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Abstract

We propose a novel approach to the statistical analysis of simulation models and, especially, agent-based models
(ABMs). Our main goal is to provide a fully automated and model-independent tool-kit to inspect simulations and
perform counter-factual analysis. Our approach: (i) is easy-to-use by the modeller, (ii) improves reproducibility of
results, (iii) optimizes running time given the modeller’s machine, (iv) automatically chooses the number of required
simulations and simulation steps to reach user-specified statistical confidence, and (v) automatically performs a variety
of statistical tests. In particular, our framework is designed to distinguish the transient dynamics of the model from
its steady state behaviour (if any), estimate properties of the model in both “phases”, and provide indications on the
ergodic (or non-ergodic) nature of the simulated processes – which, in turns allows one to gauge the reliability of
a steady state analysis. Estimates are equipped with statistical guarantees, allowing for robust comparisons across
computational experiments. To demonstrate the effectiveness of our approach, we apply it to two models from the
literature: a large scale macro-financial ABM and a small scale prediction market model. Compared to prior analyses
of these models, we obtain new insights and we are able to identify and fix some erroneous conclusions.

Keywords: ABM, Statistical Model Checking, Ergodicity analysis, Steady state analysis, Transient analysis,
Warmup estimation, T-test and power, Prediction markets, Macro ABM
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1. Introduction

In this article we present a model-independent and fully automated approach to the statistical analysis of simu-
lation models and, especially, agent-based models (ABMs). Leveraging a tool-box of efficient algorithms to inspect
simulations and perform model-based counter-factual analysis, our approach (i) is easy-to-use by the modeller, (ii)
improves reproducibility of the results, (iii) distributes simulations across the cores of a machine or across computer
networks, (iv) automatically chooses a sufficient number of simulations and simulation steps to reach a user-specified
statistical confidence, and (v) automatically runs a variety of statistical tests that are often overlooked by practitioners.
In particular, the proposed approach allows one to distinguish the transient dynamics of the model from its steady state

behaviour (if any), to estimate properties of the model in both “phases”, to check whether the ergodicity assumption is
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reasonable, and to equip the results with statistical guarantees, allowing for robust comparison of model behaviours’
across computational experiments.

In the last two decades, the use of Agent-Based Models (ABMs) has spread across several fields – including
ecology (Grimm and Railsback, 2013), health care (Effken et al., 2012), sociology (Macy and Willer, 2002), geography
(Brown et al., 2005), medicine (An and Wilensky, 2009), research in bioterrorism (Carley et al., 2006), and military
tactics (Ilachinski, 1997). In economics, ABMs contributed to the understanding of a variety of micro and macro
phenomena (Tesfatsion and Judd, 2006). They provided an alternative environment for policy-testing in the aftermath
of the last financial crisis, when more traditional approaches (e.g., dynamic stochastic general equilibrium models and
computable general equilibrium models) failed (Fagiolo and Roventini, 2012, 2017). Moreover, they were recently
used for macroeconomic forecasting with promising results (Delli Gatti and Grazzini, 2020).

The key advantage of ABMs is the flexibility they allow in modelling realistic micro-level behaviours (e.g.,
bounded rationality, routines, stochastic decision processes) and agents’ interactions (e.g., imitation, network effects,
spatial influence), which give rise to aggregate dynamics that are qualitatively different from those at the individual
level (emergent properties). This advantage comes at the cost of model complexity, which typically prevents analytical
treatment and forces the modeller to rely on numerical simulations.

Typically, little attention has been devoted to simulation protocols. Yet decisions about (i) how many steps to run,
(ii) how many steps to “cut” up front as transient (aka, the warm-up period), and (iii) how many runs to perform under
each parameter configuration, deeply influence an analysis and the reliability of its results. For example, statements
like “the results have been averaged over n simulations” or “we run a Monte Carlo exercise of size n”, without a proper
justification for the choice of n, are rather ubiquitous (see e.g. Beygelzimer et al., 2012; Kets et al., 2014; Caiani et al.,
2016; Lamperti et al., 2018, 2019; Dosi et al., 2019; Fagiolo et al., 2020). This can lead to ineffective estimates
of model behaviour, with low precision and poor statistical confidence. While irrelevant for “thought experiments”,
these aspects deserve more attention when different policies are compared in counter-factual simulation experiments,
or multiple parameter configurations are explored to discriminate among emerging behaviours. Secchi and Seri (2017)
conducted a study on 55 ABMs published between 2010 and 2013 in high-quality management and organizational
science journals. Their study showed that - in most cases - simulation exercises did not offer acceptable statistical
quality1, casting doubt on the results and their implications. The main cause of low statistical accuracy turned out to
be an insufficient number (n) of simulations performed. Similarly, a poor handling of transient behaviours can distort
results. As we will show in Section 7, discarding “the initial w periods from each simulation to focus on the stationary

behaviour” (see, e.g., Kets et al., 2014) without a proper justification for the choice of w can lead to misleading
conclusions about steady state properties. Furthermore, as we illustrate in Section 8, ergodicity tests are necessary in
order to establish whether performing a steady state analysis makes sense at all.

In our opinion, these problems are due to the fact that the simulation-based analysis of ABMs (i.e., the inspection
of models’ simulations) is often handcrafted, resulting in a time-consuming and error-prone process (see also Lee
et al., 2015). The simulation, operations research, and computer science communities have substantially advanced the
engineering of such tasks, developing automatic techniques equipped with statistical guarantees (see, e.g., Law and
Kelton, 2015, ). While cross-disciplines fertilisation has recently increased (Dahlke et al., 2020), these developments
are often overlooked by the so-called ACE (agent-based computational economics) community. In Section 2, we use
the model by Grazzini (2012) to illustrate an example concerning the identification of transient dynamics.

In this article we introduce a novel fully-automated and engineered approach to ABMs inspection. We borrow

1The authors analyzed the power of t-tests in simulations on different model parametrizations.
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the statistical model checking approach from computer science (Agha and Palmskog, 2018; Legay et al., 2019) to
efficiently analyse stochastic simulation models and equip results with statistical guarantees. In particular, we propose
novel, streamlined, parallelized and automated algorithms to carry out both transient analysis (estimating the average
dynamics of the model at specific time points and characterizing the associated uncertainty) and steady state analysis

(estimating the average dynamics of the model on the long run by estimating and removing the transient period) – and
show that such algorithms are computationally efficient. We also equip our steady state analysis with a methodology
for ergodicity diagnostics, which provides indications on whether the model behaves ergodically, and thus on the the
reliability of the steady state analysis itself.

Our work contributes to two strands of the ACE literature. First, it complements many recent proposals for the
validation of simulated models (see the surveys in Fagiolo et al., 2019; Lux and Zwinkels, 2018). For example, the
method proposed by Guerini and Moneta (2017) for macro ABMs requires the model to be in a steady state as well
as the removal of all observations belonging to the transient period, and calibration approaches based on simulated
moments (Winker et al., 2007; Franke and Westerhoff, 2012; Grazzini and Richiardi, 2015), as well as recent Bayesian
techniques (e.g. Grazzini et al., 2017), typically apply to ergodic models. From a different perspective, our transient
analysis can evaluate multiple features at each time step – including the probabilities of observing certain patterns
– and thus can support the use of validation metrics recently proposed in the literature (e.g. Barde, 2016; Lamperti,
2018a,b). Second, we contribute to the analysis of the complexities of ABMs’ output (Lee et al., 2015; Mandes and
Winker, 2017; Kukacka and Kristoufek, 2020) by providing fast and practical tools to inspect models with statistical
guarantees (Secchi and Seri, 2017), and by complementing the proposals in Seri and Secchi (2017) for determining
the adequate number of simulation runs to use. Finally, we offer an automated environment to carry out tests across
experiments that are typical in the macro ABM literature (see e.g. Dosi et al., 2015).

We validate our approach on two models from the literature. 2 In Section 6 we replicate and enrich the transient
analysis from Caiani et al. (2016) on a large scale benchmark stock flow consistent macro ABM. We optimize the
number of simulations to reach a given (user-defined) level of statistical precision for each time point of interest. We
show how this is necessary to establish, in a statistically sound manner, differences across model configurations –
thereby facilitating counter-factual policy analysis. In Section 7 we perform a steady state analysis of the prediction
market model of Kets et al. (2014). This model has been chosen because of its analytical tractability, which provides an
effective ground truth against which we test our framework 3. We show that an erroneous identification of the transient
period led to misleading qualitative and quantitative results in the original simulation-based analysis by Kets et al.
(2014); the number of long-run surviving agents and the relationships among market price and other model parameters
were incorrectly characterized, and the agents’ relative wealths were miscomputed. Instead, our framework allows us
to correctly detect the transient period and correctly characterize the (analytically known) steady state properties by
Bottazzi and Giachini (2019b). In Section 8 we also apply our methodology for ergodicity analysis to (non-ergodic)
variants of this prediction market model, showing how it can be used to further increase the reliability of a steady
state analysis. Finally, we highlight how the distributed nature of our algorithms allows us to automatically parallelise
simulations in the cores of a computer without modifying the original (purely sequential) model. This affords, e.g., a
20x speed-up on a machine with 20 physical cores – in the case of the macro ABM model, this resulted in a decrease
of analysis run-time from 15 days to about 16 hours.

From a technical perspective, our framework builds on MultiVeStA (Sebastio and Vandin, 2013; Gilmore et al.,

2Material for replicating the experiments presented in this paper is available at https://github.com/andrea-vandin/MultiVeStA/wiki
3The model has been analytically studied in Bottazzi and Giachini (2019b), proving asymptotic results about agents’ wealth and market price.
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2017), a statistical model checker that can be integrated with existing simulators to perform automated and dis-
tributed statistical analysis. MultiVeStA has been successfully applied in a wide range of domains including, e.g.,
highly-configurable systems (ter Beek et al., 2020, 2015), public transportation systems (Gilmore et al., 2014; Ciancia
et al., 2016; Gilmore et al., 2017), biological systems (Gilmore et al., 2017), robotic scenarios with planning capa-
bilities (Belzner et al., 2016, 2014), and crowd steering scenarios (Pianini et al., 2014). However, it has never been
applied to the ABM domain. Further, its main focus so far was on transient analysis (without support for counter-
factual analysis). Here we extend it to fully support the above mentioned tasks. 4

The reminder of this article is organized as follows. Section 2 discusses the analysis of simulation output. Sec-
tion 3 and 4 present our algorithms and methodology, respectively, and Section 5 introduces MultiVeStA. Sections 6
and 7 illustrate our transient and steady state analysis techniques using two ABM models from the literature. Sec-
tion 8 showcases our methodology for ergodicity analysis. Section 9 demonstrates the run-time gains afforded by
MultiVeStA’s parallelization capabilities, and Section 10 provides some conclusions.

2. Analysis of simulation output

ABM analysis typically employs stochastic simulations, relying on Monte Carlo methods, to derive reliable esti-
mates of the true model characteristics (Richiardi et al., 2006; Lee et al., 2015; Fagiolo et al., 2019).

Without loss of generality, one can represent an ABM as a mapping map : I → O from a set of input parameters
I into an output set O. I is usually a multidimensional space spanned by the support of each parameter. O is typically
larger and more complex, as it comprises time-series realizations of a very large number of micro- and macro-level
variables. In most cases we can think of the output of an ABM as a discrete-time stochastic process (Yt)t>0 describing
the longitudinal evolution of a vector of variables of interest (e.g., the wealth of an agent, the GDP of a country, etc.).
For simplicity, here we focus on the case in which (Yt)t>0 contains only one time series of interest (Yt)t>0. However,
our framework straightforwadly covers the concurrent analysis of multiple time series.

Figure 1(a) depicts n independent simulations of Yt (one per row) each comprising t = 1, . . . ,m steps (one per
column) 5. The outcome of a simulation i is therefore a sequence {yi,1, . . . , yi,m} denoting a realization of length m.
Clearly, the observations within the same row i are not independent, while those in the same column t are independent
and identically distributed (IID). Here we focus on two typical classes of properties:

• Transient properties concerning E[Yt]; what is the expected value of a model’s property at a given time t (or
within a time range, or at the occurrence of a specific event)?

• Steady state properties concerning E[Y] = limt→∞ E[Yt]; what is the expected value of a model’s property at
steady state (i.e. when the system has reached a statistical equilibrium, or after the initial warm-up period)?

An example of transient property is given in Section 6: what is the expected unemployment rate in each of the first 400

quarters of a macro ABM? In this example a transient analysis is particularly important because the model has been
designed to study fluctuations in the quarters following a given initial condition. In contrast, an example of steady
state property is given in Sections 7 and 8: given a market with repeated sessions, what is the expected wealth of

4MultiVeStA supports Java, R, C++, and Python simulators. The extension regards support for statistical tests (and their power) to compare
different model parametrizations, and ex-novo development of steady state analysis. Furthermore, by applying it to two known ABM models, we
also contribute to increasing the accessibility of ABMs and to the replicability of their results. MultiVeStA is maintained by one of the authors.

