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Abstract

This paper studies whether, and to what extent, trading in an incom-
plete competitive market rewards the CAPM portfolio rule over alternative
rules. We find that, if a mean-variance trader faces an agent who invests
in each asset proportionally to expected relative payoffs, in the long-run
only two scenarios are possible: either the mean-variance trader vanishes or
both agents survive with fixed and constant wealth shares. In both cases,
asymptotic prices are proportional to assets’ expected payoff, and the rela-
tion between prices and returns implied by the CAPM does not generally
hold. Conversely, when a mean-variance trader faces a generic fixed-mix
investor, several long-run outcomes are possible, such as dominance of one
trader, survival of both, and generic path-dependency. We provide sufficient
conditions to assess such outcomes. We find that the different outcomes can
be effectively discussed in terms of the effective risk aversion of the trad-
ing strategies, as implied by their portfolio choices conditional on prevailing
market prices. In general, a larger effective risk aversion constitutes a sur-
vival advantage.
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1 Introduction

In an interview with Jason Zweig (1998), Harry Markowitz, the father of portfolio
selection by mean-variance optimization (Markowitz, 1952), confessed how, when
confronted with retirement investment allocation, he equally split his contributions
between bonds and equities instead of computing the historical co-variances of the
asset classes and drawing an efficient frontier. Such episode is usually taken as
anecdotal evidence of how even economists can behave in a suboptimal way because
of behavioral biases (see e.g. Benartzi and Thaler, 2007). Could it be, instead, that
investing according to a simple rule, like splitting wealth among asset classes in
fixed proportions, provides some advantages in a competitive setting with respect
to mean-variance optimization? The empirical analysis of DeMiguel et al. (2009)
provides evidence in this direction: an equally weighted investment strategy can
outperform portfolios derived from mean-variance optimization. The reason for
that lies in the errors one can make in estimating the Variance-Covariance matrix.
Sciubba (2006) studies the selection dynamics of a short-lived asset market model
where an agent with mean-variance preferences and an agent who follows the Kelly
Criterion (Kelly, 1956, equivalent to maximizing logarithmic preferences) compete.
In the particular framework the author considers (perfect information, complete
markets, asset payoffs perfectly anti-correlated), the Kelly agent holds a fixed-mix
portfolio and in the long-run is able to accrue all the wealth.

In this paper we extend and complement the analysis by Sciubba studying a
short-lived asset market model where a mean-variance optimizer and a fixed-mix
trader repeatedly exchange a riskless and a risky asset. Markets can be incomplete
and, while the mean-variance trader has perfect information, the fixed-mix investor
may hold imperfect information about the economy. We find that, when the
fixed-mix rule consists in splitting wealth among assets proportionally to expected
relative payoffs (the Generalized Kelly rule, Evstigneev et al., 2002; Amir et al.,
2005; Evstigneev et al., 2009; Bottazzi et al., 2018), only two market selection
outcomes are possible in the long-run. Depending on the mean-variance trader
risk aversion level, one has either the dominance of the fixed-mix trader or the
long-run coexistence of both agents with asymptotically constant wealth shares.
It follows that, when trading against a generalized Kelly trader, a fully informed
mean-variance optimizer is never able to accrue all the wealth and, eventually,
set prices according to her representative agent levels. This also implies that
the Capital Asset Pricing Model (CAPM) does not hold in the long-run when a
generalized Kelly investor is trading in the market.

When the fixed-mix rule does not coincide with the Generalized Kelly portfolio,
several long-run outcomes are possible and we provide sufficient conditions to
assess them. Indeed, depending on the economy’s parameters – especially the
risk aversion level of the mean-variance trader and the portfolio fraction invested

2



by the fixed-mix trader in the riskless asset – one can generically observe i) the
dominance of the fixed-mix trader and the vanishing of the mean-variance trader;
ii) the dominance of the mean-variance trader and the vanishing of the fixed-mix
trader; iii) the survival of both agents; iv) path-dependent cases in which the
selection outcome depends on the sequence of states of the world realized.

In the end, we analyze several examples and provide a rationale for the good
performance of the equally weighted investment strategy which does not rely on
estimation errors on the mean-variance side. Indeed, our analysis is able to high-
light the conditions that let the equally weighted portfolio achieve an evolutionary
advantage over the mean-variance optimization strategy.

2 The model

Consider an exchange economy in discrete time, indexed by t ∈ N, where two
short-lived assets are traded in each period. Asset 1 is risk-free and pays df > 0 in
every t. Asset 2 is risky and pays a stochastic dividend dt ∈ [0, D] in each period.
Such dividend depends only on the realized state of the world, i.e. dt = d(st).
Without loss of generality, we order states of the world such that d(s) increases in
s. That is, we assume that d(1) = 0, d(S) = D, and d(s+ 1) > d(s).

Uncertainty is modeled in terms of an i.i.d. stochastic process (st)
∞
t=1 with

st ∈ S = {1, 2, . . . , S}, S > 2. We call σt = (s1, s2, . . . , st) the partial history
until time t such that Σt = ×t1S is the set of partial histories. An history is
indicated with σ = (s1, s2, . . .) and the set of all possible histories is Σ = ×∞1 S.
Let C(σt) = {σ ∈ Σ|σ = (σt, st+1, . . .)} be the cylinder with base σt with Ft
indicating the σ-algebra generated by the cylinders. Then, (Ft)

∞
t=1 is a filtration

and F is the σ-algebra generated by the union of filtrations. We indicate with P
the probability measure on (Σ,F) and it is such that P{st+1 = s|σt} = πs ∀σt, t.
We indicate the expected dividend and the dividend variance as

d̄ =
S∑
s=1

πsd(s) and v =
S∑
s=1

πs(d(s)− d̄)2 .

Moreover, we assume d̄ > df . The economy is populated by two agents. The
first one is a myopic Mean-Variance optimizer who, in each period t, derives her
optimal holdings hmv1,t , h

mv
2,t solving

max
hmv
1,t ,h

mv
2,t

hmv1,t df + hmv2,t d̄−
βv

2

(
hmv2,t

)2
s.t. hmv1,t P1,t + hmv2,t P2,t = Wmv

t−1 ,

with Wmv
t−1 her wealth at the end of period t−1, β > 0 her risk aversion parameter,

and P1,t, P2,t the time t prices of the two assets. Define the time t Sharpe ratio of
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the risky security as

ρt =
d̄/P2,t − df/P1.t√

v/P2,t

,

solving the problem we obtain

hmv1,t =
Wmv
t−1

P1, t
− P2tρt
P1,tβ

√
v
, hmv2,t =

ρt
β
√
v
. (1)

The second agent is a fixed-mix trader whose holdings hfm1,t , h
fm
2,t in each t read

hfm1,t =
αW fm

t−1

P1,t

, hfm2,t =
(1− α)W fm

t−1

P2,t

, (2)

with α ∈ (0, 1) the portfolio share she allocates to the risk-free asset and W fm
t−1 her

wealth at the end of period t− 1.
The initial wealth of agent i ∈ {mv, fm} is defined as W i

0 > 0 and, at the end
of period t, her wealth reads

W i
t = hi1,tdf + hi2,tdt .

We assume that assets are in exogenous unitary supply. Thus, in every t, prices
are fixed such as to satisfy the market clearing conditions

1 = hmv1,t + hfm1,t , 1 = hmv2,t + hfm2,t . (3)

The total wealth in the economy at the end of time t is

Wt = Wmv
t +W fm

t = df + dt , (4)

and in every t we have P1,t + P2,t = Wt−1. Defining the normalized wealth of the

fm agent at time t as wt = W fm
t /Wt and the normalized price of the risk-free

asset at time t as pt = P1,t/Wt−1, the wealth dynamics of the model can be studied
focusing on

wt =
wt−1
df + dt

(
dfα

pt
+
dt(1− α)

1− pt

)
. (5)

Market clearing conditions, instead, become

1 =
1− wt−1

pt
− (1− pt)ρt

ptβ
√
v

+
αwt−1
pt

, (6)

1 =
ρt
β
√
v

+
(1− α)wt−1

1− pt
, (7)
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where the time t Sharpe ratio turns out to be a function of pt alone, that is

ρt = ρ(pt) =
d̄/(1− pt)− df/pt√

v/(1− pt)
. (8)

The analysis of the static equilibrium of the economy described in this section is
in appendix A. In Proposition 2.1 we report the main implications: in every time
step the wealth share of the fm agent is positive, unique equilibrium prices exist,
and the equilibrium normalized price of the riskless security depends negatively
on the fm’s wealth share. Moreover, we report the behavior of pt when the wealth
share of fm reaches its extrema and provide an explicit formula to compute the
equilibrium normalized price of the riskless security at time t from the fm’s wealth
share at t− 1.

Proposition 2.1. In every t ∈ N:

– it is wt > 0;

– there exists one and only one pt ∈ (0, 1) such that equations (6)-(7) are
satisfied;

– pt = p(wt−1) with

p(w) =
2df + d̄+ ((1− α)w − 1)βv

2(df + d̄− βv)
+

−

√(
βv − d̄− (1− α)wβv

)2
+ 4(1− α)wdfβv

2(df + d̄− βv)
;

(9)

– ∂pt/∂wt−1 < 0;

– if wt−1 → +∞ then pt → 0;

– if wt−1 → 0 and β < d̄/v then pt → df/(df + d̄− βv);

– if wt−1 → 0 and β ≥ d̄/v then pt → 1.

