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Abstract

Literature on climate change and extreme events has found conflicting and often weak results on the
evolution of economic damages related to natural disasters, although climate change is likely to bring
about an increase in their magnitude (Van Aalst, 2006; IPCC, 2007, 2012). These studies usually
focus on trend detection, typically employing mean regression techniques on yearly summed data.
Using EM-DAT data, we enrich the analysis of natural disasters’ risk by characterizing the behavior
of the entire distribution of economic (and human) losses, especially high quantiles. We also envisage
a novel normalization procedure to control for exposure (e.g. number and value of assets at risk,
inflation), so to ensure spatial and temporal comparability of hazards. Employing moments and
quantiles analysis and non-parametric kernel density estimations, we find a rightward shift and
a progressive right-tail fattening process of the global distribution of economic damages both on
yearly and decade aggregated data. Moreover, a battery of quantile regressions provide evidence
supporting a substantial increase in the upper quantiles of the economic damage distribution (upper
quantiles of human losses tend to decrease globally over time, mostly due to adaptation to storms
and floods, but with a worrying polarization between rich and poor countries). Such estimates
might be even conservative, given the nature of biases possibly affecting the dataset. Our results
shows that mean regressions underestimate systematically the real contribution of the right tail of
the damage distribution in shaping the trend itself.
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1 Introduction

Climate change is likely to bring an increase in the frequency and intensity of certain types of natural

hazards (Van Aalst, 2006; IPCC, 2007, 2012). While there is little doubt that natural hazards have

risen in number over time, it remains unclear what the behavior of the associated damages is. The

literature on climate change and extreme events has found indeed conflicting and often weak results

on the evolution of economic damages related to natural disasters. In this paper we provide a novel

perspective on analysis of natural disasters focusing on tail risk, characterizing the behavior of the

entire distribution of economic damages, especially considering high quantiles.

Natural disasters can be seen as the combination of a geo-physical events and human vulnerabilities

it might affect - e.g. population, capital, land usage. Damages are then evaluated as variations in

the vulnerabilities that can be attributed to the occurrence of the disaster. To study the behaviour of

damages across time and space, we employ data from the EMDAT database (Guha-Sapir et al., 2015).

In particular, we consider those disasters (in 189 countries from 1960 to 2015) that can possibly

be associated with climate change: floods, extreme temperatures, droughts, storms, wildfires and

landslides. We also provide a detailed discussion of possible shortcomings and biases present in the

data. Then, we couple disaster data with macroeconomic and demographic data by merging EMDAT

with information from the PWT (Feenstra et al., 2015) and we geolocalize all the events, so to recover

cell-based climate data trough spatial-matching.

We do not employ standard normalization techniques, but we envisage a convenient generalization

of the APL approach proposed by Neumayer and Barthel (2011) which do not impose a priori restric-

tions on the interaction between time trend and any measure of wealth. Our procedure leads to the

estimation of a “pure” time trend, instead of interaction term, which is typically obtained if data are

normalized before estimating the chosen model.

We then go beyond standard statistical approaches based on mean regressions and yearly sum of

damages, focusing on the behavior of the whole damage distribution, considering each single disaster

event. Indeed, as pointed out by Huggel et al. (2013), “although trends can be evaluated statistically

for moderately extreme events, an important contribution to climate-related damage arises from very

rare weather events for which — by virtue of their rarity — it is difficult to gain sufficient statistical

power to detect any trends”. Accordingly, we argue that retaining the analysis at the disaster level

not only reduces the impact of underreporting bias, which can seriously affect the analysis, but it also

allows us to investigate the behavior of the right tails of the distribution, whose evolution over time

might be crucial in explaining the evolution of natural disasters related to climate change.
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Employing moments and quantiles analysis and non-parametric kernel density estimations, we find

a rightward shift and a progressive right-tail fattening process of the global distribution of economic

damages both on yearly and decade aggregated data. On the contrary, when casualties are considered,

we observe a leftward shift of the distribution and a progressive concentration of mass density around

zero. These findings are robust to various types of normalizations.

We further analyze trend evolution more formally by means of quantile regressions using various

types of controls, including dummy specifications for income class, disaster type and Köppen-Geiger

Climatic Classification - derived from spatial matching with Kottek et al. (2006) - and relative in-

teraction terms. Upper quantiles of human losses distributions are found to decrease globally over

time. Such a behavior is mostly explained by advancing adaptation towards storms and floods, while

extreme temperatures are killing and affecting more people nowadays. However, a worrying polariza-

tion effect between rich and poor countries (and along several climatic zone) is documented. For what

concern economic damages, we provide evidence of a substantial increase in the upper quantiles of the

damage distribution (from 75th on) at a pace which is increasing along quantiles. Rise in economic

damages appear to be particularly dramatic in case of big storms and floods (as well as, on the spatial

dimension, in tropical and temperate countries). As a robustness check, we experiment with several

different model setups, controlling for population dynamics, wealth effects, relative interaction terms

and varying the estimation time window (starting from 1960, 1970 and 1980): our results indicates

that trend estimation remains broadly unaltered.

Our results show that mean regressions systematically underestimate the real contribution of the

right tail of the distribution in shaping the trend itself, leading often to non-significant estimates.

Given the nature of the biases possibly affecting the dataset, we believe that our results might be even

conservative. In this view, we claim that our results help in explaining barely significant estimates on

trend detection, as mean behavior palely reflects meaningful changes in the right tail.

The rest of the paper is organized as follows: in Section 2, we provide a critical review of the

literature. In Section 3 we provide a detailed exposition of the methods we use, while Section 4

contains an overview of the principal features of EM-DAT dataset. Section 5 contains descriptive

evidence about the main variables, results from quantile regressions and from non-parametric density

estimations. Finally, Section 6 concludes.
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2 Literature review

Natural disaster risk can be defined as the product of three factors: (1) the probability of the hazard;

(2) the exposure, i.e. the population and/or assets potentially affected by hazards; (3) the sensitivity,

i.e. the human and economic losses if population and assets are affected by a hazard. In particular,

such a product gives the direct risk, which does not account for resilience, i.e. the capacity to react and

recover from the occurrence of an hazard. To make an example, the economic risk from a 100-year flood

is equal to the product of the probability of such an event (i.e., 1% per year), the economic value of

the assets located in the 100-year flood plain exposed to the hazard, and the ratio of losses to exposure

value in case of a 100-year flood. In that case, the economic risk from the 100-year flood is equal to the

average annual economic losses from 100-year floods (Hallegatte, 2014).1 Understanding the dynamics

of natural disaster damages is then fundamental to gauge insights on present and prospective risks

from extreme natural events.

