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Abstract  
A toxic-free world is one of the goals of the European Green Deal and a key objective of the 
World Health Organization Inter-Organization Programme for the Sound Management of 
Chemicals. However, although use of some toxic chemicals is being banned, others continue 
to be developed. We consider this motivation for a closer examination of the toxicity of 
chemical inventions. We combine patent analysis with computational toxicology and develop 
a methodological roadmap to measure patent toxicity, that is, the extent to which a patent 
includes “components” (or compounds) that are toxic to humans and/or the environment. To 
illustrate our proposed methodology, we analyse the toxicity of ten well-known hazardous 
chemicals. The measurement of patent toxicity opens up interesting avenues for future research 
and, potentially, has some strong policy implications.  
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1. Introduction   

We are familiar with using patents to measure innovative output (Griliches, 1990) and to 

account for the characteristics of different inventions. Scholars measure quality and value using patent 

citations (Hall and Martin, 2005; Harhoff et al., 2003; Trajtenberg, 1990), patent renewals 

(Schankerman and Pakes, 1985) and patent families (Lanjouw et al., 1998). Patent claims and the 

number of International Patent Classifications (IPC) have been used to measure the scope of the patents 

from both a technological (Lerner, 1994) and a legal (Kuhn & Thompson, 2017; Lanjouw and 

Schankerman, 2001) perspective, while information and the effect on technological diffusion based on 

forward and backward citations have been used to develop indicators of patent generality and originality 

(Trajtenberg et al., 1997). Also, patents have been used to measure technological complexity (Ivanova 

et al., 2017) and to capture the greening of inventive efforts (Dechezleprêtre et al., 2013). These 

indicators have been employed in a variety of empirical exercises, driven mostly by the strong 

underlying assumption that innovation is good for economic progress and for society as a whole (for a 

discussion see Giuliani, 2018).  

However, we are now recognizing that innovation can have a dark side (Coad et al., 2020a; 

Biggi and Giuliani, 2020). The world is facing numerous problems related to sustainability and this is 

being accompanied by increased innovative efforts globally (for a discussion of the politics of 

innovation in the context of sustainability threats see, among many others, Ely et al., 2013). Both the 

UN 2030 Sustainable Development Agenda and the European Green Deal emphasize the importance of 

protecting our planet and human health from pollution and hazardous innovations - especially from 

“dirty” industries such as the chemical industry which has a long legacy of inventing substances or 

molecules that have proven to be particularly harmful to ecosystems and human health (Bartrons et al., 

2016; Carlson, 1962; Jepson and Law, 2016; Johansen, 2003; Ma et al., 2011). The European Green 

Deal was formulated to ensure a toxic-free environment and is being supported by the European 

Commission’s adoption in October 2020 of the European Union (EU) Chemicals Strategy for 

Sustainability. The Executive Vice-President for the European Green Deal, Frans Timmermans, stated:  
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The Chemicals Strategy is the first step towards Europe's zero pollution ambition. Chemicals 

are part and parcel of our daily life, and they allow us to develop innovative solutions for 

greening our economy. But we need to make sure that chemicals are produced and used in a 

way that does not hurt human health and the environment. It is especially important to stop 

using the most harmful chemicals in consumer products, from toys and childcare products to 

textiles and materials that come in contact with our food. (emphasis added) 

 

Calls for a toxic-free future have been made by several organizations including the World 

Health Organization (WHO) Inter-Organization Programme for the Sound Management of Chemicals, 

advocacy groups and civil society organizations worldwide. At the same time, the harms caused by 

exposure to toxic chemicals have become an international policy concern, which has been increased by 

the growing body of scientific evidence demonstrating the connection between chemical toxicity and 

health. For instance, there is more and more evidence emerging about the nexus between exposure – 

even at low levels – to certain pesticides and dominant contemporary diseases such as Alzheimers, 

autism and cancer (Jones, 2010; Pearson et al., 2016). In light of this evidence, the WHO and the Inter-

national Agency for Cancer Research (IARC) keep chemicals under constant observation, while, since 

2001, the Stockholm Convention - a United Nations treaty with 184 signatory parties – conducts peri-

odic toxicity assessments of the class of chemicals known as Persistent Organic Pollutants (POPs). 

Between 2001 and 2017, 28 POPs received worldwide bans. These measures and other country- or 

regional-level regulatory initiatives to prohibit or limit the use of toxic chemicals, have laid the foun-

dations for strategy to achieve a toxic-free world.  

However, the historical bans under the Stockholm Convention show that although use of a par-

ticular molecule might be banned, the development of other potentially toxic molecules may be contin-

uing. It is only in the future and, perhaps, after many years of in vivo and in vitro and epidemiological 

studies, that their toxicity will be proved. The POPs review committee is constantly reviewing new 

chemicals, which is evidence that companies and other inventive entities are continuing to invent and 

produce molecules and substances that are hazardous and show up on the radar of these authorities as 

toxic.  
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Academic research on the risks and policies related to chemical risks have for long pointed to 

the difficulties involved in implementing risk regulation, and the global and local regulatory mismatches 

in policies addressing the risks of chemical exposure. They also underline the lobbying power of large 

chemical companies and how it shapes the technological space and constrains the development of al-

ternative pathways (among others see Lynn, 1986; van Zwanenberg, 2020; van Zwanenberg et al., 2013; 

van Zwanenberg and Millstone, 2015). A comprehensive overview of the functioning of banning bodies 

and the effectiveness of regulatory frameworks in this domain is beyond the scope of this research note. 

However, they call for a deeper understanding of what companies (and other inventing entities) are 

“cooking up” in their R&D labs. The point here is that, unless companies (or other inventors) enact 

strategies to shift away from toxic inventions, all regulatory efforts will be constantly challenged by 

new toxic discoveries. Therefore, we need to know exactly what kinds of discoveries - in terms of their 

potential toxicity - are being pursued in R&D labs. This has important implications, also, for studying, 

predicting and sharing knowledge about future threats. We are proposing the notion of patent toxicity, 

to capture or measure the extent to which a patent comprises “components” (in chemistry “compounds”) 

that are toxic in one or more dimensions.  

