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Abstract

The “doctrinal paradox”, also called “discursive dilemma”, shows that the
aggregation of judgements held by different individuals is problematic and can
lead to group-level inconsistencies, although each individual is consistent. This
aggregation problem has intuitive similarities with the Condorcet paradox in
the aggregation of preferences. Indeed, List and Pettit (2002) proved an im-
possibility theorem in the framework of judgement aggregation, analogous to
Arrow’s Theorem from the framework of preference aggregation. However, List
and Pettit (2004) claim that the judgement aggregation framework is “more ex-
pressive” than the classical social choice framework, in the sense that while the
framework of preference aggregation can be mapped into the framework of
judgement aggregation, there exists no obvious reverse mapping. In this paper
we show instead that the social choice framework has enough power to express
the judgement aggregation framework. To do so, we present a graph-theoretic

version of the social choice framework and show that it is sufficient to embed
the judgement aggregation framework. As an application of this framework,
we show that the doctrinal paradox and Condorcet’s paradox (both under the
majority aggregation rule) arise for essentially the same reason.
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1 Introduction

The classical social choice literature studies the aggregation of individual preferences
(usually represented as partial orders or sets of ordered pairs) into collective “social”
preferences. The judgement aggregation literature studies the aggregation of indi-
vidual judgements (assignments of True or False to sets of logical propositions) into
a collective (e.g. of a jury or a committee) judgement.

The “paradox” that aggregating “rational” preferences can lead to “irrational”
outcomes has been known at least since the 17th century (de Caritat marquis de
Condorcet, 1785). Condorcet considers a case in which individual voters have transi-
tive preferences over outcomes and shows that aggregate preferences constructed via
majority voting may fail to comply with transitivity. A general formal framework
has been provided by Kenneth Arrow, whose impossibility theorem proves that, in
general, no aggregation mechanism (except, trivially, dictatorship by one individual)
exists which ensures transitivity of social preferences even when all individual agents
comply with transitivity (Arrow, 1951).

Something similar happens in judgement aggregation. The “doctrinal paradox”,
first formulated by Kornhauser and Sager (1993) (though it is possible to find some
partial antecedents) concerns instead the problem of aggregation of judgements. Indi-
vidual agents have heterogeneous believes on “atomic” propositions and are correctly
computing some logical operations (and, or, not, logical implication, etc.) on such
propositions. The “paradox” happens when the aggregation on the atomic proposi-
tions and their logical expressions produces “illogical” aggregate results.

List and Pettit (2002) formalized this paradox and proved an impossibility result
somewhat similar to Arrow’s theorem. In a subsequent paper which compares the
two theorems (List and Pettit, 2004), List and Pettit made the strong claim that
the judgement aggregation framework is “more powerful” than the one of preference
aggregation, in that their model of judgement aggregation includes the one of pref-
erence aggregation, but, in general, the reverse is not true. They also compare the
doctrinal paradox and the Condorcet paradox, arguing that the two paradoxes are
fundamentally different.

In this paper we try to challenge these conclusions by using a different formaliza-
tion of the social choice problem of preference aggregation. We use directed graphs to
model preferences and we show that, within this framework, judgement aggregation
can indeed be represented as a special case and that the Condorcet and doctrinal
paradoxes are strongly intertwined.

The paper is organized as follows: in Section 2, we present the preference aggre-
gation (or social choice) framework with its Condorcet paradox and the judgement
aggregation framework with its doctrinal paradox. In Section 3 we illustrate the main
motivation of this paper. In Section 4, we introduce our graph-theoretic framework
and show that we can incorporate the judgement aggregation framework inside the
graph-theoretic framework. Finally, we show in Section 5.4 that the Condorcet and
doctrinal paradoxes happen for essentially the same reason. We conclude with some
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discussion and directions for further research in Section 6.
We emphasize that we do not wish to diminish the importance of the many

valuable contributions to the judgement aggregation literature: (List and Pettit,
2002, 2004; Dietrich and List, 2007a,b, and many others). Our main goal is to show
that the classical social choice framework is not too different from the judgement
aggregation framework in terms of expressive power and that many classical results in
the social choice literature can be extended to the judgement aggregation framework
(and vice-versa). Last but not least, we submit that our formalization is a particularly
powerful alternative to the already existing ones.

2 Preliminaries

2.1 The preference aggregation framework

There are n voters {1, 2, . . . , n} voting on a set X of alternatives according to indi-
vidual preferences. We assume that such individual preferences are antisymmetric
and transitive. Let O> be the set of total orders on X and O≥ be the set of partial
orders on X. Hence if m is the cardinality of X, an element o of O≥ is equivalent to
(

m

2

)

pairwise preferences o(i, j), with i 6= j ∈ X, where:

• o(i, j) ∈ {1,−1, 0};

• o(i, j) = 1,−1, or 0 respectively if o prefers i to j, j to i, or is indifferent
between i and j respectively.

• (Anti-symmetric) o(i, j) = −o(j, i) for all i 6= j;

• (Transitive) If o(i, j) = o(j, k) = 1, then o(i, k) = 1.

If o(i, j) = 1 or −1, we say that o has a strict pairwise preference. If all the o(i, j)
are strict, we say that o is an element of O>, the total orders on X. In this case
o(i, j) ∈ {1,−1}, since indifference is ruled out. Total orders can also be considered
as permutations and partial orders can also be considered as ordered set partitions.
We now assume that each voter has a preference in O≥, where the conditions of
being a total order capture the idea that the preferences are “rational”.