A large body of empirical literature has discussed about the presence of increasing trends in

damages once data have been duly normalized.2 Trend detection is important for at least two reasons.

First, its presence for absolute damages coupled with absence for normalized ones, would suggest than

the main drivers for increasing losses lie in socio-economic factors (e.g. increases in exposed assets

values). On the contrary, in case a positive trend would be found in both cases, a legitimate question

would concern whether these behaviors can be attributed to climatic factors (see Bouwer, 2011 and

the special issue introduced in Helmer and Hilhorst, 2006). In other words, a significant trend in

normalized losses - i.e. when properly controlling for the wealth at risk in case of event - might be a

relevant trace of on-going climate change. Second, the presence of an upward pattern in disaster losses

would imply larger risks to be borne in the future and calling for more attention in natural disaster

risk management (Thomalla et al., 2006; Schipper and Pelling, 2006; Hallegatte, 2014).

A crucial issue in the investigation of trends concerns the normalization of losses to make them

comparable across time and space (a detailed discussion on normalization procedures usually adopted

in the literature is provided in Appendix B). Conventional normalizations typically adjust for inflation,

population and wealth per capita (Pielke and Landsea, 1998). However, although they controls for

the rate of change of normalizing factors, they fail to account for their absolute size, thus making

contemporaneous comparison of events taking place in different areas flawed (Neumayer and Barthel,

2011). With such normalizations, most studies come to the conclusion that there is no evidence for a

1Clearly, such an example assume that probability can be proxied by the historical frequency of the event.
2More precisely, one stream of research pertains to the climate science literature and focuses on climate/weather data

(see e.g. Visser and Petersen, 2012), while the other is concerned with losses associated with extreme impact events (see
e,g, Bouwer et al., 2007; Bouwer, 2011). The present paper aims at contributing to the latter flow of studies.
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rising long-term trend in normalized weather damages (Pielke and Landsea, 1998; Pielke et al., 2008;

Schmidt et al., 2009). On the other side, some papers find evidence in favor of a positive long-run

trend (Schmidt et al., 2009; Gall et al., 2011), at least for selected hazards. Both the IPCC and the

Stern review point to the existence of increasing losses from extreme natural events (IPCC, 2001;

Stern, 2007) and, for this reason, have been criticized in Pielke (2007).

Moving away from the conventional normalization approach, Neumayer and Barthel (2011) propose

an Actual-to-Potential-Loss (APL) one, where normalization is achieved through the ratio between the

actual loss experienced and the total wealth available in that area (maximum loss conceivable). The

show that, at the global level, no statistically significant trend can be claimed for pooled normalized

losses. However, as soon as one starts disentangling the data, some patterns emerge: for example a

strong (negative) trend is found for developed countries, while none is reported in any areas other than

the US and Canada. Interestingly, the majority of statistically non-zero trends found in Neumayer and

Barthel (2011) (either focusing on geographical area or hazard type) are negative, possibly indicating

evidences of successful adaptation or mitigation policies.3 Upward and significant dynamics are found,

instead, using insured loss data for the US and Germany, while at global level no trend has been

detected (Barthel and Neumayer, 2012). Consistently, Visser et al. (2014) report stabilized, constant

loss patterns at global scale, but highlight heterogeneity across damage indicators (economic losses,

deaths and people affected) and geographical areas.

Overall it seems that, independently form the normalization adopted, the literature finds no statis-

tically significant upward trend in global natural disaster losses. A relevant feature that ties together

the vast majority of the studies presented above concerns the treatment of the data. In particular,

they all focus on yearly-aggregated data, i.e. the sum of all the damages occurring in a given year over

a specified geographical area, eventually conditioned on hazard type. Moreover, the statistical analysis

usually employ OLS regressions (e.g. Barredo, 2009; Neumayer and Barthel, 2011; see instead Visser

et al., 2014 for the application of integrated random walk models). Despite the advantages given by

such clear-cut procedures, aggregating disaster data might reduce our understanding of the evolution

of risk. For instance, as disaster risk is usually quantified through average annual disaster losses (Hal-

legatte, 2014), one should compute the average of the damages instead of the sum of losses over a

year to approximate risk. However, one could resort to more sophisticated measures of risk commonly

employed in finance, decision theory and reliability engineering (see e.g. Paté-Cornell, 1996; Artzner

et al., 1999; Szegö, 2002). The majority of such measures require to extract additional information

3Neumayer and Barthel (2011) are well aware of the possible shortcomings from their estimation due to absence of
controls for adaptation and to data quality, and repeatedly warn the reader about the interpretation of their findings.

5



from the distribution of hazardous events beyond the average (see e.g. the Value at Risk, cf. Linsmeier

and Pearson, 2000, for more information). In this paper, we try to account for such issues employing a

novel normalization procedure and by characterizing natural disasters’ risk considering the behaviour

of the whole distribution, in particular that of high quantiles, i.e. the right tail. In the next Section

we will spell out the details of our procedure.

3 Methodology

Our analysis focus first on repeated non-parametric distributional estimates of disaster-induced losses

over time. More specifically, we rely on Gaussian kernels with automatic bandwidth selection using

the Silverman’s approach (Silverman, 1986).

We then run a battery of quantile regressions to investigates the presence of trends in different areas

of the distribution.4 Indeed, while the use of kernel density estimates allows a visual inspection of the

movements in the distribution of deaths, people affected and monetary damages, quantile regressions

provide a quantification of such dynamic patterns and straightforwardly allow for statistical testing.

Such methodological choices are motivated by two reasons. On the one side, the inconclusiveness

of results of literature employing regressions on the mean (Pielke and Landsea, 1998; Neumayer and

Barthel, 2011). On the other side, the blossoming evidence that natural disasters induce fat-tailed

distributions of the damages (Becerra et al., 2012; Mendelsohn et al., 2012) suggests that percentiles

can be a simple yet robust statistics summarizing extreme, low-probable events. Additionally, the

presence of heavy tails has been proved to dramatically change policy implications in a variety of

climate economics models (Pindyck, 2011; Weitzman, 2011), pointing to the relevance of correctly

identifying the shape natural disasters’ losses. Quantile regressions have been successfully employed

to investigate trends in cyclone strength (Elsner et al., 2008; Kossin et al., 2013), also accounting

for both spatial and temporal distributional changes (Reich, 2012). However, to our knowledge, it is

applied for the first time to the analysis of socio-economic impacts from natural disasters in order to

account for the possible impact of climate change.

