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Abstract

We investigate upon the shape and the determinants of the age distribution of business �rms. By em-
ploying a novel dataset covering the population of French businesses, we highlight that a geometric law
provides a reasonable approximation for the age distribution. However, relevant systematic deviations
and sectoral heterogeneity appear. We develop a stochastic model of �rm dynamics to explain the mech-
anisms behind this evidence and relate them to business dynamism. Results reveal a long-term decline in
entry rates and lower survival probabilities of young �rms. Our �ndings bear important implications for
aggregate outcomes, notably employment growth.
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1 Introduction

The size and growth distributions of businesses, and the mechanisms behind their shape, have been exten-
sively studied in the literature (see notably Simon and Bonini, 1958; Axtell, 2001; De Wit, 2005; Bottazzi and
Secchi, 2006; Arata, 2019, among the others). Considerably less attention has been devoted to the �rm age
distribution, although the age composition of economies, and of sectors of activity, has important implications
for industrial dynamics, job creation, and innovation (see Coad, 2018 for a recent survey). In fact, young �rms
are the engine of creative destruction (Schumpeter, 1934), often driving the introduction of radical innova-
tions (Baumol, 2002), and signi�cantly contributing to job creation (Haltiwanger et al., 2013; Criscuolo et al.,
2014), with a key role played by few rapidly growing gazelles (Nightingale and Coad, 2014).

In this paper we �ll this gap and we study in detail the shape and determinants of the age distribution of
business �rms by combining new empirical evidence with a calibrated stochastic model of �rm dynamics.

The empirical analysis employs a new database that covers the population of businesses in France in 2018
and uncovers three stylised facts. First, a geometric law appears to be a reasonable �rst-order approximation
for the aggregate age distribution; second, there are however signi�cant deviations from the geometric bench-
mark at aggregate level; third, signi�cant cross-sectoral heterogeneity in the slope of the age log-distribution
is evident, with more signi�cant deviations from the geometric benchmark at �ner-grained levels of sectoral
classi�cation.

We develop a relatively simple stochastic model of �rm dynamics to disclose the mechanisms behind these
stylised facts and to guide the interpretation of empirical �ndings. In particular, we consider an economy in
discrete time. At each period a number of new �rms, proportional to the amount of incumbents, enters the
economy. All �rms have a given survival probability and can exit the market. Our modelling strategy provides
a novel non-trivial mechanism to generate a geometric age distribution and allows us to explain deviations
from such a benchmark. We also introduce sectoral heterogeneity and we show that the aggregation of a
�nite number of geometric distributions with heterogeneous coe�cients, each representing one sector, can
lead to the emergence of an approximated geometric distribution at the aggregate level.

The combination of empirical and model implications reveals (i) the existence of a long-term decline in
entry rates, highlighted by a lower slope of the age log-distribution for �rms with less than 30 years; and
(ii) the presence of a lower survival probability for young �rms, which results in a relatively steeper log-
distribution for businesses with age lower than 10 years. Our �ndings also point to a short-term e�ect of the
Great Recession, which generates a blip in the age distribution for �rms born around 2008. E�ects of the Great
Depression, the Second World War, and the subsequent post-war recovery (Trente Glorieuses) are also visible,
although the data have been collected less systematically before 1980. Further examination of the age distri-
bution at �ner grained level of aggregation reveals that the geometric benchmark appears to broadly hold also
within 2-digit sectors, but with the slopes of the sectoral log-distributions being signi�cantly heterogeneous.
This suggests that di�erent sectors are at di�erent stages of their life-cycle, with our analysis providing an
indirect measure and showing that the aggregate behaviour re�ects important sectoral composition e�ects.
More signi�cant deviations from the geometric benchmark at very disaggregated levels (3-digit sectors) may
suggest that evolutionary life-cycle dynamics become better observable in more detailed sectors.

The overall evidence on the shape of the age distribution, its structural and cyclical determinants, con-
tribute to the debate on the role of young �rms in the economy, on declining business dynamism, and on
sectoral di�erences in industrial dynamics.

The analysis is particularly novel along a number of dimensions. First, it uses for the �rst time new
comprehensive cross-sectional French data to study in detail the age distribution of all businesses, disclosing
the three above mentioned stylised facts. Second, it develops a novel stochastic model of �rm dynamics
characterising the age distribution and explaining the mechanisms behind its shape. As a matter of fact, under
the baseline setting the intuition proposed by our model is that, in order to achieve age a, a �rm has to be in the
group of entrants in one period and has to remain among the group of incumbents for a−1 periods. Since the
ratio between the two groups remains constant over time, multiplying accordingly a geometric distribution
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is obtained. Moving to more complete scenarios, more apt at coping with violations of the geometric law,
our model suggests that di�erent slopes of the age log-distribution are related to variations in entry rates, to
heterogeneity in the survival probabilities, or to sectoral di�erences. Third, our analysis highlights how the
slope of the cross-sectional age log-distribution – pictured at a single given point in time – is an important
structural parameter that has signi�cant links with the long-term evolution of business dynamism and the
life-cycles of industries, with relevant implications for economic outcomes, notably employment growth.

The remainder of the paper is organised as follows. Section 2 provides a brief overview of the literature
related to this study. Section 3 describes the data used for the empirical analysis and presents three key stylised
facts related to the age distribution of business �rms. Section 4 formalizes a stochastic model of �rm dynamics,
solved under di�erent assumptions on survival probabilities and entry rates, and presents several comparative
statics exercises that guide the interpretation of stylised facts. Section 5 presents a calibration exercise of the
stochastic model and con�rms its validity. Section 6 discusses the stylised facts, in the light of both model
prescriptions and its calibration and suggests that sectoral di�erences in age distributions have important
implications for employment growth. Section 7 concludes and discusses avenues for further research.

2 A brief overview of the literature

Only few empirical analyses provide comprehensive insights on the �rm age distribution. These existing stud-
ies include the work by Coad (2010b), Barba Navaretti et al. (2014), Kinsella (2009), and Grazzi and Moschella
(2018). In particular, Coad (2010b) investigates and compares the age distributions of small scale Indian busi-
nesses, of young establishments in the United States, of samples of Italian and Spanish �rms, and of �rms in the
international airline industry, providing a �rst broad investigation of cross-sectional age distributions using
di�erent data sources. Furthermore, Barba Navaretti et al. (2014) estimates the age distribution for a sample
of �rms in Italy, France and Spain, Kinsella (2009) instead focuses on a sample of Irish �rms, while Grazzi
and Moschella (2018) as a side exercise to their core analysis, provide some insights on the age distribution of
Italian exporters vs. non-exporters.

These studies suggest that the �rm age distributions of the samples or groups of �rms analysed approx-
imate an exponential law, the continuous counterpart of the geometric distribution.1 Despite being highly
informative, these existing studies do not provide a complete characterisation of the aggregate age distribu-
tion of business �rms. As a mater of fact, they are mainly based on samples rather than whole populations of
businesses. Furthermore, at the best of our knowledge, discussions about the mechanisms behind the shape
of the age distribution, systematically linking it to entry rates and survival, to the debate on the evolution of
business dynamism and industry life-cycles, or more generally to industrial dynamics, have been very limited.

A relevant exception is the work by Steindl (1965) that employs the �rm age distribution to provide an
explanation of the emergence of a Pareto �rm size distribution in a stochastic model of �rm dynamics. A
similar approach is taken by Coad (2010a), who takes instead an exponential age distribution as an assumption,
to derive the Pareto �rm size distribution. In particular, Coad (2010a) suggests that there are two possible
frameworks under which a perfect exponential age distribution would emerge. The �rst case is a model in
which a constant number of �rms enter the market, but a constant proportion of these entrants exit the market
in each year. The second case, instead, is a model in which �rms do not exit and an exponentially increasing
number of �rms enter the market in each period (see Simon, 1955). Our approach generalizes the previous
ones considering entry rates and introducing stochastic exit. Moreover, allowing for dynamics in entry rates,
heterogeneity in survival probabilities, and sectoral di�erences, we are able to account for deviations from
the exponential (or geometric) benchmark.

Indeed, this paper directly links the age distribution of businesses to the dynamics of entry and survival. In
that, it is closely related to the recent literature focusing on the evolution of business dynamism. In particular,

1Notice that age, involving time, can be de�ned as ether discrete or continuous. As we shall see, given the structure of our data,
we opt for the discrete version without loss of generality.
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there is a lively debate on the extent to which business dynamism, and notably entry rates, have been declining
in the last decades. Signi�cant declines have been observed in the United States (see Decker et al., 2014 among
the others) and across countries (Criscuolo et al., 2014; Calvino and Criscuolo, 2019). However, the lack of
availability of very long and consistent time series of entry and exit rates, especially at detailed sectoral levels
of aggregations, has been a signi�cant limit for this stream of research. Focusing on the cross-sectional age
distribution represents an indirect way to analyse the longer-term evolutions of business dynamism, also
detailing sectoral patterns, as will be further discussed along this paper.

Our analysis also links sectoral di�erences in age distributions with industry evolution, revealing that
sectors may be at di�erent phases of their life-cycles. We therefore relate to the literature on the evolution
of industries, and importantly to the legacy of Klepper (1996). In particular, the seminal contribution by
Klepper (1996) suggests that at the beginning of the life-cycle of many industries entry is high, there is a
growing number of producers, with market shares changing rapidly and signi�cant product innovations. As
industries evolves, entry starts declining, there is a shake-out reducing the number of producers, and the
industry leadership stabilises. In this stage product innovation and the diversity of product varieties decline,
with �rms’ innovative activity shifting to process innovation. In this framework, analysing di�erences in
sectoral age distributions is particularly promising to identify the stages at which di�erent sectors stand, as
will be further discussed in the following.

