying technological complexity, in terms
of bundles of output, behind LS technologies; second, the increasing historical relevance
of those technological artifacts entailing mechanization and automation; last, the absence
of a neat recurrence of periodic waves of innovations. In fact, although the emergence of
long waves characterizing part of these technological artifacts is detected, these are hardly
periodically recurrent.

Fig. 1 shows the time evolution of the assignment of selected Cooperative Patent Classi-
fication (CPC) codes by patent examiners within each year starting from 1836. The vertical
axis measures relative frequencies, i.e. the number of times the underlying CPC has been
assigned divided by the overall number of assigned CPC codes in the same year. The
vertical axis therefore measures the relative importance of each CPC vis-à-vis the rest of
technological classes.

Already at a first glance, a sizeable heterogeneity emerges in their time evolution. In-
deed, different CPC codes exhibit starkly different dynamics, both in terms of shape and
scale. A few codes witness an overall steeply increasing trend (A61, C12, G02, G06, H01,
H04, Y10S901, Y10T436), suggesting a century-long ever growing commitment to innova-
tive effort in the underlying fields, while the remaining display a more ‘stationary’ or even
decreasing dynamics. Exploding trends characterize technologies related to computing,
processing, and testing, namely pivotal functions at the core of the third industrial revo-
lution. A more steady tendency is instead recorded for those technologies related to codes
B65 and G05, mostly characterizing innovations dealing with storage, packing, convey-
ing, and regulating control processes. Patent intensity of these technologies seems to be
rather persistent over time, in a fashion more akin to enabling technologies, processes, and
methods, rather than products themselves. A decaying trend is instead visible for codes
B23, B25, and B62, mainly characterizing the first and second industrial revolutions, such
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as innovation in the agricultural sectors (land vehicles) and related to the mechanization
process along assembly lines, providing hand tools, manipulators, and metal-working.

Mapping the present into the past by looking at the long run evolution of CPC codes
characterizing current LS technologies, Staccioli and Virgillito (2020) provide evidence that
robots are the result of a bundle of complex technological functions and artifacts which
have been punctuated by different upswing and downswing phases over the last two cen-
turies. More importantly, robots are not a unique general purpose technology but rather a
cluster of heterogeneous innovations whose unfolding and diffusion is far from determin-
istic.

4 The present mapping into the future

The probabilistic topic model estimated by Montobbio et al. (2020) allows to pinpoint the
technological bottlenecks underlying the search efforts on behalf of robotics inventors. In-
deed, labor-saving heuristics are concentrated in human activities already identified by
other contributions in the literature. Arntz et al. (2016), Frey and Osborne (2017), and
Nedelkoska and Quintini (2018) all rely on experts’ judgment (Delphi method) for con-
structing an automation probability measure of O*NET occupations. For instance, Frey
and Osborne (2017) ask technologists to reply to the following question for 70 selected
occupations: “Can the tasks of this job be sufficiently specified, conditional on the avail-
ability of big data, to be performed by state of the art computer-controlled equipment?”
(see Frey and Osborne, 2017, Table 1). They claim that the probability of an occupation
being automated is a function of: (i) social intelligence, such as the ability to negotiate
complex social relationships, including caring for others or evaluate differences; (ii) cogni-
tive intelligence, such as the ability of solving complex problems; (iii) finger dexterity and
manipulation, such as the ability to carry out precise physical tasks in an unstructured
work environment and in awkward positions.

The tasks identified by Montobbio et al. (2020) actually map the semantic domains cov-
ered by labor-saving patents and emerging out of the probabilistic topic model: for ex-
ample, tasks related to perception and manipulation, cognitive intelligence, and social
intelligence, appear to be more prevalent in labor-saving patents, compared to generic
robotic patents. Therefore, according to their results, these technological bottlenecks are
currently under the spot of cutting-edge research efforts performed by innovative firms
in their knowledge space. Similarly, Webb (2020) shows that the most recent AI driven
automation wave is directed at high-skilled tasks.

In these respects, future labor-saving trends detectable from search effort seem to be
directed towards the substitution of tasks belonging to a wide set of heterogeneous sectors,
from logistics to health. However, as shown by Montobbio et al. (2020), top holders of
labor-saving patents include Boeing, Amazon, and UPS (cf. Fig. 2).

Indeed, innovative efforts aimed at automatize processes like picking and storing hardly
signal paradigmatic transformations according to which technology might be used to lib-
erate mankind from the oppression of work, as per Keynes’ prediction. Rather than the
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Figure 2: Top 15 labor-saving patents holders. Source: Montobbio et al. (2020).

development of technologies aimed at an “Economics of hope” (Freeman, 1992), these
efforts appear to be directed towards labor-expulsion in already very automatized pro-
cesses, and wherein the substitution between human and machine would hardly result
in collective gains, but rather in potential employment loss for workers employed in the
logistic sector.

Clearly, labor-saving efforts in robotic patents will not necessarily map into effective
labor-expulsion trends. Nonetheless, during a phase marked by the explosion of the
SARS-CoV-2 pandemic, detecting the prevalence of labor-saving patents also in sectors
where humans are relatively less replaceable, such as diagnosis and therapy, is not an en-
couraging sign. Dosi and Virgillito (2019), by identifying the current phase of capitalist
development as “rentified” capitalism, call for a series of effective policy interventions,
able to cope with an alternative materializing Blade Runner scenario in which technologies
increase the scope for human control, while not being used to benefit society as a whole.
In this respect, policies aimed at increasing workers appropriation of gains from tech-
nology, in terms of higher wage remuneration, reduction of working hours, and a more
autonomous pace in organizing their work activities, are urgently needed. Additionally,
redistributive policies increasing tax progressiveness and directed towards rent-erosion
need to be put in place, starting with tech giants and “Big Pharma”. This would apply un-
der normal circumstances, let alone during a global pandemic. Finally, industrial policies
which foster the development of sectors of activities able to absorb labor force, and at the
same time to provide good jobs, might represent an alternative path to the current trend of
“casualization” of work, starting with education, health, and the environment. However,
all this might only come with a re-balancing of labor power.

5 Conclusions

The study of technology and of its unfolding upon the social fabric allows to investigate
how productive forces interrelate and influence the evolution of capitalism. However, the
underlying complexity of technological artifacts call for an anti-deterministic perspective
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and for the role exerted by other forces beyond technology in defining the evolution of
the capitalist mode of production, distribution, and appropriation. Hereby, the current
human-machine debate is reviewed under an anti-deterministic spotlight, eliciting limits
in mainstream economic literature and giving space to alternative treatments of technol-
ogy and its relationship with humans and labor demand. Next, by focusing on labor-
saving heuristics embedded in patents, and therefore looking at the effective direction of
search efforts in innovative activities, a map is provided of the historical evolution of labor-
saving heuristics in automation, identifying phases of upsurge, saturation, and decline of
the bundle of underlying technologies. Finally, by looking at the current direction of in-
novative efforts in labor-saving heuristics, future trends of potential labor-displacement
are envisioned, particularly in the logistic sector, but also in other more human-interactive
activities, such as the one involved in diagnosis and therapy. Nonetheless, by rejecting
a deterministic perspective, labor-saving heuristics in the search space are not mapped
one-to-one to the adoption space. It is argued that the upsurge of the pandemic and the
massive switch to teleworking and online consumption is fueling new transformations
in terms of patterns of delivery and distribution, and in general of commercial and so-
cial consumption activities. Policy directions and interventions remain crucial in taming
and possibly pushing towards human-enhancing innovations, the alternatively disruptive
nexus between humans and machines.
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