5By independent simulations we mean runs obtained from different random seeds that have been used for each replication, with the simulator
status reset to an initial configuration at the beginning of each replication.
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(a) Simulations (b) Transient analysis (c) Steady state analysis by Replication and Deletion (RD)

Figure 1: Transient and steady state analysis using n simulations of m steps each

each agent at steady state? In this example a steady state analysis is particularly important because the model has
been designed to study problems of market selection and informative efficiency. Obviously a steady state analysis is
meaningful only “around” a statistical equilibrium. This requires that limt→∞ E[Yt] exists and is finite. We first present
two complementary techniques for steady state analysis that rely on such assumption, and then (in Section 4) combine
them into a methodology for ergodicity diagnostics; that is, for assessing whether the assumption is reasonable or
clearly violated 6.

Figures 1(b) and (c) depict how to compute statistical estimates for E[Yt] and E[Y]. Such estimates can and should
be accompanied by appropriate measure of uncertainty, e.g., computing “α-δ confidence intervals” (CI) around them.
Given two user-specified parameters α ∈ (0, 1) and δ ∈ R+, we will show how to guarantee with statistical confidence
(1 − α) · 100% that the actual expected value belongs to the interval of width δ centred at its estimate, and how to
optimize the number of runs needed to obtain such guarantee. These steps, which are sometimes overlooked in the
ABM community, can make the statistical analysis of any stochastic simulation model sounder and more informative
for policy analysis. We now provide more details on our proposals for transient and steady state analyses.

Transient analysis. Procedures for transient analysis are well-established and relatively simple. As shown in Fig-
ure 1(b), for a given time of interest t (a column) we obtain a natural (unbiased) estimator for E[Yt] by computing
the vertical mean Y t of the observations at t (across the rows). Since these observations are IID, we can use standard
statistical techniques based on the law of large numbers to build CIs as follows (see Chapter 9 of Law and Kelton,
2015):

Y t ± tn−1,1− α
2
·

√
s2

t

n
, (1)

where n is the number of simulations, s2
t is the sample variance of Yt, and the multiplier tn−1,1− α

2
is obtained from the

tabulation of the Student’s T distribution with n− 1 degrees of freedom (the area under the density function integrated
from minus infinity to tn−1,1− α

2
is equal 1 − α

2 ). For any fixed confidence level α, the width of the CI decreases
as n increases. Therefore, in an automated procedure for computing an α-δ CI, we can continue performing new
simulations until the width becomes smaller than the desired δ (the target width can also be expressed as a fraction of
the mean value; δ% of Y t ). Note that the CI width shrinks slowly, at the rate of the square root of n. Therefore, it is
important to perform the correct number of simulations to guarantee the target width without performing unnecessary

6We leave to future work extensions of our framework that would allow us to detect the number and nature of the statistical equilibria of a
simulation model.
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computations. MultiVeStA offers an automated procedure for doing so. Furthermore, since in many cases different
times t might have different variances s2

t , we account for the fact that different number of simulations might be required
at each t to get CIs of homogeneous width across times. As we will se in Section 6.3, this is particularly important for
counter-factual analysis.

A common exercise that builds upon transient analysis is to compare estimates obtained for different model config-
urations (typically corresponding to different sets of input parameter values) – as to assess whether the configurations
differ significantly in terms of the output variable(s) under consideration. Given the outcomes of the transient analyses
for the two configurations and a user-defined significance level aw, our tool-box performs a Welch’s t-test of means’
equality (Welch, 1947) for every t of interest. MultiVeStA also computes the power of such test (Chow et al., 2002)
in detecting a difference of at least a given (precision) ε (see Section 3.1.2) 7.

Steady state analysis. As depicted in Figure 1(c), a steady state analysis can be performed similarly to a transient
analysis by adding a pre-processing step. We first compute the horizontal mean Y i(w) within each simulation i,
ignoring a given number of initial observations w. Since all these means are IID, we can compute their vertical mean
Y(w) and build a CI around it as in Equation (1).

Unfortunately, this approach has intricacies that hinder its automatic implementation and can lead to relevant
analysis errors. Depending on the chosen number w of initial observations to discard, the estimator Y(w) of E[Y]
might carry a bias due to the transient behavior of the system, and not give us reliable information on its steady state
(see Section 7.2 for a notable example from the literature). In order to avoid this issue, we need to identify the correct

w the system needs to exit its transient (or warmup) period, and discard the initial w observations from each simulation.
Such procedure is known as Replication and Deletion (RD, Law and Kelton, 2015). Effectively identifying the length
of the warmup period is a difficult problem. The most popular approaches in the ABM community are rooted in the
Welch’s method (Welch, 1983):

1. Perform n simulations of given length m and compute averages Y t, t = 1, . . . ,m as in Figure 1(b);

2. Plot Y t, t = 1, . . . ,m 8;

3. Choose the time w after which the plot seems to converge. If no such time exists, iterate the procedure from
point (1), performing a new batch of n simulations of length m, and computing averages over all simulations.

Being only semi-automated and based on a visual assessment, this procedure is time consuming, error-prone, and not
backed by a strong statistical justification. It also critically depends on choosing a large enough “time horizon” m –
of course progressively larger m can be tried, adding to the computational burden.

More recently, Grazzini (2012) presented an alternative approach where a single simulation of length m is per-
formed and divided into windows of length wi (m and wi are arbitrarily chosen). If the distribution of the means
computed within each window passes a randomness test (in particular the Runs Test by Gibbons, 1986; Wald and
Wolfowitz, 1940), then the author concludes that the system is in steady state. The use of statistical tests rather than
visual assessments makes the approach more reliable, fostering its use in the ABM literature (e.g., Guerini and Mon-
eta, 2017; Lamperti et al., 2020). However, the approach is still not fully automated – and relies on the arbitrary choice
of m and wi; quoting from the author “with appropriate settings the tests can detect non-stationarity” (Grazzini, 2012).
In the next Section we introduce a fully automated statistical procedure for estimating the end of the warmup period.

7In Section 6.3 we show that a reasonable choice is to set ε = δ.
8In point (2) one might smooth the plot, e.g., employing moving-windows averages, where one is in effect further averaging each Y t with a few

neighbouring steps.
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3. Automated simulation-based analysis with statistical guarantees

Our approach to transient and steady state analysis is fully automated, in that all parameters are computed auto-
matically or have default values. The user specifies the properties to be studied, the α and δ parameters to be employed
in the CI construction, and an optional maximum number of allowed simulations (if this number is reached before
satisfying the CI constraints, the analysis terminates with the currently computed CIs). As in Section 2, we focus
the description on a single variable Yt, but our treatment applies straightforwardly to the analysis of multiple model
characteristics (indeed, MultiVeStA implements multi-variable analyses).

3.1. Transient analysis

Section 3.1.1 describes how to estimate transient properties expressed as expected values, E[Yt], and how to build
CIs around them. After this, Section 3.1.2 describes how to statistically compare estimates from different experiments.

3.1.1. Mean estimation and CI computation

Algorithm 1 illustrates autoIR, a simple automated algorithm for transient analysis that takes in input bl (dis-
cussed later), a time of interest t, and α and δ, and produces in output an estimate of E[Yt] and a corresponding CI.
The algorithm determines automatically the number n of simulations required to guarantee that the (1−α)× 100% CI
centred at the estimate has width at most δ.

Lines 2-4 set t as time horizon m, and initialize the counter n of computed simulations and the list µ to store the
observations at step t from each simulation (the yi,t in Figure 1(b)). Lines 6-11 perform a block of bl simulations
(by default 20 (Law and Kelton, 2015)), populating µ. In Line 7, y is a list of size m containing a value yi,t for each
time point t from 1 to m for the current simulation i, but only the value for t = m is used, adding it to µ. After
performing bl simulations, autoIR computes the mean µ and variance s2 of µ, used to compute the width d of the
current CI. If d is greater than δ, 9 autoIR performs another block of bl simulations, otherwise it returns the current
CI. The implementation of autoIR in MultiVeStA allows one to concurrently estimate E[Yt] for different time points
t (e.g. average bankruptcies in each t from 1 to 400 in Section 6). This is done by computing, at each iteration, mean,
variance and CI only for the elements of y (Line 7) that correspond to time points whose current CI width is still above
δ. At each iteration of a block of bl simulations, the time horizon m is updated with the largest t still to be processed.

3.1.2. Test for equality of means and power computation

MultiVeStA allows one to compare, in a statistically meaningful and reliable way, expected values corresponding
to different settings or parametrizations of a model. Given that the compared means might come from experiments
with different sample sizes and variances, we use the Welch’s t-test (Welch, 1947), whose power can be computed as
in Chow et al. (2002).

The Welch’s t-test. Given estimates from two transient analyses for a set of time points T , our tool performs a test
for equality of means for each t ∈ T using (Welch, 1947). In symbols, given two experiments { j, k}, define the set
of triplets D = {(Y i,t, s2

i,t, ni,t) | i ∈ { j, k}, t ∈ T }, each containing the mean, the sample variance, and number of
simulations for time t in experiment i. MultiVeStA takesD as input and, for each t, computes

τt =
Y j,t − Yk,t√

f j,t + fk,t
, (2)

9For the sake of presentation, all algorithms in the paper consider δ given as absolute values. The case of δ given in percentage terms relatively
to the studied means is trivially obtained by changing the comparisons d > δ in d/µ > δ.
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Algorithm 1 autoIR: Transient analysis

Require: bl, α, δ, t (default: 20, 0.05, 0.1, NA)
1: //Set t as time horizon m, and initialize data structures
2: m← t
3: n← 0
4: µ← empty list
5: repeat
6: for i ∈ {1, . . . , bl} do
7: y← drawIndependentSimulation(m)
8: //Add yi,t to µ
9: µ.add(y[m])

10: n← n + 1
11: end for
12: (µ, s2)← computeMeanAndVariance(µ)
13: d ← computeCIWidth(µ, s2, n, α)
14: until d > δ
15: return (1 − α) · 100% CI [µ − d

2 , µ + d
2 ] of width at most δ

Algorithm 2 autoRD: Steady state analysis by Replication and Deletion

Require: B, b, bs, minVar, bl, α, δ (default: 128, 4, 16, 1E-7, 20, 0.05, 0.1)
1: w← autoWarmup(B, b, bs,minVar)
2: m← w · 2
3: n← 0
4: µ← empty list
5: repeat
6: for i ∈ {1, . . . , bl} do
7: y← drawIndependentSimulation(m)
8: y′ ← (yw+1, . . . , ym)
9: µ.add(computeMean(y′))

10: n← n + 1
11: end for
12: (µ, s2)← computeMeanAndVariance(µ)
13: d ← computeCIWidth(µ, s2, n)
14: until d > δ
15: return (1 − α) · 100% CI [µ − d

2 , µ + d
2 ] of width at most δ

where fi,t = s2
i,t/ni,t, i ∈ { j, k}. Following Welch (1947), under the null hypothesis that the difference between the two

means is zero, each τt follows a Student’s t-distribution with degrees of freedom approximated as in Satterthwaite
(1946):

νt ≈
( f j,t + fk,t)2

f 2
j,t/(n j,t − 1) + f 2

k,t/(nk,t − 1)
.

Therefore, given a statistical significance aw, MultiVeStA uses τt to perform the test of no difference between the two
means producing 1 if τt ∈ [−tνt ,1−

aw
2
, tνt ,1−

aw
2

] (the null hypothesis of equal means is not rejected) and 0 otherwise. The
significance aw is user-specified, and can be set to be equal to the α used for the transient analysis.

Power of the test. Following Chow et al. (2002), MultiVeStA estimates the power 1− βt of Welch’s t-test in detecting
a difference of at least a given precision ε between the two means at time t. This is

βt = Tνt

tνt ,1−
aw
2

∣∣∣∣∣∣ |ε|√
f j,t + fk,t

 , (3)

where Tνt (x | θ) is the cumulative distribution function of a non-central t-distribution with νt degrees of freedom and
non-centrality parameter θ, evaluated at point x. Calculating the power of Welch’s t-test requires specifying the
minimum difference ε (Chow et al., 2002). As a rule of thumb, we suggest setting ε ≥ δ, the parameter used in the
transient analysis, which expresses a precision for the estimated mean. In Section 6, setting ε = δ leads to very good
power for the considered macro ABM.

3.2. Steady state analysis

A statistically sound analysis of steady state properties poses challenges that have been thoroughly investigated by
the simulation community – at the boundary of computer science and operations research. Two main approaches have
emerged (Alexopoulos and Goldsman, 2004; Whitt, 1991; Law and Kelton, 2015): those based on Replication and

Deletion (RD; see Section 2), and those based on batch means (BM) (Conway, 1963; Alexopoulos and Seila, 1996;
Steiger et al., 2005). Unlike RD, which computes many short simulations, BM computes one long run which is evenly
divided into adjacent non-overlapping subsamples labelled as batches. Intuitively, if certain statistical properties hold,
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Figure 2: Steady state analysis by Batch Means (BM) using one long simulation: (i) We split the simulation into batches (consecutive
steps) of size b, and we compute the mean within each batch (the batch means Bi); (ii) We compute the mean of such means, the
grand mean, ignoring the first l batches where it is assumed to terminate the warmup. We obtain B(l), an estimator for E[Y].

each batch can be used as a simulation in RD – as depicted in Figure 2. This can be seen as a generalized version
of the proposal by Grazzini (2012), which allows one to estimate the end of the warmup period rather than to check
whether a given time is subsequent to such end10.