Finally, the analysis is also more broadly related to di�erent streams of research in industrial economics
that examine patterns in business demography and the life duration of new �rms (Agarwal, 1998; Bartels-
man et al., 2005; Strotmann, 2007), the role of �rm age for performance and survival (Evans, 1987; Dunne
and Hughes, 1994; Huergo and Jaumandreu, 2004; Mata and Portugal, 2004; Balasubramanian and Lee, 2008;
Huynh and Petrunia, 2010; Coad et al., 2013; Coad et al., 2016; Calvino et al., 2018); or model the dynamics
and evolution of industries (Dosi et al., 1995; Klepper, 1997; Malerba and Orsenigo, 1996; Marsili, 2001; Dosi
et al., 2017).

3 Data and stylised facts

The analysis is based on a novel data source produced and published by the French National Institute of
Statistics (INSEE), the Sirene database. The data covers the population of all enterprises and of all their estab-
lishments in France and encompasses about 10 million establishments in all sectors of the economy.2 This is
the most appropriate database to study �rm age distributions, given the comprehensiveness of its coverage
and the ability to provide information on establishment and enterprise age also for very old businesses. Using
this data source represents a signi�cant novelty with respect to previous empirical investigations on the topic.

The dataset includes information on enterprise and establishment identi�ers, detailed sectoral and geo-
graphical codes, and – most importantly for the aim of this study – information on the date of creation of
each enterprise and establishment.3

Our analysis, thus, focuses on all businesses in France métropolitaine and we exclude regions oversea,
called in French the départements d’outre-mer, i.e., Guadeloupe, Guyane, Martinique, Mayotte et Réunion and
Saint-Pierre et Miquelon. Also, given the focus on business �rms, the main body of the paper excludes the
non-business sectors and focuses mainly on manufacturing and non-�nancial market services.4

2Di�erently from balance-sheet data (e.g., FARE) or matched employer-employee data (e.g., DADS), the coverage of Sirene also
comprehensively includes self-employed individuals and �rms that are not subject to the presentation of detailed balance sheets.
The database is timely available and updated monthly (https://www.data.gouv.fr/fr/datasets/base-sirene-des-entreprises-et-de-leurs-
etablissements-siren-siret/). This may limit the identi�cation of inactive �rms.

3Dates of creation have been systematically collected from 1980. Before that date, �rms and establishment creation dates are
based on the di�erent business and commercial registries (registres du commerce, des socétés, de l’industrie, etc.). We will take this into
account in our empirical exercise.

4Sectoral codes (APET700) retained include manufacturing, non-�nancial market services, as well as computer repairers and
personal services, so that the following condition APET700 ∈ [1001, 3320]; [4110, 6399]; [6810, 8299]; [9511, 9609] is met.
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We focus on the cross-sectional stock of enterprises and establishments at the 1st of January 2018. Ad-
ditionally, the data have been cleaned to take into account common issues, such as avoiding situations in
which a multi-establishment business owned an establishment which was registered before the enterprise
itself. The �ltering procedure of sectors, in addition, has been performed at the establishment level. This
allows us to keep in our clean dataset also the single establishments operating in business sectors, of the
multi-establishment enterprises whose core activity does not fall into business industries. The �nal popu-
lation used for the analysis, includes 6 519 413 enterprises and 7 155 860 establishments belonging to 608

di�erent 4-digit sectors. Age is de�ned as the number of years between the creation date and 2018. Thus, in
what follows age shall be intended as a discrete variable.5 This choice is pretty natural and allows us to avoid
possible seasonality issues. A �rst set of descriptive statistics concerning the age of these �rms is provided in
Table 1.

AGEet AGEen

Min. 0.00 0.00
1st Qu. 3.00 4.00
Median 7.00 10.00
Mean 10.72 13.32
3rd Qu. 15.00 20.00
Max. 100.00 100.00
N 7 155 860 6 519 413

Table 1: Descriptive statistics of the age of establishments (AGEet) and enterprises (AGEen) age.

Table 1 highlights that aggregate age distributions are right-skewed, as the average establishment and
enterprise ages lie at the right than the two medians. Reasonably, enterprises are in general older than es-
tablishments due to the possibility that multi-establishment businesses might have built new plants after the
creation of the enterprise itself. Based on these data, the reminder of this section presents more in detail
three key stylised facts on the age distribution of businesses in France from a purely empirical viewpoint.
The discussion of their implications through the lenses of an economic model is left to Section 6.

3.1 Fact 1: geometric law as a �rst-order approximation for the age distribution

The �rst part of the empirical analysis focuses on the aggregate cross-sectional age distribution of businesses
in France in 2018. As a �rst exercise, we show the plots of the age log-distributions at the establishments and
enterprises levels in Figure 1, where the ordinary least squares (OLS) line of best �t is also depicted.6
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Figure 1: Pooled age distribution at the establishment (left panel) and enterprise (right panel) levels. In black we depict the empirical
distribution and in blue the OLS �t.

5Businesses with age equal to zero are disregarded as the 1st of January is not representative of the whole year.
6Unreported analysis suggests that a qualitatively similar shape is also observed when excluding self-employed.
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From Figure 1 – where we depict log-frequencies on the y-axis – one can observe that a geometric law
can provide a reasonable �rst-order approximation of the two empirical age distributions. As a matter of
fact, in a perfect geometric case, the log-distribution would be represented by a perfectly straight line. Plots
similar to the ones observed in Figure 1 are also visible when taking a slightly lower aggregation level. Indeed,
even by separating �rms and establishments between manufacturing or services, the aggregate results remain
unchanged both qualitatively and quantitatively. We show this in a simple regression framework in which
we estimate by means of ordinary least squares the linear model:

log(counti) = β0 + β1agei + εi (1)

where the subscript i ∈ {Aggregate, Manufacturing, Services} denotes the level of aggregation. We collect
the results in Table 2 for establishments and enterprises. It is possible to observe that not only at aggregate
level, but also when focusing separately on manufacturing and services, the estimated coe�cients for the
slope of the log-distribution is between −0.10 and −0.12. This suggests that for each additional year of life,
on average, there are 10.4% less �rms.

The OLS estimation shall only be considered as an approximation. As a matter of fact, recent contributions
to the literature highlight that there may be some challenges when carrying out this type of OLS estimation
(see Bottazzi et al., 2015 for a critical discussion).7 An alternative way to estimate the slope parameter is to
assume ex-ante that the overall age distribution follows a geometric law. Under this strong assumption, one
can consistently and e�ciently estimate the parameterλ characterizing the geometric distributionλ(1−λ)x−1

by means of maximum likelihood (ML). A relevant di�erence between the OLS and the geometric ML �t lies
in the way observations are weighted. The former assigns the same weight to every age pro�le disregarding
their size in terms of observations. The latter, instead, takes into account the fact that many more observations
are available for low age pro�les. Thus, the ML �t of a geometric law is designed to better capture the slope
of the age distribution for younger �rms, at the cost of a poor �t in the right tail of the distribution, for the
few very old �rms. Results from this exercise support the intuition provided by the simpler but biased OLS
(see Figure A.1).

In general, also considering the very high levels of adjusted R2 from the regression exercises equally
weighting all age bins, we conclude that at broad levels of aggregations – similarly to what pointed out by
Coad (2018) among the others – the geometric distribution provides a reasonable �rst-order approximation
of the age distribution of businesses. However, as already evident in Figure 1, the geometric �t is not perfect.
A formal quantitative statistical evaluation carried out exploiting the ML framework (e.g. by a χ2 test, which
is presented in Appendix A) leads to a strong rejection of the null hypothesis of a perfect geometric shape.8

This is further explored in the next stylised fact.

3.2 Fact 2: signi�cant deviations from the geometric benchmark in the aggregate

Examining more closely Figure 1, one can however notice that the geometric �t, despite being reasonable
at �rst glance, has limitations. The deviations from the geometric benchmark display, as a matter of fact, a
clustered pattern over the age support (or over time reading Figure 1 from the right to the left). As we move
from the youngest �rms to the oldest ones in Figure 1 we can observe i) a �atter distribution for �rms with
age between 1 and about 30 years old and ii) a steeper distribution for �rms in the 30–50 years old region.

After that age, we observe more signi�cant variations from the geometric benchmark. The distribution
appears to some extent even steeper – but more volatile – for �rms older than 50 but younger than 75 years
old, and much �atter after that. These patterns need to be taken with more caution due to the absence of

7Bottazzi et al. (2015) focus on the Zipf law, however their arguments can be also adapted to our case considering an exponential
transformation of data.

8This rejection and the equal weighting of all age bins further convinced us to keep referring to the OLS framework in the main
text. This will also better �t with the intuitions behind the theoretical model presented below.
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Dep. variable: log-count (establishments)

Aggregate Manufacturing Services

Age −0.117∗∗∗ −0.106∗∗∗ −0.118∗∗∗

(0.002) (0.003) (0.002)
Const. 13.888∗∗∗ 10.573∗∗∗ 13.867∗∗∗

(0.112) (0.187) (0.111)
Obs. 100 98 100
Adj. R2 0.974 0.917 0.975

Dep. variable: log-count (enterprises)

Aggregate Manufacturing Services

Age −0.113∗∗∗ −0.105∗∗∗ −0.114∗∗∗

(0.002) (0.004) (0.002)
Const. 13.965∗∗∗ 10.738∗∗∗ 13.929∗∗∗

(0.132) (0.210) (0.129)
Obs. 100 98 100
Adj. R2 0.962 0.894 0.964

Table 2: Estimation of the geometric distributions via OLS for the age of establishments (left) and enterprises (right) at the aggregate
level and in the manufacturing and services broad sectoral aggregates.

a su�ciently high number of observations and the fact that the dates of creation of �rms have been more
systematically collected only since 1980.

In order to explore more in detail the deviations from the geometric benchmark we perform further anal-
ysis of the residuals and their correlation. This is reported in Figure 2, which shows that, the deviations
from the perfect geometric benchmark are non-random over time and they rather display very high levels
of auto-correlation at several lags (i.e., age di�erences). This indicates that the patterns of the age distribu-
tion identi�ed (e.g., the increasing residuals between 1 and about 30 and the decreasing ones between 30 and
50) are likely due to some long-run trends in the economic system that characterize the degree of market
turbulence. This will be further discussed in the following sections.
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Figure 2: Time series (top panels) and autocorrelation function (bottom panels) of the geometric �t residuals for aggregate data at
the establishment (left panels) and enterprise (right panels) levels.