We estimate the impact of disaster on number of people killed (Deaths), number of people affected

4From a technical perspective, we use the modified version of Barrodale-Roberts algorithm as proposed in Koenker
and d’Orey (1987) for quantile regressions. All estimation exercises are performed using the quantreg and tidyverse

R-packages.
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(Affected) and economic damages (Damage) employing the baseline empirical models:

Deathsit = α1 + β1Trendt + γ1POPit + φx′

it (1)

Affectedit = α2 + β2Trendt + γ2POPit + ϕx′′

it (2)

Damageit = α3 + β3Trendt + γ3GDPit + θx′′′

it (3)

where Trendt is a standard trend variable, GDPit is a measure of the size of the economy (country-

level) where a disaster i happens at time t, POPit is the total population size of the country affected by

the disaster, and x′′

it
, x′

it
and x′′′

it
are sets of additional control variables that we include in the various

specifications we test. Such linear models are convenient for two reasons. First, they offer a simple

interpretation of the parameters to be estimated and allow a variety of estimation methodologies.

Second, they overcome the loss normalization debate (see Appendix B for further details) and leave

the researcher free to choose what variables to control for in her/his analysis (e.g. the potential effect

of population dynamics on total destroyable wealth as in Noy, 2009; Kellenberg and Mobarak, 2008).

Note that our specifications provide a generalization of the actual-to-potential loss (APL) approach

adopted by Neumayer and Barthel (2011). A more fine grained comparison is provided in Appendix

B.

4 Data

Our analysis relies on the Emergency Events Database (EM-DAT) set up by the Center for Research

on the Epidemiology of Disasters (Guha-Sapir and Below, 2014) - hereafter CRED - containing data

on natural hazards since the beginning of 20th century.5 CRED definition of a natural disaster

is “a situation or event which overwhelms local capacity, necessitating a request to a national or

international level for external assistance; an unforeseen and often sudden event that causes great

damage, destruction and human suffering”. However, entry requirements for an event to be included

in the dataset are quite blurred, and there is no cut-off measure. Among all recorded disasters, we

consider only events which took place after 1960 and we deal with only six different types of disasters

that can directly related to climate change: floods, extreme temperatures, droughts, storms, wildfires

and landslides. The ensuing total sample size includes 10901 events.

For each record, the EM-DAT reports basic information on the disaster occurrence, such as the

start and end date, country, location (when available), type of disaster plus three types of loss data:

5Additional information as well as the form to request access to the data are provided here: http://www.emdat.be.
For other natural disaster databases, see Desinventar, SwissRe Sigma and MunichRe NatCat.
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Figure 1: Number of recorded disasters and yearly sum of the three types of losses, by income level.
Red dashed lines are OLS trend estimates. Time span: 1960-2015.

number of people killed, number of people affected and economic damages.6 As disasters data suffer

from several shortcomings, one must understand what is exactly measured by each variable, bearing

in mind that these are often broad estimates about complex and composite phenomena, not point

measurements.

While deaths are unambiguously recorded, the concept of people affected is fuzzier, being the

sum of people that, after a catastrophic event, are left homeless, injured or that require immediate

assistance in the aftermath of the emergency. Comparisons across time and space must then be handed

carefully. Economic damages are defined by CRED as the “value of all damages and economic losses

directly or indirectly related to the disaster”. Thus, such damages include infrastructural monetary

losses, as well as direct and indirect harm to production (e.g. interruption of production process

because of damaged plants), social (e.g. loss of jobs) and environmental economic costs.

6EM-DAT data is collected, when possible, through official institutions (national governments, international organiza-
tions such as UN or EU), intergovernmental institutions (World Bank) and reinsurance companies (SwissRe, MunichRe).
When official sources are unavailable, they are integrated through press records (AFP). Around two third of records are
based on official governmental, statistical or financial sources (Kron et al., 2012).
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Figure 2: Number of recorded disasters and yearly sum of the three types of losses, by Köppen-Geiger
climate zone. Red dashed lines are OLS trend estimates. Time span: 1960-2015.

Figure 1 shows the evolution of the number of recorded disasters and of the three type of losses over

1960-2015, grouped by income level (see Appendix A for details). The number of observed disasters

steadily increases over time, which can partly explain the rising number of people affected and recorded

economic damages. While the proportions between income classes in recorded events are relatively

stable over time, people affected are largely recorded in poor countries, although with a notable recent

increase in upper-middle income countries. As reported in Appendix D (Figure D.4), the vast majority

of people affected are from Asian countries, followed by Africa 7. The only damage measure that tends

to decrease is the count of deaths, largely driven by the disappearance of huge outliers. Dead people

are almost entirely recorded in poor countries (mostly Asia and Africa). Interestingly, deaths appear

to have an increasing trend in upper-middle and high income countries (Appendix D, Figure D). On

the other hand, economic damages (which have been increasing mostly everywhere and globally at a

seemingly exponential pace) appear to be eminently a rich country issue. Such evidence highlights the

7We defer to Appendix D for more detailed charts on the evolution of all type of losses, grouped not only on the
income level and Köppen-Geiger climate zone dimensions, but also on the continent and hazard type dimensions.
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Table 1: Summary statistics by decade. Standard deviations are reported within parenthesis.

1960s 1970s 1980s 1990s 2000s 2010s

Deaths
3651 756 474 146 93 79

(69881) (11955) (9331) (3209) (2409) (1378)

People Affected
(Thousands)

423 739 857 884 626 466
(4792) (7970) (9390) (9127) (7007) (3920)

Economic Damages
(Mln $)

29.4 52.1 84.7 224 205 326
(150) (242) (380) (1236) (2357) (1873)

need to control for total wealth when making across-time and space comparisons in economic damages.

To improve the spatial resolution of any possible control variable, we geolocated the entire EM-

DAT dataset (i.e. we retrieved latitude and longitude for each event) through Google Maps API,

using the location information originally present in the dataset (details in Appendix A). This allows

us to retrieve, trough spatial matching, the climate zones in which each event took place according

to the Köppen-Geiger classification (i.e., arid, tropical, temperate, cold and polar zones). Figure 2

clearly shows that most of the extreme events took place in tropical and temperate zones, with the

latter experiencing most of the economic damages, not only because of their higher wealth, but also

because temperate zones typically cover much more land area than tropical ones.8 Similarly, most of

the people affected are recorded in these two zones, and the increment in affected people is generalized,

but much stronger (especially in recent times) in temperate areas. Deaths tend to decrease in tropical

and arid zones, while they have been increasing in temperate and cold zones.