 

2. Assessing the Toxicity of Chemical Compounds  

The toxicity of a chemical compound is measured along several dimensions or toxicity endpoints. A 

compound can be toxic to human health, for example, in terms of mutagenicity, which captures the 

degree to which the chemical causes cell mutations, or carcinogenicity, that is, its potential to cause 

cancer, or the whole spectrum of human health hazards including the functioning of the immune and 

neurological systems, liver damage, harm to the endocrine system, etc. (Wallace, 2012). Also, a 

chemical compound can be toxic to the ecosystem where toxicity endpoints can range, for example, 

from bee toxicity (i.e., the extent to which a compound harms the reproduction of bees) to 

biodegradability, which assesses how fast a compound biodegrades in the environment (for a full list 

of toxicity endpoints, see the OECD Guidelines for the Testing of Chemical1).  

 
1 https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals_72d77764-en 
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There are three ways to evaluate the toxicity of chemical compounds: in vivo experiments which 

assess the toxicity of a given substance directly on a living organism (e.g., an animal); in vitro 

experiments which assess toxicity on microorganisms, cells or biological molecules outside a living 

organism; in silico experiments which assess toxicity based on computer simulations. Compared to in 

vivo and in vitro experiments, in silico toxicity analysis is relatively new, but is becoming more accepted 

over time (Hemmerich and Ecker, 2020). In silico toxicity analysis relies on ‘machine-learning software 

trained on masses of chemical-safety data which is increasingly considered so good at predicting some 

kinds of toxicity that it now rivals — and sometimes outperforms expensive animal studies’ (Van 

Noorden, 2018, p. 163). In essence, it applies of computational chemistry methods to compare the 

structural and biological features of a chemical compound with the same or similar compounds whose 

effects have been established by prior in vivo or in vitro research. It has the advantage of being less 

costly than the other two methods and of avoiding the ethical problems of in vivo experiments. Because 

of these advantages, our measure of patent toxicity is based on in silico toxicity assessments.   

 

3. Measurement of Patent Toxicity 

We propose a methodological roadmap to measure patent toxicity (Figure 1), which involves three 

steps.  

****Figure 1 about here***** 

 

Step 1 includes search and extraction of chemical patents and their related chemical content. 

There are several databases that allow full-text searching and large-scale extraction of chemical content 

from patent documents. Licensed databases such as Clarivate Derwent Chemistry Resources 

(https://clarivate.com/derwent/), CAS SciFinder (https://scifinder.cas.org), and Elsevier Reaxys 

(http://www.elsevier.com/solutions/reaxys) are the most widely used sources in the industry, while 

open-access databases, such as SCRIPDB, provided by the Jurisica Lab at the Ontario Cancer Institute 

and the University of Toronto (http://dcv.uhnres.utoronto.ca/SCRIPDB) and SureChEMBL 

(https://www.surechembl.org), provided by the European Molecular Biology Laboratory (EMBL) are 

the two sources most frequently accessed by academic researchers and inventors. Regardless of the 
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source of the data, extraction of chemical patents results in a patent-compound association where 

compounds are specified according to their international structure identifiers, such as SMILES or 

InChiKey,2 and their exact location in a specific section of the patent document such as the title, abstract, 

description or claims. 

Step 2 involves use of computational chemistry techniques, such as Quantitative Structure-

Activity Relationships (QSARs), to assess the potential toxicity of the compounds extracted from the 

claims listed in the patent documents.3 QSARs are mathematical models which are used to predict any 

potentially undesirable or adverse effects of chemical compounds on human health and the 

environment, based on compounds’ chemical structure (Cherkasov et al., 2014; Zimmerman et al., 

2020). These effects or toxicity endpoints can be quantitative (e.g., LD50: lethal dose to 50% of tested 

individuals) or qualitative, such as binary (e.g., toxic or non‐toxic) or ordinary (e.g., low, moderate, or 

high toxicity). In this study, we use VEGA HUB software (www.vegahub.eu) to predict the toxicity 

endpoints of chemical compounds. The VEGA HUB software was developed and is maintained by the 

Istituto di Ricerche Farmacologiche Mario Negri (IRFMN) as an open-source and large-scale library of 

QSAR models and is optimized following the European Legislation on chemical substances REACH.4 

The inputs for the VEGA HUB software are the international structure compound identifiers, and the 

output is a complete report containing toxicity endpoints and all the supporting information required 

for each compound (Benfenati et al., 2013). Based on a series of interviews with experts in toxicology 

and computational medicinal chemistry, we selected 22 out of 59 QSAR models provided by VEGA 

HUB, which best assess the two classes of toxicity of interest in this note: toxicity for human health and 

toxicity for the environment. The 22 selected QSAR models (see Table 1 Columns 2 and 3) provide an 

exhaustive representation of compound toxicity and their results can be interpreted easily, even by non-

 
2 The Simplified Molecular-Input LineEntry System (SMILES) is a specification in the form of a line notation 
which describes the structure of chemical compounds. The International Chemical Identifier (InChiKey) is a 
textual identifier for chemical compounds, designed to provide a standard way to encode molecular information 
and to facilitate the search for such information in databases. 
3 We decided to focus on the claim section to account for the extent (i.e., the scope) of the protection sought in a 
patent document (Bekkers et al., 2020; Jayaraj and Gittelman, 2018; Kuhn and Thompson, 2019; Marco et al. 
2019). 
4 The EU regulation REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) addresses 
the production and use of chemical substances and their potential impacts on both human health and the envi-
ronment. In particular, it includes QSAR models as alternative tools for risk assessment of chemical substances.  
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experts in computational chemistry, since they are expressed mostly as binary outcomes (e.g., toxic or 

not toxic). To identify compounds toxic to human health, we consider five toxicity endpoints - 

mutagenicity, carcinogenicity, teratogenicity, steroidal activity and liver damage - by using a total of 

17 QSAR models (some endpoints can be tested through more than one model). Similarly, we assess 

environmental toxicity through five QSAR models to test fish toxicity, algae toxicity, bee toxicity, 

sludge toxicity and ready biodegradability. Each QSAR model provides a different scale of possible 

results (e.g., a compound may be classified as mutagenic, suspected mutagenic or non-mutagenic). 