Proof. See appendix A.

The main difference with respect to the framework studied by Sciubba (2006)
is that our market structure allows the mv trader to finance her trades by means of
short selling. This means that the mv trader may decide to increase the supply of
a given asset in order to increase her investment in the other. Thus, in our model
the wealth of the mv trader can generically become negative. At the same time,
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Proposition 2.1 ensures that the mv investing choices do not generate negative
equilibrium prices. As a consequence, given eq. 2, the fm agent cannot short
any asset and her wealth never attains negative values. On the contrary, the fm’s
wealth share can grow beyond 1 and asymptotically diverge. Indeed, whenever
mv ends up with negative wealth, this means that fm, as well as owing the whole
present aggregate endowment of the economy, has claims also on future earnings
of the mv trader. In this case one may imagine to set a maximum leverage ratio
and force mv to eventually pay back her debts. However, in order to consider the
best case scenario for the mv trader, we avoid such limit: the mv wealth can be
asymptotically (infinitely) negative.1

These considerations, however, suggest that the standard definitions of dom-
inance and vanishing (see e.g. Blume and Easley, 1992; Sciubba, 2006; Bottazzi
et al., 2018) have to be amended. In particular, the fact that asymptotically the
wealth share of mv is non positive shall be considered as a case in which fm dom-
inates and mv vanishes. Concerning survival, instead, we maintain the standard
definition: both agents have to maintain positive wealth shares asymptotically.

Definition 2.1. We say that fm dominates and mv vanishes on a sequence σ if

lim inf
t→∞

wt(σ) ≥ 1 . (10)

We say that fm vanishes and mv dominates on a sequence σ if

lim
t→∞

wt(σ) = 0 . (11)

We say that fm survives on a sequence σ if

lim sup
t→∞

wt(σ) > 0 . (12)

We say that mv survives on a sequence σ if

lim inf
t→∞

wt(σ) < 1 . (13)

We say that fm dominates and mv vanishes, fm vanishes and mv dominates, fm
survives or mv survives if (10), (11), (12) or (13) holds P almost surely.

Another important feature that differentiates our analysis from previous stud-
ies in the field is the possibility of reaching asymptotic homogeneity in terms of

1Notice that, according to Proposition 2.1, also in such a case one should asymptotically
observe arbitrages. However, here they result from the market interaction of traders and can be
excluded only setting a maximum leverage threshold for mv, which we explicitly avoid.
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portfolio shares. That is, the imitative nature underlying the Mean-Variance in-
vesting approach may generically lead the mv trader to invest in each asset the
same wealth fractions of the fm trader. Thus, define the function

amv(w) = 1− ρ(p(w))(1− p(w))

(1− w)β
√
v

,

such that amv(wt−1) = hmv1,t pt/(1−wt−1) is the portfolio share of mv at time t, and
consider the quantity

w̃ =
α(βv − d̄) + (1− α)df

αβv
.

Then, one immediately has amv(w̃) = α. Hence, whenever the wealth share of fm
reaches w̃ homogeneity in terms of portfolio shares is obtained. Notice also that in
such a case normalized prices become (α, 1−α). From (5) one immediately notices
that w̃ is deterministic fixed point for wt: if the wealth share of fm reaches w̃ it
will never move away. At the same time, provided an initial wealth share of fm
different from w̃ (i.e. w0 6= w̃), homogeneity can be attained only asymptotically.
Indeed, if w0 is smaller than w̃ then wt will always stay below the deterministic
fixed point, while, if w0 is larger than w̃, then wt will remain above the deterministic
fixed point.

Proposition 2.2. Assume w̃ > 0. If wt = w̃ then pt+τ = α and wt+τ = w̃ for all
τ ∈ N. If w0 < w̃ then wt < w̃ for any finite t. If w0 > w̃ then wt > w̃ for any
finite t.

Proof. See appendix B.

3 Long-Run Selection

After having analyzed some important characteristic of the model, we turn to
investigate the long-run selection outcomes. First, we focus on a particular fixed-
mix portfolio rule, named generalized Kelly (Evstigneev et al., 2002, 2009, 2016),
that ensures survival when competing against a mean-variance trader. Then, we
analyze long-run outcomes when generic fixed-mix rules are adopted, providing
conditions to discriminate among the different selection scenarios.

3.1 A survival fixed-mix rule

In our framework the generalized Kelly rule is a fixed-mix investing strategy that
prescribe to invest in each asset a fraction of wealth which is proportional to the
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asset’s expected relative payoff. We indicate such a rule with α∗ and it reads

α∗ =
S∑
s=1

πs
df

df + d(s)
.

With respect to the analysis performed by Sciubba (2006), the generalized Kelly
rule can be thought as an heuristic extension to incomplete markets of the bet your
beliefs principle derived from intertemporal log-utility maximization in complete
markets of Arrow securities Evstigneev et al. (2009, 2016). We focus on such rule
because of the good properties it has when competing in an evolutionary frame-
works against other adapted portfolio rules. An adapted portfolio rule prescribes
to split wealth among assets according to fractions that depend only on the in-
formation revealed until the beginning of the time step. In a short-lived asset
market where agents invest according to adapted rules and states of the world fol-
low an i.i.d process, the generalized Kelly rule is a survival strategy: it maintains
a strictly positive wealth share in the long-run with probability one (Evstigneev
et al., 2016). When competing strategies are basic, i.e. they depend only on the
sequence of realized states, the generalized Kelly rule owns asymptotically all the
wealth in the market with probability one (Evstigneev et al., 2016). The general-
ized Kelly rule remains a survival strategy also when competing against adapted
rules that can rely on short selling (Belkov et al., 2017). The investing behavior of
mv in our framework is not adapted: portfolio fractions depend on contemporary
prices, a piece of information that is not revealed at the beginning of the period.

Proposition 3.1. If α = α∗ then

1. fm dominates and mv vanishes if

β ≤ d̄

v
− (1− α∗)df

α∗v
;

2. both fm and mv survive if

β ≥ d̄

(1− w0)v
− (1− α∗)df

(1− w0)α∗v
;

3. fm dominates and mv vanishes on sequences σ′ ∈ Σ′ ⊂ Σ and both fm and
mv survive on sequences σ′′ ∈ Σ′′ ⊂ Σ, with P{Σ′}+ P{Σ′′} = 1, if

d̄

v
− (1− α∗)df

α∗v
< β <

d̄

(1− w0)v
− (1− α∗)df

(1− w0)α∗v
.
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Proof. See appendix D.

Proposition 3.1 shows that the generalized Kelly rule is a survival strategy when
competing against a mean-variance investor in an incomplete market. Indeed, mv
is never able to dominate and asymptotically let fm’s wealth share go to zero.
Two situations are possible in the long-run: either fm dominates and mv vanishes
or both survive. The level of risk aversion of mv plays a fundamental role in
discriminating the cases. If mv is not sufficiently risk averse, then w̃ turns out
negative and, for any possible initial wealth share, fm is able to dominate. The
reason for that lies in the generalized Kelly rule. Such rule, when mv is not
able to imitate it, ensures that fm’s wealth share has a positive expected growth
rate. This explains also how long-run survival of both agent is obtained. When
mv is sufficiently risk averse, then w̃ ends up in the (w0, 1) interval. Thus, the
positive expected growth rate of fm’s wealth share entails that in the long-run
wt converges to w̃. Asymptotically mv imitates fm and both survive. When the
risk aversion of mv is at “intermediate” levels, the situation is more complicated.
Indeed, one has that w̃ is locally stable. At the same time, if wt grows too much,
then it will diverge. Hence, we can only say that one case between survival of both
agents and dominance of fm may occur depending on the sequence of realized
events. Basically, when point 3. of Proposition 3.1 occurs, we observe a form of
path-dependence.

The selection results in Proposition 3.1 has consequences for long-run asset
pricing. Indeed, the fact that mv cannot dominate against a generalized Kelly
trader implies that in the long-run prices are never set according to the mv pre-
scriptions.

Corollary 3.1. If α = α∗ then, with probability one, either limt→∞wt = w̃ < 1
and limt→∞ pt = α∗ or limt→∞wt = +∞ and limt→∞ pt = 0.

Proof. See appendix E.

Corollary 3.1 confirms that, when mv competes with a generalized Kelly trader,
either she ends up imitating the behavior of the opponent or she is forced to a sort
of Ponzi scheme. Moreover, the Corollary shows the long-run pricing outcome.
It is immediate to notice that, in the best case scenario for mv (i.e. survival of
both agents), mv has no role in setting long-run prices: they are fixed according to
the generalized Kelly prescriptions. In the other case, when mv vanishes and fm
dominates, prices are quite opposite with respect to mean-variance representative
agent levels. This helps to explain how fm forces mv to a Ponzi scheme. If
wt−1 ≈ 1 then, the negative dependence of pt on wt−1 together with Proposition 3.2
implies pt > α∗. Thus, the riskless security appears underpriced to mv, while the
risky security appears overpriced. Hence, mv starts shorting the risky security in

9



order to invest in the riskless one. This can become a self-defeating strategy. Since
the risky security pays more in expectation, mv may end up with negative wealth,
the relative price of the riskless security decreases even more and mv shorts more
strongly the risky security. A negative spiral is set up and asymptotically fm
dominates with divergent wealth share.