We then enrich the analysis based on simple OLS estimates complementing the residuals analysis with
the maximum likelihood estimation of a piecewise geometric distribution. We de�ne it as the distribution that
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assigns to every x ∈ N a probability

G(x;λ,k) =g0(λ,k)

(
H(k1 − x)λ1(1− λ1)x−1+

+
K∑
i=2

H(x− ki−1 + 1)H(ki − x)λi(1− λi)x−1 +H(x− kK + 1)λK+1(1− λK+1)x−1

)
,

(2)

where k = (k1, k2, . . . , kK) is a vector ofK breaks (that is, points in which the distribution changes its shape),
λ = (λ1, λ2, . . . , λK+1) is a vector containing the parameters which determine the shape of the di�erent
pieces, H(x) represents the Heaviside function (such that H(x) = 1 if x > 0 and H(x) = 0 otherwise), and
g0(λ,k) is a normalization term reading

g0(λ,k) =

(
1−

kK−1∑
i=1

λK+1(1− λK+1)i−1 +

k1−1∑
i=1

λ1(1− λ1)i−1 +

K∑
j=2

kj−1∑
i=kj−1

λj(1− λj)i−1

)−1

.

The results are reported in Figure 3, where we set k = (10, 20, 30, 40) and zoom on �rms younger than 50
years old.9 The slope of the geometric �t is steeper in the interval (0, 10) than in [10, 30), i.e., when contrasting
younger with older businesses. Similarly, the distribution is steeper for �rms with age a ≥ 30 with respect
to �rms with age a ∈ [10, 30), i.e. when contrasting �rms born during the 1970s and 1980s with �rms born
during the great moderation.10
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Figure 3: Empirical distribution (for �rms with a ≤ 50) and piecewise geometric �t obtained multiplying estimated probabilities by
the total number of �rms.

So far the analysis has focused on aggregate or very broad macro-sectoral features of the age distribution
of businesses. But these aggregate behaviours can hide important compositional e�ects. For this reason, we
focus on more disaggregated sectoral groups and analyse their age distributions in the next sub-section.

3.3 Fact 3: signi�cant sectoral heterogeneity, with stronger deviations at �ner grained
levels

In this section we further explore the properties of the age distribution of French businesses in 2018 focusing
on lower levels of aggregation. As previously mentioned, this is relevant to better understand the extent to
which sectoral heterogeneity a�ects the aggregate distribution.

In particular, we plot the empirical age distributions and perform OLS geometric �ts separately for dif-
ferent 2- and 3-digit sectors.11 Although we have plotted age distributions of every single 2- and 3-digit

9Nonetheless, the piecewise geometric model is estimated using data on all age pro�les.
10Unreported alternative choices of the cut-o�s con�rm that the age log-distribution for �rms a ≥ 30 is steeper than the one for

younger �rms.
11This part of the analysis is carried out, without loss of generality, only on establishments. Results on enterprises are available

from the authors upon requests.
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Figure 4: Age distribution of establishments at the 2-digit level for nine selected industries.

sectors, we report the plots of the empirical distributions with geometric �ts for nine selected 2-digit sectors,
in Figure 4 below, and nine selected 3-digit sectors in Figure A.2 in Appendix A.

Focusing on those �gures, it is already possible to observe that the geometric �t still appears as a reason-
able �rst-order approximation of the empirical distribution in many sectors, but that the coe�cient estimates
are heterogeneous across sectors. For example, Figure 4 suggests that the slope of the log-distribution of the
food manufacturing industry (10) is signi�cantly �atter than the slope of the computer programming, consul-
tancy and related activities industry (62). Furthermore, Figure A.2 highlights that this result holds true at more
disaggregated levels, when comparing the manufacturing of dairy products (105) with computer programming,
consultancy and related activities (620).
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Figure 5: Heterogeneity of the age distribution geometric �t at the 2- and 3-digit levels for establishments.
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Signi�cant heterogeneity of the slopes of the log-distributions with relatively good geometric �t are also
observed at the 2-digit level. Results of the linear regression estimates are reported by Table A.2. In order to
summarise the sectoral heterogeneity in the slopes of the log-distributions and the goodness of their geometric
�t, we present in Figure 5 the distributions of the slope coe�cients and the adjusted R2 (retrieved from the
estimation of equation (1) at the 2- and 3-digit levels). The results suggest that the more one looks at the
microeconomic level, by focusing on narrower sectors, the higher the heterogeneity in the estimated slope
and the lower the quality of the geometric �t. The goodness of �t seems to con�rm that the geometric
distribution appears as a reasonable �rst-order approximation also when focusing on 2-digit sectors, but at
the 3-digit sectoral disaggregation, more important deviations are revealed, as highlighted by the fatter left
tail of the adjusted R2 distribution (bottom right panel).

Sectoral heterogeneity and deviations from the geometric �t are likely related to sectoral characteristics
and industrial dynamics. An important dimension to consider appears to be related to the phase of their
life-cycle, as will be further discussed in the following. Furthermore, the signi�cant sectoral heterogeneity
suggests that the generalized geometric pattern observed at the aggregate level (see Table 2) is therefore
conceivable as an emergent property and that compositional e�ects play an important role.

4 Model

In order to better understand the mechanisms behind the shape of the age distribution, its deviations from
the geometric benchmark, and the sectoral heterogeneity discussed in the previous section, we propose a
stylised stochastic model of �rm dynamics. The model suggests that the age distribution is nothing but an
emergent property – an unconditional object using the language of Brock (1999) – whose cross-sectional
distributional shape is determined by the evolution of the rates of entry and survival of businesses as well as
by their di�erence.

This model abstracts from several aspects of the reality – e.g. it does not account for growth dynamics
nor considers �rm size – but has the ability of supporting us in a better understanding of the stylised facts
discussed in the previous section. This approach is consistent with some of the intuitions put forward by
Coad (2010a).

We consider an economy in discrete time indexed by t ∈ N. De�neNt ∈ N as the number of �rms present
in the economy at the end of t. We assume that at the beginning of time t = 1 a number N0 ∈ N of �rms are
created, while, in every period t > 1, φtNt−1 new �rms enter the economy.12 Thus, φt is the entry rate. Each
�rm is uniquely identi�ed by a number i ∈ N which is progressively assigned. De�ne Ft as the set of �rms
present in the economy at the end of time t (such that Nt = |Ft|) and ft as the set of new entrants at time t.
Each �rm i ∈ {Ft−1 ∪ ft} has a probability ρi,t of surviving time t and, thus, of belonging to Ft. It follows
that the probability of �rm i to exit the economy at time t is 1 − ρi,t. De�ning F0 = {∅}, in mathematical
terms we have that for any i ∈ {Ft−1∪ft} and t ∈ N it is Prob{i ∈ Ft} = ρi,t. Finally, the age of �rm i ∈ Ft,
which entered the economy at time ti, is de�ned as ai,t = t− ti + 1 and the number of �rms of age a at time
t is Nt(a) = |{i ∈ Ft | ai,t = a}|.

4.1 Solving the model

We solve the model for the expected number of �rms of a given age at a generic time period t under di�er-
ent assumptions on survival probabilities and entry rates – i.e. di�erent scenarios. Looking at the expected
number for di�erent age levels, one recovers a sort of theoretical histogram that can be easily interpreted as a
theoretical age distribution. In the simplest scenario we are able to go further and derive asymptotic relative
frequencies. This exercise helps in understanding how the geometric behaviour originates. The fundamental
idea underlying our analysis is that the event “�rm i survives time t” can be expressed in terms of a Bernoulli
random variable si,t ∈ {0, 1} with Prob{si,t = 1} = ρi,t. As we shall explain, even if such process let the age

12We assume that φt ∀t > 1 and N0 are such that φtNt−1 ∈ N ∀t > 1.
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of a �rm at the moment of failure be geometrically distributed, obtaining that the distribution of �rms’ age at
a given time is geometric is not trivial.

Baseline scenario: constant entry rate and survival probability. Let us begin from the simplest case
by assuming that the survival probability is constant for all �rms and all periods, ρi,t = ρ ∀t, i, and the entry
rate is constant over time, φt = φ ∀t > 1. The number of �rms in the economy at the end of time t can be
expressed using the Bernoulli random variables just introduced. More speci�cally one has

Nt =
∑

i∈{Ft−1∪ft}

si,t . (3)

Since |{Ft−1 ∪ ft}| = Nt−1(1 + φ) for t > 1, |{F0 ∪ f1}| = N0, and the Bernoulli random variables are
i.i.d., we can write

E[Nt] = E

E
 ∑
i∈{Ft−1∪ft}

si,t

∣∣∣∣∣Nt−1

 = E[Nt−1](1 + φ)ρ .

Iterating the map one gets
E[Nt] = N0(1 + φ)t−1ρt . (4)

Then, exploiting the de�nition of the Bernoulli random variables, the number of �rms with age a at time t
can be written as

Nt(a) =
∑

i∈ft−a+1

t∏
τ=t−a+1

si,τ . (5)

Recalling that |ft| = Nt−1φ for t > 1 and N0 for t = 1, its expectation for the case a < t is

E[Nt(a)] = E[Nt−a]φρ
a (6)

and, substituting with eq. (4) computed at time t− a, the expected number of �rms with age a reads

E[Nt(a)] =

{
N0ρ

t if a = t ,

N0φ(1 + φ)t−a−1ρt if a < t .
(7)

The case a = t is derived from eq. (6) noticing that the expected number of �rms created at time t = 1 is
indeed known and equal toN0. Notice that logE[Nt(a)] is linear in a and the coe�cient of a is−(1+φ). This
means that the slope of the age log-distribution, depends only on the entry rate, while the survival probability
in�uences only the log-distribution intercept.