Based on the advice of toxicology experts, we adopt a conservative approach and, thus, do not consider 

a compound to be toxic if the model signals that the endpoint toxicity is only “possible” or “suspect” 

(Table 1, Column 4). Further details on toxicity endpoints and related QSAR models and their 

predictions, are provided by the authors upon request.  

****Table 1 about here ***** 

 

Step 3 involves aggregation of the chemical compound toxicity scores at the patent level. 

Chemical patent claims can include a few or several compounds, sometimes several hundreds. These 

compounds may be active ingredients or other substances needed for to activate the product or process 

functions (e.g., reagents, catalysts, etc.). In some cases, a single patent could cover more than one active 

principle: for instance, the well-known commercial crop management product Round-Up, which was 

produced by Monsanto (now Bayer), includes both glyphosate (a broad-spectrum herbicide) and 

endosulfan (an insecticide). Patent claims also can include different combinations of active ingredients 

and other compounds, thus. providing alternative “formulae” for which the patent applicants seek 

intellectual protection.  

Our proposed approach to measuring patent toxicity is based exclusively on the toxicity of the 

individual compounds present in the patent claim. It does not account for their interactions and 

synergistic or antagonistic effects (see the conclusion to this section). We compute four sets of measures 

for each type of impact on human health and on the environment:  

Total Count Toxicity (TC_Tox), which counts the total number of compounds in the patent claim 

that are classified as toxic to human health or to the environment. As already discussed, we separate 
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human health from environmental impacts, and measure TC_Tox separately. !"_!$%_&'()*! for 

human health is defined as:  

			"#_"%&_'()*+!	 =-.#
$

#%&
	 

 

where  c (c=1, 2, …, C)  are the compounds in patent p and Dc is a dummy variable equal to 1 if the 

compound c is categorized as toxic according to at least one of the five human toxicity endpoints (i.e. 

mutagenicity, carcinogenicity, teratogenicity, steroidal activity, liver damage). 

!"_!$%_+*,! for the environment is defined as: 

 

"#_"%&_/+0! =-.#
$

#%&
	 

 

where  c (c=1, 2, …, C)  are the compounds in patent p and Dc is a dummy variable equal to 1 if the 

compound c is categorized as toxic according to at least one of the five human environmental endpoints 

(i.e. fish toxicity, algae toxicity, bee toxicity, sludge toxicity, ready biodegradability for environmental 

impacts). 

Share Toxicity (S_Tox) is measured as the share of the patent claim’s compounds that are classified 

as toxic either to human health or to environment, over the total number of compounds disclosed in the 

claim. Hence, we define the following measures: 

1_"%&_'()*+! =
			"#_"%&_'()*+!	

#  

 

1_"%&_/+0! =
"#_"%&_/+0!

#  

 

Where C is the number of compounds reported in patent p.   
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Endpoint Toxicity (E_Tox) which is measured as the total number of toxicity endpoints detected on 

either human health or the environment, over the total possible number of toxicity endpoints in the 

patent. 

 

/_"%&_'()*+! =
∑ ∑ .#,()(%&$#%&

# ∗ 5  

 

 

5 = 	 {789:;5<=>=9?, 	>:A>=<%;5<=>=9?, 	95A:9%;5<=>=9?, 	B95A%=C:D	:>9=E=9?, 	:<C	D=E5A	C:7:;5} 

 

/_"%&_/+0! =
∑ ∑ .#,()(%&$#%&

# ∗ 5  

 

5 = {G=Bℎ	9%&=>=9?, 	:D;:5	9%&=>=9?, 	I55	9%&=>=9?, 	BD8C;5	9%&=>=9?, 	A5:C?	I=%C5;A:C:I=D=9?} 

 

 where patent p includes c compounds (c=1,2, …, C) and Dc,e is a dummy variable equal to 1 if the 

compound c is toxic for the endpoint e.  The normalization is based on the theoretical maximum (i.e. 

5* C).5 

Toxicity Concentration (C_Tox) measures the extent to which toxicity is concentrated in one or 

a few compounds or is it detected equally across all the patented compounds, based on an adaptation to 

the Herfindahl-Hirschman Index (HHI). The two measures of toxicity concentration related to human 

health ("_!$%_&'()*!	) and to the environment ("_!$%_+*,!) are defined as follows: 

 
5 E.g., consider the patent p disclosing compounds A and B in the claims section. Compound A is shown to be 
toxic for mutagenicity, carcinogenicity, teratogenicity, steroidal activity and liver damage endpoints, scoring 5 
in the human health toxicity class. Compound B is shown to be toxic for the carcinogenicity endpoint, scoring 1 
in the human health toxicity class. As the total detected endpoints for patent p is 6 over two compounds, 
E_Tox_HUMAN_p is calculated as 6/(2*5) = 0.6 where (2*5) = 10 is the "theoretical" maximum, indicating that 
the patent is toxic for all the endpoints in the human health toxicity category. 
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5 = 	 {G=Bℎ	9%&=>=9?, :D;:5	9%&=>=9?, I55	9%&=>=9?, BD8C;5	9%&=>=9?, A5:C?	I=%C5;A:C:I=D=9?} 

 

Where patent p includes c compounds (c=1,2, …, C) and Dc,e is a dummy variable equal to 1 if the 

compound c is toxic for the endpoint e. TOT_END_HUM  and TOT_END_ENV are the total numbers 

of human toxicity endpoints, and environmental toxicity endpoints respectively detected in patent p.6 

 