The drawback of the generalized Kelly rule is that it requires the knowledge
of the true probability distribution to be implemented. When such knowledge is
not available to the fm agent, market structure and agents’ characteristics play a
primary role is driving asymptotic outcomes.

3.2 Generic fixed-mix rules

Suppose that the fm trader chooses a generic portfolio (α, 1 − α), which are the
long-run selection outcomes of the model? Does fm still maintain an evolutionary
advantage on mv or has the latter some chances to asymptotically own all the
wealth and, eventually, set prices? These are the questions we try to answer in this
section. The picture that will emerge is that several possible outcomes are possible
depending on asset structure, the portfolio fractions fm chooses, and how much
risk averse mv is. Indeed, depending on the parameter setting, we may observe
fm dominating and mv vanishing, fm vanishing and mv dominating, one or both
traders surviving. Path dependent cases are also possible: some combinations of
parameter make the long-run selection outcome depend on the particular sequence
of event realized.

At the technical level, our asymptotic results are inferred studying the proper-
ties of stochastic process derived from a transformation of wt, see appendix C for
further detail. In particular, we use the conditions for persistence or transience
of stochastic processes provided by Bottazzi and Dindo (2015). Those conditions
rely on the sign of asymptotic conditional drifts. In our case, it is enough to study
the sign of two quantities,

µ0 =
S∑
s=1

πs log

(
α(df + d̄− βv)

df + d(s)
+
d(s)(1− α)(df + d̄− βv)

(df + d(s))(d̄− βv)

)
(14)

and

µw̃ =
S∑
s=1

πs log

(
1 +

(
df

df + d(s)
− α

)
df − α(df + d̄− βv)

df − α2(df + d̄− βv)

)
. (15)

The sign of µ0 has a clear economic interpretation. Indeed, it can be considered
the expected log-growth-rate of fm’s wealth share when mv has all the wealth in
the market under the assumption β < d̄/v. If µ0 is positive then, by continuity, the
fm’s wealth share grows more in expectation than the mv’s one when the latter
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has almost all the wealth in the economy. If, instead, µ0 is negative it is the other
way round. Thus, given a sequence of events such that wt ends up sufficiently close
to 0, if µ0 > 0 then wt is pushed away from 0, while, if µ0 < 0, then wt is attracted
toward 0. If β ≥ d̄/v, instead, the expected log-growth-rate of fm’s wealth share
becomes infinite in the limit of mv owing everything. This means that, whenever
mv is close to dominate, fm is able to grow more in expectation and wt is pushed
away from 0.

The sign of µw̃ is informative of the local stability of the fixed point w̃. Thus,
given a sequence of events such that wt is sufficiently close to w̃, if µw̃ is negative we
have that w̃ is stable and the fm wealth share is attracted toward w̃. If, instead,
µw̃ is positive we have that w̃ is unstable and wt is pushed away from it. Thus, in
economic terms, w̃ stable means that, if after a sequence of events agents end up
investing in a sufficiently similar way, asymptotically they become identical. If,
instead, w̃ is unstable, they tend to differentiate in the long-run.

3.2.1 Long-run dominance

We first focus on those cases in which one of the two traders is able to dominate. In
other models belonging to the Evolutionary Finance tradition which exclude short
selling (see e.g. Evstigneev et al., 2009; Bottazzi et al., 2018), long-run dominance
is associated with a particular trading rule owing unitary wealth share and setting
prices as in a representative agent setting. This is only partially true here. It is
the case when mv dominates and fm vanishes while it is not always true when fm
dominates and mv vanishes. Indeed, in the latter case fm can generically hold a
wealth share in the long-run which is larger than one or, eventually, diverge.

Proposition 3.2. fm dominates and mv vanishes if one of the following condi-
tions is satisfied:

1. µ0 > 0, α >
df

df + d̄
, and β <

d̄

v
− (1− α)df

αv
;

2. µw̃ > 0, α >
df

df + d̄
, and

d̄

v
− (1− α)df

αv
< β <

d̄

(1− w0)v
− (1− α)df

(1− w0)αv
;

3. µ0 > 0, µw̃ < 0, α ≤ df
df + d̄

, and β >
d̄

(1− w0)v
− (1− α)df

(1− w0)αv
.

Proof. See appendix F.

Proposition 3.2 shows that fm dominates and mv vanishes in three cases. In
1. we have that the conditions on α and β ensure w̃ ≤ 0, while the expected
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growth rate of fm’s wealth share when mv has (almost) all the wealth is positive
(µ0 > 0). Thus, for any possible choice of initial wealth shares, we have wt > w̃ ∀t.
Moreover, whenever the fm’s wealth share approaches 0, it is pushed away because
fm grows more in expectation than mv when her wealth share is low. Then, sooner
or later, wt shall become so large that it starts to grow with probability one and,
asymptotically, diverges. In 2. the condition on β implies w0 > w̃ while the
condition on α ensures w̃ < 1. Hence, asymptotically wt can either diverge or
converge to w̃. However, the condition µw̃ > 0 ensures that the fm’s wealth share
cannot converge to w̃. Thus, it asymptotically diverges. In 3. we have that the
condition on β delivers w0 < w̃, while the condition on α implies w̃ > 1. Thus,
since wt cannot converge to 0 (µ0 > 0) while it is attracted toward w̃ (µw̃ < 0), we
obtain that asymptotically w̃ is reached and mv holds a negative wealth share in
the long-run.

Corollary 3.2. If condition 1. or 2. of Proposition 3.2 is satisfied then, with
probability one, limt→∞wt = +∞ and limt→∞ pt = 0. If condition 3. of Proposition
3.2 is satisfied then, with probability one, limt→∞wt = w̃ > 1 and limt→∞ pt = α.

Proof. The statements follow from the arguments in appendix F about the asymp-
totic behavior of wt coupled with Proposition 2.1.

Concerning prices, Corollary 3.2 highlights that, when the sufficient conditions
for fm to dominate are met, one shall observe the riskless security’s price converge
either to zero or to α. The former case is verified when condition 1. or 2. is
satisfied while the latter occurs when 3. is met. This result clearly proves that in
our model the dominance of fm does not automatically imply that long-run prices
are set according to her representative agent levels. This is due to the short selling
behavior of mv, who continues to trade even with a negative wealth share.

Proposition 3.3. fm vanishes and mv dominates if µ (0) < 0, µw̃ > 0, α <
df

df + w0d̄
, and

d̄

(1− w0)v
− (1− α)df

(1− w0)αv
< β <

d̄

v
.

Proof. See appendix G

The conditions that ensure mv to dominate while fm vanishes are more strict.
As shown in Proposition 3.3, the risk aversion parameter of mv has to be in a
precise interval. The lower bound ensures w0 ∈ (0, w̄). That is needed in order
to prevent wt from becoming large and, eventually, diverging. The upper bound,
instead, prevents the price of the risky security from approaching 0 when mv has
almost all the wealth in the economy. In such a case the fm’s wealth share has
an infinite expected growth rate when mv is close to own everything: fm cannot
vanish. The condition on α provides that the interval to which β must belong is
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not empty. On top of the requirements on β and α, one has also to check that,
on the one hand, the fixed point w̃ is unstable and, on the other, 0 is attracting
for fm’s wealth share. In this way, whenever mv invests similarly to fm, it is
profitable for mv to differentiate her portfolio strategy with respect to the fm’s
one. Hence, mv increases her wealth share and wt decreases with respect to w̃.
Whenever, instead, mv is close to have all the wealth in the economy her wealth
share grows more in expectation than fm’s one. Thus, asymptotically mv owns
a unitary wealth share and prices converge to the mean-variance representative
agent levels.

3.2.2 Survival and path dependency

We focus now on the conditions that deliver agents’ survival. These conditions
are more general than the previous ones delivering dominance since, in order to
dominate, the agent needs to survive. As we shall see, the survival of one agent
does not necessary exclude the survival of the other. Indeed, intersecting the set
of parameter values that let fm survive with the one which let mv survive, we
obtain generic cases in which both agents achieve long-run survival.

Proposition 3.4. fm survives if one of the following conditions is satisfied:

1. µ0 > 0 and β <
d̄

v
− (1− α)df

αv
;

2.
d̄

v
− (1− α)df

αv
< β ≤ d̄

(1− w0)v
− (1− α)df

(1− w0)αv
;

3. µ0 > 0 and β >
d̄

(1− w0)v
− (1− α)df

(1− w0)αv
.

mv survives if one of the following conditions is satisfied:

1. α >
df

df + d̄
and β ≥ d̄

(1− w0)v
− (1− α)df

(1− w0)αv
;

2. µw̃ > 0 and α ≤ df
df + d̄

.

Proof. See appendix H.