Disaster data are well know for being subject to several issues, the most serious one probably

being under-reporting in economic damages (Guha-Sapir et al., 2013). As a consequence, the steady

increase in the number of events shown in Figures 1 and 2 might be due to past under-reporting, as

the bias gets more severe the further back in time one goes (Kron et al., 2012). As we are interested in

trend detection, focusing the statistical analysis on damages distributions, rather than sheer sums, can

significantly reduce the bias induced by under-reporting, assuming that such bias is evenly distributed

across disasters of different magnitudes in each year. Such assumption is however unlikely to be

satisfied: one can reasonably presume that, in any given year, it is more likely that an event of small

8Although country income class and climatic zone are certainly related, they are far from being the same thing. We
performed a multivariate Pearson Chi-squared Test on the data, which reject the null hypothesis of independence. The
Cramèr’s V, which ranges from 0 (independent categorical variables) to 1 (identical categorical variables), is indeed equal
to 0.35.
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proportion fail to enter in the database compared to a major one. On the chronological dimension, one

can presumably assume that such bias has been reducing over time. Year after year, more disasters

enter the database as institutions get better at collecting data, and the proportion of unrecorded small

events gets smaller and smaller. By the same token, that applies also to events with zero recorded

economic damage 9. In other words, as time goes by a big and growing percentage of recorded disaster

is represented by small or zero damage events simply because underreporting bias is reducing 10. We

discuss the implications of such bias on our results in Section 5.2.

The importance of keeping the analysis at the disaster level is evident in Table 1, where decade-

aggregated mean for people affected is increasing up to the 80’s but decreasing since then. When

summing data on a yearly basis (de facto removing zeros) - as in Figures 1 and 2 - the trend was

undoubtedly positive. This might indicate that increases in total affected per year is at least partially

due to an increasing number of events (hence possibly boosted by past underreporting). In a nut-

shell, summing losses on a yearly basis not only exacerbates past underreporting, but also induces a

mistreatment of zeros.

5 Results

Retaining the analysis at the disaster level allow us not only to better control for possible biases,

but also to investigate various parts of the loss distributions. In what follows, we first present the

yearly evolution of the moments of the distribution (Section 5.1), as well as of selected quantiles. We

then display and discuss repeated kernel density estimation of decade-level loss distributions. Our

hypothesis are then tested through dedicated quantile regressions of models (1), (2) and (3) (Section

5.2). Finally, in Section 5.3 we focus on possible patterns in human losses by way of 2D kernel density

estimation. Further robustness checks are reported in Appendix C.

5.1 Descriptive evidence

Let us start studying the yearly evolution of the moments of the damage’ distributions in order to

detect possible directions of losses over time. Natural variability clearly plays a role in shifting and

shaping distributions from one year to another, although one can reasonably assume that over a 56

years time span such effects are washed out.

9Some economic damages are recorded as zeros because of a lack of a reasonable estimate. As documented in Guha-
Sapir et al. (2013), the percentage of zeros sharply decrease with the severity of the disaster (according to the EM-DAT
classification), and such decrease get sharper as data gets more recent.

10Also, inaccurate estimates coming from less reliable sources (such as press) are more likely to concern small scale
disaster, as the lower the magnitude the higher the incentive for official institutions to produce scrupulous statistics.
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Figure 3: Summary of yearly disaster distributions based on moments, by type of loss. Vertical
log-axis. Dashed lines are linear OLS best fitting lines. Time span 1960-2015.

Figure 3 shows the evolution of mean, variance, skewness and kurtosis of the three loss measures

at the global level. Deaths exhibit a downward trend in mean and variance, but increasing skewness.

Since cubing deviations gives the big ones even greater weight, increasing skewness means few points

are getting further to the right of the mean, and lots of points getting closer to the left of the mean. As

mean is decreasing, we interpret this as evidence of damages getting more concentrated towards small

values. Same goes for kurtosis, which is increasing as well: a larger proportion of the (decreasing)

variance is explained by extreme values on either sides of the distribution, most likely a fattening left

tail in this case.

When one considers economic damages, all four moments are increasing over time, pointing to a

progressive shift to the right of the whole distribution, with a contemporaneous fattening process of

the right tail. Affected people display a similar behavior, although the increase in the year mean and

variance is almost zero.

Evidence from selected quantiles of yearly distributions, shown in Figure 4, confirms such a reading
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Figure 4: Selected quantiles of yearly disaster distributions, by type of loss. Vertical log-axis. Dashed
lines are linear OLS best fitting lines. Time span 1960-2015.

of the data. High quantiles (70th, 80th, 90th and 99th) tend to decrease over time for deaths, while

they show an increasing pattern for economic damages. Both trends clearly get steeper across quantiles

in both cases, a particularly remarkable behavior since y-axis is in logs. Finally, affected people do

not show any particularly pronounced trend.

We then estimated with non-parametric kernel procedures the evolution of loss distributions in

different decades. Grouping observation by decade washes away between-years meteorological vari-

ability.11 Results are in line with those just presented and are reported in Figure 5. Distribution

of deaths is moving leftwards and so does the median value. Since values are displayed on a log-

scale, given the heavily right-tailed nature of the distributions, these movements are actually quite

remarkable. Economic damages show instead a rightward shift - even stronger in magnitude - and

a progressive fattening of the right tail which can be spotted even on a log-scale. Affected people

distribution tends to move in both directions, indicating a relative stability over time.

11In order to ease the visualization of the distributions, all disasters with loss equal to 0 have been excluded.
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Statistics presented so far are based on raw data, i.e. without controlling for exposures. We

then check the robustness of our results with respect to different normalization procedures controlling

from population and wealth. The evolution of moments, selected quantiles and estimated densities on

normalized data remains qualitatively unchanged (see Appendix B). Note that for economic damages,

the movement in the median seems to be much less pronounced, while the progressive fattening of the

right tail is still well evident.

Given the sheer evolution of the distributions over time, conditional mean regressions could provide

weak results on the existence of a trend, as mean - and median - are not robust indicators when most

of the changes are due to high quantiles. For this reason, in the next Section we perform a battery of

quantile regressions.
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5.2 Quantile regressions

As the descriptive evidence suggest that the dynamics of the damage distributions over time is het-

erogeneous across quantiles, we run a battery of quantile regressions. Our baseline specifications (cf.