4. Application 

4.1. Patent selection  

To illustrate our proposed methodology, we make an ad hoc selection of 10 patents covering universally 

recognized highly hazardous chemicals (hereinafter the target chemicals). The selection of these patents 

was made to include: (a) some of the most well-known hazardous chemical compounds, whose toxicity 

has been widely documented by different sources such as the Management Status Report the US Na-

tional Toxicology Program (NTP, 2020), the US Environmental Protection Agency (EPA), the Euro-

pean Chemical Agency (ECHA) and the IARC; and (b) chemical compounds from each industry sub-

class in the Manufacture of Chemicals and Chemical Products class (NACE Rev. 2 - Statistical classi-

fication of economic activities). Based on these two criteria, for each sub-class we selected the follow-

ing target chemicals:  

 
6 E.g., consider a patent p disclosing compounds A and B in the claim section. Compound A is shown to be 
toxic for mutagenicity, carcinogenicity, teratogenicity, steroidal activity and liver damage endpoints, thus, scor-
ing 5 in the human health toxicity class. Compound B is shown to be toxic for the carcinogenicity endpoint, 
thus, scoring 1 in the human health toxicity class. As the total detected endpoints for patent p is 6 across two 
compounds, #_"%&_'()*+!	is calculated as (5/6)^2 + (1/6)^2 = 0.7222. The result (0.7222) denotes high con-
centration of human health toxicity due to a higher contribution of compound A.   
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(i) Manufacture of Paints. Varnishes and Similar Coatings. Printing Ink and Mastics: (1)

 Methylene chloride used as a solvent in paint strippers and (2) Bisphenol A widely used 

for the manufacture of plastic bottles and food storage items;  

(ii) Manufacture of Pesticides and Other Agrochemical Products: (1) Glyphosate and (2) Di-

chloropropene – both pesticides used widely in farming;  

(iii) Manufacture of Basic Chemicals. Fertilizers and Nitrogen Compounds. Plastics and Syn-

thetic Rubber in Primary Forms: (1) Oxirane and (2) Trichloroethylene both used for the 

production of other chemicals such as polyester and polyethylene terephthalate (PET);  

(iv) Manufacture of Soap and Detergents. Cleaning and Polishing Preparations. Perfumes and 

Toilet Preparations: (1) Triclosan a fumigant used in agriculture and to sterilize medical 

equipment and (2) Para-dichlorobenzene used as a disinfectant;  

(v) Manufacture of Man-Made Fibres: (1) Perfluorooctanesulfonic acid (PFOS) and (2) Per-

fluorooctanoic acid (PFOA) both used to produce a wide range of products to protect 

against heat, chemicals and corrosion. 

Table 2 reports the target chemicals, listed according to their industry classification, their trade names 

(i.e., the trademark or name used to trade the product containing the compound) and their main toxico-

logical properties, defined according to the different sources. 

****Table 2 about here***** 

 

4.1. Patent search and retrieval 

 In Step 1 of the methodology depicted in Figure 1, we searched for and retrieved patents related 

to the target chemicals in the SureChEMBL database. The SureChEMBL includes all chemical patents 

filed at European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), the 

Japanese Patent Office (JPO) and the World Intellectual Property Organization (WIPO) from 1976 on-

wards. SureChEMBL provides comprehensive compound-patent associations complemented by the ex-

act location of the compound in the patent document (i.e., in title, abstract, claims or descriptions). It 

also provides s.c. SMILES or InChIKey information - the chemical compound structure international 

identifiers needed to conduct the toxicity analyses described in Step 2. Overall, the initial search yielded 
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135,420 compound-patent associations. For the purposes of our analysis, we selected one patent for 

each of the target chemicals, choosing the most recent patent filed by the original assignee (i.e., the 

assignee that discovered and patented the target chemical first)7 or the first assignee that produced the 

target chemicals, based on a match performed using The Merck Index encyclopaedia (Paula, 2014).8 

We used the  Derwent Chemistry Resource to double-check that the target chemicals are key “ingredi-

ents” in the selected patents and, thus, are at the core of the product or process described by the invention 

(tagged as “Use” in Derwent). Table 3 reports the compound structure identifier (InChIKey), assignee 

name and patent number for each target chemical. 

***Table 3 about here**** 

 

4.3 Toxicity analysis using QSAR models  

In Step 2, we used the VEGA HUB software to run the QSAR models to predict the toxicity 

endpoints of the target chemicals included in the selected patents retrieved in Step 1. Note that, since 

toxicity was one of the criteria used to select the target chemicals its presence is not unexpected. In 

addition to referring to active substances – our target chemicals – the patent claims include multiple 

other chemical compounds, such as other active substances, reactants, solvents, and catalysts related to 

the patented chemical process or product. It is not unusual - especially in the pesticide sector – for these 

other chemical compounds to be as or even more toxic than the key ingredients (Beggel et al., 2010). 

In Step 2 we assess the toxicity of the patent based not just the selected chemical, but by considering 

all the compounds in the list of SMILES contained in the claim section.  

Recall that we test five types of toxicity endpoints for each type of impact: (a) mutagenicity, 

carcinogenicity, teratogenicity, steroidal activity, and liver damage for human health impact (for a total 

 
7 We decided to analyze the most recent patent documents rather than the original patents because patent chem-
istry in older patent documents is not consistent with standard compound structure identifiers and, therefore, not 
in a suitable format for the toxicity analyses. 
8 The Merck Index is the most widely used encyclopaedia of chemicals, drugs and biological products and in-
cludes over 10,000 monographs on single chemical compounds. Monographs in The Merck Index typically con-
tain - among other information - common and generic chemical names, chemical structures, trademarks and as-
sociated companies. 
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of 17 QSAR models), and (b) fish toxicity, algae toxicity, bee toxicity, sludge toxicity and ready bio-

degradability for environmental impact (5 models).  This step is exemplified in Table 4, which presents 

extracts for the ten toxicity endpoint predictions for a selection of the compounds included in one spe-

cific patent claim. The patent considered is US20200236928 filed at the USPTO in 2019 by Bayer’s 

Monsanto division, to protect the invention of a herbicide containing glyphosate as an active principle. 