Proposition 3.4 shows that fm can survive for any level of mv risk aversion.
When the condition on β in 1. is satisfied, one has that w̃ is negative. In such a
case wt can generically approach zero. Thus, a sufficient condition to observe the
survival of fm is that she grows more in expectation than mv when mv is close to
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own all the wealth, µ0 > 0. When β is such that the conditions in 2. are satisfied,
we have wt > w̃ > 0 ∀t, hence, by Proposition 2.2, the survival of fm is ensured.
When β satisfies the condition in 3. one obtains that wt < w̃ ∀t, hence also in this
case wt can approach zero. Thus, also here, in order to let fm survive one should
ensure that she grows more than mv when the latter has (almost) unitary wealth
share.

The conditions that ensure the survival of mv appear somehow more strict.
Indeed, now both α and β play an important role. First of all, notice that we
have to ensure wt < w̃. If α > df/(df + d̄) then it is w̃ < 1, thus the condition
on β is crucial to permit the survival of mv, since it ensures wt < w̃ ∀t. Then, no
matter whether w̃ is stable or unstable, the wealth share of mw remains bounded
away from zero. If instead α is smaller than or equal to df/(df + d̄), then we have
wt ≥ w̃. First, we need to ensure that wt is reflected away when approaches w̃.
This is provided by the condition µw̃ > 0. Then, we can exploit the fact that in
every period wt can decrease with strictly positive probability to prove that values
smaller than 1 are attained almost surely. The survival of mv follows by definition.

Another peculiar feature that characterizes our model is the generic occurrence
of path dependent scenarios. In such cases we may observe one between two cases
depending on the realized sequence of events.

Proposition 3.5. fm dominates and mv vanishes on sequences σ′ ∈ Σ′ ⊂ Σ while
fm vanishes and mv dominates on sequences σ′′ ∈ Σ′′ ⊂ Σ, with P{Σ′}+P{Σ′′} =
1, if µ0 < 0 and one of the following conditions is satisfied:

1. β <
d̄

v
− (1− α)df

αv
;

2. µw̃ < 0, α ≤ df
df + d̄

, and β <
d̄

v
.

Proof. See appendix I

Proposition 3.5 shows the conditions that deliver a form of extreme path de-
pendence. Indeed, when the conditions are satisfied, we may observe either the
dominance of fm and the vanishing of mv or vice-versa. The condition on β in
1. causes w̃ < 0, thus we have wt ∈ (0,+∞) ∀t. It follows that, if mv grows more
in expectation than fm when fm has (almost) nothing, then wt can converge to
zero. At the same time, if wt becomes large enough, then it will asymptotically
diverge. When, instead, the conditions in 2. are verified, then we have w̃ ≥ 1
(provided by the condition on α) and w̃ stable (provided by µw̃ < 0). Thus, in
such a case, we observe either the converge of wt to zero or its convergence to a
value greater than (or equal to) one. Again, depending on the realized sequence
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of events, the dominance of one agent and the vanishing of the other is observed,
but we cannot establish their identity ex-ante.

Proposition 3.6. fm dominates and mv vanishes on sequences σ′ ∈ Σ′ ⊂ Σ while
both fm and mv survive on sequences σ′′ ∈ Σ′′ ⊂ Σ, with P{Σ′} + P{Σ′′} = 1, if

µw̃ < 0, α >
df

df + d̄
, and

d̄

v
− (1− α)df

αv
< β <

d̄

(1− w0)v
− (1− α)df

(1− w0)αv
.

Proof. See appendix J

Proposition 3.6 shows the sufficient conditions to have a form of path depen-
dence that favors fm. Indeed, when the condition in the Proposition is satisfied,
then we shall observe either the dominance of fm, with the consequent vanishing
of mv, or the survival of both. An important condition that delivers such scenario
is wt > w̃ ∀t. This is provided by the conditions on α and β, ensuring, respectively,
w̃ < 1 and w̃ < w0. However, this is not enough. Indeed, we also need to ensure
that mv tends to imitate fm even more when agents’ investment fractions are
similar. This means that w̃ has to be stable and it is provided by µw̃ < 0. Then,
depending of the sequence of realized state of the world, we can have that agents
become asymptotically equal or that fm has, asymptotically, infinite wealth.

Proposition 3.7. fm vanishes and mv dominates on sequences σ′ ∈ Σ′ ⊂ Σ while
both fm and mv survive on sequences σ′′ ∈ Σ′′ ⊂ Σ, with P{Σ′} + P{Σ′′} = 1, if

µ0 < 0, µw̃ < 0, α >
df

df + d̄
, and

d̄

(1− w0)v
− (1− α)df

(1− w0)αv
< β <

d̄

v
.

Proof. See appendix K

Finally, we analyze the last scenario, the one in which the form of path depen-
dence obtained favors mv. Indeed, when the condition in Proposition 3.7 holds,
then we shall observe either the dominance of mv, with the consequent vanishing
of fm, or the survival of both. Again, β and α play a fundamental role. Indeed,
we have to ensure w̃ < 1 and wt < w̃ ∀t. The former is delivered by the condition
on α while the latter is entailed by the condition on β. Next we have to ensure
that wt can converge either to zero or to w̃. This is delivered, respectively, by
µ0 < 0 and µw̃ < 0. When those conditions are verified, mv grows more than fm
when the former has almost everything while mv tends to imitate fm when they
are similar. Hence, the sequence of realized events becomes crucial in establishing
which long-run outcome is observed between mv owing everything or the two agent
being equal.
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3.3 Discussion and examples

Here we provide some intuition about the underlying mechanism that produces the
results and analyze some specific example. Our discussion revolves around the idea
of fm’s effective risk aversion. That is, we can interpret the fm’s trading behav-
ior as a particular instance of mean-variance investing with time-dependent risk
aversion. Such risk aversion is somehow implied by the wealth allocation choices
of fm: it is the one an external observer believing that fm has mean-variance
preferences would infer. Then, we proceed to study some examples imposing spe-
cific values to the model’s parameter. In particular, we shall choose a probability
distribution for the risky asset dividends and fix a value for the riskless payoff. Our
study shall focus on applying the conditions we derived in the previous sections
and discussing how the selection outcomes change for different values of α and β.

3.3.1 Effective risk aversion

Comparing and discussing the investing choices derived from a given behavioral
rule (like the fixed-mix one) with those generated by (myopic) preference maxi-
mization is not trivial. Indeed, it requires a meaningful and synthetic measure that
allows us to understand how one behavior differentiates from the other. Follow-
ing the example of effective beliefs employed by Bottazzi et al. (2018) and Dindo
(2019), we introduce the idea of fm’s effective risk aversion. As briefly summa-
rized in advance, it is possible to map the fm portfolio in one derived from the
mean-variance maximization procedure by means of a time-dependent risk aver-
sion coefficient. That is, we basically infer the risk aversion a mean-variance trader
should show in order to invest as like as the fm agent. Since, under this inter-
pretation, such time-varying coefficient is the only feature that distinguish the
two traders, the fm’s effective risk aversion is key to explain long-run selection
outcomes.

In formal terms, we define the fm’s effective risk aversion coefficient as

bt =
(1− pt)ρt

(1− α)wt−1
√
v

such that it is

hfm1,t =
wt−1
pt
− (1− pt)ρt

ptbt
√
v

, hfm2,t =
ρt
bt
√
v
.

Imposing the market clearing conditions in (3), we can obtain an equilibrium ex-
pression of bt which has an interesting economic interpretation. Indeed, we have

bt = b(wt−1) = β
(1− p(wt−1))− (1− α)wt−1

(1− α)wt−1
= β

(1− a(wt−1))(1− wt−1)
(1− α)wt−1

(16)
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which means that the effective risk aversion coefficient of fm matches the mv risk
aversion coefficient rescaled by the ratio between the amounts of wealth agents
invest in the risky asset. In particular, the higher the wealth invested by mv (fm)
in the risky asset, the larger (smaller) the fm’s effective risk aversion. Moreover,
one generically has that fm’s effective risk aversion is larger (smaller) than β if
mv is investing in the risky asset more (less) than fm. The fm’s effective risk
aversion decreases when her wealth share increases,

∂b(w)

∂w
= − (1− p(w))3dfβ

w2(1− α)((1− p(w))2df + p(w)2(1− α)wβv)
< 0 ,

and in the limit of an infinite wealth share b(w) converges to −β: limw→+∞ b(w) =
−β. If, instead, the fm’s wealth share goes to zero we have two possible cases
depending on the value of β. If β < d̄/v then limw→0 b(w) = +∞, while, if β ≥ d̄/v,
it is

lim
w→0

b(w) = β
α(βv − d̄) + d̄

(1− α)(βv − d̄)
> 0 .

Hence, the fm’s portfolio appears risk averse to mv (i.e. evaluated according to mv
preferences) when mv sets the prices and such implied risk aversion decreases as
evaluations move away from mv ones, that is, as fm increases her wealth share. As
fm becomes richer, her effective risk aversion approaches negative values, meaning
that fm appears risk prone to mv when the former has large wealth. Indeed,
according to (16), fm seems risk prone to mv whenever the latter shorts the risky
asset. This is reasonable: fm always holds a long position in both assets, hence,
whenever mv – who has β > 0 by definition – believes that the risky asset should
be sold short, any long position in the risky asset is considered a consequence of
risk loving.