The social choice literature studies social preference functions, i.e. functions
f : On

≥ → O≥ which aggregate n preferences into a single collective preference. We
remark that there are different variations of this set-up which use different domains
and codomains (for example, the celebrated Gibbard-Satterwaite Theorem looks at
social choice functions f : On

> → X instead, and there are versions of Arrow’s The-
orem which examine functions such as f : On

> → O>), but our definition of social
preference functions is a quintessential model.

The social choice literature requires individual and social preferences to satisfy
some additional properties. The most common ones include:
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• (Pareto) A social preference function f is Pareto if for all 1 ≤ i ≤ n and some
x, y we have oi(x, y) = 1, we must also have o(x, y) = 1 where o = f(o1, . . . , on).

• (IIA / Indifference of Irrelevant Alternatives) A social preference function f has
IIA if whenever if (o1, . . . , on) and (o∗1, . . . , o

∗
n) are two lists of preferences in the

domain of f and there exists x and y such that for all i, oi(x, y) = o∗i (x, y), then
if o = f(o1, . . . , on) and o∗ = f(o∗1, . . . , o

∗
n), we must have o(x, y) = o∗(x, y).

A common, more visually intuitive reformulation of the social choice framework
is to represent each preference o ∈ O≥ as a directed graph on |X| = m vertices
corresponding to the alternatives, where we draw a directed edge y → x if and
only if o(x, y) = 1. Not all directed graphs of m alternatives appear as potential
preferences (because for instance they may violate transitivity). Thus, the graphs
that do correspond to preferences form a strict “rational” subset of the graphs on m
vertices. In particular, these “rational” graphs cannot have cycles: any sequence of
directed edges of the form

v1 ← v2 ← · · · ← vk ← v1

corresponds to a sequence of pairwise preferences

o(v1, v2) = · · · = o(vk−1, vk) = o(vk, v1) = 1

which violates the transitive property. Thus, social preference functions aggregate n
“rational” graphs (preferences) into another “rational” graph. Our proposed general-
ization in Section 4 maintains this formulation of the social choice framework.

2.2 The Condorcet paradox

One particular candidate for a social preference function is the following majority
rule function: given preferences o1, . . . , on, for all (j, k) ∈ X×X, define o(j, k) ∈ O≥

to be the majority of oi(j, k) over all i. Then define o to be our aggregate social
preference. Note that we have to allow elements in O≥ in case there are ties. Thus,
o(j, k) are “majority rule” pairwise preferences between alternatives j and k.

The Condorcet “paradox” (de Caritat marquis de Condorcet, 1785), states that
under majority rule o(j, k) may have cycles when |X| > 2, which means it cannot
come from a partial order o ∈ O≥. Formally, this means that the “majority rule”
is not, in general, a valid social preference function, always capable of producing a
rationally consistent “consensus preference”.

Example 2.1. Table 1 shows an example of the Condorcet paradox on 3 alterna-
tives {A,B,C} with 3 voters; note that it suffices to describe 3 out of 6 pairwise
preferences for each voter because the others are determined by anti-symmetry. The
“majority rule” aggregation then fails transitivity, because o(A,C) should equal 1
from o(A,B) = O(B,C) = 1, but o(C,A) = 1, a contradiction. We can transform
the above into the graphs in Figure 1.
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o(A,B) o(B,C) o(C,A)
Voter 1 -1 1 1
Voter 2 1 -1 1
Voter 3 1 1 -1

Majority 1 1 1

Table 1: Table of preferences for the Condorcet paradox.

Voter 1 Voter 2 Voter 3 Aggregate

A

BC

A

BC

A

BC

A

BC

Figure 1: Graphical representation of Table 1. Note the aggregate graph contains a
cycle (Condorcet paradox).

2.3 The judgement aggregation framework

In the judgement aggregation framework, we have n judges J = {j1, j2, . . . , jn}
who are called to express judgements on a set Ξ = Ξa ∪ Ξc of (m + s) logical
propositions, which is the (disjoint) union of the set Ξa = {P1, . . . , Pm} of atomic
propositions and the set Ξc = {C1, . . . , Cs} of compound propositions. A compound
proposition is something in the boolean algebra generated by logical operations on
atomic propositions, such as P ∧ Q, P ∨ Q, ¬P → Q, etc. We assume that such
compound propositions are nontrivial ; that is, they cannot be constant but must be
surjective functions onto {0, 1}, where 0 stands for “False” and 1 stands for “True”.

Atomic propositions generally represent basic facts (i.e. P : the suspect is guilty of
“breaking”; Q: the suspect is guilty of “entering”), compound propositions represent
laws or rules (e.g. P ∧Q: the suspect is guilty of “breaking and entering” when (the
suspect is guilty of “breaking”) and (the suspect is guilty of “entering”) ). A judgement
is logical if and only if given the judgement’s atomic propositions, the value of the
judgement’s compound propositions agrees with the respective rules.

Each judge judges each proposition to be 1 (True) or 0 (False). Formally, each
judge’s judgement is a function1 Ξ → {0, 1} that assigns a truth value to each
proposition. Equivalently, we can think of

J = (Ja||Jc) = (J(P1), . . . , J(Pm), J(C1), . . . , J(Cs))

1List and Pettit encode judgements using sets of propositions while we use a functions to preserve

coherence with the rest of the paper. The two encodings are equally expressive.
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(the || denotes concatenation) as a vector of length (m + s), with the first m co-
ordinates forming a vector Ja corresponding to atomic propositions and the last s
coordinates forming a vector Jc corresponding to compound propositions.