Table 4 (Columns 2 and 3) show that the active principle glyphosate is classified as toxic for two end-

points – carcinogenicity (in 1 out of 6 models) and teratogenicity (in both models used to test this 

toxicity endpoints). We also examine the toxicity of all the other chemical compounds included in the 

patent claim. Table 4 reports only a selection of them and it can be seen that most score high for several 

toxicity endpoints. For instance, Bifenox is mutagenic, carcinogenic and teratogenic (Table 4, Columns 

1, 2 and 3) while Fluoroglycofen is mutagenic, carcinogenic and toxic for the liver (Table 4 Columns 

1, 2 and 5). 

****Table 4 about here**** 

 

4. Patent toxicity indexes 

We next calculate a group of patent toxicity indicators based on Step 3. Table 5 presents the target 

chemical (Column 1), patent number (Column 2), total number of compounds present in each patent 

claim for each target chemical (Column 3) and number of compounds classified as toxic for each end-

point grouped by type of impact (Columns 4 and 5 respectively, for health and environmental impacts).  

These data show that, in addition to the target chemicals, a large portion of the other compounds in-

cluded in the patent’s claims are also toxic. This provides a motivation and rationale for including all 

of the compounds to calculate the patent toxicity index.  

****Table 5 about here**** 

 

In Section 3 we elaborated four categories of patent toxicity indexes – Total Count Toxicity (TC_Tox), 

Share Toxicity (S_Tox), Endpoint Toxicity (E_Tox) Toxicity Concentration (C_Tox). Note that, in line 

with current methodologies for predicting the human health and environmental toxicity of chemical 

compounds, the overall toxicity of a chemical product derives from single-chemical studies (Monosson, 
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2005), which suggests that the presence of at least one toxic chemical compound should be the basis 

for considering the product described in the invention as toxic. Table 6 presents the patent toxicity 

indexes for each target chemical divided by type of impact (Health and Environment). This exercise is 

aimed, primarily, at showing how these indexes function and what they allow for. However, the index 

values are of interest in their own right since, essentially, they indicate (a) that in most cases the majority 

of the chemical compounds included in the patent claims are toxic to human health (and also but slightly 

less to the environment) and (b) that toxicity is not concentrated in the active ingredient, applies, also, 

to the other compounds.  

****Table 6 about here**** 

 

5. Discussion and new research directions 

A toxic-free world is one of the goals of the European Green Deal, and is part of the UN 2030 

Agenda and a key objective of the WHO Inter-Organization Programme for the Sound Management of 

Chemicals. Several efforts have been made to put a stop to the use and production of chemicals, such 

as POPs - that threaten the future of the planet and its inhabitants’ livelihoods. However, little is to be 

gained if some toxic chemicals are banned, but, simultaneously, others are being developed. We know 

little about the invention dynamics related to toxic chemicals, but we do know that the process of 

banning a toxic substance which is on the market, is complex and long (Coad et al., 2020b; van 

Zwanenberg, 2020). This suggests forcibly that we need to have a more accurate idea about what is 

being worked on in the chemical industry’s R&D labs – based not on existing patent numbers or 

economic value, but an assessment of their potential toxicity.   

 In this research note, we combine patent analysis with computational toxicology to formulate a 

methodological roadmap to guide an investigation of the toxicity of the chemical compounds listed in 

patent claims, considering ten toxicity endpoints: (i) mutagenicity, carcinogenicity, teratogenicity, 

steroidal activity, liver damage for human health impacts, and (ii) fish toxicity, algae toxicity, bee 

toxicity, sludge toxicity, ready biodegradability for environmental impacts. For each type of impact, we 

proposed four patent toxicity indexes. We selected 10 of the most familiar toxic chemical inventions 

(Methylene chloride, Bisphenol A, Glyphosate, Dichloropropene, Oxirane, Trichloroethylene, 
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Triclosan, Para-dichlorobenzene, Perfluorooctanesulfonic acid and Perfluorooctanoic acid) and 

assessed their toxicity based on our proposed methodology.  

 This note provides a methodological contribution by proposing a novel combination of patent 

analysis and computational chemistry and developing a series of novel indicators to more accurately 

measure the potential “dark side” of innovation. We think more and better measures are needed to 

respond to the growing interest in understanding the causes and consequences of harmful innovations 

(Giuliani, 2018). So far, innovation studies have relied on technological classifications to identify 

“good” vs “bad” innovations, for example, green or brown innovations in the automobile industry 

(Aghion et al., 2016). We propose a new way to exploit patent information to investigate the 

technological trajectories of companies and other inventing entities, to assess whether they are investing 

in the generation of knowledge that is more (or less) likely to lead to a more environmentally and 

socially sustainable future.  

 However, our novel approach is only the first step in a bigger and longer-term research agenda. 

Also, we need to add some caveats. First, toxicology research suggests that chemical compounds can 

cause two types of interactions, such that the combined effect of two or more chemicals can be stronger 

(additive, synergistic, potentiating, supra-additive) or weaker (antagonistic, inhibitive, sub additive, 

infra-additive) than would be expected on the basis of dose addition or response addition (see, e.g., 

European Commission, 2012). This means that the combination of two or more chemical compounds 

can increase the overall toxicity of the final product or process – as in the case of additive or synergistic 

effects, for example, or can diminish it – as in the case of antagonistic effects, for example. While 

additive or synergistic effects are more frequent than antagonist effects, our proposed measures are not 

able to assess these interactions since computational models that account for the combined impacts of 

different compounds are not yet available. Also, in calculating our indexes, we do not weight each toxic 

compound by its toxic equivalent factor; this is an issue which requires further developments. Second, 

our approach uses computational chemistry methods and, therefore, is subject to the methodological 

weaknesses inherent in these methods (for a discussion, see Greene and Pennie, 2015). Third, we 

focused on inventions, but not all inventions become marketable products. Some countries – such as 

the EU member countries – have stringent procedures for screening toxic products and the EU REACH 
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regulation uses QSAR models to select out new chemical compounds if they are likely to be toxic based 

on extant knowledge. However, the regulations are less stringent elsewhere, and we know from prior 

research that some countries allow the use of highly toxic chemicals which are banned in other countries 