Eqs. 1, 2 and 3 with x′

it
, x′′

it
and x′′′

it
set to zero) estimate for each single quantile (τ), the associated

per-year time trend βτ . We run several regressions for different values of τ , from 70th to 99th quantile

with unit steps. Figures 6 reports the βτ estimates and those of relative control variables against the

corresponding quantile, for all types of loss.

Up to the 70th quantile, β̂τ are generally very close to zero due to the high number of very low

values. This constitutes another piece of evidence supporting the idea that mean cannot be a robust

indicator to study disaster dynamics. After the 70th quantile, the estimates for βτ indicate that

upper quantiles tend to decrease over time for deaths and people affected. Moreover, the higher the

quantile, the bigger the movement on the left. This finding can certainly be interpreted as an increased

adaptation and ability to forecast extreme events (more on that in Section 5.3). Population dynamics

turned out to be crucial in explaining affected people (unlike deaths), whose seemingly increasing

behavior can thus be explained in terms of higher population (and recorded events).

A diametrically opposed result emerges for economic damages: as shown in the south-east box

of Figure 6, upper quantiles tend to increase over time. Such an increase is bigger the higher the

quantile, even controlling for wealth proxied by GDP. In our view, these findings provide a plausible

explanation for the non-significant results on trend evolution usually found in studies based on mean

regressions, which only palely reflect meaningful changes on the right tail of damages distributions.

Indeed, as shown in Figure 6, not only OLS β estimate (dashed line) largely underestimate the real

impact of major disasters, but it leads to a non-significant β. Results are remarkable also in terms of

absolute magnitudes: if one considers, for instance, the 99th percentile, β̂99 = 26.385 (see Table C.1),

implying that over a time span of 54 years the damages of the associated disasters have increased by

1424.79 Mln $, ceteris paribus.

Furthermore, potential biases in the data discussed in Section 4 can actually reinforce our results

concerning economic damages. Indeed, as both under-reported and zero-damage disasters tend to

decrease across both time and disaster magnitude, more and more mass is added to the left part

of damages distribution year by year, mechanically shifting quantiles to the left. Despite that, we

document a serious rightward movement, whose estimated magnitude can thus even be a conservative

12 Bootstrap method is explicitly advised in Hao and Naiman (2007), as it makes no assumptions about the distri-
bution of the response. Moreover, ”. . . assumptions for the asymptotic procedure usually do not hold, and even if these
assumptions are satisfied, it is complicated to solve for the standard error of the constructed scale and skewness shifts. . . ”
(p. 43).
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resampling, as recommended in Efron and Tibshirani (1994). Dashed black lines are OLS estimates
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one.

In order to test the robustness of our results, we performed the same exercise adding control

variables in the vectors x′

it
, x′′

it
and x′′′

it
. Results are presented in Appendix C. Adding GDP as a

control variable for deaths and people affected do not change qualitatively our results. As far as

economic damages are concerned, results do not vary if one enriches the model specification adding

population as a control variable and using GDP per capita instead of GDP. We also experiment with

varying time-spans, letting our estimation begin in 1960, 1970 and 1980, respectively. Overall results

are broadly unaffected in terms of trend estimation, although a smaller number of observation make it

more difficult to have small standard errors for such rare events.13 Notably, a positive and significant

trend in upper quantiles is detected even when adopting Neumayer and Barthel (2011) normalization

(see model (6) in Table C.1, Appendix C). We also run a baseline regression on economic damages

13Appendix B contains also results deriving from OLS estimations on yearly summed data, with varying normalization
approaches and time-spans.
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adding an interaction term between GDP and the pure time trend (Appendix C, Table C.1, Model

(5)): the interaction term is estimated to be very close to 0 and not significant for high percentiles.

As already specified in Section 3, such evidence reinforce our model specification which do not impose

any non-zero interaction exogenously.

We now focus on economic damages and we reports in Table 2 the estimates obtained adding to the

regressions categorical variables for (i) income class, (ii) Köpppen-Geiger climate zones, (iii) disaster

type and their interactions with the pure trend variable:

Damageit = α1 + β1Trendt + γGDPit +

k∑

i=1

δici +

k∑

i=1

ρici · Trendt, (4)

with ci’s being the categorical variables under analysis. Only interaction terms (which can be inter-

preted as deviation from baseline category trend) are displayed. From the income level perspective,

the highest increase in damages is found in the richest countries, although the upsurge is generalized

and positive almost everywhere. The only possible exception is represented by low income countries,

with an estimated trend close to zero. This may stem from the choice of using GDP - a flow variable

- as a proxy for wealth instead of physical capital - a stock variable - that is typically characterized

by high measurement errors (Neumayer and Barthel, 2011), as well as from the poor quality of data

available for these countries. On the climatic side, trend is found to be positive (and growing across

quantiles) in tropical zones and even more remarkably in temperate zones, while no significant increase

is found for arid and cold zones. In particular, tropical zones seem to experience a marked increase

in damages only for quantiles above 90th, while those below display a negative estimate, possibly

reflecting the results of ongoing adaptation efforts carried out in such heavily exposed areas. Note

that OLS estimators would have missed to spot significant betas in both tropical and temperate case.

On the hazard perspective, the increase in economic damages is particularly relevant in case of storms

(and partially floods), which represent the vast majority of the events in our dataset.

Results obtained in this section point to a dramatic increased natural disaster risk, particularly

driven by major events: we shall discuss their implications more accurately in Section 6.
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Table 2: Quantile regressions estimates for selected quantiles and OLS estimates as in (4) on economic
damages, for income class, Köppen-Geiger climate zone and disaster type, respectively. Only interac-
tion terms (ρi’s’) and GDP are displayed. Method is modified Barrodale-Roberts algorithm (Koenker
and d’Orey, 1987)). Bootstrapped standard errors according to x-y pairwise resampling algorithm, as
recommended in Efron and Tibshirani (1994). p-value: *** < 0.01, ** < 0.05, * < 0.10, two-tailed.