To better understand how the results originate, we compute the asymptotic relative frequencies of the
age variable, under the assumption that the number of �rms in the economy is su�ciently large in every
period. In particular, it is enough to assume N0 → +∞ and φ ≥ (1 − ρ)/ρ, such that the expected number
of �rms cannot converge to zero for large t.13 Under those assumptions, the Strong Law of Large Numbers
implies that, almost surely with respect to the probability measure of the Bernoulli trials (si,t)i∈N,t∈N, it is
limN0→∞N1/N0 = ρ in the �rst period and limN0→∞Nt/N0 = (1 + φ)t−1ρt for any t > 1.14 The relative
frequency of �rms with age a at time t can be computed as the ratio of the number of �rms born at t− a+ 1

and survived until t over the sum of all the �rms survived until t. Calling Ft(a) such quantity, we have

Ft(a) =

∑
i∈ft−a+1

t∏
τ=t−a+1

si,τ

t∑
τ ′=1

∑
jτ ′∈fτ ′

t∏
τ ′′=τ ′

sjτ ′ ,τ ′′

=

( ∑
i∈ft−a+1

t∏
τ=t−a+1

si,τ
Nt−a

)
Nt−a
N0

t∑
τ ′=1

( ∑
jτ ′∈fτ ′

t∏
τ ′′=τ ′

sjτ ′ ,τ ′′

Nτ ′−1

)
Nτ ′−1

N0

13This can be easily grasped looking at eq. (4) and taking the limit for t→∞.
14In what follows we will omit the reference to the probability measure when using ”almost surely”. Still, it has to be intended

with respect to the probability measure of the Bernoulli trials (si,t)i∈N,t∈N.
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and, by the Strong Law of Large Numbers, we almost surely obtain

lim
N0→∞

Ft(a) =
φ(1 + φ)t−a−1ρt

ρt +
t−1∑
n=1

φ(1 + φ)t−n−1ρt
.

Factorizing and taking the limit for t → ∞, we get the asymptotic relative frequency of �rms with age a,
F(a), which almost surely reads

F(a) = lim
t→∞

(
lim

N0→∞
Ft(a)

)
=

(1 + φ)−a

∞∑
i=1

(1 + φ)−i
.

Solving for the geometric series at the denominator and de�ning λ = φ/(1 + φ), we almost surely have

F(a) = λ(1− λ)a−1,

which clearly shows the geometric behaviour of the �rm age distribution. Given the way in which the random
variable si,t is de�ned, obtaining that age is geometrically distributed may appear trivial. But this is not the
case. First, because the age of a �rm at a given time t cannot be interpreted as the number of Bernoulli trials
(i.e. periods) needed to have a �rm to fail. In other words, age is not computed as how old a �rm is at the
time of exiting the economy; a �rm can in fact continue to survive even in the following periods. Second,
because the number of new �rms entering the economy changes over time and it is strictly connected to the
amount of incumbent �rms. Thus, we cannot see cohorts of �rms with di�erent ages as random samples from
the same underlying process observed at di�erent stages. This is evident by noticing that F(a) only depends
upon the entry rate φ, and not on the survival rate ρ.

The emergence of the geometric behaviour in our framework can be understood considering the following
intuition. Notice that λ is the fraction of new �rms in the economy at the beginning of a given period – i.e.
λ = |ft|/|{Ft−1 ∪ ft}| ∀t ∈ N – while 1 − λ is the fraction of incumbents. Hence, in order to show an age
equal to a, a �rm has to belong to the new entrants group for 1 period, and to the incumbents group for a− 1

periods. Multiplying such fractions accordingly, the asymptotic relative frequency F(a) is obtained and the
geometric behaviour emerges. This also explains why the slope of the log-distribution is only in�uenced by
the entry rate. Ultimately, φ is the unique determinant of relative sizes of di�erent age pro�les.

Unconditional scenario: time-dependent entry rate and homogeneous survival probabilities.
We consider now the case in which survival probabilities and entry rates change over time. We keep, how-
ever, the assumption that survival probabilities are homogeneous and do not depend on �rms’ characteristics.
That is, ρi,t = ρt ∀i, t. Concerning the entry rate, we distinguish two cases. In the �rst one, φt is an indepen-
dent random variable such that E[φt] = φ ∀t. In the second one, φt varies over time according to a certain
deterministic process, such that (φ2, φ3, . . . , φt, . . .) is a known sequence of parameters. For what concerns
the expected number of �rms with a given age at a generic time t, the second case is equivalent to assume
that every entry rate is an independent random variable with time-dependent expectation. Under this inter-
pretation, we abuse notation letting φt be interpreted as the expected entry rate at time t. In the �rst case,
taking the expectation of eq. (3) we obtain

E[Nt] = E[Nt−1](1 + φ)ρt

and by iterating the map backward, the expected number of �rms at time t becomes

E[Nt] = N0(1 + φ)t−1
t∏

τ=1

ρτ . (8)
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Then, since the number of �rms with age a at time t can be written as in eq. (5), we obtain

E[Nt(a)] = E[Nt−a]φ
t∏

τ=t−a+1

ρτ

and, substituting with eq. (8) computed at time t − a while recalling the di�erent speci�cation for �rms of
age t, one has

E[Nt(a)] =

{
N0
∏t
τ=1 ρτ if a = t ,

N0φ(1 + φ)t−a−1
∏t
τ=1 ρτ if a < t .

(9)

Taking the log of E[Nt(a)] one immediately notices that, as in the previous case, the expected numerosity of
�rms with age age a is a linear map of a with coe�cient − log(1 + φ). Thus, once again, we infer that the
survival probability ρt does not impact on the slope of logE[Nt(a)] but it in�uences the intercept.

For the second case, we solve using the same steps, but taking into account that φt varies deterministically
over time. Thus, the expected number of �rms is E[Nt] = E[Nt−1](1 + φt)ρt and, by iteration, one obtains

E[Nt] = N0

t∏
τ ′=2

(1 + φτ ′)

t∏
τ=1

ρτ .

The expected number of �rms with age a at time t now reads E[Nt(a)] = E[Nt−a]φt−a+1

t∏
τ=t−a+1

ρτ and

substitution leads to

E[Nt(a)] =

{
N0
∏t
τ=1 ρτ if a = t ,

N0φt−a+1
∏t−a
τ ′=2(1 + φτ ′)

∏t
τ=1 ρτ if a < t .

(10)

Taking the log of E[Nt(a)] for a ∈ {1, 2, . . . , t− 1}, one obtains

logE[Nt(a)] = log

(
N0φt−a+1

t∏
τ=1

ρτ

)
+ (t− 1)

t−a∑
τ ′=2

log(1 + φτ ′)

t− a− 1
− a

t−a∑
τ ′=2

log(1 + φτ ′)

t− a− 1
.

Thus, if entry rates change deterministically over time – or, equivalently, they are independent random vari-
ables with time-changing expectations – for any age pro�le we have that the coe�cient of a is an arithmetic
average of − log(1 + φτ ′) for the periods ranging from 2 to the one before entry. Also this case implies that
the variations in the survival probability ρt have no age speci�c e�ects on the log-distribution.

Conditional scenario: time-dependent entry rate and heterogeneous survival probabilities. Here
we analyse the case in which survival probabilities depend on �rms’ characteristics, focusing on age. Indeed,
empirical evidence suggests that young �rms have, on average, lower survival rates (see for instance Calvino
et al., 2018). We account for the presence of such a stylised fact assuming that

ρi,t =

{
ρY if i ∈ ft or ai,t−1 < ā

ρO otherwise

where ā ∈ N represents the age after which a �rm is considered as old. Setting the condition ρY < ρO
provides coherence between our modelling framework and the above mentioned empirical evidence. We
assume that every φt is an independent random variable with E[φt] = φ ∀t > 1.15 When survival probability
is age-dependent, deriving the expected number of �rms with a given age becomes more complicated. Indeed,
one has that the expected number of �rms at time t is

E[Nt] = φ

ā−1∑
k=1

E[Nt−1−k]ρ
k
Y + φρāY

t−ā∑
τ=0

E[Nt−τ−ā]ρ
τ
o . (11)

15Equivalently, one can assume that the entry rate is constant over time, φt = φ ∀t > 1.
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where the �rst component represents the expected number of young �rms at time t and the second accounts
for the old ones.

Considering the map for E[Nt−1] and rearranging terms, one gets

φρāY

t−ā−1∑
τ=0

E[Nt−1−τ−ā]ρ
τ
o = E[Nt−1]− φ

ā−1∑
k=1

E[Nt−1−k]ρ
k
Y

and, substituting in eq. (11), the expected number of �rms at time t ≥ ā can be obtained iterating the recursive
map

E[Nt] = (φρY + ρO)E[Nt−1] + φ(ρY − ρO)
ā−1∑
τ=1

E[Nt−τ−1]ρτY (12)

with initial conditions E[Nk] = N0(1+φ)k−1ρkY for k ∈ {1, 2, . . . , ā−1} and, with a slight abuse of notation,
E[N0] = N0/φ.16 Once the sequence of expected number of �rms in each period is available, the expected
number of �rms for a given age can be derived as

E[Nt(a)] =


N0ρ

ā
Y ρ

t−ā
O if a = t

E[Nt−a]φρ
ā
Y ρ

a−ā
O if ā ≤ a < t ,

E[Nt−a]φρ
a
Y if a < ā .

(13)

In this case interpreting the analytical distribution is more complicated; it is also more di�cult to understand
how variations in entry or survival rates a�ect the emerging distribution. Thus, we rely on comparative statics
exercises presented in Section 4.2. As we shall see, age-dependent heterogeneity in survival probabilities
signi�cantly a�ects the shape of the log-distribution, with a steeper slope of the log-distribution on the left of
its support, corresponding to the e�ect of lower survival probabilities of young �rms. That is, contrary to the
previous scenarios, a di�erent survival probability for young �rms with respect to old ones has age-speci�c
consequences on the age distribution.