(Galt, 2008). For instance, multinational companies operating in multiple global markets may exploit 

their knowledge and profiting from given toxic chemicals for as long as possible by taking advantage 

of some countries’ lax regulatory environments. Although some toxic chemicals are a threat only to the 

local environment, some travel, either through the air or embodied in products, with the result that use 

in one location can be hazardous for the whole planet. Because there is significant global fragmentation 

and ambiguity in the way toxic chemicals are used, traded and regulated, we believe there is a need for 

more transparency about where, when and by whom toxic chemicals are invented (or their property 

rights are protected) and consider that this is urgent to predict future hazards and to contribute to policy 

making in this area.  
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LIST OF TABLES 

Table 1: QSAR models and toxicity endpoints  

(1) (2) (3) (4) (5) 

Impact on:  Toxicity endpoint QSAR model  Scale of possible results Criteria for classification 

Human Health 

1. Mutagenicity 

CONSENSUS  Mutagenic, NON-Mutagenic 

"Mutagenic" in one or more QSAR 

CAESAR  Mutagenic, Suspect Mutagenic, NON-Mutagenic 

SarPy/IRFMN  Mutagenic, Possible NON-Mutagenic, NON-
Mutagenic 

ISS  Mutagenic, NON-Mutagenic 

KNN/Read Across  Mutagenic, NON-Mutagenic, Non Predicted 

2. Carcinogenicity 

CAESAR  Carcinogen, NON-Carcinogen 

"Carcinogen" in one or more QSAR 

ISS  Carcinogen, NON-Carcinogen 

IRFMN/Antares  Carcinogen, Possible NON-Carcinogen 

IRFMN/ISSCAN-CGX  Carcinogen, Possible NON-Carcinogen 

Oral classification IRFMN  Carcinogen, NON-Carcinogen 

Inhalation classification IRFMN  Carcinogen, NON-Carcinogen 

3. Teratogenicity 
CAESAR  Toxicant, NON-Toxicant 

"Toxicant" in one or more QSAR 
PG  Toxicant, NON-Toxicant 

4. Sterodial activity 

IRFMN  Active, NON-Active 

"Active" in one or more QSAR IRFMN/CERAPP  Active, Possible Active, Possible NON-Active, NON-
Active, Not predicted 

IRFMN/COMPARA  Active, NON-Active 

5. Liver damage IRFMN  Toxic, NON-Toxic, Unknown "Toxic" in one or more QSAR 
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Table 1: Continued. QSAR models and toxicity endpoints 

 

(1) (2) (3) (4) (5) 

Impact on:  Toxicity endpoint QSAR   Scale of possible results Criteria for classification 

Environment 

1. Fish toxicity SarPy/IRFMN  
Toxic-1 (less than 1 mg/l), Toxic-2 (between 1 and 10 
mg/l), Toxic-3 (between 10 and 100 mg/l), NON-Toxic 
(more than 100 mg/l) 

"Toxic-1 (less than 1 mg/l)", "Toxic-2 (between 
1 and 10 mg/l)",  or "Toxic-3 (between 10 and 
100 mg/l)" 

2. Algae toxicity ProtoQSAR/Combase  Toxic, NON-Toxic "Toxic"  

3. Bee toxicity KNN/IRFMN  
Strong toxicity (lower than 1 µg/bee), Moderate toxicity 
(between 1 and 100 µg/bee), Low toxicity (over 100 
µg/bee), Non Predicted 

"Strong toxicity (lower than 1 µg/bee)", 
"Moderate toxicity (between 1 and 100 
µg/bee)", or "Low toxicity (over 100 µg/bee)" 

4. Sludge toxicity ProtoQSAR/Combase  Toxic, NON-Toxic "Toxic"  

5. Ready 
biodegradability IRFMN  

Readily Biodegradable, Possible Readily Biodegradable, 
Possible NON readily Biodegradable, NON Readily 
Biodegradable, Not classifiable 

"NON Readily Biodegradable" or "Possible 
NON Readily Biodegradable" 
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Table 2: Target chemicals: Industrial classification, compound name, trade name and main toxicological properties 

 

Industrial Classification Target chemical  Trade name or product 
containing them Main toxicological properties of concern 

Manufacture of Paints. 
Varnishes and Similar 
Coatings. Printing Ink and 
Mastics 

Methylene chloride MEC Prime; MECTHENE MC; 
MECTHENE PU 

ECHA: Suspected to be Carcinogenic, Under assessment as Endocrine Disrupting; 
EPA: Likely to be carcinogenic to humans; IARC: Probably carcinogenic to humans 

Bisphenol A   ECHA: Toxic to Reproduction, Skin sensitising, Endocrine Disrupting; IARC: 
possibly carcinogenic to humans 

Manufacture of Pesticides and 
Other Agrochemical Products 

Glyphosate Roundup, Rodeo, Pondmaster ECHA: Causing serious eye damage and toxic to aquatic life; EPA: Not likely to be 
carcinogenic to humans; IARC: Probably carcinogenic to humans 

Dichloropropene Telone ECHA: Skin sensitizer, very toxic to aquatic life with long lasting effects ;  EPA: 
probable human carcinogen; IARC: possibly carcinogenic to humans 

Manufacture of Basic 
Chemicals. Fertilisers and 
Nitrogen Compounds. Plastics 
and Synthetic Rubber in 
Primary Forms 