Given a certain level of wealth share, instead, the effective risk aversion of fm
increases with α. This is intuitively correct: an agent that invests a relatively
larger share of her wealth in the riskless asset should show a higher risk aversion.
This argument can be formalized looking at the derivative of b(w) with respect to
α given a wealth share level w. Indeed, we have2

∂b(w)

∂α

∣∣∣∣∣
w

=
β(1− p(w))3df

w(1− α)2((1− p(w))2df + p(w)2(1− α)wβv)
> 0

and such positive dependence of the fm’s effective risk aversion upon α let us con-
sider the fraction of wealth fm invests in the riskless security as a rough measure
of her (implicit) risk aversion conditional on a given wealth share level.

2To compute such derivative we exploit our result on the derivative of p(w) with respect to
α for a given wealth share w in Fact A.4, appendix A.
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Finally, it is interesting to notice that the case of long-run homogeneity in
terms of portfolios (i.e. wt → w̃) does not automatically imply homogeneity in
terms of effective risk aversions. Indeed, we have

lim
w→w̃

b(w) = β
1− α(βv − d̄)− (1− α)df
α(βv − d̄) + (1− α)df

which is generically different from β.
Concerning the selection outcomes, we shall link agents’ behavior and (implied)

preferences with evolutionary fitness in the next section by means of specific exam-
ples. In particular, we will exploit the relationship between α and fm’s effective
risk aversion in order to understand the relationship between risk preferences and
selection outcomes.

3.3.2 Examples

We assume that there are 1000 different states of the world, S = 1000, the riskless
payoff is normalized to 1, df = 1, the maximum dividend the risky asset pays is
10, D = 10, and initial wealth is evenly shared, w0 = 0.5. Then, without loss
of generality, we assign dividends to states of the world in ascending order: we
assume d(s) = (s − 1)D/(S − 1). Probabilities are assigned to states according
to a Boltzmann probability distribution that takes into account the risky asset’s
dividend levels. That is

πs =
exp {−λd(s)}
S∑
j=1

exp {−λd(j)}
∀s ∈ S .

For the moment, we set λ = 0.5, such that we obtain d̄ = 1.9274,3 v = 3.3191, and
α∗ = 0.4654.

In Figure 1 we provide an example of the behavior of b(w) for different values
of w and α under the assumption β = 1 > d̄/v. This exercise confirms the result
discussed in the previous section: fm tends to be more risk averse than mv when
her wealth share is low and becomes less and less risk averse as she accumulates
wealth. Indeed, as her wealth share increases, fm attains negative values of risk
aversion, meaning that fm seems to show a form of risk proneness when she is
sufficiently rich. One can also notice how the positive relation between b(w) and
α emerges, moreover as w increases the relation becomes stronger.

In Figure 2 we present the selection outcomes of the model for different combi-
nations of α and β. As already argued, this can be roughly understood as a study
of selection outcomes for different levels of agents’ risk aversion.

3Notice that the condition df < d̄ is respected.
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Figure 1: Values of b(w) for different values of w and α assuming β = 1. The
white dashed line represents the generalized Kelly rule, while the black dashed
line represents b(w) = β.

When α and β are low, mv is favored and she dominates in the long-run. Hence,
when fm is heavily investing in the risky asset, building a portfolio according to the
mean-variance strategy turns out evolutionary fit and allows to make profits in the
long-run. Notice that the point in which the boundary between D and E intersects
β = 0 in Figure 2 is df/(df + d̄) = 0.3416. This means that mv is able to dominate
over sequences of events in which her wealth has been negative sometimes. Thus,
mv is resorting on short-selling from time to time and this behavior may have
evolutionary fitness depending on the environment. This complements the analysis
of evolutionary finance models with short-selling in Belkov et al. (2017). Indeed,
in our case selling short may result effective when driven from a mean-variance
investing strategy and other traders in the market are heavily investing in risky
assets. In terms of effective risk aversion, we can conclude that a mv investment
strategy results evolutionary fit when other traders in the market show a relatively
low level of risk aversion (conditional on their wealth share).
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When mv presents a low level of risk aversion, fm can dominate investing a
large share of her wealth in the riskless security. To provide an intuition about
the mechanism underlying such long-run outcomes, consider the derivative of the
riskless security’s price with respect to α and conditional on a given wealth level.
One obtains4

∂p(w)

∂α

∣∣∣∣∣
w

=
(1− p(w))p(w)2wβv

(1− p(w))2df + p(w)2(1− α)wβv
> 0 .

Thus, we can say that fm, investing more heavily on the riskless security, makes
it relatively more expensive for mv. Hence, mv tends to invest more in the risky
asset and this translates in an evolutionary advantage for fm. In terms of effective
risk aversion, we have that high α induces relatively higher b(w) levels (conditional
on wealth share). Hence, conditionally larger values of effective risk aversion may
produce a selection advantage for fm. This recalls the results in Bottazzi and
Giachini (2019) and Bottazzi and Dindo (2013) about the higher evolutionary
fitness of relatively more risk averse traders.

For intermediate values of mv risk aversion – for instance, β around 0.5 in our
example – we shall observe survival of both agents if α is small and a form of
path dependence if α is large. Indeed, when fm does not invest very much in the
riskless security (i.e. conditionally low level of effective risk aversion) then w̃ is
above one and, at the same time, the deterministic fixed point is unstable. Thus,
whenever the two agents start to behave in a similar way, mv finds profitable to
differentiate and her wealth share grows in expectation. However, mv is not able to
dominate: when fm has almost nothing she is able to achieve a positive expected
growth rate. When, instead, fm presents a large risk aversion w̃ is below one and
stable. Hence, it is profitable for mv to copy fm whenever they end up investing
in a similar way. The level of mv risk aversion discriminates between an extreme
form of path dependency (i.e. either fm dominates and mv vanishes or vice-
versa) or a milder version that favors fm (i.e. fm dominates and mv vanishes
or both survives). It is interesting to notice that a more risk averse mv trader
seems to decrease the chances she has to dominate. Notice also that no parameter
combination allows for the form of path dependency implied by Proposition 3.7,
the one which favors mv.

Whenmv presents an high level of risk aversion, then only one selection scenario
is observed: the survival of both agents. Indeed, fm always survive because when
β ≥ d̄/v she achieves high growth rate in expectation whenever her wealth share
is small. At the same time, also mv is able to survive. First of all, consider that
for large β it is w0 < w̃. Indeed, limβ→+∞ w̃ = 1− if α > df/(df + d̄) while

4See Fact A.4 in appendix A.
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Figure 2: Asymptotic selection outcomes depending on α and β. A: both survive.
B: path dependency, either fixed-mix dominates and mean-variance vanishes or
both survive. C: path dependency, either fixed-mix dominates and mean-variance
vanishes or vice-versa. D: mean-variance dominates and fixed-mix vanishes. E:
fixed-mix dominates and mean-variance vanishes. The dashed line represents α∗.

limβ→+∞ w̃ = 1+ if α < df/(df + d̄). Moreover, it is

lim
β→+∞

µw̃ = log df − logα−
S∑
s=1

πs log(df + d(s)) ,

and, by Jensen’s inequality, one has

lim
β→+∞

µw̃ > log
df

df + d̄
− logα .

Hence, if α ≤ df/(df + d̄) then limβ→+∞ µw̃ > 0. This means that, for large values
of β, if α > df/(df + d̄) then wt is always lower than one and mv survives. If,
instead, α ≤ df/(df + d̄) then w̃ is unstable and mv is, again, able to survive.
Concerning the effective risk aversion of fm, high levels of mv’s risk aversion
makes the implied risk preferences of fm more extreme.
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Figure 3: Asymptotic selection outcomes depending on α and β. Left: df = 0.1.
Right: df = 1.9. A: both survive. B: path dependency, either fixed-mix dominates
and mean-variance vanishes or both survive. C: path dependency, either fixed-mix
dominates and mean-variance vanishes or vice-versa. D: mean-variance dominates
and fixed-mix vanishes. E: fixed-mix dominates and mean-variance vanishes. The
dashed line represents α∗.

Notice that, in this particular example, the generalized Kelly portfolio is not
very far away from an equally balanced one. Indeed, splitting wealth (roughly)
equally between the two assets prevents mv from dominating almost surely. This
may provide an evolutionary rationale to the naive diversification strategy.

Next, we investigate the effects on long-run selection outcomes of the asset
structure. In particular, we study how our selection is affected by changes in the
riskless payoff and in the characteristics of the risky asset payoff distribution.

In Figure 3 we show the selection outcomes for df = 0.1 (left) and df = 1.9
(right). As one can notice, a riskless payoff significantly smaller than the ex-
pected payoff of the risky asset makes harder for mv to survive asymptotically and
the combinations of parameter values that let mv dominate shrinks significantly.
Conversely, lowering the riskless payoff makes the set of α and β that entail the
dominance of fm expand, together with the areas of path dependence, especially
the one that favors fm. In Figure 4, instead, we report the selection outcomes for
different levels of average payoff d̄ and payoff variance v. In particular, we set the
values of λ and D in such a way to obtain a case in which the risky security is very
appealing for mv (right) and a case in which it is less (left). As one can notice,
The combinations of parameter values that let mv survive almost surely decrease
when the risky asset presents a higher d̄/v ratio. However, the effect on the area
in which mv dominates is ambiguous: it shrinks in the direction of larger α but
squeezes in the direction of larger β. Concerning fm, when d̄/v increases the com-
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Figure 4: Asymptotic selection outcomes depending on α and β. Left: D =
20, λ = 0.65, such that d̄ = 1.5284 and v = 2.3659. Right: D = 4.5, λ = 0,
such that d̄ = 2.25 and v = 1.6909. A: both survive. B: path dependency,
either fixed-mix dominates and mean-variance vanishes or both survive. C: path
dependency, either fixed-mix dominates and mean-variance vanishes or vice-versa.
D: mean-variance dominates and fixed-mix vanishes. E: fixed-mix dominates and
mean-variance vanishes. The dashed line represents α∗.

binations that let her dominate expand. At the same time, it is not clear whether
her chances to survive may overall decrease, especially because of the expansion
of the area in which the extreme form of path dependence occurs (C).

