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Abstract

In all investment decisions it is important to determine the degree of uncertainty associated

with the valuation of a company. We propose an original and robust methodology to company

valuation which replaces the traditional point estimate of the conventional Discounted Cash

Flow (DCF) with a probability distribution of fair values. It hinges on two main ingredients: an

econometric model for the company revenues and a set of firm-specific balance sheet relations

that are estimated using historical data. The effectiveness and scope of our methodology are

explored through a series of statistical exercises on publicly traded U.S. companies. We show

that an uncertainty-adjusted indicator of mispricing, derived from the fair value distribution, is

capable of predicting future abnormal returns. Then, we construct a new long-short valuation

factor and we test that it is not redundant for describing average returns when used to augment

traditional market factor models.

Keywords: Stochastic Discounted Cash Flow, Valuation Uncertainty, Valuation Factor, Kalman

Filter.

JEL classification codes: G11, G17, G32.
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1. Introduction

Broadly speaking, the valuation literature presents three estimation approaches of the shareholder

value. The first one is the “direct valuation” in which firm value is estimated directly from its

expected cash flows, without any reference to the current price of other firms. Common examples

are the dividend discount model (DDM), the residual income model (RIM) and the discounted

cash flow model (DCF). The second one is the “relative valuation” in which firm value estimates

are obtained by examining the pricing of comparable assets relative to some accounting variable.

Finally, the third approach is constituted by the “contingent claim valuation” which applies option

pricing models to evaluate a company; see Damodaran (2012) for further details.

In the present paper, we focus on what is probably the most fundamental direct valuation

method, the DCF, which is widely employed by sell-side financial analyst and practitioners (e.g.

Brown et al., 2015). The DCF is a three-step procedure. We first have to determine the stream

of future cash flows, so reduce them to present value through a discount rate and, finally, compare

the result with today’s price. This approach attempts to capture with one number, the discount

rate, two different effects: the time value of money and the uncertainty of future cash flows. How-

ever, primarily due to the intrinsic difficulty of estimating the future cash flows of a company, the

value provided by DCF is likely to be affected by a considerable amount of uncertainty. Starting

from this consideration, existing works have highlighted the necessity of developing probabilistic

and statistical tools to extend the conventional DCF method to include some measure of uncer-

tainty associated with the estimated value (Casey, 2001). To the best of our knowledge, despite its

practical relevance, this problem has been the subject of surprisingly few academics studies. The

general suggestion has been to perform Monte Carlo simulations of the underlying (accounting)

variables starting from historically estimated correlation matrices (see French and Gabrielli (2005);

Damodaran (2007)). This kind of Monte Carlo procedure is commonly used by analysts in invest-

ment banking studies (e.g Koller et al., 2010). In Ali et al. (2010); Gimpelevich (2011); Samis and

Davis (2014) both scenario-based and simulation-based analyses are used together with the DCF for

investment decisions in real-estate projects or for evaluating a specific market sector. Interestingly,

in Viebig et al. (2008) the authors acknowledge that “Being intellectually honest, financial analysts

can at best determine ranges or distribution of possible fundamental financial values but not exact

price targets for stocks as future revenue growth rates, future operating margins and other inputs

which go into DCF models cannot be predicted with certainty.”

We propose a simple, general and theoretically grounded method, the Stochastic Discounted

Cash Flow (SDCF) approach to replace the point estimate of the conventional DCF method with
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a proper random variable. The basic idea of SDCF is to consider a properly defined probability

space suitable to describe the future cash flow dynamics. Should the correct cash flow process be

known, the value computed by the standard DCF would be exactly the expectation of the random

variable obtained by the SDCF. Clearly, the reliability of the method depends on the goodness of the

data generating process one considers for future cash flows. The methodological novelty behind the

SDCF is the adoption of a robust data generating process for the company’s future cash flows that

relies upon two observations. On the one hand, the basic source of cash flow, i.e., the revenues, has

an important and volatile idiosyncratic component. On the other hand, while from an accounting

point of view cash flow is a reconstructed variable that depends on a set of other, more fundamental,

variables (e.g., amortization, cost of debts and taxes), all interacting and affecting the final realized

cash flow in different degree, the structural relationship among these variables results stable in time.

Starting from these premises, we employ a two-steps procedure to determine the future cash flow

dynamic. Firstly, an econometric model of firm revenues is estimated at the level of a single firm

and used in a Monte Carlo procedure to obtain the distribution of future sales. Then, all the other

accounting variables are estimated as “margins” on the revenues by using historical-data. The end

result is a fair value distribution that can be used to obtain both an estimate of the expected fair

value of the company and of its degree of uncertainty.

What is the information content contained in the fair value distribution resulting from the SDCF

approach? Using a volatility-adjusted mispricing z-score index – defined as the difference between

the market price of the company and its expected fair value divided by the fair value distribu-

tion standard deviation – as a means to assess the misvaluation of a company, we investigate the

long-standing issue that stock misvaluation is not instantaneously and fully eliminated by rational

investors in the market, but rather is only corrected over time. In this respect, our study is re-

lated to the works of Hirshleifer and Jiang (2010) and Chang et al. (2013). In the former, authors

construct a financing-based misvaluation factor (UMO) from repurchase and new issue firms, after

they identify common misvaluation across stocks based on firms’ debt and equity financing. In the

latter, instead, authors measure the misvaluation according to the difference between the observed

market prices and predicted intrinsic values of individual stocks and form a misvaluation factor

(MSV ) by measuring the returns on a factor-mimicking portfolio that goes long on undervalued

stocks and short in overvalued stocks.

We begin by showing that the z-scores possess significant predictability power for one-quarter

ahead excess returns when used to augment linear factor models routinely used in financial applica-

tions (e.g. the Fama-French three- and five-factors model (Fama and French, 1993, 2015)). Then,

to assess the reliability of the z-score as a misvaluation indicator, we sort stocks into (appropriately
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defined) quantiles based on the empirical distribution function of the firms z-scores and we construct

“Buy”, “Hold” and “Sell” portfolios according to this quantile division. By computing the equally

weighted daily return of these portfolios we find that the “Buy” portfolio earns a gross return higher

than the “Sell” one. Motivated by this evidence, we form a long-short valuation factor (LSV ) by

measuring the returns on a factor-mimicking portfolio that goes long on the most recommended

stocks and short in the less recommended stocks. In particular, we note that: 1) Contrary to MSV,

our factor is formed from companies’ direct valuation. 2) Contrary to UMO, constructed through

a top-down approach, our factor is constructed starting from individual balance sheet data, i.e.

by a bottom-up approach. We show that LSV is not redundant for describing average returns

when added to the Fama French five-factors model (Fama and French, 2015) augmented by the

momentum factor introduced in Carhart (1997), as well as by the UMO factor of Hirshleifer and

Jiang (2010)1, thus confirming the stable presence of a significant degree of predictable mispricing

in stock markets.

The rest of the article is organized as follows. In Section 2 we discuss the details of the SDCF

model. In Section 3 we describe the database and variables used in our analysis. In Section 4 we

introduce our misvaluation measure and we investigates the relation between stock misvaluation

and future stock returns. Section 5 describes the formation of the misvaluation factor and the tests

its return predictive power. Section 6 concludes the paper.

2. The Model and The Methodology

In DCF, the cash flow is distinguished between Unlevered Free Cash Flow (UFCF) and Levered

Free Cash Flow (LCFC).2 The main difference between the two are expenses. Precisely, UFCF

represents the cash flow available to the debt and equity holders after all expenses are paid off and

reinvestments are made; LFCF, instead, represents the cash flow employed to pay out dividend and

financial expansion investments. In our SDCF model we follow the approach which uses the former

cash flow notion and we extend the usual point-wise UFCF DCF estimate by taking into account

the intrinsic uncertainty about the future firm performance.3

Now, we describe the SDCF method by presenting the main assumptions behind it and its main

building blocks.