There is no best approach between RD and BM (Alexopoulos and Goldsman, 2004; Whitt, 1991; Kelton and
Law, 1984). They are complementary, and therefore have complementary (dis)advantages. RD, which uses many
short simulations, suffers from biases due to initial conditions. BM, which uses many short batches from one long
simulation, is less affected by initialisation bias but suffers from correlations among batch means.

While some automated BM-based procedures have been proposed (e.g., Steiger et al., 2005; Tafazzoli et al.,
2011; Gilmore et al., 2017), to the best of our knowledge, little attention has been paid to RD. Interestingly, Lada
et al. (2013) tried to combine the two approaches exploiting their respective strengths: they use BM for warmup
analysis, and automate the use of RD by discarding the estimated transient behaviour from each simulation. Following
a similar approach, we extract and condense the warmup analysis capabilities inspired by BM into a simple self-
standing procedure for warmup estimation (autoWarmup), and we introduce automated RD- and BM-based algorithms
(autoRD and autoBM, respectively) which use autoWarmup. In all algorithms (see Figure 3) we favour simplicity and
accessibility.

3.2.1. Steady state analysis by replication and deletion

Algorithm 2 illustrates autoRD. The difficult part in automating RD is the warmup analysis. However, in our
setting we can easily do this by invoking autoWarmup (Line 1; see Section 3.2.2 below). For now it is sufficient
to know that w is the last step of the estimated warmup period. Once w has been determined, we have to set a
substantially larger time horizon (Law and Kelton, 2015). We can do this using a (small) multiplier. In Line 2 the
default multiplier for w is 2. The code of autoRD presents also a second modification with respect to that of autoIR:
we replaced Line 9 of Algorithm 1 with Lines 8-9 of Algorithm 2 to discard the first w observations from y, and add
the mean of the remaining values of y (the horizontal mean in Figure 1(b)) to µ.

3.2.2. Warmup estimation

Algorithm 3 provides pseudo-code for our automatic warmup estimation, inspired by existing BM-based ap-
proaches for steady state analysis (Steiger et al., 2005; Gilmore et al., 2017; Tafazzoli et al., 2011). Indeed, such algo-
rithms include a form of warmup analysis that we extract and refine into a simple self-standing procedure. Lines 1-5

10More precisely, Grazzini (2012) appears to employ a non-automated version of BM. Yet the first automated version of BM was published in
1979 (Law and Carson, 1979). This is a clear signal of the potential (and often overlooked) complementaries between the simulation community
and the ABM community in economics.

9



Algorithm 3 autoWarmup: Warmup estimation

Require: B, b, bs, minVar, (default: 128, 4, 16, 1E-7)
1: //Draw the first B · bs steps
2: µ← array(B)
3: for i ∈ {1, . . . , B} do
4: µ[i]← drawBatchAndComputeMean(bs)
5: end for
6: (a, ρ)← goodnessOfFitTests(µ, b,minVar)
7: //Keep doubling bs and time horizon until tests pass
8: while a > a∗ or ρ > ρ∗ do
9: for i ∈ {1, . . . , B/2} do

10: µ[i]← (µ[2 · i] + µ[2 · i + 1])/2
11: end for
12: bs← 2 · bs
13: for i ∈ {B/2 + 1, . . . , B} do
14: µ[i]← drawBatchAndComputeMean(bs)
15: end for
16: (a, ρ)← goodnessOfFitTests(µ, b,minVar)
17: end while
18: return Warmup period estimated to terminated af-

ter B · bs steps

Algorithm 4 goodnessOfFitTests

Require: µ, b, minVar
1: µ′ ← (µb+1, . . . , µB)
2: (µ, s2)← computeMeanAndVariance(µ′)
3: (α, ρ)← (0, 0)
4: if s2 > minVar then
5: a← AndersonDarlingNormalityTest(µ′, µ, s2)
6: ρ← lag1Autocorrelation(µ′, µ, s2)
7: end if
8: return (a, ρ);

Algorithm 5 autoBM: Steady state analysis by Batch Means

Require: B, b, bs, minVar, α, δ (default: 128, 4, 16, 1E-7, 0.05, 0.1)
1: autoWarmup(B, b, bs,minVar) //Fast-forward simulation after warmup
2: µ← array(B)
3: for i ∈ {1, . . . , B} do
4: µ[i]← drawBatchAndComputeMean(bs)
5: end for
6: (a, ρ, µ, d)← goodnessOfFitTestsAndCI(µ, b,minVar, α)
7: //Keep doubling bs and time horizon until tests pass
8: while a > a∗ or ρ > ρ∗ or d > δ do
9: for i ∈ {1, . . . , B/2} do

10: µ[i]← (µ[2 · i] + µ[2 · i + 1])/2
11: end for
12: bs← 2 · bs
13: for i ∈ {B/2 + 1, . . . , B} do
14: µ[i]← drawBatchAndComputeMean(bs)
15: end for
16: (a, ρ, µ, d)← goodnessOfFitTestsAndCI(µ, b,minVar, α)
17: end while
18: return (1−α) · 100% confidence interval [µ− d

2 , µ+ d
2 ] of width at most

δ, adjusted for keeping into account residual correlation

Algorithm 6 goodnessOfFitTestsAndCI

Require: µ, b, minVar, α
1: µ′ ← (µb+1, . . . , µB)
2: (µ, s2)← computeMeanAndVariance(µ′)
3: (α, ρ, d, n)← (0, 0, 0, B − b)
4: if s2 > minVar then
5: a← AndersonDarlingNormalityTest(µ′, µ, s2)
6: ρ← lag1Autocorrelation(µ′, µ, s2)
7: d ← computeCIWidth(µ, s2, n, α, ρ)
8: end if
9: return (a, ρ, µ, d);

Figure 3: BM-based algorithms for estimating the initial warmup period (left), and for studying steady state properties (right).

perform a simulation of m = B × bs steps (by default, B = 128 and bs = 16). The simulation is divided in B adjacent
non-overlapping batches, each containing bs steps. After this, the array µ stores the mean of each batch (therefore the
name batch means): each entry µ[i] stores the corresponding Bi (see Figure 2). The algorithm then proceeds iteratively
by performing statistical tests to check whether m is large enough to cover the warmup period, doubling the number
of performed steps while keeping the number of batches fixed (doubling the steps bs in each batch) until all tests are
passed. The key point is that if the process satisfies properties required for steady state analysis (Law and Carson
(1979); Steiger and Wilson (2001); see also Section 4), then such iterative procedure will lead to approximately IID
normally distributed batch means µ for a sufficiently large value of bs.

BM-based approaches perform different statistical tests on µ to check whether m is large enough for completing the
warmup period: Tafazzoli et al. (2011) use the von Neumann (1941) randomness test, while Steiger et al. (2005) use a
test for stationary multivariate normality on groups of 4 consecutive batches followed by a check for low correlation
among consecutive batch means (i.e., the lag-1 autocorrelation of µ). Gilmore et al. (2017) apply the Anderson-
Darling test for normality on µ, followed by a check for low lag-1 autocorrelation of µ. In all cases, a few (typically
4) initial batches are ignored as they are likely the most affected ones by the initial transient. We follow the latter
approach, as specified in the subprocedure goodnessOfFitTests of Algorithm 4: Line 1 skips b (by default 4)
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initial batches, obtaining µ′, then Line 2 computes the variance of the batch means, used in Line 4 to decide whether
the statistical tests are necessary or pass by default. The rationale is that if the variance among the batch means is
below a minimum threshold (parameter minVar with default value 1E-7), then the process is likely converging to a
deterministic fixed point, therefore we can safely assume that the intial warmup period has terminated. Concerning
normality, Line 5 uses the Anderson-Darling test implemented in the SSJ library (L’Ecuyer, 2016; L’Ecuyer et al.,
2002) to check whether it is statistically plausible that µ′ has been sampled from a normal distribution specified by
its mean and variance, and obtain a p-value a. Line 6 stores ρ, the lag1-autocorrelation of µ′. The subprocedure thus
returns a and ρ, which are used in Line 8 of autoWarmup to decide whether the tests are passed – using minimum
thresholds a∗ and ρ∗ based on prior publications (Gilmore et al., 2017; Steiger et al., 2005) 11. If any of the tests
fail, then an iteration of the while loop in Lines 8-17 is performed to double the number of steps m by doubling the
current batch size bs. We note that the current B batch means are squeezed in the first half of µ, (Lines 9-11), and m

new steps are performed to create the new batch means in the second half of µ (Lines 13-15). The statistical tests are
performed on the new batch means, and new iterations of the loop are performed until both statistical tests are passes.
The algorithm terminates returning the final value of m = B × bs as the estimated end of the warmup period.

3.2.3. Steady state analysis by batch means

Algorithm 5 illustrates our automatic BM-based procedure for steady state analysis. Line 1 invokes autoWarmup,
which moves the simulator to the end of the estimated warmup period. No other information from autoWarmup is
used. The algorithm then proceeds similarly to autoWarmup, the only difference being that we add a third statistical
test: we also compute the width d of the CI according to the current batch means. This is obtained by invoking
goodnessOfFitTestsAndCI from Algorithm 6 rather than goodnessOfFitTests Since the tests for normality and
absence of correlation were already passed during autoWarmup, one might expect that they are no longer necessary.
We note however that the tests passed for the last value of bs used in autoWarmup, so they could potentially fail for
initial small values of bs. When all statistical tests are passed, we return the computed (1 − α)100% CI of width at
most δ, adjusted by the computed residual correlation among the batch means. This is done similarly to Steiger et al.
(2005), using an inverse Cornish-Fisher expansion (Stuart and Ord, 1994) based on a standard normal density 12.

3.2.4. Some remarks on autoBM and autoRD

We note that both autoBM and autoRD proceed by iterations, during which new samples are drawn and new
statistical tests are performed. In autoBM, new simulation steps are added onto the same long simulation (the number
of simulations n is constant, the time horizon m grows). In autoRD, new simulations of fixed length are added (n
grows, m is constant). In some sense, the computational burden of autoRD is higher, as w steps from each newly
performed simulation are ignored. However, the simulations performed in each iteration of autoRD can be trivially
parallelized – so the additional computation can be efficiently handled. Rather, which approach to prefer depends on
the model at hand and on the available hardware:

• The longer the initial warmup period, the more advantageous is autoBM relative to autoRD.

• The larger is the degree of parallelism supported by the hardware, the more advantageous is autoRD relative to
autoBM.

11In particular, the significance level for the normality test is set to a∗ = 1% while the lag-1 autocorrelation threshold is set to ρ∗ = sin(0.927 −
q

√
size(µ)

), where q is the 99% quantile of the standard normal distribution. See (Steiger et al., 2005) for more details.
12See Section 2 of (Steiger et al., 2005) for the exact formula.
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Figure 4: Procedure for ergodicity diagnostics based on autoRD and autoBM to asses the reliability of a steady state analysis

The ABM community favours the RD approach due to its simplicity, but its trivially parallelizable nature is
not always exploited due to limited computer engineering skills. Notably, some studies have shown that the BM
approach might provide more accurate results in specific cases (Whitt, 1991; Alexopoulos and Goldsman, 2004). The
implementation of both algorithms in MultiVeStA enables modelers to freely choose between the two and to exploit
the distributed nature of the tool-box to parallelize simulations. The next section shows how the RD and BM can be
combined to obtain a methodology for ergodicity diagnosis.

4. Ergodicity diagnostics and detection of multiple stationary points using autoRD and autoBM

Consistency and unbiasedness of the estimates produced by autoBM and autoRD rely on the underlying process
possessing the strong mixing property 13. Indeed, once normality of batch means in autoWarmup is well approximated
and autocorrelation is low, we can be confident that future observations will not have initialization bias (Steiger et al.,
2005). If at a certain point in time the batch means resemble a sample of IID observations from the same Gaussian
population, then the non-random effects of initial conditions must have disappeared. Further, the strong mixing
assumption ensures that such a point in time can eventually be reached by increasing the batch size (Law and Carson,
1979; Steiger and Wilson, 2001). Here we describe a procedure that combines autoRD and autoBM to assess whether
this assumption is met. The procedure, depicted in Figure 4, is fully implemented in MultiVeStA and is validated in
Section 8 on variants of a prediction market model.

We start performing both autoBM and autoRD for given α and δ (step 1). If any of the two fails to converge
in due time (step 2), we have evidence that the process is eventually non-stationary (or fails to reach its stationary
phase within the allotted computational time/resources). In such cases, performing any steady state analysis could be
misleading and should be avoided (step 3).