Sectoral scenario: sector-speci�c time dependent entry rates and sector-speci�c survival proba-
bilities. To cope with the signi�cant sectoral heterogeneity highlighted in the previous section, we consider
a case in which each �rm belongs to one (and only one) among K sectors. One can thus consider a �rm as a
single establishment, rather than a multi-establishment enterprise. In this case, each sector k ∈ {1, 2, . . . ,K}
is characterized by a speci�c entry rate φk and all the �rms of such sector have survival probability ρk. Also
in this case, we can alternatively (and equivalently) assume that entry rates are sector speci�c independent
random variables with E[φk,t] = φk ∀k and ∀t > 1. We further assume that once a �rm is born in a sector
it remains in that sector for all of its life and that the number of entrants is in�uenced only by the number
of existing �rms in the sector. In this way, the expected number of �rms with age a in sector k, E[Nk,t(a)],
can be derived following the same mathematical steps of the baseline scenario (if a constant entry rate is as-
sumed) or adapting those of the unconditional scenario (�rst case, if a random entry rate is assumed). Indeed,
denoting by Nk,0 the initial number of �rms in sector k, one obtains

E[Nk,t(a)] =

{
Nk,0ρ

t
k if a = t ,

Nk,0φk(1 + φk)
t−a−1ρtk if a < t .

(14)

The expected number of �rms with age a at time t in the whole economy is obtained by simple aggregation
over the K sectors

E[Nt(a)] =
K∑
k=1

E[Nk,t(a)] . (15)

16Equivalently, one can derive a dynamical system from equation (12) and solve it by means of the standard spectral decomposition
technique. See Appendix B for further details.
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This setting allows for composition e�ects. To shed light on the e�ects of aggregation of heterogeneous
sectors, we consider the function g : R→ R, x 7→ g(x), de�ned as

g(x) = log

(
K∑
k=1

Nk,0φk(1 + φk)
t−x−1ρtk

)
.

Applying the Mean Value Theorem, for any x > 0 we obtain

g(x) = log

(
K∑
k=1

Nk,0φk(1 + φk)
t−1ρtk

)
− x

K∑
k=1

Nk,0φk(1 + φk)
t−ξ−1ρtk∑K

j=1Nj,0φj(1 + φj)t−ξ−1ρtj
log(1 + φk)

with ξ ∈ (0, x). The function g(x) can be used to compute the logarithm of E[Nt(a)] for any age level a.
That is, for any a ∈ {1, 2, . . . , t− 1}, there exists a ξa ∈ (0, a) such that17

logE[Nt(a)] = g(a) = log

(
K∑
k=1

Nk,0φk(1 + φk)
t−1ρtk

)
−a

K∑
k=1

Nk,0φk(1 + φk)
t−ξa−1ρtk∑K

j=1Nj,0φj(1 + φj)t−ξa−1ρtj
log(1+φk) .

According to our model at the sector level, the logarithm of E[Nk,t(a)] is linear in a and can be written as
logE[Nk,t(a)] = β0,k + βk,1a, with βk,0 = log(Nk,0φk(1 + φk)

t−1ρtk) and βk,1 = − log(1 + φk). Then, at
the economy level we obtain

logE[Nt(a)] = log

K∑
k=1

eβk,0 + a

K∑
k=1

eβk,0+ξaβk,1∑K
j=1 e

βj,0+ξaβj,1
βk,1 .

Notice that the coe�cient of a is an age dependent convex combination of the sectoral coe�cients. This
implies that at the aggregate level the slope of the log-distribution is bounded from above by the maximum
sectoral slope while it is bounded from below by the minimum one. Thus, an approximated geometric be-
haviour can emerge at the economy level from perfect sector-wise geometric distributions. At the same time,
aggregate deviations can also be generated by the sectoral heterogeneity.

4.2 Comparative Statics

In this section we �rstly analyse the comparative statics of the age distribution for di�erent values of entry
rate and survival probabilities. We then study how structural shocks might a�ect the shape of the theoretical
age distribution. We present results for both unconditional and conditional shocks to survival rates. Coher-
ently with the previous section, we consider the former as shocks that a�ect all the �rms alike (independently
of their age); the latter as shocks that a�ect di�erent groups of �rms (e.g. young and old �rms) in an hetero-
geneous manner.18 In all the following exercises we compute the age distribution at time t = T = 100 and
we set N0 = 106.

Comparative statics with no shocks. We start considering the baseline scenario and compare the dis-
tributions that emerge under di�erent assumptions on the parameter values. In Figure 6 we plot the expected
number of �rms with age {1, 2, . . . , 100} both for the particular case φ = 1−ρ (which we denote as baseline)
and for cases in which either the entry rate or the survival probability is higher.

The exercise con�rms our analytical �ndings. In particular, keeping φ constant, if the survival probability
is higher, the unique observable variation is that the equilibrium distribution becomes more populated and
moves outward, with the slope of the distribution remaining unchanged (see the short-dashed line of Figure 6).
Alternatively, if the entry probability is higher, one can observe a variation in the slope of the distribution

17The expected number of �rms with age t is omitted because its functional form cannot be expressed by means of g(x). The
logarithm of its expected total number can be trivially computed and it does not signi�cantly a�ect the log-distribution.

18We focus on one-time persistent shocks, but similar insights can also be derived in cases in which transitions from one scenario
to the other occur in a smoother way.

15



4

8

12

16

0 25 50 75

Age

lo
g
−

N
u
m

e
ro

s
it
y

baseline higher_survival higher_entry

Age distribution − comparative statics

Figure 6: Comparative statics analysis of the age distribution for three di�erent parametrizations. Baseline: ρ = 0.9, φ = 0.1.
Higher survival: ρ = 0.95, φ = 0.1. Higher entry: ρ = 0.9, φ = 0.15.

which becomes steeper (long-dashed line in Figure 6). Conversely, if the entry probability were lower, the
distribution would be �atter.

Unconditional shocks. A more interesting situation is a dynamic one, in which either the entry rate
or the survival probability are hit by a shock at a speci�c point in time. How does the shock a�ect the age
distribution in the medium run? To answer this question we use the unconditional scenario (second case)
presented in advance assuming that φt and ρt maintain the baseline values (solid line) until time tc and shift
to di�erent values for t ≥ tc.19 In this way we capture the e�ects of a persistent shock – e.g. a structural
change, possibly generated by a new policy regime, that hits either the survival probability (short-dashed
line) or the entry rate (long-dashed line). We �x the critical period at which the shock hits our economy at
tc = 80.

When the shock is unconditional there are two main conclusions that we can grasp (see Figure 7). First, a
fall (an increase) in the survival rate shifts downward (upward) the distribution without however changing the
slope of the distribution (cfr. the short dashed line translated below with respect to the solid line representing
the baseline without shocks). This is due to the fact that all the �rms are hit homogeneously. Both the �rms
that were already in the market before the shock has been hitting (i.e. at the right of the dotted blue vertical
line) and the ones that have entered the market after the shock has hit (i.e. at the left of the shock line) are
equally a�ected. This is also consistent with the intuition provided in Section 4 and with the comparative
statics observed in Figure 6: survival rates only impact upon the intercept of the distribution. Second, a fall
(an increase) in the entry rate shifts downward (upward) the distribution only after the shock hits (i.e. at the
left of the shock vertical line) and also a�ects the slope of the distribution which becomes relatively �atter
(steeper).

Conditional shocks. Relaxing the assumption that the survival rate is independent from age provides
additional relevant insights. Hence, we consider the case in which at a given time tc the economy moves from
the baseline to the conditional scenario.20 Thus, in Figure 8 we investigate the case in which young �rms
(without loss of generality, less than or equal to 10 years old) have the same survival probability of older ones.
But when a shock hits, only the survival rate of these young �rms declines.

19Concerning the entry rate we could alternatively and equivalently assume that it is an independent random variable whose
expectation changes around tc.

20See section B in the appendix for all the mathematical details.
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Figure 7: Age distribution with unconditional shocks. Baseline: ρt = 0.9, φt = 0.1 ∀t. Decrease survival: ρt = 0.85 and
φt = 0.1 for t ≥ 80, baseline for t < 80. Decrease entry: ρt = 0.9 and φt = 0.08 for t ≥ 80, baseline for t < 80.
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Figure 8: Age distribution with shock only to young �rms. Baseline: ρY = ρO = 0.9, and φ = 0.1. Conditional shock: ρY = 0.9

before the shock and ρY = 0.85 after the shock; ρO = 0.9, φ = 0.1.

Here the shock hits at tc = 60. Firms that have ai,T > 50 in Figure 8 were already old when the shock hits;
hence for age level larger than 50, the distribution resembles the perfect geometric shape of the baseline case
without shock. Since when the shock hits it decreases the survival rate of the young �rms, the cohorts of �rms
that were still young at tc are partially hit. For example, the set of �rms with ai,tc−1 = 9 is a�ected for only
one period while the set of �rms with ai,tc−1 = 3 is a�ected for 7 periods. This leads to the declining slope
observed in the interval (40, 50] of Figure 8. Further on the left in the same panel – i.e. for all �rms born after
the shock – we can clearly observe a piecewise geometric behaviour: one for old �rms with ai,T ∈ (10, 40] –
whose rate of exit is lower – and one for young �rms with ai,T ≤ 10 – whose rate of exit is higher. Consistently
with the analytical results outlined before, in the presence of conditional e�ects, also the survival rate a�ects
the slope of the age distribution.
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5 Model Calibration

An important exercise to validate our modelling framework and to relate it with the empirical evidence on
business dynamism is to analyse the entry and exit rates implied by our model. We calibrate the unconditional
scenario (�rst case) speci�cation of Section 4 assuming that the survival probability is constant over time:
ρt = ρ ∀t. For this exercise we also employ the empirical estimates presented in Section 3. We have observed
that the linear �t in Section 3 provides correlated residuals (cfr. Figure 2).