1At the moment of the writing of the present work we were not able to construct or find the MSV factor.
2The former is known also as Free Cash Flow to Firm and the latter as Free Cash Flow to Equity.
3The UFCF DCF model employed in the present paper is in line with the one used by our data provider, Thomson

Reuters Eikon, Datastream.
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2.1. The SDCF method

In what follows, we assume that all the random quantities are defined on a filtered probability space

(Ω,F , (Ft),P). In addition, we denote with small (resp. capital) letters all the deterministic (resp.

random) quantities. In the standard DCF method, the (present) value v0 of a firm is defined as:

v0 =
∞∑
t=1

E [CFt]∏t
s=1(1 + ks)

, (1)

where CFt denotes the firm’s cash flow at time t, E[·] denotes the conditional expected value operator

based on the information available at time 0, and ks, 1 ≤ s ≤ t, denotes the appropriate discount

factor at time s. In accordance with a large stream of literature (see, e.g., Damodaran (2007)), we

make the following two assumptions:

Assumption 1. The discount factors is costant for all time and it is denoted by k.

Assumption 2. There exists a date T > 0 and a rate g, with 0 < g < k and k as in Assumption

1, called “perpetual growth rate” such that

CFt+1 = CFt · (1 + g) , ∀ t ≥ T.

Under Assumption (1) and (2) the infinite summation in Eq. (1) can be rewritten as:

v0 =
T∑
t=1

E [CFt]

(1 + k)t
+

E [CFT ] (1 + g)

(1 + k)T (k − g)
, (2)

where the second term multiplied by (1 + k)T is the terminal value (TV ). In Eq. (2), v0 is a

single point estimate because the uncertainty associated to the future firms’ performance and to

the evaluation process itself is summarized by the expected value of future cash flow. In SDCF, the

single point estimate v0 is replaced by the realization of a random variable V0 such that E[V0] = v0.

In particular, in this framework, Eq. (2) can be rewritten ∀ω ∈ Ω as:

V0(ω) =
T∑
t=1

CFt(ω)

(1 + k)t
+
CFT (ω)(1 + g)

(1 + k)T (k − g)
. (3)

The previous equation implies that the main building block in the definition of V0 is a reliable

description of the future cash flow generating process CFt. However, the cash flow is on its own

a reconstructed accounting variable, which depends on a set of other more fundamental variables.
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Specifically, we define for each time t the UFCF as the difference between the sum of Net Operating

Profit After Tax (NOPAT ) and Depreciation and Amortization (D&A) and the sum of Capital

Expenditure (CAPEX) and Change in the Working Capital (WC), (see, e.g., Damodaran, 2007,

2012):

UFCFt := NOPATt +D&At − CAPEXt −∆WCt, (4)

where ∆WCt = WCt −WCt−1, NOPATt = (EBITDA−D&A) · (1− τ0), EBITDA represents

Earning Before Interest, Taxes, Depreciation, and Amortization and τ0 represents the marginal tax

rate. A detailed description of these accounting variables is reported in Appendix A.

The interaction between these variables and the cash flow is manyfold and so, in order to obtain

a manageable model, we employ the following two-steps procedure. First, we express all the relevant

accounting variables as margins with respect to the revenues. These margins are estimated in a

firm-specific regression framework. Second, we propose an econometric model for the revenues’

dynamic. This model is calibrated at the single firm level and is used in a Monte Carlo exercise

in order to obtain a statistical description of the future revenues (and therefore of the future cash

flow). The rationale behind this approach is that on the one hand, the relation between the relevant

accounting variables and revenues constitutes a structural relationship that is likely to remain stable

across time. Indeed, it is related to things like the cost of capital, the accounting standard and

taxation laws. On the other hand, the revenues are an important idiosyncratic component at the

single firm level, besides being an important driver of the growth of a firm.

We now first construct a reliable relation between the cash flow and the revenues, then we

propose an econometric model for the latter. Discounting rates are discussed at the end of this

section.

Cash flow and Revenues. Using Eq. (4), we define for each time t, CF t as the sum between

NOPATt and D&At less CAPEXt, i.e., CF t = NOPATt +D&At − CAPEXt. Therefore, CFt =

CF t − ∆WCt. Nonetheless, NOPATt, D&At, CAPEXt and WCt are customarily expressed as

marginal quantities upon the revenues (REVt), i.e.,

CF t = α ·REVt, WCt = β ·REVt

so that

CFt := (α− β) ·REVt + β ·REVt−1.
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A distinguishing difference between CF t and ∆WCt is the frequency at which they are updated.

Precisely, the former is updated every quarter by using trailing twelve months data, while the latter

refers to annual variables. Then, we estimate α and β in the previous equantions through two

different steps. First, we estimate α with the following regression of CF t on REVt:CF t = αREVt + ut

ut = εt −
∑q

i=1 θiεt−i, εt
d∼ N (0, σ2),

(5)

where N (µ, σ2) denotes a Gaussian random variable with mean µ and variance σ2. The number of

lags q is fixed by using standard information criteria (e.g., the Akaike Information Criterion (AIC)).

Regression in Eq. (5) is first estimated over the time period FQ4 1992-FQ1 2009 and subsequently

over the remaining periods by shifting the initial estimation window of one fiscal quarter. Second,

following our data provider Thomson Reuters Eikon, Datastream database, we set the operating

margin of WCt upon the revenues equal to the annual sample average of the historical working

capital margin rate computed initially over the period 2006–2009, i.e., over the last three years and

subsequently by shifting the initial window of one year. Hereafter, for sake of presentation, the

description of the procedure is related to a specific period only. Letting α̂ and β̂ be these estimates,

then our measure of cash flow is given by

CFt = (α̂− β̂)REVt + β̂ REVt−1, (6)

i.e., the dynamic of cash flows are characterized in terms of revenues’ dynamic. A statistical analysis

assessing the reliability of the previous relations is reported in Appendix B.

The Revenues’ Process. We consider three alternative firm level models for the revenues. To

be clear, we are not searching for a revenues’ common-structure to be identified in a cross-sectional

fashion, but rather we are interested in a firm-specific model for the revenues. Because we use trailing

twelve-months data, we neglect in our models seasonal characteristics. The three alternative models

are: let yt = log (REVt),

a) Model 1 or stationary model:(
1−

p∑
k=1

akL
k

)
(1− L)yt = εt, εt

d∼ N (0, σ2
ε),
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where L is the usual lag operator, i.e. Lyt = yt−1.

b) Model 2 or local level model:

(Observation equation) yt = µt + εt, εt
d∼ N (0, σ2

ε)

(Local level) µt+1 = µt + ηt, ηt
d∼ N (0, σ2

η),

where the shocks εt and ηt are independent.

c) Model 3 or local linear trend model:

(Observation equation) yt = µt + εt, εt
d∼ N (0, σ2

ε)

(Local trend) µt+1 = µt + νt + ηt, ηt
d∼ N (0, σ2

η)

(Time-varying slope) νt+1 = νt + ζt, ζt
d∼ N (0, σ2

ζ ),

where the three innovations εt, ηt and ζt are independent.

Model 1 assumes that the first difference of log-revenues are stationary and described by an AR(p)

model, with the lag p selected (again) according to AIC. Model 2 and Model 3 assume that the

log-revenues yt depend upon non observable state variables, the local trend µt and the time varying

slope νt, and represent two alternative models when the differenced time-series of revenues, ∆yt,

are not stationary. These models are estimated in their state-space form using the Kalman filter,

which is used to estimate the parameters of the models and the time series of the unobservable

state variables (see, e.g., Harvey (1990) and Durbin and Koopman (2012) for further details). Note

that because Model 2 is nested in Model 3, we can use the likelihood ratio test to select the best

between the two. Once one model among these has been chosen, we compute a forecast of future

log-revenues, and therefore of future cash-flow, by employing a bootstrap procedure. All details on

this procedure are available upon request. They are omitted here for sake of conciseness. Appendix

B reports analysis on the goodness of fit of the models proposed for the log- revenues (Model 1,

Model 2 and Model 3) and a comparison against the simple autoregressive model of order one

AR(1).