If both autoBM and autoRD successfully terminate, we can be confident that the process possesses ergodic proper-

ties (Gray, 2009; Billingsley, 1995) – meaning, intuitively, that the horizontal means of its realisations (i.e., the means
across simulations as in Fig. 1(c)) indeed converge asymptotically to a finite number. However, there could be poten-
tially different limits for different simulations. In these cases, a natural check for ergodicity is to compare the results
of autoBM and autoRD (step 4). This is in line with previous approaches to ergodicity analysis from the literature
(e.g., Grazzini, 2012), where BM-like means across one long simulation are compared with RD-like means across
several simulations. The difference is that our BM and RD results are obtained using automated algorithms (autoBM

13The strong mixing property guarantees that two sufficiently distant observations in (Yt)t>0 are approximately independent. There are various
definitions of the property; we utilize the φ-mixing definition provided in Steiger and Wilson (2001)
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and autoRD), rather then from arbitrarily parametrized experiments. Our test, performed in step 4, checks whether
the difference between BM and RD estimates is larger in absolute value than the δ used for CI implementation. If
this is the case, we have evidence of non-ergodicity and therefore of violation of the strong mixing assumption (step
6). For example, this could be due to the presence of multiple stationary points in the process: autoBM would end
up exploring only one of such stationary points, while autoRD would provide averaged information on the possible
realizations. If the difference between BM and RD estimates is small, we have no evidence that the assumption is
violated and we proceed with a second test on autoRD’s horizontal means (step 5). Indeed, under the null hypothesis
that the process is strongly mixing and that the initial warmup phase has been effectively discarded, the central limit
theorem for weakly correlated variables states that the horizontal means should be approximately normally distributed.
In particular, we perform an Anderson-Darling normality test (with significance level 1%) on the sample of horizontal
means. If the null hypothesis is not rejected we again have no evidence of violation of the strong mixing assumption,
and we therefore return the values computed by either of the two algorithms (step 7).

5. Operationalizing the framework: Statistical Model Checking and MultiVeStA

This section discusses how we operationalise our approach. In particular, we frame our approach to ABM anal-
ysis in the context of Statistical Model Checking and show how we integrate it into MultiVeStA, a model-agnostic
statistical model checker that can be integrated with existing simulators.

5.1. Statistical Model Checking

Statistical Model-Checking (SMC) (Agha and Palmskog, 2018; Legay et al., 2019) is a successful simulation-
based verification approach from computer science. SMC allows to study quantitative properties of large-scale models
through completely automated analysis procedures equipped with statistical guarantees. Following the principle of
separation of concerns, the idea is to offer a simple external language to express properties of interest that can be
queried on the model using predefined analysis procedures. The goal of SMC is therefore that of offering a one-click-

analysis experience to the modeler which is freed from the burden of modifying the model to generate large CSV files
every time a new analysis is required, and then analyzing such CSV files in an error-prone semi-automated manner.
This guarantees that the analysis procedures are written once and then extensively tested, decreasing the possibility
of errors. Making a parallel with databases, we do not have to explicitly manipulate the internal representation of the
data every time a new query is needed, rather we define the data to be selected using compact languages (e.g. SQL).

Several statistical model checkers exist, most of which require to implement models into proprietary languages.
We consider black-box SMC (Sen et al., 2004; Younes, 2005), where the idea is to offer a model-independent anal-
ysis framework that can be easily attached to existing simulation models, effectively enriching them with automated
statistical analysis techniques. In particular, we use MultiVeStA (Sebastio and Vandin, 2013; Gilmore et al., 2017),
redesigned and extended here with the techniques from the previous sections, tailored for ABM community.

5.2. Simulator integration

MultiVeStA only needs to interact with a simulator by triggering 3 basic actions: (i) reset(seed), to reset the
simulator to its “initial state”, and update the random seed used to generate pseudo-random numbers. This is necessary
to reset the model before performing a new simulation; (ii) next, to perform one step of simulation; (iii) eval(obs),
to evaluate an observation in the current simulation state, where an observation (obs) can be any feature of the
aggregate model or of any group of agents. A new model can be integrated with MultiVeStA by implementing an
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adaptor between MultiVeStA and the considered simulator, obtained by instantiating MultiVeStA’s (Java) interface.
As a consequence, it natively supports Java-based simulators, but it has been also integrated with C- and Python-based
simulators, and it has been recently extended to support R-based ones.

For the ABM macro model from Section 6 we are interested in two aggregate features of the model: the number of
bankruptcies and the unemployment rate in a given step. Therefore, the model has been integrated such that these can
be obtained using eval("bankruptcy"), and eval("unemploymentRate"), respectively. Instead, the prediction
market models from Sections 7 and 8 have been integrated such that eval(i) gives a particular feature of agent i (its
current wealth), and eval("price") gives a certain aggregate feature of the model (the prevailing price).

5.3. MultiVeStA query language and supported analysis

MultiVeStA offers a powerful and flexible property specification language, MultiQuaTEx, which allows to express
transient and steady state properties, including warmup analysis.

Transient properties. Intuitively, a MultiQuaTEx query might describe a random variable (e.g., the number of bankrupt-
cies in an ABM macro model at a certain point in time during a simulation). Following the discussion in Section 2,
the expected value of a MultiQuaTEx query is estimated as the mean x of n samples (taken from n simulations), with
n large enough (but minimal) to guarantee that the (1−α) · 100% CI centred on x has size at most δ, for given α and δ.

MultiQuaTEx actually allows to express more random variables in one query, all analysed independently reusing
the same simulations. Listing 1 depicts a MultiQuaTEx query used in Section 6 to study the evolution of the number
of bankruptcies and of the unemployment rate in an ABM macro model.

Coming to the structure of a MultiQuaTEx query, it contains a list of parametric operators that can be used in an
eval autoIR command to specify the properties to be estimated. Lines 1-4 of Listing 1 define the parametric operator
obsAtStep having two parameters, t and obs, respectively the step and observation of interest. Such operator is
evaluated, in every simulation, as the value of obs at time point t. Before discussing the body of the operator, we note
that Line 5 uses it twice for observations the number of bankruptcies and the unemployment rate for each step from
1 to 400 (with increment 1). Therefore 800 properties will be studied (400 for each observation), all evaluated using
the same simulations and with their own CI. The body of an operator (Lines 1-4) might contain:

1. conditional statements (the if-then-else-fi);

2. real-valued observations on the current simulation state (the s.eval in Line 1 and Line 2);

3. a next operator that triggers the execution of a simulation step (Line 3);

4. recursion, used in Line 3 to evaluate obsAtStep(t,obs) in the next simulation step;

5. arithmetic expressions.

This is general enough to express a wide family of properties at varying of time. In the case of Listing 1, we check
whether we have reached the step of interest (Line 1), in which case we return the required observation (Line 2).
Otherwise, we perform a step of simulation (Line 3), and evaluate recursively the operator in the next simulation state.

1 obsAtStep(t,obs) = if (s.eval(" steps") == t)
2 then s.eval(obs)
3 else next(obsAtStep(t,obs))
4 fi ;
5 eval autoIR(E[ obsAtStep(t," bankruptcy ") ],E[ obsAtStep(t," unemploymentRate ") ],t,1,1,400) ;

Listing 1: A transient MultiQuaTEx query
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1 obs(o) = s.eval(o) ;
2 eval warmup(E[ obs(0) ],E[ obs(1) ],E[ obs (2) ],E[ obs("price ") ]) ;
3 eval autoBM(E[ obs(0) ],E[ obs(1) ],E[ obs (2) ],E[ obs("price ") ]) ;
4 eval autoRD(E[ obs(0) ],E[ obs(1) ],E[ obs (2) ],E[ obs("price ") ]) ;

Listing 2: A steady state MultiQuaTEx query. Only one of the three eval commands should be used at a time.

… …
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Figure 5: MultiVeStA’s client-server architecture enabling parallelization of simulations.

Steady state properties and warmup analysis. MultiQuaTEx has been extented to support MultiVeStA’s extension
with steady state and warmup analysis capabilities discussed in Section 3.2. Listing 2 provides a steady state Multi-
QuaTEx query used in Section 7 to study the average value at steady state of the wealth of three agents (0, 1, and
2), and of the price in our test-bed market selection model. The query is simple, as in this case the operator obs
just returns the observation of interest, while Lines 2-4 show how to run the three types of supported analysis. In
particular, a steady state query is composed of two parts: A list of next-free operators, and one of the three eval

commands in Listing 2, provided with a list of operators to study.
Intuitively, a steady state MultiQuaTEx query defines observations on single simulation states, implicitly studied

at steady state. In particular, warmup performs the warmup estimation procedure (Section 3.2.2) for each of the listed
properties. Indeed, every random variable defined on a process might have a different warmup period. We will see
examples of this in Section 7. Instead, autoBM performs a warmup estimation on each property, and, begins computing
the batch means procedure (Section 3.2.3) on each of them as soon as the property completes its warmup period. The
command autoRD is similar, but it first completes the warmup analysis for all considered properties, and then feeds
this information to the replication deletion procedure from Section 3.2.1. In all cases, the default values described in
Section 3 will be used if not otherwise specified by the user when running the analysis.

MultiQuaTEx supports two further eval commands: manualBM and manualRD. These behave the same as autoBM
and autoRD, respectively, but skip the warmup analysis phase and required as input an estimation of the warmup
period. These might be useful in case one has this information due to previous analyses. In Section 7 we use them to
replicate erroneous steady state analyses from the literature based on a wrong estimation of the warmup period.

5.4. MultiVeStA’s distributed architecture

MultiVeStA has a client-server architecture as sketched in Figure 5. This is a classic software architecture for
distributing tasks in the cores of a machine or in the nodes of a network. We distribute the simulations of autoIR and
autoRD. In the figure, arrows denote visibility/control/activation of the source component on the target one:

• A user runs the client specifying the model, query, CI, and the parallelism degree N. Transparently to the user,
the client will trigger, distribute, and handle the necessary simulations providing to the user the results.

• The client creates N servers among whom distributes the analysis tasks.
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Figure 6: The novel architecture of the MultiVeStA client

• Each server runs independently, therefore in parallel, the required simulations. Each server creates its own
instance of the simulator, and controls it through the adaptor to perform the simulations.

As discussed, we extended MultiVeStA with a number of analysis techniques. In particular, we mainly extended
the client, where the analysis logic is localized. The new architecture of the client is depicted in Figure 6. It consists
of a number of modules, the central ones regarding steady state and transient analysis. Further modules regard: post-
processing of analysis computed by MultiVeStA like t-tests and power computation to compare results obtained for
different model configurations (Section 3.1.2), or the methodology for ergodicity analysis (Section 4); support for the
creation and parsing of MultiQuaTEx queries, offered by a novel compiler for MultiQuaTEx queries; visualization of
the analysis results through a plotter and of a CSV file creator.

6. Application: Transient analysis of a large macro ABM

We apply the transient analysis from Section 3.1 to the large-scale macro-financial ABM of Caiani et al. (2016).

6.1. The macro ABM of Caiani et al. (2016)

The model has been developed to bridge the stock flow consistent approach (SFC; Godley and Lavoie (2006))
with the macroeconomic agent based literature (see, e.g., Delli Gatti et al., 2005; Cincotti et al., 2010; Dosi et al.,
2010; Dawid et al., 2012; Popoyan et al., 2020).14 It depicts an economy composed of households selling their labor
to firms in exchange for wages, consuming, and saving into deposits at (commercial) banks. Households own shares
of firms and banks in proportion to their wealth, and receive a share of firms’ and banks’ profits as dividends; they
also pay taxes as set by the Government, which runs fiscal policy. There are two categories of firms. Consumption
firms produce a homogeneous good using labor and the capital goods manufactured by the other class of firms: capital
firms. Firms may apply for loans in order to finance production and investment. Retained profits enter the financial
system as banks’ deposits. Banks provide credit to firms, buy bonds issued by the Government and need to satisfy
mandatory capital and liquidity ratios. Finally, a Central Bank holds banks’ reserve accounts and the government
account, accommodates banks’ demand for cash advances at a fixed discount rate, and possibly buy government
bonds that have not been purchased by banks.

14A rather detailed overview of the macro ABM literature can be found in Fagiolo and Roventini (2017) and Dosi and Roventini (2019).
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Here we focus on two key indicators of economic activity: the unemployment rate, and the bankruptcy rate of
business firms. They have been chosen because of: (i) the relative large fluctuations they exhibit during the transient
dynamics (see Figure 2 in Caiani et al., 2016), which we aim at reproducing and testing and (ii) their well known
role as proxies of an economy’s health at macro e micro level, respectively. We sketch how these two quantities are
modelled by Caiani and co-authors while leaving the additional details about the model to the original paper.15

The labour market is composed of workers, firms, and the public sector. Firms in the capital good sector (indexed
by k) demand workers based on their desired level of production yD

xt and the productivity of labor (µN), which is
assumed to be constant and exogenous:

ND
kt =

yD
xt

µN
. (4)

Differently, the request of workers by consumption good firms (indexed by c) is given by

ND
ct = uD

ct
κct

lk
, (5)

where κct is the capital stock, lk is a constant expressing the capital-to-labor ratio and uct is the utilization capacity
needed to obtain the desired production. Workers can be fired under two circumstances: workers in excess of produc-
tion needs are randomly sampled from the pool of firm employees and fired, and workers can loose their job because
of an exogenous positive employee turnover (a fixed share of workers is fired in every period). Finally, a constant
share of households are employed by the public sector and public servants are also subject to an exogenous turnover.