This exercise has to be thought as a rough indication of what values are reasonable for the average entry
rate and survival probability in order to obtain a log-distribution comparable to the real one, but one shall
keep into account that requires the additional assumption of time-independence of entry rates. Still, this is
very informative as it allows to infer rough averages of entry and exit rates over a very long time period.
With this caveat in mind, our �tted model reads

β̂0 + β̂1a = log(N∗0φ
∗(1 + φ∗)t−1ρ∗t)− log(1 + φ∗)a

from which, knowing that the slope is determined only by the entry rate, we can directly derive the
calibrated value of the average entry rate. This writes φ∗ = e−β̂1 − 1. Concerning the other two param-
eters to calibrate, we have to rely on a more sophisticated methodology because of an under-identi�cation
problem. We thus employ the indirect inference technique. The literature on calibration and estimation of het-
erogeneous agents models has prospered during the last decades with the development of new techniques for
accomplishing these computationally heavy tasks (see Fagiolo et al., 2019). Many contributions, in particular
aimed at enriching the indirect inference technique originally developed by Gourieroux et al. (1993), have
allowed the estimation of models for �nancial markets (Franke and Westerho�, 2012), for industry dynamics
(Alfarano et al., 2012) and for aggregate macroeconomics dynamics (Grazzini et al., 2017). In this case, given
the stylised nature of our model and its small dimensionality in both the parameter space and the output,
we use a simple calibration framework. We employ the indirect inference method exploiting the analytical
closed form equation for the target variable to be matched by the model. Hence, we numerically calibrate the
model by plugging a �nite combinations of parameters, selected from a regular two-dimensional lattice, into
this equation.

We design a strategy aiming at minimizing the absolute deviations between the model prediction and the
empirical estimates. Thus, we de�ne as target variable ŷ the empirically estimated intercept β̂0. We instead
de�ne as elements of the vector of key structural parameters to be calibrated θ∗ the survival rate ρ and the
initial number of �rms N0.21 We then explore the parameter space by selecting a discrete set Θ of values and
we compute the model generated target variable ȳ(θ) for each parameter combination θ ∈ Θ. We select the
optimal parameter vector such that

θ∗ = arg inf
θ∈Θ

|ȳ(θ)− ŷ| (16)

where ȳ(θ) represents the intercept predicted by the model under the speci�c parameter choice – i.e. β̄0(θ∗) =

β̄0(N∗0 , ρ
∗)). The model prediction for this intercept is formally described by the following equation:

β̄0(N0, ρ) = log(N0)φ∗ρt + (t− 1) log(1 + φ∗). (17)

Our design selects the optimal parameters by minimizing the euclidean distance of the model predicted in-
tercept β̄0 and the empirically estimated one β̂0. Before discussing the calibration results, it is important to
remark that the number of statistics to be matched is lower than the number of parameters to be calibrated.
This gives rise to an under-identi�cation problem and to the possibility of a multiplicity of optimal points.

The result of our calibration exercise for the establishments of all aggregated sectors is presented in Fig-
ure A.3 in Appendix A. A single optimal value (N∗0 , ρ

∗) can be found, and is represented as a red dot over the
N0, ρ plane. However, its relative performance with respect to a countable number of other parameter con�g-
urations, represented along the blue corridor, is relatively small. This is the result of the under-identi�cation

21We assume that t matches the maximum age recorded in the data, that is 100.
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issue. However, the set of points close to the local optimum are all located along an almost horizontal line,
except for very small values of N0. They are therefore characterized by a survival rate ρ between 90% and
95% and by a large variability in terms of N0. But the value of N0 does not have a direct economic interpre-
tation, while ρ does. We conclude therefore that it can be almost arbitrary �xed in order to accommodate a
a reasonable value of the survival rate. This is a good property for the possible empirical application of our
model to datasets from other national economies, with the aim of performing a comparative exercise.

All the results of the entry and exit rates stemming from our calibration exercise at broad aggregation
levels (i.e. for the aggregate, manufacturing, services) and at the enterprise and establishment levels, are
presented in Table 3. These calibrated values provide a rough indication of the level of entry and exit rates
over the period of time spanning from the date of birth of the oldest �rm in the sample (i.e. around 1918) to
the year of the observation (i.e. 2018).

Over this long time-horizon our results point to higher entry rates and lower exit rates for services rather
than manufacturing. This is consistent with the fact that over the last century a structural transformation
a�ected the French economy, as the economies of many advanced countries. In particular, a process of de-
industrialization took place with the heavy industrial activity slowing down and leaving the space to the
creation of new business in the service sectors, as the entry costs for the generation of new businesses declined.
Overall, we conclude that our model is su�ciently good for the combination of an empirically estimated value
of the entry rate and a reasonable value of exit rates. Comparing our results with the values of entry and exit
rates for establishments in France over the period 1993-2014 reported by Aghion et al. (2018) (cfr. Figure 9a in
particular), we notice that our calibrated entry rate is in line with their estimates, while our exit rate results
are slightly below the estimates therein provided. Even if there are di�erences in the datasets employed and
in the considered periods, this result con�rms the good performance of our model for identifying entry rates.

sector entry rate (φ∗) exit rate (1− ρ∗)
Manufacturing (establishments) 0.11 0.11
Manufacturing (enterprises) 0.11 0.10
Services (establishments) 0.13 0.07
Services (enterprises) 0.12 0.08
Aggregate (establishments) 0.12 0.08
Aggregate (enterprises) 0.12 0.07

Table 3: Calibrated entry (φ∗) and exit (1− ρ∗) rates at the largest levels of aggregation.

In Appendix A (cfr. Table A.3) we also present the detailed results for the 2-digit level of aggregation. But
in this case a note of caution shall be spelled out. We shall indeed take into account the evidence presented
in Figure 5 as the presence of deviations from a well behaved geometric distribution might limit the validity
of the calibration exercise. Especially for young sectors, in which only few observations are available and
the uncertainty in the calibration exercise can be relevant. Our results, however, point to some interesting
features of business dynamism. We �nd that sectors with higher business dynamism (the sum of entry and
exit rates) are the ones concerning programming and broadcasting activities, telecommunications, computer
programming, consultancy and the postal and courier activities, consistently with international evidence
(Calvino and Criscuolo, 2019). Also in this case, we conclude that our simple model is able to capture some
important features of the French business dynamism. In particular, we argue that the relationship between
the age distribution and business dynamism is a solid one and is further discussed in the next section.

6 Discussion

The model with di�erent scenarios, together with the comparative statics and calibration exercises carried out
thereafter, are particularly helpful in guiding the interpretation of the stylised facts discussed in Section 3. In
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particular, building upon archetypal situations generated by our theoretical framework, we can provide some
suggestive evidence that helps uncover the underlying mechanisms behind the shape of the age distribution.

The �rst stylised fact presented, i.e., that the geometric law is a �rst approximation for the aggregate and
macro-sectoral age distributions can be interpreted in the light of the fact that, on average over a long time
period, a roughly stable entry rate – around 12% – may not be too far from reality, at least as a rough �rst-order
approximation. However, the signi�cant aggregate deviations from the geometric distribution discussed in
the second stylised fact may be interpreted as indicative of di�erences and variations in business dynamism,
across �rms with di�erent characteristics and over time.

In particular, a �rst relevant structural break highlighted in Section 3 indicates that the slope of the age
distribution is steeper for a < 10 than for a ∈ [10, 30), as discussed in the second stylised fact and evident in
Figure A.4. This can be explained by the presence of heterogeneous survival rates. In particular, according to
our results and consistently with empirical evidence, a lower survival probability for young businesses seems
to be the most plausible explanation.22 Such e�ect could actually be even stronger, considering that a decline
in entry rates after the crisis (or a more secular one, as discussed next) would have acted in the opposite
direction.

A second structural break highlighted in Section 3 divides the age distribution between �rms with a <
30 (born during the great moderation) and �rms with a ∈ [30, 50). The change of steepness, following
the interpretations stemming from our model, would be consistent with a decline in entry rates. This is
also evident when focusing on the estimated parameters of the piecewise geometric distribution (based on
Equation 2), which depict a lower λi towards the left of the support (see Figure A.4).23 Furthermore, the
downward jump at age equal to 10 would be consistent with a one period drop in entry rates which follows
the beginning of the global �nancial crisis.

The last three decades appear therefore characterized by a lower rate of entry with respect to the number
of incumbents. This interpretation suggests that business dynamism in France has declined during the great
moderation period and that it was instead larger between the beginning of the 1970s and the beginning of the
1990s. This result is also consistent with the evidence that Decker et al. (2016); Calvino and Criscuolo (2019)
have put forward and might indicate a global pattern of declining entry rates in several advanced economies.

For a ≥ 50, deviations from the geometric benchmark are more relevant and may be more di�cult to
interpret, also due to the less systematic data collection procedures. However, the steeper and more volatile
age log-distribution for �rms older than 50 but younger than 75 years old may correspond to higher rates of
entry over the post-war recovery period (Trente Glorieuses). Around the Second World War instead a signif-
icant downward jump in the log-distribution is evident, just before �rms aged 75. This would be consistent
with a notable drop in entry rates. A �atter log-distribution in correspondence to �rms older than 75 may
instead re�ect the e�ects of the Great Depression.

Sectoral heterogeneity appears as a characteristic feature of age distributions, as highlighted discussing
the third stylised fact in Section 3. Cross-sectoral variation in age distributions appears importantly related
to di�erences in the stage of the life-cycle in which di�erent industries stand (see Klepper, 1996). Impor-
tantly, and as highlighted in the previous section, younger sectors – such as the Computer programming,
consultancy and related activities industry (62) – tend to have a steeper age log-distribution, consistently
with higher average entry rates over a given period of time. Di�erently, more traditional sectors, such as the
food manufacturing industry (10), tend to have �atter age log-distributions, consistently with lower average
entry rates that characterise more mature sectors.

Furthermore, focusing again on Figures 4 and A.2 and on Table A.2, one can observe that more mature
industries tend to have larger average, median and maximal ages. They thus have a longer right-tail and tend
to be more populated (see e.g. sector 105 representing the manufacture of dairy products). Young industries,
have been born less than 100 years ago and display a short cut to the tail and a possible fast increase in the

22This is consistent with the observation by Axtell (2018), who suggests for this very reason that a Weibull distribution may be a
closer �t than a geometric one.