Oxirane Ethylenoxid Reinst; Etyleneoxy 
(6CI); HEC; Makrogel 6000 

ECHA: Carcinogenic, Mutagenic, Toxic to Reproduction, Under assessment as 
Endocrine Disrupting; EPA: Confirmed human carcinogen; IARC: Probably 
carcinogenic to humans 

Trichloroethylene 

HI-TRI SMG; HI-TRI Solvent; 
NEU-TRI E; NEU-TRI L; NEU-
TRI Solvent; THrichloroethylene 
Thymol stabilized 

ECHA: Carcinogenic, Suspected to be Mutagenic, A majority of data submitters agree 
this substance is Skin sensitising; EPA: Carcinogenic to humans, IARC: Carcinogenic 
to humans (evidence for cancer is based on kidney cancer, limited evidence for non-
Hodgkin lymphoma and liver cancer, as well as, various tumors in animals) 

Manufacture of Soap and 
Detergents. Cleaning and 
Polishing Preparations. 
Perfumes and Toilet 
Preparations 

Triclosan Irgasan DP300 
ECHA: Under assessment as Persistent, Bio accumulative and Toxic, under 
assessment as Endocrine Disrupting; EPA: probable human carcinogen; FDA: 
associated with hormone disruption in people 

Para-dichlorobenzene 1,4-DCB; DI-CHLOROCIDE; p-
DCB; PARADI 

ECHA: Suspected to be Carcinogenic; EPA: Possible Human Carcinogen; IARC: 
Possibly carcinogenic to humans 

Manufacture of Man-Made 
Fibres 

Perfluorooctanesulfonic 
acid (PFOS) Scotchgard ECHA: Suspected to be Carcinogenic, Toxic to Reproduction; EPA: adverse 

reproductive and developmental effects 

Perfluorooctanoic acid 
(PFOA) 

Teflon, Stainmaster, Scotchgard, 
SilverStone 

ECHA: Suspected to be Carcinogenic, Toxic to Reproduction, Persistent, Bio 
accumulative and Toxic; IARC: possibly carcinogenic; EPA: suggestive evidence of 
carcinogenicity 
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Table 3: Search strategy 

 

 

 

 

 

 

 

 

  

Target chemical InChIKey Assignee Patent Number 

Methylene chloride YMWUJEATGCHHMB-UHFFFAOYSA-
N 

Diamond Alkali and Stauffer (manufactured by Sanofi-Aventis, Bayer, and 
Solvay) WO2011073703 

Bisphenol A IISBACLAFKSPIT-UHFFFAOYSA-N Bayer and General Electric US20120082833 

Glyphosate XDDAORKBJWWYJS-UHFFFAOYSA-N Monsanto US20200236928 

Dichloropropene UOORRWUZONOOLO-OWOJBTEDSA-
N Dow Chemical Company US3914167 

Ethylene oxide IAYPIBMASNFSPL-UHFFFAOYSA-N Union Carbide US6372902 

Trichloroethylene XSTXAVWGXDQKEL-UHFFFAOYSA-N Du Pont US20120264667 

Triclosan XEFQLINVKFYRCS-UHFFFAOYSA-N Invented at Ciba-Geigy (manufactured by BASF) WO2015157261 

Para-dichlorobenzene OCJBOOLMMGQPQU-UHFFFAOYSA-N Bayer  WO200226665 

Perfluorooctanesulfonic acid (PFOS) YFSUTJLHUFNCNZ-UHFFFAOYSA-N Minnesota Mining & Mfg. (3M) EP0605286 

Perfluorooctanoic acid (PFOA) SNGREZUHAYWORS-UHFFFAOYSA-N Minnesota Mining & Mfg. (3M) (manufactured by Du Pont) EP1431984 
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Table 4: Extract of the results of the toxicity analyses on US20200236928 patent assigned to Monsanto. 

 

Compound name 

Human health 

(1) (2) 

Mutagenicity Carcinogenicity 

CONSENSUS  CAESAR  SarPy/IRFMN  ISS  KNN/Read-
Across  CAESAR  ISS  IRFMN/Antares  IRFMN/ISSCAN-

CGX  

Oral 
classification  

IRFMN  

Inhalation 
classification  

IRFMN  

Glyphosate NM NM NM NM NM C NC PNC PNC NC NC 

Other compounds in the claim (selection):              

Bifenox M SM M M M C C C C NC NC 

Fluoroglycofen M SM M M M NC C C C NC NC 

2-chloro-6-nitro-3-phenoxyaniline M M M M M C C C C C C 

Oxyfluorfen M SM M M M NC C C C NC NC 

Naphthalic anhydride NM M M NM NM C NC C C NC C 

N-(4-fluorophenyl)-6-[3-
(trifluoromethyl)phenoxy]pyridine-2-
carboxamide NM NM NM NM NM C C PNC C NC NC 

2-[4-[4-
(trifluoromethyl)phenoxy]phenoxy]propanoic 
acid NM NM NM NM NM C C C PNC NC NC 

2-(4-{[5-(trifluoromethyl)pyridin-2-
yl]oxy}phenoxy)propanoic acid NM NM PNM NM NM C C C C NC NC 

2-[4-(4-chlorophenoxy)phenoxy]propanoic 
acid NM NM PNM NM NM C C C PNC NC NC 

Note: Non-Mutagenic = NM; Suspect Mutagenic = SM; Mutagenic = M; P Non-Mutagenic = PNM; NON-Carcinogen = NC; Possible NON-Carcinogen = PNC; Carcinogen = C 
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Table 4: Continued. Extract of the results of the toxicity analyses on US20200236928 patent assigned to Monsanto. 