Similarly to voters aggregating individual “rational” preferences into social choices,
we want judges to aggregate “logical” judgements into a jury decision. Given a set
Ξ of propositions, let UΞ, the logical judgements, be the set of judgements J where
for each 1 ≤ i ≤ s, if Ci ∈ Ξc is determined by the function Ĉ(P1, . . . , Pm), then
J(Ci) = Ĉ(J(P1), J(P2), . . . , J(Pm)) where J(Pi) ∈ {0, 1} denote the value of J on
proposition Pi. List and Pettit call this property “deductive closure” as it ensures
that the judge’s opinions are internally consistent.

As an example, suppose we have m = 2 atomic propositions P1 = P and P2 = Q
and c = 1 compound proposition C1 = P ∧Q. Let a judge ji have judgement Ji. In
order to simplify notation, we will denote by Ja,i = (Ji)a and Jc,i = (Ji)c. Suppose
Ja,i = (0, 0) and Ji is logical, then its value on the unique compound proposition
C1 assigned by ji must be Jc,i = (0 ∧ 0) = (0). Thus, the final logical judgement is
Ji = (0, 0, 0).

We remark that, since for any Ja ∈ {0, 1}
m there exists one and only one element

Jc ∈ UΞc
such that J = Ja||Jc ∈ UΞ, this implies that UΞ is isomorphic to {0, 1}m as

a set, and can be thought of as vertices of the m-dimensional Hamming cube in R
m.

We now define judgement aggregation functions to be functions f : Un
Ξ → UΞ. In

other words, judgement aggregation functions aggregate n logical judgements into a
single logical judgement and are analogous to social preference functions in the social
choice framework.

Like social preference functions, also judgement aggregation functions are usually
required to satisfy some additional properties:

• (Unanimity) A judgement aggregation function f is unanimous if whenever
every judge holds the same judgement, then the latter is also be the aggregate
judgement. Formally: if Ji(P ) = x for all Ji with x ∈ {0, 1}, then J(P ) = x.
Notice that unanimity implies f(J, . . . , J) = J .

• (Propositionwise Independence) As defined in Dietrich and List (2013), a judge-
ment aggregation function f is propositionwise independent if there exist (m+
s) functions fi : {0, 1}

n → {0, 1}, 1 ≤ i ≤ (m + s), such that whenever
f(J1, . . . , Jn) = J , for each i we have

(J)i = fi((J1)i, . . . , (Jn)i).

This property captures the notion that if judges want to judge whether a de-
fendant committed a specific crime, it suffices to ask all the judges whether the
defendant committed that specific crime (as opposed to also needing judgement
regarding other crimes).

• (Systematicity) As defined in List and Pettit (2002), a judgement aggregation
function f satisfies the property of systematicity if there exists a single function
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f̃ : {0, 1}n → {0, 1} such that whenever f(J1, . . . , Jn) = J , for each i we have

(J)i = f̃((J1)i, . . . , (Jn)i).

In particular, note that systematicity is a special case of propositionwise inde-
pendence.

Notice that propositionwise independence can also be given a different interpre-
tation: f is propositionwise independent if and only if the table of propositions (e.g
Table 2 ) is “commutative” in the sense that we get the same result if:

• we first compute the value of a compound proposition Ci for each judge and
then we aggregate ( i.e. we first move horizontally in the table of propositions
from atomic to compound propositions and then aggregate vertically), or

• we first aggregate the judgements on each atomic proposition and then we
compute the value of Ci on these aggregated values ( i.e. we first move vertically
on the table of preferences aggregating preferences of each judge and then
compute the compound proposition horizontally).

In Section 4 we will discuss how these conditions relate to the analogous conditions
imposed on the preference aggregation functions in social choice.

2.4 The doctrinal paradox

Like in social choice, a majority rule seems a natural candidate for aggregation also in
the domain of judgements. Majority judgement simply states that the jury’s judge-
ment on a proposition (either atomic or compound) corresponds to the judgement
held by the majority of judges (juries with an odd number of judges are often used
to avoid ties). The doctrinal paradox was presented in Kornhauser and Sager (1986)
and has some important real life examples such as the famous US Supreme Court
case Arizona vs. Fulminante. It describes the possibility that majority aggregation
on either atomic or derived compound propositions may lead to different results.

Example 2.2. Consider the following simple example (List, 2012): suppose there
are three judges, N = {1, 2, 3}, and three propositions, Ξ = {P,Q,R}, where P
stands for “the defendant was contractually obliged not to do action W”, Q for “the
defendant did action W”, and R for “the defendant is liable for breach of contract”.
Assume legal doctrine requires that the premises P and Q are jointly necessary and
sufficient for the conclusion R. Suppose that the individual judgements are given
by Table 2. We can immediately notice that majority aggregation on P and Q
produces True for both, and therefore would lead logically to the conclusion that
also R is True. But majority aggregation on R produces False. There is therefore an
inconsistency between the premise-based aggregation and the conclusion-based

aggregation, which is why this phenomenon is called the doctrinal paradox.
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P (obligation) Q (action) R (liability)(:⇐⇒ (P ∧Q))
Judge 1 True True True
Judge 2 False True False
Judge 3 True False False

Majority True True False

Table 2: Judgements leading to a doctrinal paradox.

3 A common framework for preference and judge-

ment aggregation

In section 4 of their 2004 paper, List and Pettit address the question of whether the
preference aggregation and the judgement aggregation frameworks can be mapped
into each other (List and Pettit, 2004, pp. 215–220).