70th 80th 90th 95th 99th OLS

High (Base)
1.028∗∗∗ 3.725∗∗∗ 10.07∗∗∗ 20.791∗∗∗ 70.74∗∗∗ 9.905∗∗∗

(0.246) (0.525) (1.649) (2.57) (18.286) (2.626)

GDP
0.021∗∗∗ 0.051∗∗∗ 0.123∗∗∗ 0.275∗∗∗ 1.047∗∗∗ 0.069∗∗∗

(0.003) (0.007) (0.017) (0.038) (0.277) (0.005)
(7)

Low
-1.038∗∗∗ -3.75∗∗∗ -10.405∗∗∗ -22.841∗∗∗ -75.623∗∗∗ -10.295∗

1960-2014 (0.245) (0.527) (1.634) (2.666) (18.417) (5.41)

Lower-Middle
-1.048∗∗∗ -3.836∗∗∗ -10.052∗∗∗ -17.718∗∗∗ -50.279∗∗∗ -9.035∗∗

(0.246) (0.524) (1.717) (2.626) (18.196) (3.616)

Upper-Middle
-1.063∗∗∗ -3.901∗∗∗ -9.25∗∗∗ -17.732∗∗∗ -51.915∗∗ -10.218∗∗∗

(0.247) (0.546) (2.028) (3.781) (24.744) (3.846)

Tropical (Base)
-0.03∗∗∗ -0.161∗∗∗ -0.172 2.435∗ 17.934∗∗∗ 1.552
(0.008) (0.051) (0.428) (1.336) (4.981) (2.31)

GDP
0.023∗∗∗ 0.058∗∗∗ 0.136∗∗∗ 0.266∗∗∗ 1.232∗∗∗ 0.073∗∗∗

(0.002) (0.008) (0.014) (0.042) (0.222) (0.005)

Arid
0.007 0.063 -0.64 -2.562 2.153 -2.466

(8) (0.012) (0.074) (0.691) (3.822) (23.311) (4.572)
1960-2014

Temperate
0.038 0.718∗∗∗ 5.168∗∗∗ 11.371∗∗∗ 28.561∗ 3.091
(0.026) (0.257) (1.067) (3.591) (15.56) (3.258)

Cold
0.004 0.864 4.482∗∗ 5.984 -15.324 1.893
(0.099) (0.754) (2.151) (4.117) (37.463) (6.311)

Polar
0.042 0.149 0.138 -2.298 127.089∗ 10.983
(0.059) (0.278) (0.645) (27.81) (76.097) (13.711)

Storm (Base)
0.276∗∗∗ 1.12∗∗∗ 4.97∗∗∗ 10.884∗∗∗ 34.437∗∗∗ 7.092∗∗∗

(0.093) (0.264) (0.686) (1.446) (10.315) (2.416)

GDP
0.022∗∗∗ 0.056∗∗∗ 0.142∗∗∗ 0.285∗∗∗ 1.173∗∗∗ 0.074∗∗∗

(0.002) (0.007) (0.015) (0.039) (0.252) (0.005)

Drought
-0.277∗∗∗ 0.033 2.935 1.075 -58.531 -1.525
(0.099) (0.714) (3.233) (10.123) (59.487) (5.814)

(9)
Flood

-0.301∗∗∗ -1.274∗∗∗ -4.535∗∗∗ -9.964∗∗∗ -6.564 -5.982∗

1960-2014 (0.092) (0.284) (0.986) (2.445) (15.445) (3.286)

Extreme Temp.
-0.222∗∗ -1.059∗∗∗ -5.364∗∗∗ -23.073∗∗∗ -13.598 -8.199
(0.102) (0.287) (2.03) (6.724) (30.955) (7.997)

Landslide
-0.334∗∗∗ -1.167∗∗∗ -5.033∗∗∗ -10.959∗∗∗ -34.626∗∗ -12.584∗∗

(0.096) (0.262) (0.686) (1.442) (15.125) (6.302)

Wildfire
-0.267∗∗∗ -1.064∗∗∗ -1.907 -3.856 -64.041 -12.981
(0.095) (0.321) (1954) (7.071) (86.061) (8.621)

18



5.3 Shedding light on human losses dynamics

While we find strong evidence of increasing damages caused by major natural disasters both on a

global scale and across income classes and climatic zones, results concerning deaths and affected people

appear to be clear only at the global level. More precisely, results stemming from the estimation of

model envisaged in (4) applied to human losses are overall scarcely significant, especially for high

quantiles (cf. Appendix C, Tables C.3 and C.2). This could be due to a lack of statistical power

needed to isolate a possible trend in such highly volatile and rare events when accounting for several

control variables - the higher the quantile, the higher the intrinsic volatility. Nevertheless, we can

extract from our data some other useful information about human losses behavior adopting a slightly

different perspective.

We adopt here a simple procedure for normalization of both human losses measure, i.e. dividing by

country population (as explained in Equations B.4 and B.5 in Appendix B). Once deaths and affected

people have been normalized, they can be plotted against each other so to investigate the evolution of

observations in the deaths-affected space. We then perform a 2D kernel density estimation with only

two bins in order to deal with over-plotting issues and provide a clear representation of any possible

shift.

In Figure 7 we aggregate data by decade, income class and disaster type. Since storm and floods

represent the vast majority of the observations (35% and 43%, respectively), we grouped together the

remaining disaster types. Overall mass tends to move south-west, i.e. both deaths and people affected

diminishing - consistently with negative global trend shown in Figure 6. Nevertheless, storm-related

events display an increasingly evident polarization between rich and poor countries: south-west for

high income counties (low deaths and affected), north-west for upper-income countries (low deaths,

high affected), north-east for lower-middle countries (high deaths, high affected) and low income

countries placed even more east (more deaths). Something similar happens for floods, with the only

remarkable south-west movement (increasing adaptation) belonging exactly to high-income countries

and the rest of the mass remaining more or less in the same region over time. Something completely

opposite happens in the rest of the events (extreme temperatures, wildfires, landslides and droughts):

a sharp south-west movement of low income countries can be easily spotted, due to the disappearance

of huge humanitarian crisis (e.g. India’s 1965 Drought which caused a famine killing 1.5 million people

and affecting 100 millions); while lower-middle and upper-middle income countries remain stable, the

only group moving north-east (towards more human losses) is that of rich countries.

Our disaggregated analysis appear to suggest that diminishing global trends found in Section 5.2
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Figure 7: 2D kernel density estimates of events in the death/affected space, both measure normalized
by population size. Data grouped by income level, by decade and type of hazard (extreme temperature,
wildfire, drought and landslide grouped together under ”Rest”). Axis-aligned bivariate normal kernel,
evaluated on a square grid, 25 grid points in each direction. Number of bins forced to 2. Bandwidth
is normal reference bandwidth (Venables and Ripley, 2002) in both directions. Time span 1960-2014.

are mostly due to the south-west movements in storm and flood events (the majority of recorded

events), two types of natural hazards which have become more and more predictable over time and

intrinsically give more room for adaptation policies with respect to other disasters such as extreme

temperatures and wildfires. If avoiding human losses is getting easier for storm and floods, associated

economic damages seem to increase at a dramatic pace (Table 2). As evacuation procedures clearly

do not apply, e.g., to buildings, it is no surprise that human losses reduction is particularly evident in

richer countries, while economic damages have skyrocketed.