After having planned production, firms and the government interact with unemployed households on the labor
market. Workers follow an adaptive heuristic to set the wage they ask for: if over the year (i.e., four periods), they
have been unemployed for more than two quarters, they lower the asked wage by a stochastic amount. In the opposite
case, they increase their asked wage. The share of workers that is not employed at the end of each session of interaction
in the labour market represents the prevailing unemployment rate.

After production, firms sell their products and need to compensate for the inputs they received. Firms may default
when they run out of liquidity to pay wages or to honour the debt service. Defaulted firms are bailed-in by households
(who are the owners of firms and banks and receive dividends) and depositors, as the authors seek to maintain the
number of firms constant. Hence, the bankruptcy rate emerges as the ratio between defaulted firms before the bailing-
in event and the total number of firms in the economy. As the defaulted firms create non-performing loans that might
trigger vicious cycles and - ultimately - a financial crisis, they offer key information on the turbulence and riskiness of
the business cycle.

6.2. Transient analysis with autoIR: automatic computation of confidence intervals

The model is run in its baseline configuration considered in Section 5.1 of Caiani et al. (2016). The artificial time
series show the model first experiences a sequence of expansionary and recession regimes, then converging, in most
cases, to a relatively stable behaviour where aggregate variables (including the unemployment and the bankruptcy
rates) fluctuate around particular values, and nominal aggregates grow at similar rates. Our focus is centred on the
first part of such process.

As a first exercise, we reproduce the behaviour of the economic indicators we selected in the first 400 steps of
the simulation, and construct CIs around their mean according to Equation (1) (Figure 7). In particular, we choose

15Of course, all variables present in the original model could be analysed using the very same procedure; we selected two for illustrative purposes.
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Figure 7: Unemployment rate and bankruptcy over time. The dashed lines are the computed 97.5% CI of size δ at most 0.005 and 0.5, respectively.

α = 0.025 and set δ at the maximal allowed width of the confidence intervals around our central estimates (i.e. δU =

0.005 for the unemployment rates and δB = 0.5 for the average bankruptcies) and let autoIR automatically decide
the number of simulations needed to obtain the desired confidence intervals. We stress that MultiVeStA automatically
determines the number of runs required to obtain the desired CI for each point in time and for whatever variable of
interest. As shown in the top of Figure 8, this required at most 378 simulations for both properties.

As a concept-proof of our approach, the inspection of Figure 7 confirms that our algorithms do not modify the
model and deliver the same dynamics (see Figure 2 of Caiani et al., 2016).16 However, Caiani et al. (2016) performed
100 simulations for all the 400 time steps, without providing information on the obtained confidence intervals.

The ability to specify the precision of the confidence intervals comes with a number of advantages. First, it is
a flexible requirement that can be expressed either in absolute or relative terms (see Section 3), leaving the chance
to statistically compare the expected behaviour of the model to a certain target (say, an employment rate not higher
that 5% or an inflation rate of 2%) or to its mean (e.g. allowing one to compute for each period the probability
to observe bankruptcy rates 10% higher than the average). Second, and more relevantly, it allows evaluating the
robustness (and the uncertainty) of the dynamics simulated by the model. In particular, Figure 8 shows how the width
of the confidence intervals vary, for each time point and property, across the simulation span for various number of
simulations. The top of the figure shows the intermediate CI widths obtained after every iteration of the blocks of
simulations performed by MultiVeStA (see the discussion in Section 3.1.1 - we use bl = 42). We note that the widths
decrease at every iteration, and that some time points (from 100 to 200) require more simulations than the others to get
the desired CI width. Instead, the bottom of the figure compares the CIs obtained by MultiVeStA (in green) against
those obtained using the setting of the original paper (i.e. 100 simulations for all time steps, in red). We note that, apart
for the first time points which present very low variance, the CIs computed by MultiVeStA tend to be homogeneous
and close to the required δ, demonstrating that the minimum number of simulations are computed for the given δ.
Instead, the setting used by Caiani et al. (2016) might lead to CIs of different widths which follow the trend of the
computed means. This is particularly evident for the case of firms’ bankruptcies, cf. Figure 8 (bottom-right), while
the same does not happen for unemployment rates (bottom-left of the figure). The figure suggests that each property

16We highlight that the artificial time series we generate are somehow comparable to Figure 2 of Caiani et al. (2016); however, Caiani et al. apply
a bandpass filter over their series and just show the emerging trend component. Contrarily, we show the “raw” series that the model generates. We
notice that the latter is the prevailing practice in the literature (see for example the models reviewed in Fagiolo and Roventini, 2017).

18



0 50 100 150 200 250 300 350 400
Steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008 Unemployment rate

Required 0.005
CI with 42 sims
CI with 84 sims
CI with 126 sims
CI with 168 sims
CI with 210 sims
CI with 252 sims
CI with 294 sims
CI with 336 sims
CI with 378 sims

0 50 100 150 200 250 300 350 400
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 Bankruptcies

Required 0.5
CI with 42 sims
CI with 84 sims
CI with 126 sims
CI with 168 sims
CI with 210 sims
CI with 252 sims
CI with 294 sims
CI with 336 sims
CI with 378 sims

0 50 100 150 200 250 300 350 400
Steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006 Unemployment rate

CI with  0.005
CI with 100 sims

0 50 100 150 200 250 300 350 400
Steps

0.00

0.20

0.40

0.60

0.80

1.00

1.20 Bankruptcies

CI with  0.5
CI with 100 sims

Figure 8: Top: Intermediate widths of the 97.5% CI for bankruptcy and unemployment rate computed by MultiVeStA (top); Bottom: Comparison
among CI widths computed by MultiVeStA and by setting 100 simulations for all properties and t as in Caiani et al. (2016) (obtained using autoIR

and setting both bl and the maximum number of simulations performed to 100).

and time point should be studied using its own best number of simulations, confirming that a trade-off between an
insufficient and an excessively large number of simulations exists. When this is too low the across-runs variability
might not be adequately washed-out and the representation of (stochastic) uncertainty could depend on the level of
the relevant variable; conversely, when the number of simulations is too large, simulations are redundant and the same
representation of uncertainty can be effectively offered saving computational time. Finally, in line with Secchi and
Seri (2017), the right-hand panels of both figures confirm that the arbitrary choice of n = 100, which is common in
the literature (see the discussion in Sections 1 and 2), is unjustified by the properties of the model itself.

6.3. Automatic experiment comparison and statistical testing

The second exercise we perform uses the confidence intervals previously computed (and the means, variances and
number of samples returned by MultiVeStA) to automatize a series of tests that identify statistical differences across
model configurations discussed in Section 3.1.2. Indeed, one of the most common approaches in the macro ABM
literature is to focus on key parameters or mechanisms of interest - often reflecting either behavioural attitudes or
policy strength - and test how the dynamics of the model respond to changes. Just to make few examples, Dosi et al.
(2015) compare a series of rules for monetary and fiscal policy, Lamperti et al. (2020) explore feed-in tariffs and R&D
subsidies, and Caiani et al. (2019) extend the model analysed in this section to study various progressive tax schemes
and their effects on growth and inequality. The difference across experiments is tested comparing the value of some
statistic of interest (e.g. the growth rate of output) - usually averaged over the entire time span - by means of t-tests
(e.g. in Dosi et al., 2015; Popoyan et al., 2020). Obviously, the ability of the test to discern across experiments and
to validate the counter-factual policy intervention is affected by the choice of n, as an insufficient number or runs is
likely to make model configurations (i.e. experiments) difficult to distinguish. Even further, it is not infrequent that

19



statistical tests about differences across experiments are completely missing (e.g. Cincotti et al., 2010; Caiani et al.,
2019), which weakens the potential of the paper and the eventual policy recommendations.

Our tool-box provides an automatic series of t-tests across experiments, where the expected value of any variable
of interest in any pre-determined set of experiments is tested against a baseline configuration for each step of the
transient period. As discussed in Section 3.1.2, tests are run post-mortem and consist in Welch’s t-tests (Equation (2)),
whose power can be computed with respect to a minimum distance ε between the means that the test is expected to
detect (Equation (3)). Figure 9 shows the results in our test-bed macro ABM. Among different possible experiments,
we evaluate the effects that changes in the degree of agents’ risk aversion (C) produces on the number of bankruptcies
and the unemployment rate. As showed by Caiani and co-authors, when risk aversion of the agents increases, the
economy tends to completely avoid the recession phase experienced in the baseline configuration. While they did not
offer a statistical analysis of these differences, our approach automatically embeds it. In particular, we contrast model
behaviours across the baseline value of C and a 50% increase of the latter. Figure 9 shows the results of our tests
comparing the set-up of the original analysis (i.e. with n = 100 for all properties and time points, left column) to our
approach (n automatically determined for each property and time point, right column). While increasing risk aversion
delays the peak of bankruptcy rates, we show that no statistical difference between the two experiments is found but
for the central part of the simulation, that is when the economy first experiences a deep crisis and then recovers (see
Figure 2 in Caiani et al., 2016). This is evident in both set-ups and suggests that doubling risk-aversion modifies the
shape of the crisis (smoother surge of bankruptcies and slower decline) but not its existence nor duration, which is
further confirmed by the behaviour of the unemployment rate (see Figure 10).17

Though using n = 100 or our approach makes little difference in terms of type 1 errors, a key advantage is evident
when comparing powers. Indeed, our setup guarantees a much higher power of the tests, thereby reducing dramatically
the chance of not rejecting the null hypothesis of equality across experiments when it is actually false (see also Secchi
and Seri, 2017). We notice that the same holds for the unemployment rate (see Figure 10), though the discrepancy
is less marked. Further, our approach delivers - for given significance aw and setting ε equal to the δ used for the
transient analysis - a good and stable power across the simulation horizon, i.e. above 0.8, which is usually considered
an acceptable threshold in the applied statistics literature (see e.g. Secchi and Seri, 2017; Cohen, 1992; Lehr, 1992).
This comes by the fact that for each property and time point MultiVeStA had to run the correct number of samples to
obtain a constant width of the CI embedded in the choice of δ (and by the assumption that the minimum difference
we want to detect – ε – is equal to δ). Indeed, it is interesting to note how the t-test for bankruptcies obtained for the
setting with 100 simulations (Figure 9 bottom-left) has a low power which appears to decrease specularly to how the
corresponding CI width increases in Figure 8 (bottom-right). Hence, we can derive a rule of thumb to support the
modeller’s choice of the two free parameters in a set-up that compares different experiments: first of all, aw can be set
equal to the α used for the transient analysis, from 5% to 1%, whose extrema are the most diffused levels of statistical
significance in the social sciences. Then, by setting δ in the transient analysis equal to the ε of interest, we expect
to obtain t-tests with good power. If this is not the case, one can perform the transient analysis for smaller values of
δ while keeping constant ε. In case the maximum budget of simulations that have been originally chosen does not
allow to meet such conditions, a trade-off exists in accepting an higher chance of type II error (not detection of false
negatives) and the computational resources at disposal of the modeller. However, we stress that while increasing the
size of the simulation exercise might come at the expenses of computational time, the proposed tool automatically

17We also highlight that our approach identifies a statistically significant difference between the two experiments for the slight increase in
business insolvencies between period 200 and 250.
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(a) CIs width for α = 0.025 and N = 100 simulations (b) CIs width for α = 0.025 and δ = 0.5

(c) T-test are means in (a) point-wise equal? - significance aw =0.025 (d) T-test are means in (b) point-wise equal? - significance aw =0.025

(e) Power of t-test in (c) for difference ε = 0.5 (f) Power of t-test in (d) for difference ε = 0.5

Figure 9: Evolution of bankruptcies for different risk aversions for consumption firms: are they point-wise equal? Red dots denote initial steps with
variances so small to get intermediate results below the numerical tolerance of our implementation of the test (1E-15).
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(a) CIs width for α = 0.025 and N = 100 simulations (b) CIs width for α = 0.025 and δ = 0.005

(c) T-test are means in (a) point-wise equal? - significance aw =0.025 (d) T-test are means in (b) point-wise equal? - significance aw =0.025

(e) Power of t-test in (c) for difference ε = 0.005 (f) Power of t-test in (d) for difference ε = 0.005

Figure 10: Evolution of unemployment rate for different risk aversions for consumption firms: are they point-wise equal? Red dots denote initial
steps with variances so small to get intermediate results below the numerical tolerance of our implementation of the test (1E-15).