They answer negatively by showing counter-examples in which either we have a
doctrinal but not a Condorcet paradox or vice versa. In this and the following sec-
tion we argue that by adding to the judgement aggregation framework the plausible
assumption of proposition-wise consistency (which List and Pettit discard because it
may lead to incomplete preferences) and by using our graph theoretic model, prefer-
ence and judgement aggregations can indeed be mapped into each other.

3.1 List and Pettit’s example

List and Pettit consider again the judgement aggregation problem represented in
Table 2 and assume further that the preferences orderings of judges 1, 2 and 3 over
the possible pairs of judgements on the questions p and q are as follows:

1. Judge 1: True-True > False-True >True-False >False-False

2. Judge 2: False-True > True-True >True-False >False-False

3. Judge 3: True-False > False-True >True-True >False-False

then they show that such a preference structure does not generate a Condorcet
paradox while indeed it leads to a discursive dilemma.2

2If on the contrary judges had for instance the following preferences there would be a Condorcet

paradox, but not a discursive dilemma:

1. Judge 1: False-False > True-False > False-True > True-True

2. Judge 2: False-True > False-False >True-False > True-True

3. Judge 3: True-False > False-True > False-False > True-True

8



The problem with this approach is that Table 2 only provides the best preferred
alternative for each judge, but does not say anything on the remaining preferences.
In the following subsection we will show how, starting from example in Table 2, it
is possible to retrieve a partial order on the set of couples {True-True, False-False,
False-True, True-False} = {0, 1}2 for True= 1 and False= 0 sufficient to aggregate
preferences via majority rule in such a way that discursive dilemma arises if and only
if Condorcet paradox arises.

3.2 Example of our main result: Graphical judgement aggre-

gation

Before recasting List and Pettit’s example in our framework, let us remark that
what they outline is a preference structure over objects made of two elements, i.e.
the beliefs on propositions p and q. Social choice over multidimensional objects
has been studied, among the others, in Marengo and Pasquali (2011) and Marengo
and Settepanella (2014). Take, for example, the textbook case of a group of friends
deciding “what to do tonight”. The textbook example would give a list of alternatives,
such as “restaurant, movies, concert”, but in reality these are “complex” objects made
of several interacting dimensions. For instance the object “going to the restaurant”
includes type of food, price range, at what time, with whom, etc. Such elements
typically involve non trivial interdependencies: for instance we have friends with
whom we like to go to the movies but not to the restaurant or vice versa (e.g. because
our cinematographic tastes are aligned while the culinary ones are incompatible).

Consider for example a choice on only two items: at what time to go out and
where to go. If each one of these two variables can assume two values, e.g. “go out at
8pm” or “go out at 10pm”,“go to restaurant” and “go to the movies”, then we are left
with 4 possible choices representing all combinations. Then we have 2 propositions
p =“where to go” q =“when to go” that can assume each one two values that we can
call, for simplicity, 0, 1. If we assume that they exclude the possibility to “go to the
restaurant at 10pm", we are left with 3 alternatives that we can call A = 00 =“go to
the restaurant at 8am”, C = 10 =“go to watch a movie at 8pm” and B = 11 =“go to
watch a movie at 10am”. If we keep preferences according to Example 2.1 then we get
Table 3 which is graphically represented in Figure 2. Notice that horizontal edges
have the meaning of “preferences on what time to go" while vertical edges represents
preferences on “where to go”.

3.3 Example of our main result: graphical judgement aggre-

gation

In order to build a partial order on the set of preferences {0, 1}2 starting from judge-
ments in Table 2 we assume the judge has a proposition-wise consistency when his/her
judgement is converted to preferences, i.e. we require that each judge to consistently
prefer his/her own choice on each proposition (either atomic or compound), when
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o(A,B) o(B,C) o(C,A)
Voter 1 11 11 10
Voter 2 00 10 10
Voter 3 00 11 00

Majority 11 11 10

Table 3: Table of preferences for the Condorcet paradox in a multi-dimensional
decision.

Voter 1 Voter 2 Voter 3 Aggregate

00

1110

00

1110

00

1110

00

1110

Figure 2: Graphical representation of Table 3. Note the similarity to Figure 1.

the value of other propositions is fixed. Formally, if J is the set of judgements of a
judge on the m atomic propositions and the judge is called to decide between two
possibilities v, v′ ∈ {0, 1}m, such that the i-th entries vi = v′i for any i 6= t and vt = Jt
and v′t 6= Jt then the judge will prefer v to v′.

For example, if the judge’s beliefs on the atomic propositions (p, q) are True-
True, then, when choosing between two judgements which differ only by a single
atomic proposition, she will always prefer the judgement which assigns True to such
a proposition. Thus her preferences will be: True-True>True-False>False-False and
True-True>False-True>False-False. Whereas True-False and False-True will not be
comparable.

Moreover, given the value of the compound proposition r = p∧ q , then the judge
will be consistent with this result preferring values of couples p and q determining
the same value of r of her own preferred choice. For example if her belief is True-True
for the atomic propositions p and q, then her preferred value of r is True and, since
value of r is False in any other couple different from True-True, we get True-True >
True- False, True-True > False - False and True-True > False-True.

One of List and Pettit’s original objections to the idea of embedding the judge-
ment framework into the social choice framework is that they found it impossible
to get a total order from the judgement framework. While we do agree on this, the
key point of our objection is that a total order is actually not necessary to get a
Condorcet paradox. We will use a graph-theoretic framework to show this.