23For the youngest group of establishments the survival e�ect described above seems to dominate.
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log-count of �rms, when reading the graph from the right to the left (see e.g. sector 620 representing computer
programming, consultancy and related activities).24

Aggregation of relatively broad sectors that are approximately geometrically distributed yields – as a
reasonable approximation – an aggregate geometric distribution whose decay depends upon sector-speci�c
weight and decays. This suggests that the stage of life-cycle of di�erent sectors also a�ects the overallmaturity
of the economy and that cross-country comparisons of the slope of aggregate age log-distributions may be
interesting.

More signi�cant deviations from the geometric benchmark arise when analysing 3-digit sectors’ dynam-
ics. This may be indicative of the fact that – in more detailed sectors – entry rates are less constant in given
time periods, and that evolutionary dynamics of entry and exit over the industry life-cycle become better ob-
servable at �ner-grained levels of aggregation. In this context, a reasonable conjecture seems to be that what
is observed at more aggregate levels can be reasonably approximated by a more constant quantity resulting
from the composition of life-cycle evolutionary dynamics occurring at the more micro level. This may occur
as the process of technological change and industry evolution is continuous, with new sectors being born as
old ones get closer to maturity.

Di�erences in the age distribution of businesses have signi�cant implications for economic outcomes.
Indeed, the age composition of countries and sectors of activity is an important feature of industrial dynamics,
with relevant implications in terms of job creation, innovation, and ultimately economic growth. Building
upon the literature on the role of young �rms and their importance for job creation (Haltiwanger et al., 2013;
Criscuolo et al., 2014), and the literature on the evolution of industries, which highlights that younger sectors
are more prone to labour-friendly product innovations (Klepper, 1996), we explore the relationship between
employment growth in France and the calibrated sectoral entry and net entry rates derived in Section 5.

We source employment growth rate at sectoral level from the OECD STAN database, focusing on France
for the period 2006-2016 (the last available years).25 We then carry out an association exercise by estimating
the simple linear model by means of ordinary least squares with robust standard errors:

∆ log(emp)s,t = α entrys + θ Xs,t + γt + εs,t , (18)

where ∆ log(emp)s,t measures employment growth, entrys stands for the calibrated entry rate φ∗s or,
alternatively, for the net entry rate de�ned as φ∗s − (1 − ρ∗s), which are both reported in Table A.3; Xs,t

represent a set of control including sector size, measured in terms of employment (i.e. emps,t); γt refers to
year �xed e�ects and εs,t is the usual error term. Subscripts s and t indicate sectors and time, respectively.

Dep. variable: ∆ log(emp)s,t
φ∗ 0.337*** 0.287***

(0.0425) (0.0466)
φ∗ − (1− ρ∗) 0.314*** 0.265***

(0.0392) (0.0513)

Const. -0.037*** 0.008 -0.036*** 0.004
(0.0070) (0.0049) (0.0069) (0.0054)

Control 7 7 3 3

Year FE 3 3 3 3

Observations 576 576 576 576
R2 0.200 0.199 0.217 0.204

Table 4: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

24Each age distribution plot can indeed be also read as time passing in the direction from the right to the left: �rms of 100 years of
age have been funded in 1918, while �rms that are 20 years old have been funded in 1998, for example.

25We replicated growth rates for few slightly more aggregated sectors in order to get to a full 2-digit sectors settings, compatible
with the one of the calibration data. Employment data refer to the number of employees but similar results also hold when focusing
on total persons engaged.
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Results, reported in Table 4, highlight a positive association between sectoral employment growth rates
and entry, suggesting that industries in the earlier phases of their life-cycle present more labour-friendly
dynamics. This con�rms the importance of young �rms for employment growth, and is possibly related to a
more signi�cant share of product innovations in younger industries. Results also hold when controlling for
the size of the sector, as measured by total sectoral employment.

Of course this last exercise is only a �rst and suggestive application in order to highlight the potential
and relevance of studying features of age distributions, and in particular its coe�cients. As a matter of fact,
in the framework of the model we have proposed, they have a relevant link with entry rates and the life-cycle
of industries. Future analysis may further explore and relate the parameters of age distributions, and the
calibrated entry and exit rates, to di�erent economic outcomes.

7 Conclusions

In this paper we have studied in detail the shape and determinants of the age distribution of business �rms.
This has been a subject overlooked by most of the literature, although important given the key role of young
�rms in market economies.

Using a new comprehensive cross-sectional database of French �rms we presented three stylised facts.
First, a geometric shape appears to be a reasonable �rst-order approximation for the aggregate age distri-
bution; second, there are however signi�cant deviations from the geometric benchmark at aggregate level;
third, signi�cant cross-sectoral heterogeneity in the slope of the age log-distribution emerges, with larger
deviations from the geometric benchmark at very �ne levels of aggregation.

We have then developed and calibrated a stochastic model of �rm dynamics to better understand the mech-
anisms behind the stylised facts and guide the interpretation of the empirical �ndings through comparative
statics exercises. Our modelling strategy provides a novel non-trivial mechanism to generate a geometric age
distribution and to explain deviations from such a benchmark. We also introduce sectoral heterogeneity and
we show that the aggregation of a �nite number of geometric distributions with heterogeneous coe�cients,
each representing one sector, can lead to the emergence of an approximated geometric distribution at the
aggregate level.

Combining the empirical evidence with the model prescriptions, we suggested the existence of a long-term
decline in entry rates, which �attens the age log-distribution for �rms with less than 30 years, and of a lower
survival probability for young �rms, which induces a relatively steeper distribution for businesses with less
than 10 years of age. The �ndings also pointed to a short-term e�ect of the Great Recession, which generates
a blip in the age distribution for �rms born around 2008. E�ects of the Great Depression, the Second World
War, and the subsequent post-war recovery were also visible, although should be taken more cautiously as
older data may have been collected less systematically.

Further examination of the age distribution at lower level of aggregations revealed that the geometric
benchmark broadly holds also within 2-digit sectors. But with sectors-speci�c slopes that are signi�cantly
di�erent from each other. This suggested that di�erent sectors are at di�erent stages of their life-cycle, pro-
viding an indirect way to measure them, and that the aggregate behaviour re�ects important compositional
e�ects. More signi�cant deviations from the geometric benchmark at very �ne grained (3-digit) levels of ag-
gregation may suggested that evolutionary life-cycle dynamics become even more observable in more detailed
sectors. We have ultimately extensively discussed the main �ndings and provided a �rst application, in order
to highlight the relevance of the age distribution – and its parameters – for economic outcomes, notably for
employment growth.

This work can be extended along di�erent dimensions. From an empirical perspective, slopes of the age
log-distributions can be studied beyond France, across sectors of di�erent countries (or across countries),
in order to assess di�erences in the maturity of sectors to their life-cycle. Furthermore, additional applica-
tions can relate the parameters of the age distributions to di�erent economic outcomes, beyond employment
growth. From a theoretical perspective, instead, a more ambitious extension would study the age distribution
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jointly with the size and growth distributions of �rms. Building a stochastic model that has the ability of
replicating and explaining all the three empirical patterns can disclose new information on the mechanism
behind �rms and industry dynamics which might be relevant also for policy makers.
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Appendix A. Additional tables and �gures

sector χ2 p-value
Manufacturing (establishments) 11900.66 0.00
Manufacturing (enterprises) 27076.34 0.00
Services (establishments) 299778.65 0.00
Services (enterprises) 490862.31 0.00
Aggregate (establishments) 308962.94 0.00
Aggregate (enterprises) 308962.94 0.00

Table A.1: Results of the χ2 test. Null hypothesis: “The observed data are extracted from a geometric distribution with parameter λ̂” ;
where λ̂ has been estimated with MLE.
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sector code β0 β1 pβ0 pβ1 adj. R2 med. age max. age
10 8.824 -0.098 0.000 0.000 0.938 8 86
11 5.253 -0.052 0.000 0.000 0.859 9 91
12 0.697 -0.013 0.006 0.143 0.066 11 20
13 6.348 -0.083 0.000 0.000 0.854 6 67
14 7.362 -0.097 0.000 0.000 0.881 6 65
15 5.569 -0.080 0.000 0.000 0.864 5 63
16 6.835 -0.072 0.000 0.000 0.942 8 66
17 5.077 -0.066 0.000 0.000 0.765 9 63
18 7.793 -0.101 0.000 0.000 0.944 7 65
19 1.400 -0.009 0.000 0.149 0.028 22 41
20 5.801 -0.066 0.000 0.000 0.877 10 72
21 4.179 -0.073 0.000 0.000 0.859 12 54
22 6.017 -0.068 0.000 0.000 0.874 13 65
23 7.018 -0.075 0.000 0.000 0.944 9 66
24 4.667 -0.061 0.000 0.000 0.797 11 64
25 7.719 -0.079 0.000 0.000 0.897 10 66
26 6.157 -0.089 0.000 0.000 0.923 10 64
27 5.704 -0.080 0.000 0.000 0.838 9 65
28 6.392 -0.070 0.000 0.000 0.925 12 65
29 5.440 -0.072 0.000 0.000 0.877 13 64
30 4.900 -0.084 0.000 0.000 0.884 7 60
31 7.424 -0.096 0.000 0.000 0.956 8 65
32 8.104 -0.111 0.000 0.000 0.935 6 65
33 8.179 -0.106 0.000 0.000 0.956 7 64
41 9.646 -0.112 0.000 0.000 0.928 8 80
42 7.673 -0.082 0.000 0.000 0.877 20 91
43 11.302 -0.128 0.000 0.000 0.958 6 72
45 9.738 -0.109 0.000 0.000 0.937 6 66
46 10.475 -0.112 0.000 0.000 0.912 7 85
47 11.886 -0.133 0.000 0.000 0.929 6 79
49 9.666 -0.116 0.000 0.000 0.944 5 69
50 5.551 -0.090 0.000 0.000 0.921 9 54
51 4.703 -0.071 0.000 0.000 0.829 7 54
52 7.745 -0.092 0.000 0.000 0.902 7 65
53 7.069 -0.162 0.000 0.000 0.840 2 44
55 9.524 -0.108 0.000 0.000 0.901 11 86
56 10.776 -0.129 0.000 0.000 0.950 6 74
58 7.805 -0.099 0.000 0.000 0.896 6 66
59 8.395 -0.122 0.000 0.000 0.917 5 65
60 5.535 -0.085 0.000 0.000 0.700 11 43
61 7.332 -0.152 0.000 0.000 0.755 8 40
62 9.877 -0.182 0.000 0.000 0.948 4 51
63 7.835 -0.124 0.000 0.000 0.930 5 64
68 12.838 -0.110 0.000 0.000 0.973 12 100
69 9.866 -0.130 0.000 0.000 0.937 7 74
70 9.968 -0.119 0.000 0.000 0.922 5 90
71 10.156 -0.148 0.000 0.000 0.955 6 68
72 7.174 -0.091 0.000 0.000 0.897 7 66
73 8.246 -0.118 0.000 0.000 0.886 6 65
74 9.662 -0.147 0.000 0.000 0.962 4 63
75 7.729 -0.119 0.000 0.000 0.771 10 44
77 8.554 -0.097 0.000 0.000 0.955 8 85
78 8.051 -0.129 0.000 0.000 0.878 7 56
79 7.154 -0.087 0.000 0.000 0.914 7 80
80 7.923 -0.161 0.000 0.000 0.940 6 49
81 10.332 -0.116 0.000 0.000 0.920 20 89
82 9.715 -0.124 0.000 0.000 0.909 7 73
95 8.804 -0.131 0.000 0.000 0.954 6 67
96 10.387 -0.125 0.000 0.000 0.956 6 70