The Discounting and Perpetual growth rate. Future trajectories of cash flow are discounted

back using the discount rate k (see Eq. (3)). This discount rate is called Weighted Average Cost
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of Capital (WACC) and it is defined as:

k = kewe + kdwd + kpwp, we + wd + wp = 1,

where ke represents the cost of equity, kd is the after-tax cost of debt and kp is the cost of preferred

stocks; we, wd and wp are the related weights. These values are provided directly from Thomson

Reuters Eikon, Datastream database and we refer to Damodaran (2010, 2012) for a detailed de-

scription of their computation. For sake of completeness and for the reader convenience, Table 15 in

Appendix A reports summary statistics of the WACC for each quarter, as well as of the perpetual

growth rate. Following an industry standard, the discount rate for the cash flow terminal value

is computed by considering the fixed corporate tax rate instead of the individual tax rate, albeit

the difference is minimal for all firms and all years considered.4 The perpetual growth rate g is

determined, as usual, by the riskless T -bond rate.

Before turning to the computation of the fair value distribution, let us clarify the non trivial

issue concerning the discount rate of Eq. (3) when CFt is a stochastic process. Actualization is an

elementary financial mathematics notion, related in particular to the concept of time value. If at a

future time t we are going to receive a certain quantity of money, then to evaluate that money today

we have to discount it using the riskless interest rate r. However, future cash flows of a firm are

not a certain quantity. A widespread technique is to raise the riskless rate r with a risk premium

z to also discount for the intrinsic uncertainty of the (future) cash flow. This is what happens in

the conventional DCF method, where the expected future cash flows are discounted with the so

called cost of capital rate (see, e.g. Kruschwitz and Löffler, 2006, for a detailed discussion). There-

fore, should the model for the CFt accounts in full for the intrinsic uncertainty of the latter, the

discount rate would be the riskless rate (see, e.g., Casey, 2001). However, this is not our case, in

the sense that in our framework we assume that the cash flows of a specific firm are driven only by

the idiosyncratic shocks of the revenues process, without accounting, for instance, for any possible

co-integration with other firms. Then, we continue to use the same discount rate employed in the

conventional DCF in Eq. (2) also in Eq. (3)5.

The Fair Value Distribution. Since we employ a UFCF approach, V0 in Eq. (3) represents

the enterprise value of a company. In order to compute the equity fair value, we have to remove,

4 For the sake of completeness, if we denote the discounting rate related to the terminal value by kTV , then

TV = CFT (1+g)
(kTV −g) and it is discounted by (1 + kTV )T .

5 We also note that our choice agrees with that made in (Ali et al. (2010), Razgaitis (2009) chapter 8; French and
Gabrielli (2005) Dayananda et al. (2002)) where the use of Monte Carlo simulation in DCF is discussed.
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i.e., subtract, the current value of “debt”. More precisely, we define the equity fair value V Eq
0 as:

V Eq
0 = V0 − (TD − CsI +MI + PS) ,

where TD represents the Total Debt, used as a proxy for the market value of debt (a proxy used

also by our data provider and suggested also by Damodaran (2007)), CsI the Cash and Short-term

Investments, MI the Minority Interest and PS denotes the Preferred Stock; we refer to Table 14

in Appendix A for a detailed description of these quantities. The distribution of the equity fair

values is divided by the number of company’s outstanding shares to obtain the so called fair value

distribution, which now can be compare with the corresponding stock price. Since, this distribution

is estimated by a Monte Carlo procedure, in the following we will consider the empirical fair value

distribution instead of the true one. However, we will not make this distinction for the sake of

simplicity.

Summarizing, the key steps of the SDCF methodology are the following:

i) Estimate the slope α̂ through the time-series regression (5) and the operating margin β̂ of

WCt upon the revenues.

ii) Determine the most reliable model for the log-revenues, choosing one among Model 1, Model

2 and Model 3.

iii) Compute each trajectory of CFt(ω), ω ∈ Ω in Eq. (6) by replacing the trajectory for the

revenues process, with the bootstrapped value REVt(ω) determined by either Model 1, Model

2 or Model 3.

iv) Discount back these trajectories with the appropriate discount rates.

Figure ?? shows two examples of the logarithm of the fair value distribution for Booking Hold-

ings Inc. (ticker BKNG) and McCormick & Company (ticker MKC) computed at different dates;

the red dotted lines indicate the market price at the evaluation date.

3. Data and Sample Selection Criteria

While the SDCF model relies upon general considerations, many details of its implementation and

validation depend on specific company level data. In this Section we review the different data

sources we use to develop and test our methodology. All the data in the subsequent description are
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Figure 1: The Figure represents examples of the logarithm of the fair value distribution (labelled
FV) for Booking Holdings Inc. (ticker BKNG) and McCormick & Company (ticker MKC) computed
at different dates; the red dotted lines indicate the market price at the evaluation date.

taken at a quarterly frequency.

The required equity prices, along with the corresponding fundamental data are collected from

Thomson Reuters Eikon, Datastream database. Our initial sample covers the period December

1990–December 2017 and comprises all the 505 companies currently listed in the S&P 500. We

follow the usual practice and we exclude the 104 stocks belonging to the financial sector (they are

labeled as financials according to the Industry Classification Benchmark (ICB)). These companies

are subject to industry-specific regulations and present a peculiar capital structure which makes
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very difficult, if not meaningless, the estimation of cash flows. Note that we are left with 401

companies once financial codes are discarded. We then exclude firms with missing data and firms

that are not included in the S&P 500 over the entire period January 2009-December 2017, which

is the time frame of our study for a total of 208 firms.67 In addition, we exclude 5 more firms

from our universe because of lack of sufficient observations of the revenues before January 2009 as

this may compromise the correct estimation of our econometric model. Finally, we discard 32 firms

for which the coefficient of determination (R2) of the regression in Eq. (5) results to be less than

10% and 10 firms since we observe that for specific quarters, immediately after the financial crisis

of 2008-2009, their estimated fair value distribution is negative.8 All together, these modifications

leave us with a sample of 140 firms. As regards the heterogeneity, among the 140 firms we have:

17 firms in both the Oil & Gas (ICB 1) and the Basic Material (ICB 1000) sector, 44 Industrial

firms (ICB 2000), 22 Consumer Good firms (ICB 3000), 19 Healthcare firms (ICB 4000), 12 firms

in the Consumer Service sector (ICB 5000), 3 firms in the Telecommunication sector (ICB 6000),

7 Utilities firms (ICB 7000) and 16 Technology Firms (ICB 9000). Table 1 reports for each ICB

sector the percentage of stocks of our universe relative to the number of firms of the same sector

in the S&P 500 index. To check for possible sample distortion introduced by our selection criteria,

Table 2 displays the percentage of stocks in each ICB sector relative to both our universe (first two

columns) and the S&P 500 (second two columns). Together, Tables 1 and 2 show that the final

sample presents a great heterogeneity in terms of industry sectors and, importantly, reflects the

composition of the index.

Table 1: Percentage of the stocks of our universe relatively to the S&P500 for each ICB sector.

ICB sector (%) ICB sector (%)

1 and 1000 36.17 5000 16.90
2000 49.44 6000 100.00
3000 37.93 7000 25.00
4000 36.54 9000 30.19

Table 3 presents summary statistics for our sample. Two “snapshots” are considered one refer-

ring to the beginning of the period, i.e. January 2009, and one to the end, i.e. December 2017.

6It is worth noting that because of the usage of the Kalman filter, a missing value for the revenues does not con-
stitute a problem. Nonetheless, a missing data for the other fundamentals (e.g., EBITDA and CAPEX) complicates
the reconstruction of the past free cash flow and/or the computation of the present value.