Now, if we assume proposition-wise consistency, the judgements of judges 1, 2
and 3 in Table 2 corresponds to graphs in Figure 3. Aggregation by majority rule
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Judge 1 Judge 2 Judge 3 Aggregate

01 //

R

&&
11

00

OO
R

55

// 10

OO
R

XX
01 11

R

xx

R

		

R

��

oo

00

OO

10

OO

oo

01 //

��

11

��

R

xx

R

		

R

��

00 // 10

01 // 11

R

xx

R

		

R

��

00

OO

// 10

OO

Figure 3: The graphs Gi of preferences of judges ji, i = 1, 2, 3 in Table 2 and their aggre-
gated graph (under majority rule). Curved edges labelled R represent preferences on the
compound proposition R = P ∧Q.

gives rise to a cycle involving vertices (0, 0), (0, 1) and (1, 1) corresponding to a cycle
between False-False, False-True and True-True. This is a Condorcet cycle which
corresponds to the discursive dilemma in Table 2. In Section 5.4 we will give a
general proof of the equivalence between the two paradoxes beyond this particular
example.

4 The graph-theoretic framework

We are now ready to spell out the details of our graph-theoretic framework which
allows us to model both preferences and judgements as an s-tuple of directed graphs.
In the case of judgements each of the s directed graphs corresponds to a different
compound proposition. The case of preferences corresponds to the special case where
s = 1. Thus, the graph-theoretic framework is a slight generalization of the social
choice framework that allows s > 1. We now show that this is enough to encompass
the judgement aggregation framework as well.

We have n individuals (e.g. voters or judges), a set of N alternatives, where each
alternative is an m-dimensional object, and a set of s labels for s-tuple of directed
graphs. Each individual is characterized by an s-tuple of preference graphs, each one
with N vertices corresponding to the alternatives. In the case of preferences s = 1
and the s-tuple of graphs will contain only one element.

We will consider some subset of preference graphs as rational. We define rational
aggregation functions to be functions that aggregate rational preference graphs to
rational preference graphs. Then the preferences (seen as graphs) from the social
choice framework are exactly the rational graphs, and the social preference functions
are exactly the the rational aggregation functions.

Recall that Ξ contains atomic propositions Pj, j = 1, . . . ,m and compound propo-
sitions Cj, j = 1, . . . , s. Given a judgement J = (Ja||Jc) ∈ {0, 1}

m+s, we build s
associated graphs Gi(J) = (V (J), Ei(J)), each of them corresponding to each com-
pound proposition Ci, as follows:
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1. Each Gi(J) has the same set of vertices V (J), which consists of the 2m vertices
v ∈ {0, 1}m of the m-dimensional cube in R

m. As discussed in Section 2.3,
these correspond to the 2m potential choices of Ja.

2. There is an edge (v, w) from v to w,v 6= w, is in Ei(J) if and only if one of the
following occurs:

i) they differ only for the value of one entry t, and the value (J)t of the t
entry of J equals the t-entry (w)t of w (and hence (v)t = ¬(J)t). This
captures the idea of judge systematicity from Section 3.3. We call such an
edge an atomic edge.

ii) Ci(v) 6= Ci(w), Ci(w) = (Jc)i, Ci(v) 6= (Jc)i. We call such an edge a
compound edge.

Note that all the graphs Gi have the same vertices and atomic edges. We call
the set of all graphs on 2m vertices Gr(m). Let G : UΞ → (Gr(m))s be the map that
sends a logical judgement J to the s-tuple of such graphs (G1, . . . , Gs).

Remark 4.1. Because each judge ji has a logical judgement Ji ∈ UΞ, the above
correspondence associates to each judge preference Ji its own s-tuple of graphs
(G1(Ji), . . . , Gs(Ji)). The following considerations apply:

1. in order to draw atomic edges we assume the proposition-wise consistency de-
fined in Section 3.3 in the judge’s preferences, i.e. we assume that the preferred
value of the judge ji on proposition Pj is independent from the values of other
propositions. That is, if the value of any proposition Pk, k 6= j, is left unchanged
(the Hamming distance between vertices representing those preferences is 1)
then the judge will always prefer the vertex in which the proposition Pj has his
or her preferred value;

2. point ii) states that the judge is consistent with the value of each compound
proposition obtained by its atomic propositions, i.e. the judge will always prefer
the vertex v such that the value of compound proposition Ci(v) agrees with
his/her judgement of Ci. Notice that no edge is drawn between v and w if they
have the same aggregate value in compound proposition Ci.

Example 4.2. We first give a simple example showing we indeed generalized the
social choice framework. Reconsider Example 2.2 from Table 2. As we only have one
compound proposition, s = 1, so each judge ji has only one associated graph Gi. We
again get G1, G2, G3 in Figure 3.