22



parallelise model’s runs to speed-up the analysis. Section 9 shows the efficiency of our approach.
Finally, we remark that when using the original code and simulation environment (JMAB) of the Caiani et al.

paper alone, it is not possible to perform any form of statistical analysis automatically, requiring to process CSV files
created by the framework. Our integration of MultiVeStA provides JMAB with analysis capabilities described so far,
encompassing both the transient and the steady state analysis, while leaving the simulation environment unaltered.

7. Application: Steady state analysis in a model of market selection

Here we use MultiVeStA to perform a statistical analysis of the steady state expected value of wealth shares and
market price in a simple repeated prediction market model. The model we consider has been extensively studied in the
literature (Beygelzimer et al., 2012; Kets et al., 2014; Bottazzi and Giachini, 2017, 2019b) and offers a perfect testbed
for our procedures for automated steady state analysis. In particular, its steady state properties have been numerically
investigated by Kets et al. (2014) and, later on, studied analytically in Bottazzi and Giachini (2019b) showing that
the numerical results of Kets et al. (2014) were inaccurate both qualitatively and quantitatively. As briefly reported
by Bottazzi and Giachini (2019b) and as we shall see, the source of inaccuracy can be traced back to the strong
autocorrelation and initial condition bias that process possesses. The post-mortem nature of the numerical analysis
carried on by Kets et al. (2014) is unable to properly deal with those issues. Our approach, instead, uses statistical
tests and procedures able to manage both autocorrelation and the initial condition bias in an automated way. Thus,
in what follows, we first introduce the model, then we repeat the numerical analyses of Kets et al. (2014) showing
how and why the inaccuracies emerge, and finally we use autoRD and autoBM to accurately perform the steady state
analyses. In fact, we match the correct analytical results from Bottazzi and Giachini (2019b).

7.1. The prediction market model by Kets et al. (2014)

The model consists in a pure exchange economy in discrete time, indexed by t ∈ N, where N agents repeatedly
bet on the occurrence of a binary event. That is, in every t two contracts are available for wagering: the first pays
1 dollar if the event occurs and zero otherwise, while the second pays 1 dollar if the event does not occur and zero
otherwise. We model the event by means of a Bernoulli random variable st, such that st = 1 means that the event at
time t has occurred, and st = 0 otherwise. The probability of observing st = 1 is a constant π∗ ∈ (0, 1). Every agent
i ∈ {1, 2, . . . ,N} assigns a subjective probability πi to the realization of the event at any time t. Agent i has initial
wealth equal to wi

0 and at the end of every betting round it evolves in wi
t depending on the results of her betting. The

total initial wealth in the market is normalized to 1, such that, since wealth is only redistributed by the betting system,
it is

∑N
i=1 wi

t = 1 for all t.18 Every agent i bets on the occurrence of the event at time t a fraction αi
t of her wealth wi

t−1,
while 1 − αi

t is the fraction bet against the occurrence. As in Kets et al. (2014); Bottazzi and Giachini (2017, 2019b),
we focus on the so-called fractional Kelly rule, that is ∀i, t

αi
t = cπi + (1 − c)pt , (6)

with c ∈ (0, 1]. In every period, the agents exchange contracts in the competitive market, thus contracts’ prices are
fixed by means of market clearing conditions. Without loss of generality, we assume that contracts are in unitary

18Hence, one can indifferently refer to wi
t as both the wealth and the wealth share of agent i at time t.
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Beliefs Wealth

N c π1 π2 π3 w1
0 w2

0 w3
0

3 0.01 0.3 0.5 0.8 0.33 0.33 0.34

Table 1: Parameters used for the prediction market model.

supply. Hence, calling p1,t and p2,t the price of the first and second contract, respectively, we have ∀t

1 =

N∑
i=1

αi
t

p1,t
wi

t−1 and 1 =

N∑
i=1

1 − αi
t

p2,t
wi

t−1 .

Since wealth sums up to 1 in every period, one has p1,t + p2,t = 1, hence we call p1,t = pt and p2,t = 1− pt. Substituting
with Equation (6) and applying simple algebraic manipulations, one obtains

pt =

N∑
i=1

πiwi
t−1 ∀t . (7)

After the market round, the outcome of the binary event is revealed and the wealth of agent i evolves according to

wi
t =


αi

t

pt
wi

t−1 =

(
1 − c + c

πi

pt

)
wi

t−1 if st = 1 ,

1 − αi
t

1 − pt
wi

t−1 =

(
1 − c + c

1 − πi

1 − pt

)
wi

t−1 if st = 0 .

(8)

In this setting, Kets et al. (2014)19 want to explore the selection dynamics of the model and are particularly interested
in the asymptotic (steady state) value of expected wealth shares and price for c → 0. Indeed, they conjecture that in
such a limit the steady state expectation of pt matches π∗ and use the case c = 0.01 as a proxy.

In Section 7.2, we replicate exactly the analysis of Kets et al. (2014), reproducing their Figures 3(c) and 3(d).
Thus, we follow the procedure proposed in Kets et al. (2014) to estimate steady state expected wealth shares and
price for several values of π∗ under the parametrization in Table 1. In doing that, we highlight some issues related to
initial condition bias and strong autocorrelation. Indeed, the warmup period appears not correctly determined, and the
autocorrelation within the observations of each performed simulation not correctly accounted for. This is due to the
procedure for computing CIs used in Kets et al. (2014) and has the result of producing extremely wide CIs.

After this, in Section 7.3, we perform the steady state analyses using our approach. We show that, thanks to the
provided automatic procedures, our estimates (and the corresponding confidence intervals) of steady state expected
wealth shares and price are correctly determined. Our conclusions differ not just quantitatively, but also qualitatively
from those in Kets et al. (2014), and match those from Bottazzi and Giachini (2019b). Overall, our analysis shows the
importance of using an automated procedure provided with statistical guarantees.

7.2. Steady state analysis with manualRD using original wrong warmup estimation

As discussed in Section 5.3, by using manualRD MultiVeStA allows one to manually set an a-priori estimate of the
warm-up period. MultiVeStA also allows one to fix the maximum number of simulations used in an analysis based on

19Notice that the mathematical specification of the model may appear different from the one presented in Kets et al. (2014). However, as
explained in Bottazzi and Giachini (2019b), the two specifications are indeed equivalent.
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Figure 11: Steady state analysis of expected agents’ wealth and market price according to the manual warm-up and simulation length
settings of Kets et al. (2014). We obtain these results by using manualRD setting the end of the warmup periods to 90 000, and
the time horizons to 100 000. By setting both bl (the number of simulations in a block) and the maximum number of simulations
performed to 1 000, we use precisely 1 000 simulations to estimate each property, perfectly matching the setting used in Kets et al.
(2014). We consider 39 equally spaced values for π∗, from 0.025 to 0.975, each requiring a separate MultiVeStA analysis on a
correspondingly parameterized instance of the model (we automated this process using an external Octave script). Confidence
intervals computed by MultiVeStA for agents’ wealth, not reported in the left panel, are such that the maximum recorded width
for a statistical confidence of 90% is below 0.0025. Confidence intervals for the market price are reported in the right panel, with
maximum recorded width below 0.00065 for statistical confidence of 90%.

independent replication. In general it is always advisable to do not fix such parameters a-priori, but to use the offered
automated procedures so to avoid bias in the estimates and excessively large CIs. In this section we exemplify these
issues by fixing a priori the erroneous warmup estimate and number of simulations used in Kets et al. (2014), and
discuss the problems this introduced in the obtained results.

Kets et al. (2014) performed an RD-based steady state analysis of the agents’ wealth (w1
t ,w

2
t ,w

3
t ) and market

price pt using the parametrization of Table 1. The authors arbitrarily estimated the end of the warmup period after
90 000 steps, and fixed the time horizon of each simulation to 100 000 steps and the number of performed simulations
to 1 000. This means that estimates were computed averaging the last 10 000 observations in each simulation (the
horizontal means of Figure 1(c)) and then further averaging the so-computed means from each simulation (the vertical
means). We shall see how this led to estimates highly biased by the initial conditions.

Regarding computations of confidence intervals, Kets et al. (2014) did not follow the standard approach relying
on the central limit theorem used by MultiVeStA. Rather, Kets et al. (2014) considered how the above discussed
1 000 averages built for each simulation distribute. In particular, the 5-th and 95-th percentiles of such distribution are
taken as the bounds of confidence intervals with 10% statistical significance. The problem with this approach is that,
differently from the approach used by MultiVeStA, it is based on the assumption that each of the considered 1 000
averages has the same distribution of an average across independent replications computed at a time t large enough to
have reached steady state. This is not correct because, as well as the initial condition bias, the process is characterized
by strong autocorrelation. We shall discuss how this led to erroneous interpretation of the results.

Agents’ wealth. In Figure 11 we report the outcomes of the exercise replicating those from Figures 3(c) and 3(d)
in Kets et al. (2014) considering model variants for 39 different values of π∗. Looking at the left panel one should
conclude that there exist model configurations in which all agents have strictly positive expected wealth share in steady
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Figure 12: Estimates of steady state difference between the expected price and π∗ using the settings from Figure 11. We consider 49
equally spaced values for π∗, from 0.31 to 0.79. The dashed lines are CIs built on the same samples using two different procedures.
Left: CIs are erroneously computed (using an external Octave script) according to the procedure in Kets et al. (2014). Right: CIs
as computed by MultiVeStA using the approach based on the central limit theorem.

state. This is, however, in contrast with the analytical analysis from Proposition 4.1 of Bottazzi and Giachini (2019b),
which proves that no more than two agents can have asymptotic positive wealth share. Thus, the fact that Kets et al.
(2014) incorrectly suggest that more than two traders can have positive expected wealth in steady state is an artifact
of the initial condition bias that affects their analysis. Notice that the convergence to zero of the wealth share of at
least one trader is asymptotic, thus wealth shares show a bias for any t. However, such bias decreases with t and can
be made negligible choosing a sufficiently long warm-up and simulation length. What we observe is that discarding
the first 90 000 observation of every run is simply not enough.

Market price. The right panel of Figure 11 shows the average price and should support one of the main results of
Kets et al. (2014): the expected market price matches π∗ when c = 0.01 and π∗ is strictly between the lowest and the
highest of agents’ beliefs. Bottazzi and Giachini (2019b) suggest that such a conclusion is not correct and the source
of inaccuracy should be found in the way in which CIs are built by Kets et al. (2014). In order to better understand
this aspect, we create a new plot in Figure 12 focusing on the difference between market price and π∗. In the left panel
of the figure we report the CIs (dashed lines) obtained by applying the procedure of Kets et al. (2014), while in the
right panel we show those obtained by MultiVeStA. As one can notice, the procedure of Kets et al. (2014) produces
large CIs, backing the claim of the authors. Instead, the CIs obtained by MultiVeStA using the approach based on the
central limit theorem are much tighter and disprove the claim of the authors. To understand the source of disagreement
between the two approaches, consider the following argument: if the 10 000 observations of pt from each simulation
used to compute the average price of every replication were independent and at steady state, then we would not have
spotted any significant difference. Indeed, according to the Central Limit Theorem, we have that each time average
is (approximately) distributed as a normal random variable with mean the steady state expectation of the price and
variance the steady state variance of price over

√
10 000. The initial condition bias lets the expected time average

be different from the steady state expectation. The strong autocorrelation in the price process (Bottazzi and Giachini,
2019b) lets confidence intervals be too wide. While the manualRD procedure used here can do nothing about the initial
condition bias, with respect to confidence intervals MultiVeStA does not assume anything about the distribution of
time averages, simply relies on the Central Limit Theorem. Indeed, the average across 1 000 independent replications
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Figure 13: Estimates of steady state difference between the expected price and π∗ using the settings from Figure 11 for warmup
estimation and time horizon. The number of simulations is automatically chosen by MultiVeStA according to the used values of
δ, for α = 0.025. As in Figure 12, we consider 49 equally spaced values for π∗, from 0.31 to 0.79. Left: δ = 0.002, the number
of simulations varies between 60 and 120. Center: δ = 0.001, the number of simulations varies between 120 and 360. Right:
δ = 0.0005, the number of simulations varies between 420 and 1 440.

of the 10 000-period time averages is (approximately) distributed as a normal random variable with variance the time
averages’ variance over

√
1 000.

This exercise shows the importance of correctly building confidence intervals when testing hypothesis on steady
state quantities from simulated models. We proceed showing that setting the required statistical significance (α) and
confidence interval width (δ) instead of the total number of independent replicas is a much more reliable and efficient
procedure to test hypotheses on steady state expectations.