Table A.2: Estimated values of β0 and β1 representing the geometric shape in eq. (1) for aggregate data and for sectors at the 2 digit
levels. Only sectors whose estimate of β1 are signi�cant at the 5% level have been reported, together with p-values and a goodness
of �t measure. Values lower than 10−3 have been reported as 0.00. Sectors names are reported in Table A.3.
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sector code sector name entry rate (φ∗) exit rate (1− ρ∗)
10 Manufacture of food products 0.10 0.09
11 Manufacture of beverages 0.05 0.09
13 Manufacture of textiles 0.09 0.14
14 Manufacture of wearing apparel 0.10 0.14
15 Manufacture of leather and related products 0.08 0.16
16 Manufacture of wood and of products of wood and cork, except fur-

niture; manufacture of articles of straw and plaiting materials
0.07 0.11

17 Manufacture of paper and paper products 0.07 0.14
18 Printing and reproduction of recorded media 0.11 0.14
20 Manufacture of chemicals and chemical products 0.07 0.12
21 Manufacture of basic pharmaceutical products and pharmaceutical

preparations
0.08 0.18

22 Manufacture of rubber and plastic products 0.07 0.13
23 Manufacture of other non-metallic mineral products 0.08 0.11
24 Manufacture of basic metals 0.06 0.14
25 Manufacture of fabricated metal products, except machinery and

equipment
0.08 0.12

26 Manufacture of computer, electronic and optical products 0.09 0.14
27 Manufacture of electrical equipment 0.08 0.15
28 Manufacture of machinery and equipment n.e.c. 0.07 0.13
29 Manufacture of motor vehicles, trailers and semi-trailers 0.07 0.15
30 Manufacture of other transport equipment 0.09 0.17
31 Manufacture of furniture 0.10 0.13
32 Other manufacturing 0.12 0.12
33 Repair and installation of machinery and equipment 0.11 0.14
41 Construction of buildings 0.12 0.11
42 Civil engineering 0.09 0.11
43 Specialised construction activities 0.14 0.12
45 Wholesale and retail trade and repair of motor vehicles and motor-

cycles
0.11 0.11

46 Wholesale trade, except of motor vehicles and motorcycles 0.12 0.12
47 Retail trade, except of motor vehicles and motorcycles 0.14 0.12
49 Land transport and transport via pipelines 0.12 0.13
50 Water transport 0.09 0.14
51 Air transport 0.07 0.13
52 Warehousing and support activities for transportation 0.10 0.13
53 Postal and courier activities 0.18 0.20
55 Accommodation 0.11 0.10
56 Food and beverage service activities 0.14 0.13
58 Publishing activities 0.10 0.14
59 Motion picture, video and television programme production, sound

recording and music publishing activities
0.13 0.15

60 Programming and broadcasting activities 0.09 0.20
61 Telecommunications 0.16 0.20
62 Computer programming, consultancy and related activities 0.20 0.18
63 Information service activities 0.13 0.14
68 Real estate activities 0.12 0.09
69 Legal and accounting activities 0.14 0.13
70 Activities of head o�ces; management consultancy activities 0.13 0.12
71 Architectural and engineering activities; technical testing and anal-

ysis
0.16 0.15

72 Scienti�c research and development 0.10 0.14
73 Advertising and market research 0.12 0.14
74 Other professional, scienti�c and technical activities 0.16 0.15
75 Veterinary activities 0.13 0.15
77 Rental and leasing activities 0.10 0.12
78 Employment activities 0.14 0.17
79 Travel agency, tour operator reservation service and related activities 0.09 0.12
80 Security and investigation activities 0.17 0.19
81 Services to buildings and landscape activities 0.12 0.08
82 O�ce administrative, o�ce support and other business support ac-

tivities
0.13 0.12

95 Repair of computers and personal and household goods 0.14 0.13
96 Other personal service activities 0.13 0.13

Table A.3: Optimal calibrated values for survival rate ρ∗ and entry rate φ∗ for 2-digits sectors, establishment data.
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Figure A.1: Pooled age distribution at the establishment (left panel) and enterprise (right panel) levels. The continuous black line
represents the empirical distribution; the red dashed-dotted line the geometric �t estimated with MLE.
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Figure A.2: Age distribution of establishments at the 3-digit level for nine selected industries. The selected 3-digit industries here
depicted are sub-sectors of the nine 2-digit sectors displayed in Figure 4.
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Figure A.3: Calibration exercise. The �gure represents the log of the loss function (Euclidean distance) described by the minimization
problem in eq. (16). The red dot represents the optimal combination of parameters.
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Figure A.4: ML estimates of λ = (λ1, λ2, . . . , λ10) from the piecewise geometric distribution in (2) with k = (10, 20, 30, . . . , 90).
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Appendix B. Technical Annex

Conditional scenario - dynamical system setting
Using matrix notation, eq. (12) becomes

E[Nt]

E[Nt−1]

E[Nt−2]
...

E[Nt−ā+1]

 =


φρY + ρo x1 · · · xā−2 xā−1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




E[Nt−1]

E[Nt−2]

E[Nt−3]
...

E[Nt−ā]


with xk = φρkY (ρY − ρO) for k ∈ {1, 2, . . . , ā− 1}. Iterating the map one has

E[Nt]

E[Nt−1]

E[Nt−2]
...

E[Nt−ā+1]

 =


φρY + ρo x1 · · · xā−2 xā−1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



t−ā+1 
E[Nā−1]

E[Nā−2]

E[Nā−3]
...

E[N0]

 .

Initial conditions can be computed using eq. (4) with t ∈ {1, 2, . . . , ā−1} and ρY in the place of ρ. E[N0] is not de�ned,
with an abuse of notation we impose it equal to N0/φ, such that the map in eq. (12) is well-de�ned for each t ≥ ā.
The dynamical system can be solved using the standard spectral decomposition technique and one obtains the expected
number of �rms in each period t. The formula for the expected number of �rms with age a at time t in eq. (13) is derived
adapting eq. (6) to the age-dependent survival probability.
From baseline to conditional

In what follows we assume that at time tc the economy shifts from the baseline scenario to the conditional scenario.
Let us start from the expected number of �rms in the economy and notice that for t < tc E[Nt] can be easily recovered
from eq. (4). If t = tc one should carefully consider the fact that �rms with ai,tc−1 < ā and newly created ones now
have a di�erent survival probability, hence it is

E[Ntc ] = E[Ntc−1]φρY + E[Ntc−2]φρY ρO + . . .+ E[Ntc−ā]φρY ρ
ā−1
O + E[Ntc−ā]ρāO .

Following the same reasoning line, for t ∈ (tc, tc + ā) it is possible to derive the expected number of �rms iteratively
according to the map

E[Ntc+k] = φ

k−1∑
j=0

E[Ntc−j ]ρ
k−j
Y + φρk+1

Y

ā−k∑
m=1

E[Ntc−m]ρm−1
O + φ

k−1∑
n=0

E[Ntc−ā+n]ρn+1
Y ρā+k−2n−1

O + E[Ntc−ā]ρā+k
O

with k ∈ {1, 2, . . . , ā − 1}. Then, for t ≥ tc + ā one can use the dynamical system approach presented in advance,
obtaining 

E[Nt]

E[Nt−1]

E[Nt−2]
...

E[Nt−ā+1]

 =


φρY + ρo x1 · · · xā−2 xā−1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



t−tc−ā+1 
E[Ntc+ā−1]

E[Ntc+ā−2]

E[Ntc+ā−3]
...

E[Ntc ]


with x1, x2, . . . , xā−1 de�ned as before. Finally, eq. (6) can be adapted such that one gets

E[Nt(a)] =



N0ρ
t
O if a = t ,

N0φ(1 + φ)t−a−1ρtO if t− tc + ā < a < t ,

φE[Nt−a]ρY ρ
a−1
O if a = t− tc + ā ,

φE[Nt−a]ρ2
Y ρ

a−2
O if a = t− tc + ā− 1 ,

φE[Nt−a]ρ3
Y ρ

a−3
O if a = t− tc + ā− 2 ,

...
...

φE[Nt−a]ρā−1
Y ρa−ā+1

O if a = t− tc + 1 ,

φE[Nt−a]ρāY ρ
a−ā
O if ā < a ≤ t− tc ,

φE[Nt−a]ρaY if a < ā .
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