Example 4.3. Consider now the case where we have two atomic propositions P and
Q and two compound propositions, C1 = P ∧Q and C2 = P ⊕Q (recall that P ⊕Q
is XOR/exclusive-OR; that is, it is true if and only if P or Q are true, but not both).
We still use majority judgement as aggregation, which gives us Table 4. We see that
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P Q C1 = P ∧Q C2 = P ⊕Q
Judge 1 True True True False
Judge 2 False True False True
Judge 3 True False False True

Majority True True False True

Table 4: Table of judgements for Example 4.3.
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Figure 4: The k-th row contains the graphs Gi,k of preferences of judges ji, i = 1, 2, 3, in
Table 4 and their aggregation (under majority rule). The graphs Gi,1 are exactly the Gi in
Figure 3. Curved edges labelled by Ci represent preferences on the compound propositions
Ci = P ∧Q and C2 = P ⊕Q.
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the aggregated judgement is again not logical (for both propositions). Now, each
judge ji’s judgement Ji is translated into two graphs G(Ji) = (Gi,1, Gi,2) because we
have 2 compound propositions, and the aggregated judgement J is also translated
into two graphs G(J) = (G1, G2). The graphs G1,1, G2,1, G3,1 are exactly the graphs
in Figure 3 because they correspond to P ∧ Q. The new graphs G1,2, G2,2, G3,2 and
their aggregation can be seen in Figure 4.

In Section 5.1, we will prove that logical judgements must have a “most-preferred
choice” (which we will call global optimum) with no edges going out. It is easy to
check that the aggregated graphs in Figure 4 have no such vertex.

We remark that we could have detected the logical inconsistency of the aggregated
judgement by looking at each compound proposition individually. Indeed, in order for
a judgement to be consistent, it has to be consistent in each compound proposition.
This will be elucidated in the following section.

We denote by Gr(m)G = G({0, 1}m+s) ⊂ Gr(m)s the set of s-tuples of graphs
(G1, . . . , Gs) obtainable from any judgement (even non-logical ones) in {0, 1}m+s.
Our main result is:

Theorem 4.4. The function G that associates to each element J ∈ {0, 1}m+s its s-
tuple of graphs (G1(J), . . . , Gs(J)) gives a bijection between {0, 1}m+s and Gr(m)G.
G naturally induces a bijection G̃ between sets of functions

{f |f : ({0, 1}m+s)n → {0, 1}m+s} ≃ {fgr|fgr : (Gr(m)G)n → (Gr(m)G)}.

Proof. Suppose G(Ja||Jc) = G1 and G(J ′
a||J

′
c) = G2. Suppose Ja 6= J ′

a, then it is
clear that the set of atomic edges in the graphs are also different. If Jc 6= J ′

c, then
there exists some i such that (Jc)i 6= (J ′

c)i. Because Ci is nontrivial, we also know
there exist v 6= w ∈ {0, 1}m such that Ci(v) = (Jc)i and C(w) = (J ′

c)i. Consider
vertices labelled with v and w in the two graphs G1

i and G2
i . By the definition of G,

in G1
i we have a compound edge w → v and in G2

i we have a compound edge v → w.
Thus the two tuples of graphs must be different if Jc 6= J ′

c. We now conclude that if
G1 = G2, we must have Ja = J ′

a and Jc = J ′
c. Equivalently, G is one-to-one. Thus,

G gives a bijection from the domain {0, 1}m+s to the range Gr(m)G.
Because of this bijection, when given input G1, . . . , Gn, each belonging to Gr(m)G,

each Gi must be equal to some G(Ji) for a unique judgement Ji ∈ {0, 1}
m+s. Thus,

fgr(G
1, . . . , Gn) = fgr(G(J1), G(J2), . . . , G(Jn))

= G(f(G−1(G(J1)), G
−1(G(J2)), . . . , G

−1(G(Jn))))

= G(f(J1, J2, . . . , Jn))

is a well-defined function that has codomain in {0, 1}m+s.

The main strength of Theorem 4.4 is that we can completely package the func-
tion f into the language of directed graphs on 2m vertices. This addresses our goal
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of showing that we can indeed embed the original definition of judgement aggre-
gation into a generalization of the social choice framework. In particular, we can
define the rational graphs in our model to be the total graphs that come from logical
judgements. Because of Theorem 4.4, we know that the judgement aggregation func-
tions from the judgement aggregation framework are simply the rational aggregation
functions in this instance of the graph-theoretic framework.

5 Applications

In Section 4 we showed that we can embed the judgement aggregation framework
into the graph-theoretic framework. In this section we discuss some straightforward
applications.

5.1 Detecting logical judgements with global optima

A first interesting application of our graph-theoretic framework is that it allows to
extend to judgement aggregations problems results already known in graph/theoretic
models of social choice. In particular, some recent results concerning local and global
optima in social choice among multi-dimensional alternatives (Marengo and Set-
tepanella, 2014; Amendola and Settepanella, 2012; Amendola et al., 2015) have a
direct equivalent in judgement aggregation.

We call a global optimum of a graph G = (V,E) a vertex v ∈ V such that:

i) for all w ∈ V it exists a path w → v, i.e. a sequence of edges
(w, v1), (v1, v2), . . . , (vn, v) ∈ E, and

ii) for all w ∈ V , (v, w) /∈ E.

Note that property ii) implies that a global optimum, if it exists, is unique.
Now, it turns out that this intuitive notion of global optimum (which can be

visually checked once the graph has been drawn) corresponds to logical consistency
of judgements, as shown by the following theorem:

Theorem 5.1. A judgement J = (Ja||Jc) ∈ {0, 1}
m+s is logically consistent if and

only if each of its associated graphs Gi(J) has a global optimum. Moreover, when all
the graphs Gi(J) have a global optimum, the global optimum is the same vertex for
all of them and it is exactly the vertex Ja.