We finally repeat the same exercise focusing on the geographical/climate zone perspective. By

clustering observations in Köppen-Geiger climate zones (Figure 8) we observe that: (i) in temperate

and arid zones, affected people have a fluctuating evolution both for storms and floods, while deaths

tend to diminish over time (west movement), consistently with our interpretation; (ii) storms and
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Figure 8: 2D kernel density estimates of events in the death/affected space, both measure normalized
by population size. Data grouped by Köppen-Geiger climate zone, by decade and type of hazard
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bivariate normal kernel, evaluated on a square grid, 25 grid points in each direction. Number of bins
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floods events in cold zones tend to move south-west (both people killed and affected decreased), while

tropical zones do not display any visible trend (with the possible exception of storms becoming slightly

less deadly); (iii) for all non-storm and non-flood events the north-east shift concentrates in cold and

temperate zones. We interpret this latter finding - coupled with the increasing trend showed in high

and upper-middle income countries in Figure 7 - as mostly due to the increasing waves of extreme

temperatures registered in Europe (see Appendix D).

6 Conclusions

In this work we have analyze the global evolution of losses (i.e., deaths, people affected, economic

damages) relative to - climate-change potentially related - extreme weather events. Detection of a
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significant rising trend in losses is of paramount importance: when data are duly normalized, it can

represent a trace of on-going climate change, and would thus call for urgent mitigation and adaptation

policies to be but in place.

We propose a novel normalization procedure - ensuring spatial and temporal comparability of

events - which genuinely tests for the presence of a pure time trend while allowing a non-linear impact of

wealth to be present. Retaining the observational unit at the hazard level (i.e. not summing normalized

data on a year basis) allow us to explore several features of loss distribution and their evolution over

time, in particular high quantiles. Such a perspective is more informative about increased natural

hazard risk, given the extremely skewed nature of associated losses. For these reason, we perform

non-parametric kernel estimation of the damages distributions and we estimate a battery of quantile

regressions.

Our results provide good news for human losses: both deaths and people affected exhibit a global

downward trend, more intense in upper quantiles of their distribution. Such pattern is due to the

disappearance of huge outliers (and to population dynamics in the case of affected), most likely the

result of increased mitigation/adaptation efforts. However, we also document a worrying increasing

polarization between income classes, with global diminishing trend most likely due to rich countries

adaptation. Moreover, most of the global shift is attributable to storm and flood, i.e. the most

predictable phenomena among those under consideration, while rising human losses are documented

for e.g. extreme temperatures - mostly in temperate areas. Biases present in the dataset might also

be relevant for the analysis of human losses.

On the contrary, the analysis carried out on the evolution of global damages provides a rather

alarming picture. Our results indicate the existence of a positive global trend in upper quantiles of

economic damages distribution with the estimated magnitude of per-year increment being increasing

along quantiles. These findings appear to be robust to several model specifications, and biases present

in the data are likely to make our estimates even conservative. The magnitude of the estimated trend is

still quite noticeable: referring to the baseline model (C.1, Appendix C), considering an average of 149

recorded events per year (in the current decade), losses associated with disasters in the 99th percentile

are estimated to increase each year by 39.32 Million $. We report a stronger upsurge of damages in

high income countries (although the increase is quite generalized). On the climatic perspective, the

rise is particularly vigorous in tropical zones, and even more so in temperate ones.

Our results indicate that the distribution of damages is progressively shifting to the right, with

a fattening right tail. Huge losses from major catastrophic hazards are getting bigger over time or

more likely to happen. This suggests that signals of on-going climate change lies in the tails. The
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anemic results typically obtained in the literature on trend detection are due to their focus on mean

regression, which only palely reflects meaningful changes on the right end of the distribution.

Beside the serious indication for policy-makers to adopt compelling and non-deferrable adaptation

and mitigation policies, our results can have relevant implications for damage functions of most Inte-

grated Assessment Models (IAMs), which have been criticized for their inability to account for major

disasters when temperature anomaly gets significantly large (Ackerman et al., 2012; Weitzman, 2009).

In that damage functions adopted in agent-based IAMs (Lamperti et al., 2018) could be a promising

alternative and this work could allow to achieve a better, more data-driven, parametrization.
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Bouwer, L. M., Crompton, R. P., Faust, E., Höppe, P., and Pielke, R. A. (2007). Confronting disaster losses.
Science, 318(5851):753–753.

23



Brooks, H. E. and Doswell, C. A. (2001). Normalized damage from major tornadoes in the united states:
1890–1999. Weather and Forecasting, 16(1):168–176.

CRED (2015). The human cost of natural disasters: A global perspective. Technical report, Centre for Research
on the Epidemiology of Disaster (CRED).

Crompton, R. P. and McAneney, K. J. (2008). Normalised australian insured losses from meteorological hazards:
1967–2006. Environmental Science & Policy, 11(5):371–378.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Elsner, J. B., Kossin, J. P., and Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones.
Nature, 455(7209):92.

Feenstra, R. C., Inklaar, R., and Timmer, M. P. (2015). The next generation of the penn world table. The
American Economic Review, 105(10):3150–3182.

Gall, M., Borden, K. A., Emrich, C. T., and Cutter, S. L. (2011). The unsustainable trend of natural hazard
losses in the united states. Sustainability, 3(11):2157–2181.

Gardoni, P. and Murphy, C. (2010). Gauging the societal impacts of natural disasters using a capability
approach. Disasters, 34(3):619–636.

Guha-Sapir, D. and Below, R. (2014). Hoyois ph. EM-DAT: The international Disaster database-www. emdat.
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Appendix A Data Treatment

Over the considered time span (1960-2015), lots of countries changed their political boundaries. Some countries
were separate before a certain date and then merged together, some other split. In order to ensure proper
over-time comparability to every unit of analysis, we grouped such countries as follows:

• Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania,the Repub-
lic of Moldova, the Russian Federation , Tajikistan, Turkmenistan, Ukraine and Uzbekistan have been
grouped under Soviet Union.

• Serbia e Montenegro have been grouped under Serbia Montenegro.

• Bosnia and Herzegovina, Croatia, the former Yugoslav Republic of Macedonia, Serbia Montenegro and
Slovenia have been grouped under Yugoslavia.

• Slovakia and the Czech Republic have been grouped under Czechoslovakia.

• Germany Democratic Republic and Germany Federal Republic have been grouped under Germany.