Market price for different α-δ. In Figure 13, we test the hypothesis from Kets et al. (2014) that no difference between
the average price and π∗ exists under the parametrization in Table 1. We use again manualRD keeping the same settings
for warmup estimation and time horizon discussed in advance, while the number of simulations is automatically
chosen by MultiVeStA according to different values of δ (0.002, 0.001, and 0.0005), for α = 0.025 (i.e. a statistical
confidence of 97.5%). If the hypothesis from Kets et al. (2014) were correct, the difference should be almost never
significantly different from zero for any δ considered. Instead, we notice that δ plays an important role in assessing
the hypothesis testing outcome. Indeed, while with δ = 0.002 the computed CIs for the difference among market price
includes 0 for almost all π∗, with δ = 0.001 the CIs almost never includes 0. This confirms the point of Bottazzi and
Giachini (2019b) and the results we have obtained in Figure 12 right panel: the hypothesis of no difference between
the average price and π∗ is generically rejected. Focusing on δ = 0.0005 and looking at the number of required
simulations, one notices that there exist cases in which the hypothesis that no difference between the average price
and π∗ exist can be rejected with less than 1 000 simulations20. In other cases, instead, 1 000 independent replications
are not enough and one may risk to get to the wrong conclusion simply because of an insufficient number of replicas.21

Notice, however, that due to the arbitrary choice of the end of the warmup period, all the estimates are biased by
the initial conditions. We next use MultiVeStA’s automated steady state analysis (autoRD and autoBM) to accurately
estimate steady state expectations and to finally assess on such obtained results the hypothesis of Kets et al. (2014).

7.3. Steady state analysis with autoRD and autoBM using automatic warmup estimation

Now we repeat the exercises using the automated tools for steady state analysis provided by MultiVeStA, starting
by estimating expected wealth shares.

20This is typically the case at the extrema, indeed 0.31 and 0.79 require, respectively, 420 and 480 replicas.
21This may occur for π∗ around 0.55, where MultiVeStA needs 1 440 simulations to reach the required interval width.
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Figure 14: Steady state levels of average wealth shares. Left: Replication-Deletion. Right: Batch Means. We set α = 0.025 and
δ = 0.001, while we consider 39 equally spaced values for π∗, from 0.025 to 0.975, each one of these points requires a separate
MultiVeStA query that has been invoked and aggregated with the others by means of an external Octave script.

Agents’ wealth. Our results are displayed in Figure 14. In the left panel we use the Replication-Deletion approach
(autoRD) while on the right we use the Batch Means approach (autoBM). As one can notice: i) our results comply
with the theoretical and numerical ones of (Bottazzi and Giachini, 2019b, cf. Figure 7) and ii) no significant difference
can be spotted between the two pictures. Hence, our automated procedures allow one to avoid (or, at least, reduce)
biases generated by initial conditions. As a practical example, let us consider the statistical analysis of steady state
expectations for π∗ = 0.6. The manualRD procedure, using the settings from Section 7.2, estimates the expected
wealth share of agents 1, 2, and 3 to, respectively, 0.089, 0.519, and 0.392. Instead, autoRD and autoBM estimate
the expected wealth shares to, respectively, 0, 0.668, and 0.332, in agreement with the results from Bottazzi and
Giachini (2019b). Looking at the estimated warm-up end, our automated tools propose values higher than 4 000 000
for every expected wealth share. This confirms how manually setting the warm-up end to 90 000 generates a large
initial condition bias in the estimation of steady state expectations of agents’ wealth. Our analysis, other than correctly
estimating steady state expected wealth shares, clearly highlights the source of inaccuracy in the exercise of Kets et al.
(2014), and stresses the importance of using a reliable automated procedure to pursue steady state analyses.

While there are no significant differences between the estimates generated by autoRD and autoBM, the time
required for producing the results changes. Indeed, the analysis runtime of autoRD (using parallelism degree 3) is
about 3 times larger than the one of autoBM. As discussed in Section 3.2.4, cases like this with large warmup periods
tend to favour autoBM.

Market price. Next, we estimate the expected value in steady state of the market price. As we did in Figures 12 and 13,
in order to magnify confidence bands in Figure 15 we show our estimates of the difference between the expected price
and π∗ for different values of π∗ ∈ (0.3, 0.8). In the left and right panels we show the autoRD and autoBM results,
respectively. We notice that, for any value of π∗ considered, the estimated difference between the expected price and
π∗ does not change in a significant manner between the two plots. The emerging expected difference presents a clear
pattern: it is larger (in absolute value) when π∗ is close to the belief of one of the agents. Moreover, the expected
difference appears to be negative when π∗ is closer to the belief of the agent whose belief is, relatively, the smallest
(i.e. among the surviving ones) while it tends to be positive when it is the other way round. These features are in
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Figure 15: Steady state levels of average price. Left: Replication-Deletion. Right: Batch Means. We set α = 0.025 and δ = 0.0005,
while we consider 49 equally spaced values for π∗, from 0.31 to 0.79, each one of these points requires a separate MultiVeStA
query that has been invoked and aggregated with the others by means of an external Octave script.

line with the results obtained by Bottazzi and Giachini (2019b) in Figure 4. Hence, the reliability of the steady state
analysis performed by MultiVeStA is confirmed. Moreover, we can conclude that, contrary to what Kets et al. (2014)
argue, the steady state value of the average price does not generally match π∗ when c = 0.01.

The analysis presented in Section 7.3 satisfies all tests of the methodology for ergodicity diagnosis from Section 4,
confirming the reliability of the analyses. We show in the next section examples of analysis where this does not hold.

8. Application: Ergodicity diagnosis in a CRRA prediction market model with noise

We apply our methodology for ergodicity diagnosis to variants of the prediction market model. For all analyses
we set α = 0.05 and δ = 0.01.

8.1. Three variants of the prediction market with 2 CRRA traders: IID noise, AR noise, ergodic

Here we modify the model studied in the previous section to allow violations of the ergodicity assumption. Fol-
lowing Bottazzi and Giachini (2019a), it is enough to assume that in the market there are N = 2 traders who bet
maximizing their next-period CRRA utility to obtain non-ergodic price and wealth dynamics. Such a different behav-
ioral assumption changes the betting rules. Indeed, we keep the assumption that agents 1 and 2 have heterogeneous
beliefs (π1 and π2, respectively, with π1 < π2) and we add risk preferences, assuming that the relative risk aversion
coefficient of agent i is γi > 0, with i = 1, 2. Thus, we replace eq. (6) with

α1
t = (1 − b1

t )pt and α2
t = (1 − b2

t )pt + b2
t , where (9)

b1
t =

(
pt(1 − π1)

) 1
γ1
−

(
π1(1 − pt)

) 1
γ1

(
pt(1 − π1)

) 1
γ1 + pt

(
π1) 1

γ1 (1 − pt)
1−γ1

γ1

and b2
t =

(
π2(1 − pt)

) 1
γ2
−

(
pt(1 − π2

) 1
γ2

(
π2(1 − pt)

) 1
γ2 + (1 − pt)

(
1 − π2) 1

γ2 (pt)
1−γ2

γ2

. (10)

Bottazzi and Giachini (2019a) show that, depending on the parameters values – in particular γ1 and γ2 – several
long-run selection scenarios are possible. Indeed, one can generically have that: i) one of the two agent has asymptotic
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Scenario Beliefs Risk Aversion Wealth Noise

N π∗ π1 π2 γ1 γ2 w1
0 w2

0 η θ

IID noise 2 0.45 0.2 0.5 2 0.5 0.5 0.5 0.5 0
AR noise 2 0.45 0.2 0.5 2 0.5 0.5 0.5 0.5 0.9
Ergodic 2 0.45 0.2 0.8 2 2 0.5 0.5 0.5 0.9

Table 2: Parameters used for the prediction market model with CRRA traders and noisy price reporting.

unitary wealth share, ii) both agents maintain positive wealth share asymptotically, iii) path dependent scenarios
in which either agent 1 obtains unitary wealth share asymptotically while agent 2 loses everything or vice-versa.
Focusing on the market price pt, in case i) pt converges to πi (with i the dominating agent), in case ii) pt fluctuates in
the interval (π1, π2), and in case iii) pt either converges to π1 or to π2 depending on the particular sequence of events
realized. Case iii) is the one we are interested in: in such a case the ergodicity assumption is violated. However,
the asymptotic convergence of the price to one out of two points makes quite easy to spot the lack of ergodicity and
the presence of the two possible long-run price values. Hence, we complicate the setting assuming that there exists
a third agent in the model who does not trade nor interacts in any way with agents 1 and 2. He simply observes the
price and reports it. Such report is, however, noisy. Defining p̃t the price such external agent reports, we assume
p̃t = pt + vt with vt = θvt−1 + ut and ut a uniformly distributed random variable: ut ∼ U(−η, η), η > 0. Such
price reports are not taken into account by agents 1 and 2, hence all the properties of pt deriving from the analysis
of Bottazzi and Giachini (2019a) remain unaffected. Moreover, vt is an autoregressive process of order 1 with zero
mean. Hence, assuming |θ| < 1, we have that in the long-run p̃t fluctuates around either π1 or π2 depending on the
sequence of realized events. Thus, the lack of ergodicity p̃t shows is somehow “well-behaved”. That is, if one isolates
the sequences in which pt converges to a given πi, one will obtain that the time averages (i.e. horizontal means) of the
relative observations of p̃t, for t large enough, are approximately normally distributed with mean πi. Hence, we can
say that p̃t presents two stationary points. At the same time, studying ergodicity of p̃t is much more complicated than
performing the same tasks on pt. In what follows, we set η = 0.5 and consider two scenarios for θ. In the first one, we
consider θ = 0. We refer to it as “IID noise” scenario, since we have that, in the long-run, the fluctuation described
by p̃t around either π1 or π2 are IID. In the second scenario, instead, we consider the opposite case: setting θ = 0.9
we analyze the performance of our methodology when the noise is highly autocorrelated. We refer to it as the “AR
noise” scenario. Finally, as a robustness check, we apply our methodology to a case in which ergodicity should be
ensured. We choose a scenario belonging to case ii): long-run survival of both agents. This makes pt fluctuate in the
interval (π1, π2) indefinitely. Moreover, we set θ = 0.9 as in AR noise. These two assumptions, even if not affecting
the ergodic properties of p̃t, should make relatively harder for our methodology to work. We refer to this case as
“Ergodic”. Table 2 summarizes the parametrization used in our analyses. While the setting for IID noise and AR noise

scenarios ensure the emergence of multiple stationary points, leading to a non-ergodic scenario, the assumptions for
the Ergodic scenario guarantee the persistent fluctuation of pt (Bottazzi and Giachini, 2019a).

8.2. Application of the methodology for ergodicity analysis

IID noise. We start our analysis by applying autoBM and autoRD to the IID noise case. The former requires 33 792
steps of simulation. It signals that the warmup ends after the first batch of 1 024 steps, and estimates the steady state
mean as 0.498. Instead, autoRD signals that the warmup ends after 1 032 steps. After 2 604 independent replications,
it estimates the steady state mean as 0.426. With reference to our methodology for ergodicity analysis in Figure 4,
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Figure 16: Analysis of the runtime speed-ups on a machine with 20 physical cores.

we performed step 1, and passed the termination check of step 2. After that, step 4 requires to compare the results
of autoBM and autoRD. The difference among the two results is larger than δ, suggesting an ergodicity problem.
According to our method, we already have an indication of non-ergodicity. However, for illustrative reasons we also
performed the Anderson-Darling normality test on the horizontal means computed by autoRD (step 5), obtaining a
p-value equal to 6.092E-251, which allows us to reject the null hypothesis that the horizontal means are normally
distributed. Hence, our methodology is able to correctly spot that the IID noisy price lacks ergodicity.

AR noise. We consider now the AR noise case starting with autoBM. The algorithm estimates the warmup to end
in 1 024 steps, and the steady state mean as 0.499. Instead, by performing autoRD we obtain that the warmup is
estimated to end after 1 032 steps. The total number of independent replications needed by autoRD to reach the IC
width is 2 709, obtaining as result 0.426. Therefore, the two algorithms provide significantly different results for the
used δ, suggesting an ergodicity problem (step 4). This is confirmed by the Anderson-Darling normality test of step 5
which computes a p-value of 1.458E-136, rejecting the normality assumption. Therefore, our methodology is able to
correctly spot that also the AR noisy price lacks ergodicity.

Ergodic. Finally, we perform a robustness check on our methodology by applying it to the Ergodic scenario. Using
autoBM, the warmup is estimated to end after 1 024 steps producing as result 0.4027. Using autoRD, one gets that
the warmup is estimated to end after 1 032 steps. The number of independent replications needed for reaching CIs of
width δ is 210, obtaining as result 0.4035. Thus, the two algorithms give results within the tolerance of δ (step 4). The
normality test from step 5 cannot reject the null hypothesis of normality, as we get a p-value of 0.691. Therefore, our
methodology correctly suggests that no violation of ergodicity is observed.

9. Parallelization study

One of the key issues in the analysis of ABMs in social sciences concerns computational time; while some ap-
proaches have recently proposed to take advantage of machine learning surrogates (Lamperti et al., 2018; van der
Hoog, 2019), the most direct approach to speed-up simulation is an efficient parallelisation of the experiments. In this
section we discuss how MultiVeStA can efficiently and automatically parallelize the various runs. Notably, we demon-
strate the potential analysis speedups showing an analysis that requires about 15 days when performed in sequential,
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and about 16 hours when parallelizing it on a machine with 20 cores. In particular, we show the actual runtime gains
obtained on the analysis of our case studies when using different degrees of parallelism on a machine with 1 CPU
Intel Xeon Gold 6252 (20 physical cores) and 94GB of RAM. This machine allows to perform up to 20 processes in
parallel, but hyperthreading further allows for limited speedups also with parallelism degrees higher than 20.