Thus, in general, it seems that when the risky security is very attractive for
mv – either because df is too small or because d̄/v is high – then fm accrues an
evolutionary advantage: the combinations of α and β that allow her to dominate
increase. Another clear pattern that emerges is that survival of both agents is
favored by having the risky security not very attractive for mv. Indeed, considering
also that the dominance of one agent is observed only for relatively low level of
mv risk aversion, it is possible to argue that when mv holds riskier portfolios then
we shall observe one trader dominating the market in the long-run.

4 Conclusion

In this paper we investigate the evolutionary dynamics of CAPM investment rules
in an incomplete short-lived asset market. We focus on the case in which one
trader chooses her portfolio such as to maximize mean-variance preferences and
we show that, if an opponent invests in each asset proportionally to expected
relative payoffs, then the mean-variance investor cannot dominate in the long-run.
Indeed, only two scenarios are possible: either the mean-variance trader vanishes
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or both agents survive with constant wealth shares. In both cases long-run prices
are proportional to assets’ expected relative payoff, hence CAPM cannot hold
in the long-run. Such investment rule, that invalidates the asymptotic validity
of CAPM, matches the generalized Kelly one, whose evolutionary properties have
been analyzed by Evstigneev et al. (2002, 2009, 2016) focusing on different ecologies
of rules. When a mean-variance trader faces a generic fixed-mix investor, we
propose sufficient conditions to assess long-run selection outcomes that rely only
on exogenous parameters of the economy. Our analysis shows that many long-
run scenarios are possible. Indeed, as well as the dominance of one of the two
traders, one may observe the survival of both agents and path dependent cases in
which it is the sequence of realized events to determine the asymptotic selection
outcome. Finally, the different outcomes can be discussed in terms of the effective
risk aversion of the trading strategies: the risk aversion implied by their portfolio
choices conditional on prevailing market prices. In general, a larger effective risk
aversion constitutes a survival advantage.
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A Static Equilibrium – Proof of Proposition 2.1

Here we prove that the fm wealth share is positive in every t and unique and
positive market clearing prices exist. Moreover, we provide a closed-form formula
for pt and show that it negatively depends on wt−1.
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Notice that, under normalization, we can focus without loss of generality on
one between the two market clearing conditions. Consider, for instance, eq. (7).
Defining the function

f(p, w) =
(1− p)

(
p(βv − d̄) + (1− p)df

)
(1− α)wβv

(17)

and assuming 0 < pt < 1, eq. (7) is equivalent to pt = f(pt, wt−1). Then, the
following holds

Lemma A.1. If w > 0 there is one and only one p∗ ∈ (0, 1) such that f(p∗, w) =
p∗.

Proof. For the existence of p∗, notice that for w > 0 it is f(1, w) = 0 and f(0, w) =
df/((1 − α)βwv) > 0, hence, because of the continuity of f(p, w), a solution in
(0, 1) exists. For uniqueness, it is enough consider that ∂2f(p, w)/∂p2 does not
depend on p.

Hence, the first and second points of Proposition 2.1 follows from a straight-
forward application of Lemma A.1 combined with eq. (5) and the fact that eq. (7)
is equivalent to pt = f(pt, wt−1). Indeed, provided a positive initial wealth share,
by induction we have wt > 0 and 0 < pt < 1 in any finite t.

From the relation pt = f(pt, wt−1) it is possible to get a closed-form formula
for relative prices. To do that, one has to rearrange terms in order to obtain
a quadratic equation. Then, solving and noticing that only one root belongs to
(0, 1), one obtains pt = p(wt−1) with p(w) as in (9).

We prove three facts about equilibrium pricing which directly deliver the last
four point of the Proposition. First, we observe that the normalized price p(w) is
negatively related to the wealth share w. Second, we show that if the wealth share
w goes to +∞ then the normalized price p(w) goes to 0. Third, we show that if
the wealth share w goes to 0 then the normalized price p(w) goes to 1 if β ≥ d̄/v
while it goes to df/(df + d̄− βv) if β < d̄/v.

Fact A.1.
∂p(w)

∂w
= − (1− p(w))p(w)2(1− α)βv

(1− p(w))2df + p(w)2(1− α)wβv
< 0.

Proof. Consider p(w) = f(p(w), w) and differentiate both sides by w. Rearranging
terms and substituting one gets

∂p(w)

∂w

(
1 +

p(w)(βv − d̄) + (1− p(w))df
(1− α)wβv

− (1− p(w))(βv − d̄− df )
(1− α)wβv

)
= −p(w)

w
.

Exploiting p(w) = f(p(w), w), the first fraction in parenthesis is equivalent to
p(w)/(1−p(w)) while the second is equivalent to 1−df (1−p(w))/(p(w)(1−α)wβv).
Substituting and rearranging terms, the formula in the statement follows. The sign
is a straightforward consequence of the results in Proposition 2.1.

26



Fact A.2. limw→+∞ p(w) = 0.

Proof. Consider p(w) = f(p(w), w) and notice that f(0, w) = df/((1 − α)βwv).
The statement simply follows from limw→+∞ f(0, w) = 0.

Fact A.3. If β < d̄/v then limw→0 p(w) = df/(df + d̄ + βv). If β ≥ d̄/v then
limw→0 p(w) = 1.

Proof. The statements follow directly from the expression in (9) taking the limit for
w → 0 and noticing that the condition on β sets the sign of the second fraction.

Finally, we prove a fourth fact about pricing that shall be used to provide an
intuition about the relation between the portfolio choices of fm and the price of
the riskless security.

Fact A.4.
∂p(w)

∂α

∣∣∣∣∣
w

=
(1− p(w))p(w)2wβv

(1− p(w))2df + p(w)2(1− α)wβv
> 0

Proof. Along the same lines of the proof of Fact A.1, consider p(w) = f(p(w), w)
and differentiate both side with respect to α. Exploiting the same equivalences
and arguments used in the proof of of Fact A.1, the statement follows.

B Proof of Proposition 2.2

For the first statement, consider the function f(p, w) defined in (17) and notice
that f(α, w̃) = α. By lemma A.1 it is pt+1 = α if and only if wt = w̃. Thus,
if wt = w̃ then pt+1 = α and this implies from equation (5) that wt+1 = w̃. By
induction the statement follows.

For the second statement assume wt−1 < w̃. Suppose, by contradiction, that
wt ≥ w̃. The inequality is equivalent to

dfα

pt(df + dt)
+

dt(1− α)

(1− pt)(df + dt)
≥ w̃

wt−1
.

It follows from the previous results that a necessary condition for having wt ≥ w̃
when wt−1 < w̃ is

1− α
1− pt

≥ w̃

wt−1
.

Substituting from pt = f(pt, wt−1) and the definition of w̃ one gets

(1− α)(pt(βv − d̄) + (1− pt)df )
(1− α)wt−1βvpt

≥ α(βv − d̄) + (1− α)df
αβvwt−1

,

which is equivalent to α ≥ pt. This implies wt−1 ≥ w̃, a contradiction. By induc-
tion the statement follow. A symmetric argument holds for the third statement.
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C Auxiliary processes

Here we define and study some stochastic processes that shall be used to prove
asymptotic selection results. All of them follow from a transformation of {wt}
obtained using the function

z(ζ1, ζ2, ζ3) = ζ1 log
ζ2

ζ3 − ζ2
. (18)

The first process we consider is {zt} with zt = z(1, wt, w̃). If w0 < w̃ we have by
Proposition 2.2 that wt ∈ (0, w̃) ∀t and this immediately implies zt ∈ (−∞,+∞),
with zt → −∞ if and only if wt → 0 and zt → +∞ if and only inf wt → w̃. Define

g(s, w) =
dfα

(df + d(s))p(w)
+

d(s)(1− α)

(df + d(s))(1− p(w))
, (19)

such that the increment of the process can be written as

zt − zt−1 = log
g(st, wt−1)(w̃ − wt−1)
w̃ − g(st, wt−1)wt−1

.