7We also eliminate 6 double listing tickers.
8This is attributed to the bad performance during the crisis which affect the correct estimation of the true latent

driver process on the next quarter.
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Table 2: Proportion of stocks in each ICB sector relative to both our universe (first and second
column) and the S&P500 (third and fourth column).

Our Universe S&P 500

ICB sector (%) ICB sector (%) ICB sector (%) ICB sector (%)

1 and 1000 12.14 5000 8.57 1 and 1000 11.72 5000 17.71
2000 31.43 6000 2.14 2000 22.19 6000 0.75
3000 15.72 7000 5.00 3000 14.46 7000 6.98
4000 13.57 9000 11.43 4000 12.97 9000 13.22

Data relative to December 2017 are reported between brackets. The table shows average and median

values across the firms within the same sector of market capitalization, revenues and net income.

The data employed in the analysis of the returns of different portfolios within standard multi-

factor models (e.g., the market excess return and the momentum factor) are taken from the Kenneth

R. French Data Library.9 In addition, since we set the terminal year T to 5, the perpetual growth

rate g is determined by the 5-year T -bond rate obtained from the FRED (Federal Reserve Bank in

St. Louis) database. Finally, the corporate tax rate for United States firms is provided by KPMG.

4. Firm misvaluation measure z-score

In this section, we introduce our measure of misvaluation. Let µi
t and σi

t be the empirical mean and

standard deviation of the log-fair value distribution of stock i determined using our SDCF method

at some time t and let pit be the closing log-price at day t of the same company. As mispricing

indicator of company i at time t we take

zit :=
pit − µit
σit

i ∈ {1, . . . , N} , (7)

that is the log-difference of the company’s expected fair value and its price, divided by the standard

deviation of the log-fair value distribution. In our indicator, the absolute level of of misvaluation,

|pit − µit| = |pjt − µjt |, is amplified when the uncertainty associated to the valuation procedure is less

uncertain.

First, we want to validate the z-score as a misvaluation measure. Toward this aim, we proceed

in the following way. We sort stocks into (appropriately defined) quantiles based on the empirical

9 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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distribution function z-score at the beginning of each semester, we construct “Buy”, “Hold” and

“Sell” portfolios according to this quantile division and we look at the performance of these portfolios

over the examined time period. Precisely, let ρ(α) be the quantile function at level α of the

empirical distribution of the z-scores zi, i ∈ {1, . . . , N}. If zi < ρ(0.4) the i-th firm is in the

Buy portfolio, whereas we assign the i-th firm to the Sell portfolio if zi ≥ ρ(0.6). The stocks

such that ρ(0.4) < zi < ρ(0.6) constitute the Hold portfolio. For each portfolio we compute the

equally weighted daily return and we compare its performance with the equally weighted portfolio

formed by selecting all the stocks in our universe. The Sharpe and the Sortino ratios associated

with the Buy portfolio are 1.43 and 1.87 respectively, which are higher than those of the Sell, Hold

and Our universe portfolios. The same conclusions hold for the average annual return. The results

are summarized in Table 4. In particular, by employing the test of Ledoit and Wolf (2008) and

Ardia and Boudt (2018) we found a significant difference between the Sharpe ratios of Buy and Our

universe portfolios with a t-Statistic of 2.98 and p-value of 3e-03. This first analysis is in support

of the z-score as a means to asses the misvaluation of a company.

Table 4: Descriptive Statistics of Portfolios based on the z-scores measure. For each columns is
reported the average number of firms, the average percentage of market capitalization respect to the
our universe, the average annual log return, the annualized sharpe and sortino ratio, respectively.

Sell Hold Buy Our Universe

Avg. Number of Firms 56 28 56 140
Avg. Market Cap. (%) 34 16 50 100
Avg. Annual Return(%) 17.63 18.07 20.83 19.04
Sharpe Ratio 1.05 1.15 1.43 1.24
Sortino Ratio 1.36 1.48 1.87 1.59

At this point we assess whether the mispricing indicator zit possesses significant predictability

power for the one-quarter ahead excess return when used to augment linear factor models. To this

end, we need to introduce some notation. Let q be the qth-quarter, q = 1, . . . , Q, with Q = 37; in

addition, let tq be the starting date of such a quarter, and µitq and σitq as above. For any fixed q, we

compute the z-scores as defined in Eq. (7), where t ∈ {tq, tq + 1, . . . , tq+1 − 1} and i ∈ {1, . . . , N}.
Then we estimate the following factor model

REX
i,t+tq = αi +

M∑
`=1

βi,`F
(`)
t+tq + γ · zit + ei,t+tq , t ∈ {tq, . . . , tq+1 − 1} , i ∈ {1, . . . , N} (8)
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where, if Ri,· is the daily return of the i-th company, REX
i,· := Ri,·−RF,· denotes the excess return of

the firm i over the risk-free rate RF,·, M is the number of factors F
(`)
· used to filter the raw returns,

βi,` the exposure of the excess returns on the `th-factor, γ is the common effect of the mispricing

score and ei,· the error term. We compare the market factor of Fama-French (Market Factor),

the Fama and French (1993) three-factor model augmented by the momentum factor of Carhart

(1997) (3 F -F + Mom) and the one-factor model computed using principal component analysis

(First PC).10 The results are collected in Table 5. The estimated γ’s are statistically significant

and with a negative sign. This reflects the fact that misvaluation is corrected over time and price

gradually converges to value. In particular, undervalued (resp. overvalued) stocks are characterized,

on average, by higher (resp. lower) future excess returns.

Table 5: This table reports results for the fixed-effect time series regression in (8). R2-within and
R2-overall are the adjusted-R2. Coefficients resulting to be significant at 10%, 5%, 1% and 0.1%
level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The sample period is April 1, 2009 to
September 28, 2018 for a total of Q = 37 quarters.

γ t-Statistic p-value R2-within R2-overall

Market Factor -0.0033 -3.0312 0.0025 ** 0.2961 0.2963
3 F -F +Mom -0.0032 -3.0332 0.0025 ** 0.1291 0.1294
First PC -0.0035 -2.8944 0.0038 ** 0.3147 0.3149

5. The Valuation Factor

As far as the z-score as a measure of misvaluation is concerned, in this section we form a misvaluation

factor LSV (Long Short Valuation) whose value at each day t is given by the difference between

the equal-weighted return of a portfolio that goes long on the most recommended stocks (i.e. the

Buy portfolio) and short on the less recommended stocks (i.e. the Sell portfolio) of our universe.

LSV is computed over the period April 1, 2009 to September 28, 2018. It earns an average return

of 2.70% (t-Statistic = 1.49 and p-value = 0.14) and provides an annual Sharpe ratio of 0.48.

We now explore the relation between LSV and other popular return factors, i.e. the market

factor (M ), the size factor (SMB), the book-to-market factor (HML), the momentum factor (MOM ),

the profitability factor (RMW ) and the investment factor (CMA). We begin by running the excess

10 We have also explored the Fama-French five-factor model (Fama and French, 2015) augmented by the momentum
factor (Carhart, 1997). However, in this case, the number of parameters results too large with respect to the number
of observations.
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return of LSV on the just mentioned factors :

LSVt −RF,t =β0 + βM(RM,t −RF,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+βRMWRMWt + βCMACMAt + et,
(9)

where et is a zero-mean residual. Empirical results are displayed in Table 6. Treating the parameters

Table 6: This table reports results from the regression of the abnormal return LSV − RF on the
factors RM − RF , SMB, HML, MOM , RMW , CMA. Heteroskedasticity and autocorrelation
(HAC) robust standard errors are shown in the second column (Std). The adjusted-R2 is 28%.
Coefficients resulting to be significant at 10%, 5%, 1% and 0.1% level are marked with ‘.’, ‘∗’, ‘∗∗’
and ‘∗ ∗ ∗’ respectively. The number of observation is 2392. The sample is from April 1, 2009 to
September 28, 2018.