 

Compound name 

Human health 

(3) (4) (5) 

Teratogenicity Steroidal activity Liver damage 

CAESAR  PG  IRFMN  IRFMN/CERAPP  IRFMN/COMPARA  IRFMN  

Glyphosate TC TC I PNA NA U 

Other compounds in the claim (selection):          

Bifenox TC TC A NA NA U 

Fluoroglycofen TC TC A NA NA T 

2-chloro-6-nitro-3-phenoxyaniline TC NTC I NA NA U 

Oxyfluorfen TC TC I NA NA T 

Naphthalic anhydride TC NTC I NA NA U 

N-(4-fluorophenyl)-6-[3-(trifluoromethyl)phenoxy]pyridine-2-carboxamide NTC NTC A NA NA T 

2-[4-[4-(trifluoromethyl)phenoxy]phenoxy]propanoic acid NTC NTC I PNA NA T 

2-(4-{[5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoic acid NTC TC I NA NA T 

2-[4-(4-chlorophenoxy)phenoxy]propanoic acid NTC NTC I NA NA U 

Note: TC = Toxicant; NTC = Non-Toxicant; A = Active; I = Inactive; NA = Non-Active; PNA = Possibly Non-Active; U = Unknown; T = Toxic 
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Table 4: Continued. Extract of the results of the toxicity analyses on US20200236928 patent assigned to Monsanto. 

 

Compound name 

Environment 

(6) (7) (8) (9) (10) 

Fish Toxicity Algae Toxicity Bee Toxicity Sludge Toxicity Ready 
biodegradanility 

SarPy/IRFMN  ProtoQSAR/Combase  KNN/IRFMN  ProtoQSAR/Combase  IRFMN  

Glyphosate NT T LT NT PRB 

Other compounds in the claim (selection):            

Bifenox T-1 T LT NT PNRB 

Fluoroglycofen T-1 T LT NT NRB 

2-chloro-6-nitro-3-phenoxyaniline T-2 T LT NT NRB 

Oxyfluorfen T-2 T LT NT NRB 

Naphthalic anhydride T-2 NT MT NT NRB 

N-(4-fluorophenyl)-6-[3-(trifluoromethyl)phenoxy]pyridine-2-carboxamide T-3 T LT NT NRB 

2-[4-[4-(trifluoromethyl)phenoxy]phenoxy]propanoic acid T-2 NT LT NT NRB 

2-(4-{[5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoic acid T-3 NT LT NT NRB 

2-[4-(4-chlorophenoxy)phenoxy]propanoic acid T-2 T LT NT PNRB 

Note: T-1 = Toxic-1 (less than 1 mg/l); T-2 = Toxic-2 (between 1 and 10 mg/l); T-3 = Toxic-3 (between 10 and 100 mg/l); NT = Non-Toxic (more than 100 mg/l); LT= Low 
Toxicity (over 100 µg/bee); MT = Moderate Toxicity (between 1 and 100 µg/bee); NT = Non-Toxic; PNRB = Possible Non-Readily Biodegradable; NRB = Non-Readily 
Biodegradable; PRB = Possibly Readily Biodegradable  

 
 

 

 Table 5: Results of the toxicity analyses at the patent level. 
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(1) (2) (3) (4) (5) 

Target chemical Patent Number 

# of 
compounds 

in patent 
claims 

Human health  Environment  

# of 
mutagenic 
compounds 

# of 
carcinogenic 
compounds 

# of 
teratogenic 
compounds 

# of 
steroidal 

active 
compound

s 

# of 
hepatoxic 
compound

s 

# of fish 
toxic 

compou
nds 

 # of algae 
toxic 

compounds 

# of sludge 
toxic 

compounds 

 # of non-
biodegradable 

compounds 

 # of bee 
toxic 

compounds 

Methylene chloride WO2011073703 16 3 3 1 0 0 0 0 0 7 1 

Bisphenol A US20120082833 13 3 12 8 1 0 7 1 4 4 3 

Glyphosate US20200236928 224 147 212 173 32 111 185 179 77 77 217 

Dichloropropene US3914167 9 8 7 4 0 3 6 4 0 2 0 

Ethylene oxide US6372902 15 4 12 11 2 0 2 3 3 6 3 

Trichloroethylene US20120264667 18 3 13 12 0 0 2 3 0 0 1 

Triclosan WO2015157261 76 13 53 39 0 2 12 12 12 46 44 

Para-dichlorobenzene WO2002026665 14 6 8 6 0 1 6 7 3 6 7 

Perfluorooctanesulfonic acid 
(PFOS) EP0605286 9 1 8 6 1 1 5 4 1 5 3 

Perfluorooctanoic acid 
(PFOA) EP1431984 196 94 156 144 17 24 120 79 55 71 126 

 

 

 

 

 

 

Table 6: Measures of Patent Toxicity. 
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(1) (2) (3) (4) (5) (6) 

Target chemical Patent Number 
TC_Tox S_Tox E_Tox C_Tox 

Human health  Environment Human health  Environment Human health  Environment Human health  Environment 

Methylene chloride WO2011073703 6 7 37,50% 43,75% 37,78% 40,00% 0,18 0,16 

Bisphenol A US20120082833 12 10 92,31% 76,92% 44,39% 46,02% 0,09 0,13 

Glyphosate US20200236928 221 219 98,66% 97,77% 36,92% 29,23% 0,00 0,00 

Dichloropropene US3914167 8 8 88,89% 88,89% 31,11% 6,67% 0,14 0,14 

Ethylene oxide US6372902 15 10 100,00% 66,67% 60,27% 65,63% 0,08 0,12 

Trichloroethylene US20120264667 16 4 88,89% 22,22% 48,89% 26,67% 0,07 0,28 

Triclosan WO2015157261 68 63 89,47% 82,89% 38,67% 22,67% 0,02 0,02 

Para-dichlorobenzene WO2002026665 10 8 71,43% 57,14% 30,00% 41,43% 0,11 0,14 

Perfluorooctanesulfonic acid (PFOS) EP0605286 8 7 88,89% 77,78% 8,75% 10,00% 0,15 0,19 

Perfluorooctanoic acid (PFOA) EP1431984 174 162 88,78% 82,65% 28,16% 33,16% 0,01 0,01 

Note: TC_Tox = Total Count Toxicity; S_Tox = Share Toxicity; E_Tox = Endpoints Toxicity; C_Tox = Toxicity Concentration  
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