If β < d̄/v holds, then {zt} has bounded increments with both finite positive and
finite negative increments.5 The process’ conditional drift reads

E[zt − zt−1|zt−1 = log(w̃/(w̃ − w))] =
S∑
s=1

πs log
g(s, w)(w̃ − w)

w̃ − g(s, w)w

and, computing the limits, one obtains

lim
z→+∞

E[zt − zt−1|zt−1 = z] = −µw̃ ,

lim
z→−∞

E[zt − zt−1|zt−1 = z] = µ0 ,

with µ0 and µw̃ as in equations (14) and (15). If µw̃ > 0 and µ0 > 0 then, by
continuity, Theorem 3.2 of Bottazzi and Dindo (2015) applies and {zt} is persistent
as in Definition 2.1 of Bottazzi and Dindo (2015). Notice that

lim
z→±∞

E
[
(zt − zt−1)2

∣∣zt−1 = z
]
<∞ ,

thus, if µw̃ < 0 and µ0 > 0 Theorem 4.1 of Bottazzi and Dindo (2015) applies and
limt→∞ zt = +∞ with full probability. If, instead, µw̃ > 0 and µ0 < 0 Corollary 4.1

5See Bottazzi and Dindo (2015) for the formal definitions of bounded increments (Def. 2.2),
finite positive increments and finite negative increments (Def. 4.1).
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of Bottazzi and Dindo (2015) applies and limt→∞ zt = −∞ almost surely. Finally,
if µw̃ < 0 and µ0 < 0 Theorem 4.2 of Bottazzi and Dindo (2015) applies and, with
probability one, either limt→∞ z(1, wt, w̃) = +∞ or limt→∞ zt = −∞.

The next process we consider still applies to the case in which wt ∈ (0, w̃) ∀t,
but it is tailored to maintain bounded increments when β ≥ d̄/v. Indeed, in such
a case one has

lim
w→0

log
g(s, w)(w̃ − w)

w̃ − g(s, w)w
= +∞ ∀s ∈ {2, . . . , S} .

Hence, for any state different from 1, increments become unbounded as wt ap-
proaches zero. Thus, we define

xt =



z(1, wt, w̃) if wt−1 ∈ [ε, w̃] ,

xt−1 + log
g(st, ε)(w̃ − ε)
w̃ − g(st, ε)ε

if wt−1 ∈ [0, ε) and st 6= 1 ,

xt−1 + log
α(w̃ − ε)
w̃ − αε

if wt−1 ∈ [0, ε) and st = 1 ,

t ∈ N ,

where ε is strictly positive and small enough such that

π2 log
g(2, ε)(w̃ − ε)
w̃ − g(2, ε)ε

> −π1 log
α(w̃ − ε)
w̃ − αε

and

log
g(s, w)(w̃ − w)

w̃ − g(s, w)w
> log

g(s, ε)(w̃ − ε)
w̃ − g(s, ε)ε

∀w ∈ (0, ε), ∀s ∈ {2, . . . , S} .

Notice that a number ε that respects such requirements exists because the incre-
ments for states different from 1 become unbounded for asymptotically zero wealth
and

lim
w→0

∂

∂w
log

g(s, w)(w̃ − w)

w̃ − g(s, w)w
= −∞ ∀s ∈ {2, . . . , S} .

By definition we have xt ≤ z(1, wt, w̃) ∀t ∈ N. The equality trivially holds for any
wt−1 ∈ [ε, w̃] while the strict inequality holds for any wt−1 ∈ [0, ε) with st 6= 1 as
a result of the particular choice of ε. For the case wt−1 ∈ [0, ε) and st = 1, notice
that g(1, w) ≥ α and

∂

∂w
log

α(w̃ − w)

w̃ − αw
< 0 ,

thus, xt ≤ z(1, wt, w̃) is also ensured for wt−1 ∈ [0, ε) and st = 1. Hence, it
immediately follows that if lim supt→∞ xt > −∞ then lim supt→∞ z(1, wt, w̃) >
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−∞ and lim supt→∞wt > 0. Since

lim
wt−1→0

wt =
d(st)(βv − d̄)

(df + d(st))βv
< w̃ ,

it is xt → +∞ if and only if z(1, wt, w̃) → +∞ and wt → w̃. The process
{xt} has bounded increments, with both positive and negative finite increments.
Computing the asymptotic conditional drifts, one has

lim
x→+∞

E[xt − xt−1|xt−1 = x] = −µw̃ ,

lim
x→−∞

E[xt − xt−1|xt−1 = x] = π1 log
α(w̃ − ε)
w̃ − αε

+
S∑
s=2

πs log
g(s, ε)(w̃ − ε)
w̃ − g(s, ε)ε

> 0 .

Thus, if µw̃ > 0, Theorem 3.2 of Bottazzi and Dindo (2015) applies and {xt}
is persistent as in Definition 2.1 of Bottazzi and Dindo (2015). One trivially has
limx→±∞ E

[
(xt − xt−1)2

∣∣xt−1 = x
]
<∞, hence, if µw̃ < 0 Theorem 4.1 of Bottazzi

and Dindo (2015) applies and limt→∞ xt = +∞ with full probability.

Next, we define a stochastic process suited for analyzing the cases in which
wt ∈ [w̃,+∞). Our proposal derives from z(−1, w̃, wt) and it is adapted in order
to maintain bounded increments. Indeed, the increment reads

z(−1, w̃, wt)− (−1, w̃, wt−1) = log
g(st, wt−1)wt−1 − w̃

wt−1 − w̃

and, since limw→+∞ g(s, w) = +∞ ∀s ∈ S, it is

lim
w→+∞

log
g(s, w)w − w̃

w − w̃
= +∞ ∀s ∈ S .

Notice that, given Facts A.1 and A.2, there exists a k > 0 and large enough such
that g(s, k) > 1 ∀s ∈ S and g(s, w) ≥ g(s, k) ∀w ∈ (k,+∞) and ∀s ∈ S. Hence,
we have

log
g(s, w)w − w̃

w − w̃
≥ log

g(s, k)w − w̃
w − w̃

≥ log g(s, k)

and the process

ut =

{
z(−1, w̃, wt) if wt−1 ∈ [w̃, k]

ut−1 + log g(st, k) if wt−1 ∈ (k,+∞) ,
t ∈ N ,

is such that ut ≤ z(−1, w̃, wt) ∀t ∈ N. Thus, if ut → +∞ then z(−1, w̃, wt)→ +∞
and wt → +∞. Moreover, ut → −∞ if and only if z(−1, w̃, wt) → −∞ and
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wt → w̃. The process {ut} has bounded increments with finite positive increments.
Computing the asymptotic conditional drifts, one has

lim
u→+∞

E[ut − ut−1|ut−1 = u] =
S∑
s=1

log g(s, k) > 0 ,

lim
u→−∞

E[ut − ut−1|ut−1 = u] = µw̃ .

Thus, since one has limu→±∞ E
[
(ut − ut−1)2

∣∣ut−1 = u
]
< ∞, if µw̃ > 0 Theorem

4.1 of Bottazzi and Dindo (2015) applies and limt→∞ ut = +∞ with full probability.
If, instead, µw̃ < 0 Theorem 4.2 of Bottazzi and Dindo (2015) can be adapted and
P{limt→∞ ut = −∞}+ P{limt→∞ ut = +∞} = 1.

The last stochastic process we consider is tailored to study the cases in which
w̃ < 0. Such condition implies wt ∈ [0,+∞) ∀t, hence we adapt z(1, wt, 1 + wt) =
logwt in order to maintain bounded increments for wt → +∞. Following the
reasoning lines proposed in advance, we consider

yt =

{
z(1, wt, 1 + wt) if wt−1 ∈ [0, k] ,

yt−1 + log g(s, k) if wt−1 ∈ (k,+∞) ,
t ∈ N ,

such that yt ≤ z(1, wt, 1 + wt) ∀t ∈ N. By definition, we have wt → +∞ only if
yt → +∞ and wt → 0 if and only if yt → −∞.

The process {yt} has bounded increments with finite positive increments and,
computing the asymptotic conditional drifts, one has

lim
y→+∞

E[yt − yt−1|yt−1 = y] =
S∑
s=1

log g(s, k) > 0 ,

lim
y→−∞

E[yt − yt−1|yt−1 = y] = µ0 .

Since it is limy→±∞ E
[
(yt − yt−1)2

∣∣yt−1 = y
]
<∞, if µ0 > 0 then Theorem 4.1

of Bottazzi and Dindo (2015) applies and limt→∞ yt = +∞ with full probability.
If, instead, µ0 < 0 then Theorem 4.2 of Bottazzi and Dindo (2015) can be adapted
and P{limt→∞ yt = −∞}+ P{limt→∞ yt = +∞} = 1.

D Proof of Proposition 3.1

For the statement in 1. notice that β ≤ d̄/v − (1 − α∗)df/(α∗v) directly implies
w̃ ≤ 0. Since by Jensen’s inequality one has α∗ > df/(df + d̄), the set of cases is
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not empty: d̄/v − (1− α∗)df/(α∗v) > 0. Consider the process {logwt} and notice
that is a semimartingale. Indeed, one has

E[logwt−logwt−1|wt−1 = w] =
S∑
s=1

πs log

(
dfα

∗

(df + d(s))p(w)
+

d(s)(1− α∗)
(df + d(s))(1− p(w))

)
and, by means of Jensen’s inequality, the definition of α∗, and the properties of
the relative entropy, it is

E[logwt − logwt−1|wt−1 = w] ≥ α∗ log
α∗

p(w)
+ (1− α∗) log

1− α∗

1− p(w)
> 0 .

Fact A.2 implies that there exists a k > 1 such that

Prob{wt > wt−1|wt−1 > k} = 1 .

Hence, consider the process

lt =

{
k if wt ≥ k

logwt otherwise .