Coeff Std t-Statistic p-value
Int 0.018 0.006 3.075 2.13e-03 **
RM −RF -0.118 0.008 -15.569 < 2e-16 ***
SMB -0.156 0.013 -12.144 < 2e-16 ***
HML -0.042 0.015 -2.721 6.5e-03 **
MOM -0.138 0.008 -16.129 < 2e-16 ***
RMW 0.005 0.021 0.266 0.7900
CMA 0.055 0.025 2.238 0.0253 *

in (9) as true values rather than estimates, should the factor exposures capture all the variation

in (LSVt − RF,t) the intercept β0 would be zero. In our results, the intercept is significantly

different from zero at any conventional level and the adjusted R2 is merely 0.28; this result points

toward the existence of yet another anomaly hardly explained by well-accepted risk factors. In

particular, following the (ambitious) interpretation of (9) suggested in Fama and French (2015) as

“the regression equation for a version of Merton (1973)’s model in which up to five unspecified state

variables lead to risk premium that are not captured by the market factor”, the numbers in Table 6

suggest that LSV provides a different combination of exposures to a new (unknown) state variable.

Among the factors, the market, SMB and MOM are negative and statistically significant at any

conventional level, whereas RMW is not statistically significant. Less variation in (LSVt −RF,t) is

explained by HML and CMA. Also, Table 7 exhibits the Pearson correlation between LSV and

the other factors, whereas Figure 2 shows the scatter plot between LSVt and RM,t−RF,t, LSVt and

SMBt, and between LSVt and MOMt, respectively.

We now turn to our primary task in this section, testing how well LSV explain average excess

returns on a equally weighted portfolio that is long in all the stocks of our universe. We denote the
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Table 7: This matrix reports the Pearson correlation between the misvaluation factor LSV and
other Fama and French (2015) factors.

LSF RM −RF SMB HML MOM RMW CMA

LSF - -0.4045 -0.3379 -0.0352 -0.2261 0.2288 0.0424
RM −RF - 0.3858 0.2996 -0.1200 -0.4609 -0.0375
SMB - 0.1027 -0.0988 -0.3579 0.0251
HML - -0.4211 -0.2982 0.4772
MOM - 0.0924 -0.0688
RMW - -0.0495
CMA -
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Figure 2: From left to right : Scatter plot between LSVt and RM,t − RF,t, LSVt and SMBt, and
between LSVt and MOMt.

return of such a portfolio as RU,t. We run the following regression.

RU,t −RF,t = β0 + βLSVLSVt + et, (10)

where βLSV denotes the exposure of the excess return to the valuation factor and et is the usual

error term. Any unusual return that is not explained by the valuation factor is captured by the

intercept β0. Empirical results are reported in Table 8.

The intercept is significant and interestingly, the adjusted-R2 attains up to 17%, highlighting

the importance of the new introduced valuation factor. The negative sign of βLSV suggests that the

excess return is achieved because of a good performance of the overvalued stocks of our universe.

Is the effect of LSV on the excess returns hidden if we augment the regression in Eq.(10) with
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Table 8: This table reports results from the regression of the abnormal return RU,t − RF,t on the
factor LSV . Heteroskedasticity and autocorrelation (HAC) robust standard errors are shown in
the second column (Std). The adjusted-R2 is 16.75%. Coefficients resulting to be significant at
10%, 5%, 1% and 0.1% level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The number of
observation is 2392. The sample is from April 1, 2009 to September 28, 2018.

Coeff Std t-Statistic p-value

Int 0.092 0.018 5.085 3.97e-07 ***
LSV -1.126 0.051 -21.956 < 2e-16 ***

other risk factors? To answer to this question, we run the following two time-series regressions:

RU,t −RF,t = β0 + βM(RM,t −RF,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+ βRMWRMWt + βCMACMAt + et,
(11)

RU,t −RF,t = β0 + βM(RM,t −RF,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+ βRMWRMWt + βCMACMAt + βLSVLSVt + et.
(12)

The former is the Fama-French five-factor model augmented by the momentum factor. The latter

is obtained from the first one by adding LSV. For make it easier the presentation of the results, we

denote the two model Six-factor and Seven-factor, respectively. The results are collected in Table

9.

Importantly, the improvements offered by the Seven-factor model can be statistically tested by

employing a likelihood ratio test. It results that the χ2 = 59.89 with a p-value of 1.00e-14. We

note that in the Seven-factor model the SMB coefficient is not significant as for the other factors.

Its influence seems to be captured by LSV, a result not new in the empirical finance literature (see

Fama and French, 2015). It is, therefore, interesting, to run the following time-series regression

RU,t −RF,t = β0 + βM(RM,t −RF,t) + βLSVLSVt + βHMLHMLt + βMOMMOMt

+ βRMWRMWt + βCMACMAt + et,
(13)

which is obtained from the Six-factor by replacing SMB with LSV. We denote the previous model

Six-factor(2). The results are, again, reported in Table 9. We emphasize that Six-factor(2) has

a statistically significant better fit that the Six-factor one, as confirmed by the corresponding

information criteria AIC and BIC (see the caption of Table 9).

As an additional empirical exercise of this subsection, we run a two-factor model in which one
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Electronic copy available at: https://ssrn.com/abstract=3614988



factor is the LSV and the other one is computed using principal component analysis. Precisely,

F
(PCA)
t is the first principal component extracted from the matrix of the daily returns of all the

stocks of our universe over the entire time-period, which is, contrary to the other risk-factors,

endogenous. Even in this case, βLSV is significant at any conventional level.

To further assess robustness to our results, we make the following additional observations. The

factor LSV seems to share some information content with the SMB factor. From Table 7 we observe

that LSV is correlated with the market, momentum and robust minus weak factor. Then, in order

to investigate the unique information contained in LSV, we perform the time-series regressions (12)

and (13) on an orthogonalized misvaluation factor, LSV ⊥, which is defined as the sum of a constant

(i.e. the intercept), the risk-free rate and residuals extracted from the regression (9), i.e.,

LSV ⊥ := β0 +RF,t + et.

By construction, the orthogonalized misvaluation factor has zero correlation with the Fama-French

and MOM factors. Therefore, we estimate the time-series regressions (12) and (13) by replacing

LSV with its orthogonalized version and the results are collected in Table 11. Interestingly, the beta

associated with LSV ⊥ continues to be statistically significant and negative even if the influence of

the other factors has all been removed from LSV ⊥. In addition, we observe that SMB is no longer

non significant in the seven-factor model which was masked by the collinearity with LSV in the

previous regression. Moreover, the (new) Seven-factor provides a significant better fit than Six-

factor models according to likelihood ratio test and to both AIC and BIC criteria (see the caption

of Table 11)11.

11The likelihood ratio test between the Six-factor and the Seven-factor model has a χ2 = 59.89 with a resulting
p-value of 1e-14. The likelihood ratio test between the Six-factor(2) and Seven-factor has a χ2 = 16.87 with a
resulting p-value of 3.99e-05.
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Table 9: This table reports results from regressions of the six-factor model, seven-factor model (top
panel), and of the six-factor(2) model (bottom panel). Six-factor : the adjusted-R2 is 97.55%, the
AIC is −2220.33 and the BIC is −2174.09. Seven-factor : the adjusted-R2 is 97.61%, the AIC is
−2278.22 and the BIC is −2226.20. Six-factor(2): the adjusted-R2 is 97.60%, the AIC is −2275.76
and the BIC is −2229.52. Heteroskedasticity and autocorrelation (HAC) robust standard errors
are shown in the Std column. Coefficients resulting to be significant at 10%, 5%, 1% and 0.1%
level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The number of observation is 2392. The
sample is from April 1, 2009 to September 28, 2018.