Proof. Assume J is logically consistent. For any i, let v = Ja be the vertex corre-
sponding to the atomic judgement part Ja of J = (Ja, Jc). For any other vertex w,
by the construction of the graph, if we have an edge from v into w, by the rules of
the graph construction we must have w disagree with v (resp. Ci(w) disagree with
Ci(v)) on an atomic (resp. compound) proposition on which w agrees with Ja (resp.
Ci(w) agrees with Jc), which is impossible because v corresponds to Ja (resp. Ci(v)
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agrees with (Jc)i because J is logical). Furthermore, at least one path will always
exist from any w 6= v to v via atomic edges: simply change the atomic propositions
one at a time. Thus, v = Ja is a global optimum for every Gi.

Now, suppose J is not logical. Because J is not logical, there is some i such that
Ci(Ja) 6= (Jc)i. We look at the graph Gi. Suppose it has a global optimum v. By
the atomic edges, we must have v = Ja. This means Ci(v) 6= (Jc)i. Because Ci is
nontrivial, there must be some w ∈ {0, 1}m such that Ci(w) = (Jc)i. By definition,
we have a compound edge from v to w, which gives a contradiction. Thus, Gi has
no global optimum.

Thus, by theorem 4.4, we know we can do judgement aggregation over graphs
instead of tables of True/False values. Theorem 5.1 makes such a perspective even
more useful: we can now translate the idea of logical consistency in judgement ag-
gregation to the graph-theoretic idea of global optima.

5.2 The total graph

In the graph-theoretic framework, we characterize each individual by an s-tuple of
preference graphs, with N vertices corresponding to the alternatives. Instead of
drawing s graphs (G1, . . . , Gs), we can also define a single graph, the total graph GT ,
by just including all the edges from all the E(Gi) and labelling the edges to avoid
ambiguity. Then we can also consider each individual to be characterized by a single
preference graph with N vertices and, possibly, labelled edges.

In the case of preferences we assume that all edges are equally labelled, while
in the case of judgements each edge of the directed graph GT is labelled by the
proposition (either atomic or compound) it refers to. If Pj, j = 1, . . . ,m, are atomic
propositions and Cj, j = 1, . . . , s, are compound propositions, we can get GT from
the collection of all Gi labelling by Ci the compound edges in Gi and by Pj the
atomic edges corresponding to the atomic proposition Pj (recall that the atomic
edges are common to all Gi, i = 1, . . . , s). As an example, the total graphs GT (Ji)
and GT (J) associated, respectively, to the judgement of judges ji and their majority
rule aggregation in Example 4.3 are given in Figures 5.

We can get GT from the collection of all Gi or vice-versa, so GT contains the
same information as the tuple of graphs (G1, . . . , Gs). The total graph GT stores the
information more efficiently and is more mathematically natural for certain state-
ments and proofs, especially those where the roles of atomic and compound edges
are not important (because the total graph treats the two types of edges equally). An
example is the results in the next section comparing judgement and preference ag-
gregation concepts. On the other hand, the s-tuple of graphs can be a better model
when studying judgement aggregation. Indeed, for example, Theorem 5.1 tells us
that it is sufficient that only one of the Gi does not admit a global optimum to state
that the judgement is not logical. Also, when we want to think of the atomic and
compound propositions as different, the s-tuple of graphs makes more sense.
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Figure 5: The first row contains the total graphs GT (Ji) of preferences of judges ji, i =
1, 2, 3 in Table 4. The second row contains their aggregation under majority rule. Note
a pair of vertices may have more than 1 compound edge between them. For the sake of
simplicity the labels of the atomic propositions are omitted, even though they are technically
labelled as well.
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5.3 Comparing judgement and preference aggregation con-

cepts

The following corollary shows that concepts from judgement and preference aggre-
gations are actually equivalent within our graph-theoretic framework.

Corollary 5.2. In each row in the following table, the left property (from the social
choice framework) and the right property (from the judgement aggregation framework)
correspond to the same property under the graph-theoretic framework. Recall that the
definitions for the properties can be found in Section 2.

social choice judgement aggregation
Pareto unanimity
IIA propositionwise-independence

majority rule majority judgement

Proof. We omit the proofs since the correspondences are rather trivial. Furthermore,
the majority rule vs. majority judgement correspondence will be made more explicit
in Section 5.4.

For a label L and an edge-labelled graph G (such as a total graph GT ), let
l(G,L) be the subgraph of G consisting of edges of label L. Also, because a total
graph GT contains the same information as a s-tuple of graphs, we can assume a
graph aggregation function fgr aggregates a n-tuple of total graphs into a single total
graph. We then obtain two more corollaries that translate the judgement aggregation
concepts of propositionwise independence and systematiciy.

Corollary 5.3. Let G̃(f) = fgr. Then f is propositionwise independent if and only if
there exist functions {fL}, one for each label L, such that whenever fgr(G

1
T , . . . , G

n
T ) =

GT for total graphs G1
T , . . . G

n
T , for each label L,

fL(l(G
1

T , L), . . . , l(G
n
T , L)) = l(GT , L).

Corollary 5.4. Let G̃(f) = fgr. Then f is systematic if and only if is propositionwise
independent and there exists a function f̃ such that fL = f̃ for any label L.

The proofs are rather trivial when considering the total graph GT defined in
Section 5.2 (while the demonstration with the s-tuples would be much more cum-
bersome) so we omit them.

5.4 Doctrinal vs Condorcet paradoxes

We finish by comparing the Condorcet and the doctrinal paradoxes. List and Pet-
tit (2004) contrast the two paradoxes. They refer to May’s Theorem (May, 1952),
which states that simple majority voting is the only social preference function sat-
isfying certain conditions on two individuals and present both the Condorcet and
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the doctrinal paradoxes as violations of May’s Theorem when extended beyond its
assumptions. In particular, they present the Condorcet paradox as deriving from
violations of May’s Theorem when we allow for more than two alternatives, and the
doctrinal paradox when we allow for compound propositions.