{lt} is a semimartingale bounded from above, thus the semimartingale convergence
theorem (Lamperti, 1960) implies that limt→∞ lt = k almost surely and we have
lim inft→∞wt > k > 1 almost surely. Moreover, given the fact that if wt−1 > k
then wt > wt−1 with probability 1, it is limt→∞wt = +∞. The statement directly
follows from Definition 2.1.
For the statement in 2., notice that the condition on β implies w̃ ≥ w0. Hence, for
w0 < w̃, {logwt} is a semimartingale bounded from above by w̃. The semimartin-
gale convergence theorem (Lamperti, 1960) directly implies limt→∞ logwt = log w̃,
hence limt→∞wt = w̃. The statement follows from Definition 2.1 noticing that
α∗ > df/(df + d̄) implies w̃ < 1. For the case w0 = w̃ it is enough to invoke
Proposition 2.2.
Concerning 3., consider the process {ut} defined in appendix C and notice that
the condition on β implies 0 < w̃ < w0. Thus, wt > w̃ ∀t and ut ∈ (−∞,+∞) ∀t.
Exploiting de l’Hôpital Theorem and Jensen’s inequality, one has

µw̃ =
S∑
s=1

πs log

(
1 +

(
df

df + d(s)
− α∗

)
df − α∗(df + d̄− βv)

df − (α∗)2(df + d̄− βv)

)
< 0 .

Hence, {ut} either diverges toward −∞ or toward +∞. Depending on the sequence
of realized events, we have either wt → w̃ or wt → +∞ with probability one. The
statement follows from Definition 2.1 defining Σ′ ⊂ Σ as the set of sequences in
which wt → +∞ and Σ′′ ⊂ Σ as the set of sequences in which wt → w̃. Notice
also that α∗ > df/(df + d̄) implies that the set {w0 ∈ (0, 1)|w0 > w̃} is not empty.
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E Proof of Corollary 3.1

If 1. of Proposition 3.1 occurs, then, from the proof of the Proposition in appendix
D, it is limt→∞wt = +∞ almost surely. Fact A.2 implies limt→∞ pt = 0. If 2. of
Proposition 3.1 occurs, then it is limt→∞wt = w̃ almost surely and Proposition 2.2
implies limt→∞ pt = α∗. Moreover, α∗ < df/(df + d̄) implies w̃ < 1. If 3. of Propo-
sition 3.1 occurs, with probability one either limt→∞wt = +∞ and limt→∞ pt = 0
or limt→∞wt = w̃ and limt→∞ pt = α almost surely. Since no other case is possible,
the statement follows.

F Proof of Proposition 3.2

Consider the conditions in 1., β ≤ d̄/v−df (1−α)/(αv), implies w̃ ≤ 0 and β < d̄/v.
α > df/(df + d̄), instead, lets d̄/v− df (1−α)/(αv) > 0, such that the set of cases
considered is not empty. Hence, the process {yt} in appendix C can be used to
understand long-run outcomes. Since µ0 > 0, we have limt→∞ yt = +∞ almost
surely, which implies limt→∞wt = +∞ with probability one and the statement
follows.

Concerning 2., notice that the condition on β implies 0 < w̃ < w0. Thus, the
process {ut} in appendix C can be used to assess long-run outcomes. In particular,
the condition µw̃ > 0 ensures that limt→∞ ut = +∞ almost surely. Thus, wt → +∞
with probability one and the statement follows.

For 3., the condition on α implies w̃ ≥ 1 while the condition on β ensures
w0 < w̃. Then, if β < d̄/v the process {zt} is suited to study long-run outcomes.
The conditions µ0 > 0 and µw̃ < 0 imply limt→∞ zt = +∞ with probability
one, hence limt→∞wt = w̃ ≥ 1 almost surely and the statement follows. If,
instead, it is β ≥ d̄/v, then we have to use the process {xt} in appendix C.
The condition µw̃ < 0 is sufficient to ensure limt→∞ xt = +∞ almost surely, which
implies limt→∞wt = w̃ ≥ 1 with full probability and the statement is proven.

G Proof of Proposition 3.3

First of all, notice that the condition on α ensures

d̄

(1− w0)v
− (1− α)df

(1− w0)αv
<
d̄

v
,

hence the condition on β does not generate an empty set. The lower bound for
β ensures w0 < w̃. The upper bound on β allows us to use the process {zt} in
appendix C to study long-run outcomes. Since it is µ0 < 0 and µw̃ > 0, we have
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limt→∞ zt = −∞ with full probability. This implies limt→∞wt = 0 almost surely
and the statement is proved.

H Proof of Proposition 3.4

Consider the conditions for the survival of fm. The condition on β in 1. implies
w̃ < 0. Thus, consider the process {yt} in appendix C and notice that the condition
µ0 > 0 in 1. directly implies lim supt→∞ yt > −∞ by means of Theorem 3.1 of Bot-
tazzi and Dindo (2015). Hence, lim supt→∞wt > 0 and fm survives as in Definition
2.1. Concerning 2., the conditions on β imply 0 < w̃ < w0, thus lim supt→∞wt > 0
as a consequence of Proposition 2.2 and fm survives as in Definition 2.1. For 3.,
notice that the condition on β implies w0 < w̃. If β < d̄/v we can use the process
{zt} in appendix C. The condition µ0 > 0, by means of Theorem 3.1 of Bottazzi
and Dindo (2015), entails lim supt→∞ zt > −∞. This implies lim supt→∞wt > 0
and fm survives according to Definition 2.1. If β ≥ d̄/v, instead, we can use the
process {xt} in appendix C. Since limx→−∞ E[xt − xt−1|xt−1 = x] > 0, Theorem
3.1 of Bottazzi and Dindo (2015) delivers lim supt→∞ xt > −∞, which implies
lim supt→∞wt > 0. Thus, fm survives according to Definition 2.1.

Consider the conditions in 1. If β = d̄/((1 − w0)v) − (1 − α)df/((1 − w0)αv)
and α > df/(df + d̄) then w0 = w̃ < 1 and both agents survive as a consequence
of Proposition 2.2. If instead the condition on β is satisfied with strict inequality,
then 0 < w0 < w̃ < 1, where the last inequality follows from the condition on α.
Thus, it is lim inft→∞wt < 1 on every possible sequence because of Proposition 2.2
and mv survives as in Definition 2.1. Consider, instead, the conditions in 2.. The
condition on α implies w̃ ≥ 1 while the condition on β ensures w0 < w̃. Thus, if
β < d̄/v, we can consider the process {zt} in appendix C. The fact that it has
finite negative increments directly implies lim inft→∞ zt = −∞ almost surely. It
follows that lim inft→∞wt < w̃ < 1 with probability one and mv survives according
to Definition 2.1. If, instead, β ≥ d̄/v, we can use the process {xt} in appendix C.
Also in this case the process has finite negative increments, hence lim inft→∞ xt =
−∞. Thus, lim inft→∞wt < w̃ < 1 and mv survives as in Definition 2.1.

I Proof of Proposition 3.5

Since the condition on β in 1. ensures w̃ < 0, we can use the process {yt} in ap-
pendix C to study long-run outcomes. The condition µ0 < 0 implies P{limt→∞ yt =
−∞} + P{limt→∞ yt = +∞} = 1, thus Prob{wt → +∞} + Prob{wt → 0} = 1.
The statement follows calling σ′ ∈ Σ′ the sequences where wt → +∞ and σ′′ ∈ Σ′′

the sequences where wt → 0.
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For 2., consider that the condition on α ensures w̃ ≥ 1. Hence, wt ∈ [0, w̃]
∀t ∈ N and, since β < d̄/v, we can use the process {zt} in appendix C to study
long-run outcomes. The conditions µ0 < 0 and µw̃ < 0 imply P{limt→∞ zt =
−∞}+ P{limt→∞ zt = +∞} = 1, thus Prob{wt → w̃}+ Prob{wt → 0} = 1. The
statement follows calling σ′ ∈ Σ′ the sequences where wt → w̃ and σ′′ ∈ Σ′′ the
sequences where wt → 0.

J Proof of Proposition 3.6

Notice that the condition on α ensures w̃ < 1, while the condition on β ensures
w0 > w̃. Then, the process {ut} in appendix C can be used to study long-run
outcomes. The condition µw̃ < 0 implies P{limt→∞ ut = −∞} + P{limt→∞ ut =
+∞} = 1. Thus, Prob{wt → +∞} + Prob{wt → w̃} = 1 and the statement
follows calling σ′ ∈ Σ′ the sequences where wt → +∞ and σ′′ ∈ Σ′′ the sequences
where wt → w̃.

K Proof of Proposition 3.7

Notice that the condition on α ensures w̃ < 1, while the lower bound on β en-
tails w0 < w̃. The upper bound on β allows us to use the process {zt} in ap-
pendix C to study long-run outcomes. Then, the conditions µ0 < 0 and µw̃ < 0
imply P{limt→∞ zt = −∞} + P{limt→∞ zt = +∞} = 1. This, Prob{wt →
0} + Prob{wt → w̃} = 1. The statement follows calling σ′ ∈ Σ′ the sequences
where wt → 0 and σ′′ ∈ Σ′′ the sequences where wt → w̃.
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