Six− factor Seven− factor
Coeff Std t-Statistic p-value Coeff Std t-Statistic p-value

Int 0.0089 0.0031 2.86 4.33e-03 ** 0.0105 0.0031 3.40 6.80e-04 ***
RM −RF 1.0161 0.0038 264.22 < 2e-16 *** 1.0067 0.0039 252.494 < 2e-16 ***
SMB 0.0265 0.0065 4.06 5.12e-05 *** 0.0140 0.0066 2.11 0.03493 *
HML -0.1562 0.0078 -19.89 3.97e-07 *** -0.159 0.0077 -20.55 < 2e-16 ***
MOM -0.0576 0.0044 -13.21 < 2e-16 *** -0.0686 0.0045 -15.14 < 2e-16 ***
RMW 0.1889 0.01059 17.84 3.97e-07 *** 0.1893 0.01046 18.09 < 2e-16 ***
CMA 0.3056 0.01267 24.11 3.97e-07 *** 0.3107 0.01253 24.75 < 2e-16 ***
LSV – – – – -0.0801 0.01031 -7.775 1.12e-14 ***

Six− factor(2)
Coeff Std t-Statistic p-value

Int 0.0105 0.0031 3.424 6.20 e-04 ***
RM −RF 1.008 0.0039 257.29 < 2e-16 ***
SMB – – – –
HML -0.1617 0.0077 -20.965 < 2e-16 ***
MOM -0.070 0.0044 -15.68 < 2e-16 ***
RMW 0.1843 0.010 18.075 < 2e-16 ***
CMA 0.3124 0.012 25.019 < 2e-16 ***
LSV -0.0853 0.010 -8.53 < 2e-16 ***

Table 10: This table reports results from the regression of RU,t−RF,t on the first principal component

factor F
(pca)
t and on the valuation factor LSV ⊥t . Heteroskedasticity and autocorrelation (HAC)

robust standard errors are shown in the second column (Std). The adjusted-R2 is 99.31%. The
number of observation is 2392. The sample is from April 1, 2009 to September 28, 2018. Coefficients
that result to be significant at 5%, 1% and at any conventional confidence levels are marked,
respectively, with one, two and three stars.

Coeff Std t-Statistic p-value
Int 0.078 0.0016 47.78 < 2e-16 ***
F (pca) 0.9659 0.0016 588.05 < 2e-16 ***
LSV ⊥ 0.0642 0.0051 12.45 < 2e-16 ***
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Table 11: This table reports results from regressions of the seven-factor model and of the Six −
factor(2) model, where LSV ⊥ is used instead of LSV . Seven-factor : the adjusted-R2 is 97.61%,
the AIC is −2278.22 and the BIC is −2226.20. Six-factor(2): the adjusted-R2 is 97.59%, the
AIC is −2263.35 and the BIC is −2217.11. Heteroskedasticity and autocorrelation (HAC) robust
standard errors are shown in the Std column. Coefficients resulting to be significant at 10%, 5%,
1% and 0.1% level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The number of observation
is 2392. The sample is from April 1, 2009 to September 28, 2018.

Seven− factor Six− factor(2)
Coeff Std t-Statistic p-value Coeff Std t-Statistic p-value

Int 0.0105 0.0031 3.40 6.82e-04 *** 0.0105 0.0031 3.37 7.55e-04 ***
RM −RF 1.0161 0.0038 267.49 < 2e-16 *** 1.021 0.0037 279.13 < 2e-16 ***
SMB 0.0266 0.0065 4.10 4.13e-05 ** – – – –
HML -0.1563 0.0078 -20.14 < 2e-16 *** -0.156 0.0077 -20.69 < 2e-16 ***
MOM -0.0576 0.0044 -13.38 < 2e-16 *** -0.0592 0.0045 -13.77 < 2e-16 ***
RMW 0.1889 0.0106 18.06 < 2e-16 *** 0.1788 0.0105 17.52 < 2e-16 ***
CMA 0.3056 0.0127 24.41 < 2e-16 *** 0.3098 0.0125 24.75 < 2e-16 ***
LSV ⊥ -0.0801 0.0103 -7.775 1.12e-14 *** -0.0801 0.0103 -7.749 1.36e-14 ***
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5.1. Comparison with UMO factor

In this section, we compare the LSV factor with the UMO factor of Hirshleifer and Jiang (2010).

We note that the UMO factor is available until December 30, 2016 at the time of the writing of

the present work. As a first thing, we consider the regression (9) augmented with the UMO factor.

The factor HML is not more statistically significant, whereas the UMO factor is significant at any

conventional level, see Table 12. As previously done, we compute the Pearson correlation between

UMO and LSV which is equal to 0.094. In addition, Figure 3 shows the scatter plot between the

UMO and LSV, which suggests that the two misvaluation factors are orthogonal to each other.
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Figure 3: Scatter plot between LSVt and UMOt.

Table 12: This table reports results from the regression of the abnormal return LSV − RF on
the factors RM − RF , SMB, HML, MOM , RMW , CMA and UMO. Heteroskedasticity and
autocorrelation (HAC) robust standard errors are shown in the second column (Std). The adjusted-
R2 is 31%. Coefficients resulting to be significant at 10%, 5%, 1% and 0.1% level are marked with
‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The number of observation is 1953. The sample is from April
1, 2009 to December 30, 2016.

Coeff Std t-Statistic p-value
Int 0.0218 0.0070 3.1260 0.0018 **
RM −RF -0.1196 0.0084 -14.2400 < 2e-16 ***
SMB -0.1866 0.0148 -12.6200 < 2e-16 ***
HML -0.0198 0.0185 -1.0710 0.2844
MOM -0.1343 0.0096 -14.0170 < 2e-16 ***
RMW 0.0697 0.0267 2.6070 0.0092 **
CMA 0.0578 0.0299 1.9350 0.0532 .
UMO -0.0723 0.0156 -4.6440 3.65 e-06 ***

Then, to further investigate the relation between this two factors we compare them among time.
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Following Chang et al. (2013) we interpret the variation of the absolute value of a misvaluation

factor as the degree of misvaluation measured by the factor and we plot the daily absolute value of

the logarithmic return of the UMO and LSV factor rescaled by their mean and standard deviation.

Figure 4 shows how the UMO factor attributes an high value of misvaluation to the period between

2015 and 2016 while for the LSV it is the window between 2010 and 2011. This suggests that the

two misvaluation factor are in some sense complementary to each other and it can be explained

by looking the nature of the two factors. UMO is based on a stock classification that looks the

past events in the previous two years, see Hirshleifer and Jiang (2010) for further details, which can

be identified as a top-down approach. On the other hand, the LSV factor is constructed starting

from individual balance sheet data (bottom-up approach) and it is based on a cross-section measure

provided by the SDCF method.
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Figure 4: Daily absolute value of the logarithmic return of the UMO and LSV factor rescaled by
their mean and standard deviation.

Finally, we investigate whether the LSV factor remains significant in the Fama-French regres-

sion (11) augmented with the UMO factor. Therefore, we first consider the following benchmark

regression
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RU,t −RF,t = β0 + βM(RM,t −RF,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+ βRMWRMWt + βCMACMAt + βUMOUMOt + et,
(14)

and then we take into account the orthogonalized version of LSV, provided by regression (9) augmented

with the UMO factor, so that it is orthogonal also to UMO, i.e.:

RU,t −RF,t = β0 + βM(RM,t −RF,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+βRMWRMWt + βCMACMAt + βUMOUMOt + βLSVLSV ⊥t + et.
(15)

The results are summarized in Table 13. We observe that the coefficient of LSV factor is still

statistical significant even if the UMO factor is included in the regression. In addition, by performing

the Likelihood-Ratio-test we obtain that the improvement is sensible, χ2 = 34.102 e p-value = 5.22e-

09, which means that the complementary information provided by the LSV factor is relevant to

explain abnormal returns of market and to further investigate the misvaluation effect. The z-score

constitutes a crucial role for the construction of the LSV factor, which highlights how it is essential

to incorporate an uncertainty measure in a valuation method.