Figure 16 (left) shows the results of our study considering the sequential case and parallelism degrees N multiple
of 5 up to 60. Intuitively, in the ideal case an analysis using parallelism degree N should take 1

N of the time required by
a sequential analysis (i.e. with N = 1). For this reason, the red dashed line provides the optimal obtainable speed-ups:
1 (no speed up) for the sequential case, and 1

N for all considered N. The blue and yellow dots, instead, show the actual
speedups obtained for our two case studies. In particular, in order to compare with the optimal speedup, for each
value of N we provide the ratio among the runtime obtained with parallelism degree N over the one of the sequential
case. For the prediction market model, we consider the autoRD analysis from Figure 14 (left) for π∗ = 0.45, while
for the macro model we consider the analysis from Figure 7. Notably, the analysis of the macro model took about 15
days when executed sequentially, while it goes down to about 18 hours for N = 20, and 16 hours for N = 25. The
analysis failed for higher values of N due to the high memory requirements of the model. Instead, the analysis of the
prediction market model requires about 14 minutes in sequential and about 50 seconds for N = 20. The analysis could
be performed for all considered N, with a minimum runtime of about 38 seconds for N = 40.

Overall, for both case studies we note speedups very close to the optimal ones up to N = 20, while they tend
to deteriorate for higher values of N. Figure 16 (right) focuses on the values of N from 15 onwards. We see that
the speedups obtained for the macro model tend to be closer to the optimal ones. This is because simulations are
computationally intensive, taking more than 1 hour. Therefore, the overhead (i.e. the extra computations) introduced
by the communications among the MultiVeStA client and servers has almost no impact on the overall runtime. Instead,
the prediction market model is not particularly computationally expensive, making the extra communications influence
more the overall runtime. In particular, the figure shows that relatively limited speedups are obtained for N greater
than 25. This is expected, as discussed. Interestingly, increasing N further than 40 actually worsens the performances,
as the processor is not anyway able to perform more than 20 processes in parallel while the overhead costs increase.

10. Conclusion

In this article we presented a fully automated framework for the statistical analysis of simulation models and,
in particular, agent-based models (ABM). The framework, implemented through the statistical analyzer MultiVeStA,
provides a novel toolkit to the ABM community. These tools range from transient analysis, with statistical tests to
compare results for different model configurations, to warmup estimation and the exploration of steady state proper-
ties, including a procedure for diagnosing ergodicity – and hence the reliability of any steady state analysis.

Our approach can be easily applied to simulators written in Java, Python, R or C++, and we also added native sup-
port in JMAB, a framework for building macro stock-flow consistent ABMs. Our tools allow modellers to automate
their explorations, save time and avoid mistakes originating from semi-automated and error-prone tasks. Importantly,
this facilitates reproducibility of experiments and promotes the use of a minimal set of default analyses that should be
performed when proposing or studying a model.

We validated our approach on two models from the literature: a large scale macro financial ABM and a small
scale prediction market ABM (and variants thereof). We obtained new insights on these models, identifying and
fixing erroneous results from prior analyses. Our framework also allows one to easily parallelize simulations within
the cores of a machine or in a computer network. For instance, we reduced the analysis runtime for the macro ABM
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from 15 days to 16 hours on a machine with a CPU with 20 cores. Indeed, our toolkit enables modellers to run
extensive tests in a unique environment (i.e. without the need of exporting data) and optimizing computational time
(which is often precious; see also the discussion in Lamperti et al., 2018).

Our approach is rooted in results from the simulation, computer science and operations research communities,
which we aim to make available to the ABM community. Connecting these communities is critical to leverage the
most effective techniques and approaches across fields. For example, the stationarity analysis proposed by Grazzini
(2012) mentioned in Section 2 can be viewed as a non-automated version of the batch means approach by Conway
(1963) and Law and Carson (1979).

In the near future, we plan to integrate MultiVeStA with other popular platforms used to build and analyse simula-
tion models – including the LSD environment for ABMs (Valente, 2008) and the JASMINE environment for discrete-
event simulations (Richiardi and Richardson, 2017). We see this article as a first step in bringing practices from the
statistical model checking (SMC) tool-set to the ABM computational economics community. Of particular interest in
this respect are SMC techniques developed to mitigate two classic problems of Monte Carlo methods: dealing with
models that present rare events (Legay et al., 2016), and using machine learning techniques to reduce the number of
simulations (Bortolussi et al., 2015). Finally, we will expand the family of automated analysis techniques offered in
MultiVeStA. For instance, we will extend and refine our ergodicity diagnostics procedure, e.g. tackling the problem
of identifying multiple stationary points (assuming they are finitely many) by means of clustering algorithms. We
also plan to further improve our proposals for the analysis of simulation output, e.g., by introducing corrections for
multiple testing across the time domain, and move beyond it, e.g., by considering sensitivity analysis and parameter
calibration, which are prominent in the ABM community.
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Ciancia, V., D. Latella, M. Massink, R. Paškauskas, and A. Vandin (2016). A tool-chain for statistical spatio-temporal model checking of bike
sharing systems. In Leveraging Applications of Formal Methods, Volume 9952 of LNCS, pp. 657–673.

Cincotti, S., M. Raberto, and A. Teglio (2010). Credit money and macroeconomic instability in the agent-based model and simulator eurace.
Economics: The Open-Access, Open-Assessment E-Journal 4.

Cohen, J. (1992). A power primer. Psychological bulletin 112(1), 155.
Conway, R. W. (1963). Some tactical problems in digital simulation. Management Science 10(1), 47–61.
Dahlke, J., K. Bogner, M. Mueller, T. Berger, A. Pyka, and B. Ebersberger (2020). Is the juice worth the squeeze? machine learning (ml) in and

for agent-based modelling (abm).
Dawid, H., S. Gemkow, P. Harting, S. Van der Hoog, and M. Neugart (2012). The eurace@ unibi model: An agent-based macroeconomic model

for economic policy analysis.
Delli Gatti, D., C. Di Guilmi, E. Gaffeo, G. Giulioni, M. Gallegati, and A. Palestrini (2005). A new approach to business fluctuations: heterogeneous

interacting agents, scaling laws and financial fragility. Journal of Economic behavior & organization 56(4), 489–512.
Delli Gatti, D. and J. Grazzini (2020). Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic agent based

models. Journal of Economic Behavior & Organization 178, 875–902.
Dosi, G., G. Fagiolo, M. Napoletano, A. Roventini, and T. Treibich (2015). Fiscal and monetary policies in complex evolving economies. Journal

of Economic Dynamics and Control 52(C), 166–189.
Dosi, G., G. Fagiolo, and A. Roventini (2010). Schumpeter meeting keynes: A policy-friendly model of endogenous growth and business cycles.

Journal of Economic Dynamics and Control 34(9), 1748–1767.
Dosi, G. and A. Roventini (2019). More is different... and complex! the case for agent-based macroeconomics. Journal of Evolutionary Eco-

nomics 29(1), 1–37.
Dosi, G., A. Roventini, and E. Russo (2019). Endogenous growth and global divergence in a multi-country agent-based model. Journal of Economic

Dynamics and Control 101, 101–129.
Effken, J. A., K. M. Carley, J.-S. Lee, B. B. Brewer, and J. A. Verran (2012). Simulating nursing unit performance with orgahead: strengths and

challenges. Computers, informatics, nursing: CIN 30(11), 620.
Fagiolo, G., D. Giachini, and A. Roventini (2020). Innovation, finance, and economic growth: an agent-based approach. Journal of Economic

Interaction and Coordination 15(3), 703–736.
Fagiolo, G., M. Guerini, F. Lamperti, A. Moneta, and A. Roventini (2019). Validation of agent-based models in economics and finance. In

Computer Simulation Validation, pp. 763–787. Springer.
Fagiolo, G. and A. Roventini (2012). Macroeconomic policy in dsge and agent-based models. Revue de l’OFCE 124, 67–116.
Fagiolo, G. and A. Roventini (2017). Macroeconomic policy in dsge and agent-based models redux: New developments and challenges ahead.

Journal of Artificial Societies and Social Simulation 20(1).
Franke, R. and F. Westerhoff (2012). Structural stochastic volatility in asset pricing dynamics: Estimation and model contest. Journal of Economic

Dynamics and Control 36(8), 1193–1211.
Gibbons, J. D. (1986). Nonparametric statistical inference, 2nd. ed. statistics: Textbooks and monographs vol. 65. marcel dekker, inc., new york

and basel 1985, xv, 408 s., $ 41,25 ($ 34,50 us and canada). Biometrical Journal 28(8), 936–936.
Gilmore, S., D. Reijsbergen, and A. Vandin (2017). Transient and steady-state statistical analysis for discrete event simulators. In Integrated Formal

Methods - 13th International Conference, IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings, pp. 145–160.
Gilmore, S., M. Tribastone, and A. Vandin (2014). An analysis pathway for the quantitative evaluation of public transport systems. In Integrated

Formal Methods, Volume 8739 of LNCS, pp. 71–86. Springer.
Godley, W. and M. Lavoie (2006). Monetary economics: an integrated approach to credit, money, income, production and wealth. Springer.
Gray, R. M. (2009). Probability, random processes, and ergodic properties, Volume 1. Springer.
Grazzini, J. (2012). Analysis of the emergent properties: Stationarity and ergodicity. Journal of Artificial Societies and Social Simulation 15(2), 7.
Grazzini, J. and M. Richiardi (2015). Estimation of ergodic agent-based models by simulated minimum distance. Journal of Economic Dynamics

and Control 51, 148–165.
Grazzini, J., M. G. Richiardi, and M. Tsionas (2017). Bayesian estimation of agent-based models. Journal of Economic Dynamics and Control 77,

26–47.
Grimm, V. and S. F. Railsback (2013). Individual-based modeling and ecology. Princeton university press.
Guerini, M. and A. Moneta (2017). A method for agent-based models validation. Journal of Economic Dynamics and Control 82, 125–141.
Ilachinski, A. (1997). Irreducible semi-autonomous adaptive combat (isaac): An artificial-life approach to land warfare. Technical report, DTIC

Document.
Kelton, W. D. and A. M. Law (1984). An analytical evaluation of alternative strategies in steady-state simulation. Oper. Res. 32(1), 169–184.
Kets, W., D. M. Pennock, R. Sethi, and N. Shah (2014). Betting strategies, market selection, and the wisdom of crowds. In Twenty-Eighth AAAI

Conference on Artificial Intelligence.
Kukacka, J. and L. Kristoufek (2020). Do ‘complex’financial models really lead to complex dynamics? agent-based models and multifractality.

Journal of Economic Dynamics and Control 113, 103855.
Lada, E. K., A. C. Mokashi, and J. R. Wilson (2013). Ard: An automated replication-deletion method for simulation analysis. In 2013 Winter

Simulations Conference (WSC), pp. 802–813. IEEE.
Lamperti, F. (2018a). Empirical validation of simulated models through the gsl-div: an illustrative application. Journal of Economic Interaction

and Coordination 13(1), 143–171.
Lamperti, F. (2018b). An information theoretic criterion for empirical validation of simulation models. Econometrics and Statistics 5, 83–106.
Lamperti, F., V. Bosetti, A. Roventini, and M. Tavoni (2019). The public costs of climate-induced financial instability. Nature Climate Change 9(11),

34



829–833.
Lamperti, F., G. Dosi, M. Napoletano, A. Roventini, and A. Sapio (2018). Faraway, so close: Coupled climate and economic dynamics in an

agent-based integrated assessment model. Ecological Economics 150, 315 – 339.
Lamperti, F., G. Dosi, M. Napoletano, A. Roventini, and A. Sapio (2020). Climate change and green transitions in an agent-based integrated

assessment model. Technological Forecasting and Social Change 153, 119806.
Lamperti, F., A. Roventini, and A. Sani (2018). Agent-based model calibration using machine learning surrogates. Journal of Economic Dynamics

and Control 90, 366–389.
Law, A. M. and J. S. Carson (1979). A sequential procedure for determining the length of a steady-state simulation. Operations Research 27(5),

1011–1025.
Law, A. M. and D. M. Kelton (2015). Simulation Modeling and Analysis (5th ed.). McGraw-Hill Higher Education, http://www.averill-

law.com/simulation-book/.
L’Ecuyer, P. (2016). SSJ: Stochastic simulation in Java, software library. http://simul.iro.umontreal.ca/ssj/.
L’Ecuyer, P., L. Meliani, and J. Vaucher (2002). SSJ: A framework for stochastic simulation in Java. In E. Yücesan, C.-H. Chen, J. L. Snowdon,
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