While we think their argument has merit, we would like to offer a complemen-
tary perspective by focusing on the similarity between the two paradoxes: we claim
that the Condorcet and doctrinal paradoxes derive from the same aggregation

problem under the graph-theoretic framework. Formally, we define the ma-
jority graph-aggregation rule as the following function on n-tuples of total graphs:
f(G1

T , . . . , G
1
T ) = GT , where:

• V (GT ) = V (G1
T ) = · · · = V (Gn

T );

• for every pair of vertices (v, w) and label L, count the number of times x that
(v, w) appears as an L-labelled edge among the n graphs Gi and the number
of times y that (w, v) appears as an L-labelled edge among the Gi. Then place
an L-labelled edge (v, w) in G if x > y, (w, v) if x < y, and no edge otherwise.

We now show that this rule amounts to the majority aggregation functions in
both frameworks:

• for majority rule in the social choice framework, recall that it just the special
case of the graph-theoretic framework where graphs come from total orders
and there is only one possible label. Thus, the majority rule simply checks if
there are at least n/2 directed edges (v, w), which makes it a special case of
the majority graph-aggregation rule;

• for majority rule in the judgement aggregation framework, when translated
to total graphs as explained in Section 4, we see that for each (either atomic
or compound) proposition P , there are exactly two cases for all the P -labelled
edges, with all the edges pointing in one direction if the judgement is P = True
and in the other direction if the judgement is P = False. The majority
judgement then labels all such edges in the direction which appears more than
n/2 times. This is exactly what the majority graph-aggregation rule would do.

We finish by showing that both paradoxes indeed happen through the majority
graph-aggregation rule. First, in the social choice framework, we revisit Example 2.1,
where 3 preferences form a cycle when aggregated under majority rule. We know
that preference graphs, being “rational,” cannot contain cycles, so the Condorcet
paradox happens because the majority graph-aggregation rule creates a non-rational
graph.

As to the judgement aggregation framework, let us reconsider Example 2.2, recast
in our graph-theoretic framework developed in Section 4. Figure 6 visually compares
the two examples and provides the basic intuition. If we observe that the atomic
edge between 00 and 01, the atomic edge between 01 and 11, and the compound edge
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Figure 6: Combining the graphs from Example 2.1 (above) and Example 2.2 (below).
Contrast the edges between A,B,C in the top graphs and the double-arrowed edges
between 00, 11, 01 in the bottom graphs. To make the graph more readable, we
omitted all labels except those of compound propositions.

between 00 and 11 from the judgement-aggregation example have the same orienta-
tions as the edges, respectively, between A and C, between C and B, and between
A and B from the social choice example, it is now clear that the two paradoxes have
actually the same nature. This happens because creating a cycle among 00, 01, and
11 in our graph implies that none of them can be a global optimum. In addition,
also 10, 00 and 11 form a cycle and therefore neither 10 can be a global optimum.
Thus, as showed by Theorem 5.1 the aggregate graph is not “rational.”

6 Conclusion

In this work, we have presented a unified graph-theoretic framework which, by pro-
viding a simple generalization of the classical social choice framework, allows to
present the judgement aggregation problem as a particular case.

As an application of this generalization, we showed that the doctrinal and the
Condorcet paradoxes can be studied as two similar problems originating from the
application of the same aggregation rule, the graph-theoretic majority aggregation
rule. Furthermore, the two “paradoxes” arise for basically the same reason.

There are many questions that we leave to future research. Both the social choice
and judgement aggregation frameworks have been developing largely separately, and
it would be useful to see whether this unified framework can help import and extend
in one framework the results already available in the other. Some possible directions
include:

20



• Impossibility Theorems in Judgement Aggregation: following up on List and
Pettit’s impossibility theorem (List and Pettit, 2002), a series of work by Di-
etrich and List (Dietrich and List, 2007a,b, 2013) have proved an increasingly
strong list of impossibility theorems about propositionwise independent judge-
ment aggregation. Are there obvious generalizations to the graph-theoretic
framework? If so, what do they mean for the classical social choice framework?

• Arrow’s Theorem: List and Pettit compare and contrast their impossibility the-
orem in the judgement aggregation framework with Arrow’s Theorem in social
choice (List and Pettit, 2004). The third author of this paper has an upcoming
work (Zhang, 2018) on an analogue of Arrow’s Theorem under the doctrinal
framework. Possibly the correct generalization of both theorems would be a
visually intuitive one in the graph-theoretic framework.

• Social choice on complex multidimensional objects: as already mentioned, one
of the interesting properties of our graph-theoretic framework is that it nat-
urally deals with choices on multidimensional alternatives and this enables
to encompass the judgement aggregation problem which is inherently multi-
dimensional. Multidimensional social choice has been studied both in many
contexts and with different methods (Kramer, 1972) and recently has been an-
alyzed with a graph-theoretic model similar to the one presented in this paper
(Amendola and Settepanella, 2012; Marengo and Settepanella, 2014; Amendola
et al., 2015), which has produced a series of analytical results on the properties
of aggregation and, in particular, on the likelihood to find (and avoid) cycles
and on the existence of multiple or unique equilibria. The extension of such
results to judgement aggregation seems particularly promising.
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