Table 13: This table reports results from regressions of equation (14) and (15). For the first
regression the adjusted-R2 is 97.88%, the AIC is −1852.22 and the BIC is −1802.03. Six-factor(2):
the adjusted-R2 is 97.91%, the AIC is −1884.32 and the BIC is −1828.55. Heteroskedasticity and
autocorrelation (HAC) robust standard errors are shown in the Std column. Coefficients resulting
to be significant at 10%, 5%, 1% and 0.1% level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗∗∗’ respectively.
The number of observation is 1953. The sample is from April 1, 2009 to December 30, 2016.

Coeff Std t-Statistic p-value Coeff Std t-Statistic p-value
Int 0.0103 0.0034 3.0230 0.0025 ** 0.0118 0.0034 3.4600 0.0006 ***
RM −RF 1.0238 0.0041 248.3900 < 2e-16 *** 1.0238 0.0041 250.5030 < 2e-16 ***
SMB 0.0382 0.0073 5.2610 1.59e-07 *** 0.0382 0.0072 5.3060 1.25e-07 ***
HML -0.1730 0.0091 -19.0800 < 2e-16 *** -0.1730 0.0090 -19.2420 < 2e-16 ***
MOM -0.0538 0.0047 -11.4380 < 2e-16 *** -0.0538 0.0047 -11.5360 < 2e-16 ***
RMW 0.1561 0.0131 11.8970 < 2e-16 *** 0.1561 0.0130 11.9990 < 2e-16 ***
CMA 0.2787 0.0147 18.9960 < 2e-16 *** 0.2787 0.0145 19.1580 < 2e-16 ***
UMO 0.0407 0.0076 5.3300 1.10e-07 *** 0.0408 0.0076 5.3760 8.54e-08 ***
LSV ⊥ - - - - -0.0646 0.0110 -5.8520 5.69e-09 ***
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6. Conclusions and future perspective

In this paper, we propose a framework that can be viewed as a generalization of the traditional

DCF model to firm valuation, in which it is provided, at the same time, an estimate of the fair

value of a company and a measure of the degree of uncertainty associated. The new approach is

named Stochastic Discount Cash Flow method, SDCF in short, where the point estimate of the

traditional DCF approach is replaced with a probability distribution of fair values, called fair value

distribution. We stress that our approach is invariant to the considered valuation model. We show

the importance of a distributional approach to valuation through different exercises.

We introduce a z-score as a misvaluation indicator and we assess its quality by testing its

predictability for future abnormal stocks returns. Based on the ranking of companies relative

misvaluation measure, we form a misvaluation factor by longing undervalued stocks and short-

selling overvalued stocks. We denote this factor by LSV. We explore the relation between LSV and

the other risk-factors routinely used in the financial literature. Our results suggest that LSV is not

a redundant factor when used to augment the Fama-French five factor model augmented by the

momentum factor, in the sense its high average return is not fully captured by the latter. A simple

statistical analysis have showed that LSV is correlated with SMB. Armed with this evidence, we

examine a six-factor model that replaces SMB with LSV and a seven-factor model where both SMB

and LSV are employed. It results that the six-factor model has a better fit than the benchmark

regression and that in the last one the SMB becomes redundant. However, after removing from

LSV possible collinearity with other market factors, the seven-factor model exhibits robust results

compared to the other considered factor models. We note that this exercise complements the work of

Chang et al. (2013), which provides evidence on the existence of a misvaluation factor, constructed

starting from a relative valuation type model. Also, we compare the LSV with the UMO factor of

Hirshleifer and Jiang (2010). We find evidences that UMO and LSV are quite orthogonal and that

they remain both significant when included in a Fama-French five factor model augmented by the

momentum factor.

The above results confirm the importance of assessing the degree of uncertainty associated with

the valuation of a company. Nonetheless, the present study can be extended in several directions

that we plan to pursue in future papers. We mention here some possible extensions. a) Motivated

by the fact that the DCF is a bottom-up approach, we use univariate models to describe the

log-revenues dynamics. A natural extension would be to use multivariate time-series models for

the log-revenues, thus exploiting the cross-sectional information. b) The fair value distribution

obtained with our method can be compared with or complemented by an implicit measure of fair
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value derived, for instance, from the distribution of prices of call and put options. c) Finally, we

could exploit the information provided by the z-scores to assign stocks recommendations and build

investment strategies.
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A. Description of the DCF Model and of Accounting Variables

The accounting variables used in the UFCF DCF model are described in Table 14.

Table 14: The table reports a description of some accounting variables employed in the UFCF DCF
method.

Variable Description

EBIT Earning Before Interest and Taxes (known also as Operating profit)
which represents total revenues from all of a company operating ac-
tivities, after deducting any sales adjustments, excise taxes and other
expenses incurred from operating activities.

D&A Depreciation and Amortization which refers to the amount of expense
charged by a company to cancel the cost of a plant or machinery over
its useful life, giving consideration to wear and tear, obsolescence and
salvage value together with a non-cash expense incurred due to the
amortization of intangible fixed assets and goodwill.

EBITDA Earning Before Interest, Taxes, Depreciation, and Amortization.
Marginal Tax Rate It represents the amount of tax which we have to deduct from earnings.

For sake of simplicity, we will denote it by τ0.
NOPAT Net Operating Profit After Tax, which is defined, at each time instant,

as the difference between EBITDA and D&A, multiplied by (1−τ0).
WC Working Capital which is defined as the difference between current

assets and current liabilities of a company so that it represents a
measure of liquidity and efficiency. We will denote by ∆WCt = WCt−
WCt−1 the Change in the WC.

CAPEX Capital Expenditure which includes all expenditures that are not
treated as an expense on the income statement when they are in-
curred, such as the costs for the development of software which are
capitalized at the time of development, and amortized later, when
such software is actually implemented for production.

TD Total Debt Outstanding which represents the total interest-bearing
debt outstanding.

CsI Cash and Short-term Investments which represents short-term, highly
liquid investments that are both readily convertible to known amounts
of cash together with cash on hand and any investments in debt and
equity securities with maturity of one year or less.

MI Minority Interest which represents accumulated interest for minority
shareholders in subsidiaries that are less than 100 percent owned by
the reporting parent company.

PS Preferred Stock which represents the value of preferred shares.

29

Electronic copy available at: https://ssrn.com/abstract=3614988



In Table 15 we report the average and standard deviation of WACC computed among the firms

along with the perpetual growth rate g.

Table 15: Summary statistics of the WACC for each quarter, as well as of the perpetual growth
rate.

2017-12-31 2017-09-30 2017-06-30 2017-03-30 2016-12-30
Average WACC 7.26 6.88 6.65 6.62 7.10
Std. Dev. WACC 1.42 1.40 1.36 1.34 1.47
g 2.54 2.07 1.82 1.81 1.94

2016-09-30 2016-06-30 2016-03-30 2015-12-30 2015-09-30
Average WACC 6.82 6.45 6.51 6.44 6.57
Std. Dev. WACC 1.43 1.53 1.51 1.44 1.40
g 1.61 1.13 1.24 1.37 1.59

2015-06-30 2015-03-30 2014-12-30 2014-09-30 2014-06-30
Average WACC 6.72 6.68 5.97 6.09 6.20
Std. Dev. WACC 1.55 1.52 1.34 1.32 1.36
g 1.55 1.52 1.45 1.60 1.70

2014-03-30 2013-12-30 2013-09-30 2013-06-30 2013-03-30
Average WACC 6.16 6.81 6.78 6.81 6.31
Std. Dev. WACC 1.44 1.66 1.80 1.81 1.79
g 1.66 1.60 1.44 1.51 0.92

2012-12-30 2012-09-30 2012-06-30 2012-03-30 2011-12-30
Average WACC 6.48 6.34 6.29 6.44 5.81
Std. Dev. WACC 1.81 1.74 1.70 1.75 1.46
g 0.83 0.69 0.67 0.79 0.90

2011-09-30 2011-06-30 2011-03-30 2010-12-30 2010-09-30
Average WACC 5.81 6.07 6.67 6.08 5.52
Std. Dev. WACC 1.44 1.47 1.51 1.23 1.19
g 0.95 1.15 1.86 2.12 1.49

2010-06-30 2010-03-30 2009-12-30 2009-09-30 2009-06-30
Average WACC 5.53 6.17 8.01 7.89 7.85
Std. Dev. WACC 1.19 1.28 1.83 1.84 1.82
g 1.55 2.25 2.42 2.30 2.47

2009-03-30
Average WACC 7.53
Std. Dev. WACC 1.80
g 2.23
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B. Empirical Results of Section 2

The coefficient of determination is on average greater than 0.90, which assesses the goodness of

fit of the linear regression of CF t on REVt. As regards the model misspecification, we check the

normality and the autocorrelation of the standardized residuals. The Kolmogorov-Smirnov test

fails to reject the assumption of normality of the standardized residuals for about the 56% of the

firms in our universe at 0.01 level. Also, there is no evidence of serial correlations for about 72%

of the firms using the Ljung-Box statistic. Figure 5 exhibits, in each row, an example of sample

autocorrelations of the standardized residuals and of theirs squares, as well as the quantile-quantile

plots.

Then, we assess the goodness of fit of Model 1, Model 2 and Model 3 described in Section 2. In

order to do so, we proceed as follows:

i) If the time series of the log-revenues’ increments is stationary we use Model 1 and the perfor-

mance of ARIMA-based models is assessed by looking at the usual coefficient of the determi-

nation.

ii) On the contrary, in case of non-stationarity, i.e. either Model 2 or Model 3 is selected, we

proceed in the following way. Let ȳ be the sample average of the log-revenues computed over

a predetermined time period, and µt|pred = E[µt|Ft−1] be the Kalman filter prediction of the

state variable µ at time t. If T is the length of the considered time-series and K the number

of explanatory variables, then we define the adjusted coefficient of determination R2
adj as:

R2
adj := 1− (1−R2)

T − 1

T −K − 1
,

where

R2 := 1− SSres
SStot

,

with SSres =
∑T

t=1(yt − µt|pred)2 and SStot =
∑T

t=1(yt − ȳ)2.

The following results are obtained by the average on the whole sample considered (FQ4 2008- FQ4

2017). For the 71% of the firms in the sample Model 1 is the model that present the best goodness

of fit. Of the remaining, only the 1.5% of firms have a log-revenues process that is well fitted by

Model 2. Regardless the model selection we found that the coefficient of determination is greater

than 0.90 on average among the sample period and firm cross-section.
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Figure 5: The Figure represents examples of sample autocorrelation of the standardized prediction
errors for the regression in Eq. (5) (first row), for their squares (second row), as well as their
quantile-quantile (third row) plots.
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Figure 6: The Figure represents two examples of the dynamic of the Revenues well fitted by Model
1 (Left Panel) and Model 3 (Right Panel). Model 1: Disney (ticker DIS). Model 3: Amazon (ticker
AMZN).

The plots in Figure 6 report the typical dynamics of the revenues process in Model 1 (left panel)

and Model 2-3 (right panel). Examples of firms for which the latter models have been selected are

Amazon (ticker AMZN) and Booking (ticker BKNG).

Models 2 and 3 assume that shocks are i.i.d. with a zero-mean Gaussian distribution. Following

Durbin and Koopman (2012) we check for a possible misspecification of these models by looking

at the time series of the standardized one-step ahead forecast errors η̂ and we refer to Durbin and

Koopman (2012) for further details on this definition. In case of correct specification of the models,

the latter should be i.i.d. and normally distributed. Figure 7 shows, in each row, an example of

sample autocorrelations of η̂t and η̂2t , as well as quantile-quantile plots for η̂t. We only note some

very weak heteroskedasticity of η̂t and a slight deviation from normality in the tails. Similar results

are obtained also for the other firms and available upon request. In detail, the 74% of the firms in

the sample exhibit η̂t with a distribution that is not statistically different from the Gaussian at the

0.01 confidence level according to the Kolmogorov-Smirnov test. Also, the η̂t of the 76% (resp. 78%)

of the firms do not exhibit significant serial autocorrelation at the 0.01 confidence level according to

the Ljung-Box test performed at lag 1 (resp. 10). We argue that the proposed framework represents

an optimal trade-off between a model with a perfect statistical fit of the data and a model that

have clear advantages in terms of practical implementability.
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Figure 7: The Figure represents examples of sample autocorrelation of η̂ (first row) and η̂2 (second
row), as well as quantile-quantile plots (third row) for η̂. The left plots are referred to Hasbro
(ticker HAS), while the right ones to IBM (ticker IBM).
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Finally, we present results on the predictive ability of Model 1, Model 2 and Model 3 for our

sample firms by comparing it with that of a simple autoregressive model of order one AR(1), which

is described by the following dynamic: yt = αyt−1 + εt where |α| ≤ 1 and εt
d∼ N (0, σ2

ε). We start

by estimating all models over the period December 1992 – March 2009 and by making predictions

for the next 20 quarters (i.e. for the next 5 years). We then add the most recent observation, we

shift the estimation period by one quarter and we make predictions for the next 20 quarters, and

so on and so forth till the first quarter of 2013.12 We compute the following (relative) error metric

for each firm j and each estimation period e:

RMSQe
j :=

MSEj,our

MSEj,AR(1)

,

where MSE stands for Mean Square Error and our is either Model 1, Model 2 or Model 3. The mean

square error is defined in the natural way as MSE := 1
H

∑H
h=1(yt+h − ŷt+h)2, where H = 20 and y

and ŷ denotes the actual and the predicted value, respectively. For conciseness, for each estimation

period e we compute the average across-firms of the RMSQe
j . In addition, we test whether our

models perform better than the AR(1): a negative average of log(RMSQj) means that our models

have a MSE smaller than the that of the AR(1). Table 16 reports the average of the logarithm

of RMSQj among the quarters. We observe that the average log(RMSQe
j) is always negative and

statistically significant for all quarters, with an exception of the last quarters of 2009 and the first

of 2010, thus confirming that a more complex dynamics than the simple AR(1) one is necessary.

Also, for each quarter, we compute the percentage of firms for which RMSQj < 1 and the results

are reported in Table 17. On average, for 65% of companies our models perform better than the

AR(1).

Table 16: Average log(RMSQj) computed across firms for all the quarters. Values that result to be
significant at 10%, 5%, 1% and 0.1% level are marked with ‘.’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively.

2009-03-31 2009-06-30 2009-09-30 2009-12-31 2010-03-31 2010-06-30
-0.61 *** -0.33 * 0.31 * 0.43 ** 0.14 -0.72 ***

2010-09-30 2010-12-31 2011-03-31 2011-06-30 2011-09-30 2011-12-31
-0.81 *** -0.89 *** -0.84 *** -0.82 *** -0.87 *** -0.78 ***

2012-03-31 2012-06-30 2012-09-30 2012-12-31 2013-03-31
-0.59 *** -0.54 ** -0.66 *** -0.59 *** -0.68 ***

12We remind that the data sample for the revenues end in the first quarter of 2018.
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Table 17: Percentage of firms j such that RMSQj < 1 among the all quarters. On average 65%
companies have a RMSQ which is smaller than 1.

2009-03-31 2009-06-30 2009-09-30 2009-12-31 2010-03-31 2010-06-30
65 % 58.57 % 45.71 % 44.29 % 48.57% 70.00 %

2010-09-30 2010-12-31 2011-03-31 2011-06-30 2011-09-30 2011-12-31
74.29 % 72.14 % 75.71 % 72.14 % 74.29 % 68.57 %

2012-03-31 2012-06-30 2012-09-30 2012-12-31 2013-03-31
63.57 % 65.71 % 67.86 % 64.29 % 68.57%
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