• Yemen Arab Republic and Yemen Democratic Republic have been grouped under Yemen.

• State of Palestine has been grouped under Israel.

• Timor-Leste has been grouped under Indonesia.

• Eritrea has been grouped under Ethiopia.

For what concern data from Penn World Table, we had to rule out observations occurred in 2015, as
PWT contains data only until 2014. Some countries do not have data on GDP, at least in some years. Those
observations have been excluded from the database when considering normalized measures of loss and in quantile
regressions, for a total of 683 observations. Here is the list of such countries, with the number of observations
removed between parenthesis: Afghanistan (121), American Samoa (5), Azores Islands (3), Canary Islands
(7), Cook Islands (11), Cuba (74), Czechoslovakia (9), Eritrea (6), French Guiana (2), French Polynesia (7),
Germany Democratic Republic (3), Guadeloupe (13), Guam (9), Guyana (10), Kiribati (5), the Democratic
People’s Republic of Korea (36), Libya (2), Marshall Islands (4), Martinique (14), Micronesia (8), Netherlands
Antilles (4), New Caledonia (16), Niue (5), Northern Mariana Islands (3), Palau (1), Papua New Guinea (37),
Puerto Rico (29), Reunion (11), Saint Helena (1), Samoa (13), Solomon Islands (25), Somalia (60), South Sudan
(12), Soviet Union (30), Timor-Leste (8), Tokelau (6), Tonga (16), Tuvalu (7), Vanuatu (30), Virgin Island (6),
Wallis and Futuna (4), Yugoslavia (10).

Country classification by income level: We used the classification provided by the World Bank. As of 1 July
2016, low-income economies are defined as those with a Gross National Income (GNI) per capita, calculated
using the World Bank Atlas method, of $1,025 or less in 2015; lower middle-income economies are those with
a GNI per capita between $1,026 and $4,035; upper middle-income economies are those with a GNI per capita
between $4,036 and $12,475; high-income economies are those with a GNI per capita of $12,476 or more.

Data has been geolocalized thorough Google Maps API, using the location information present in the original
dataset. Those observation which do not contain any useful information has been assigned with latitude and
longitude of the centroid of the polygon formed by the relative country. Such observations are 1477 out of 10901
in the original dataset, 1265 out of 9495 once merging EM-DAT with PWT.

Koppen Climate Zones are recovered using geolocalized data merged with raster data provided in Kottek
et al. (2006). Out of 10901 original observations, 452 did not found a point-to-cell match. In such cases, we
assigned to the point the most frequent climatic zone among those in the 8 surrounding cells (as chess King’s
moves) plus the L-shaped ”Knight’s moves”. Remaining 371 observations have been covered with the same
procedure with raster data provided by Peel et al. (2007).
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Appendix B Issues with Normalization

Normalization is required to compare the impact of natural disasters across time and space. Intuitively, the
same building is worth more dollars today than in the 1950s and, at least partially, because of inflation; further,
the number of deaths from its of destruction might depend on how many people live therein.

Losses have been usually quantified in terms of (i) monetary losses and (ii) people affected (or dead) by the
particular hazard. With regard to the second measure, the normalization is straightforward and simply corrects
for population density. Accordingly, the share of affected during natural disaster i at time t can be obtained as:

share of affectedi,t =
Total affected during event i at time t

Total population in the area of the event i at time t
. (B.1)

Such a representation can be found in a variety of studies and reports (UNISDR, 2009; Guha-Sapir et al.,
2012; CRED, 2015; Visser et al., 2014). Other contributions, instead, prefer not to normalize and to focus on
the absolute number of people affected by the disaster (see e.g. Toya and Skidmore, 2007). However, in our
view, avoid to control for population size would increase the risk of incurring in a biased estimation of the
damages, which would not be comparable across time and space.

To prevent from such problems, the normalization of economic losses has received larger attention in the
literature. The conventional approach to normalizing natural disaster losses can be traced back to Pielke and
Landsea (1998) and Pielke et al. (1999) and expressed through the following equation:

normalized lossrefi,t = Lossi,t
GDP deflatori,ref · Populationi,ref ·Wealth per capitai,ref

GDP deflatori,t · Populationi,t ·Wealth per capitai,t
(B.2)

where i indicates the disaster occurred in a given area, ref stands for the reference year and t the year of
occurrence. The Gross Domestic Product (GDP) deflator adjusts for inflation (i.e. changes in prices), while the
remaining two correction factors adjust for changes in population and wealth per capita. According to Pielke
et al. (2008) such procedure provides “longitudinally consistent estimates of the economic damage” that past
disasters would have caused “under contemporary levels of population and development”. The conventional
approach has been widely used in the literature, despite the main problem of obtaining reliable wealth data.
Brooks and Doswell (2001) and Vranes and Pielke (2009) used the value of capital stocks; Crompton and
McAneney (2008) and Pielke et al. (2008) the one of dwellings, while many others simply relied on GDP
(Raghavan and Rajesh, 2003; Nordhaus, 2006; Barredo, 2009).

Beyond the data-quality issue, Neumayer and Barthel (2011) pointed out that the conventional approach is
incomplete. On one hand it adjusts for changes in wealth and population over time but, on the other, it fails to
adjust for differences in wealth and population across space at any given point of time.14 To use the example of
the authors, “conventional normalization correctly posits that a disaster like the 1926 Great Miami hurricane
would have caused far more damage if it hit Miami nowadays since the value of what can potentially become
destroyed has increased tremendously over this time period. At the same time, however, a hurricane that hits
Miami in any year will cause a much larger damage than a hurricane that hits in the same year rural parts of
Florida with much lower population density and concentration of wealth. Conventional normalization accounts
for the former effect, but not for the latter. It makes Miami in 1926 comparable to Miami in 2010, but fails
to make Miami in whatever year comparable to rural Florida or other areas affected by a particular natural
disaster in that same year”. Putting it shortly, equation (B.2) cleans for the rate of growth of confounding
factors, but not for their size. Neumayer and Barthel (2011) have thus proposed the following approach to
normalization:

normalized lossi,t =
Lossi,t

Wealthi,t
, (B.3)

which implies that each loss is expressed as the share the theoretical total destroyable wealth that has been
effectively lost and can therefore be interpreted as an actual-to-potential-loss (APLR) ratio. Such a procedure
would adjust for differences across space: by dividing actual damage by the wealth in affected areas that can
potentially be destroyed it controls for the fact that the same natural disaster will necessarily create more
absolute damage if it strikes a wealthier area than if it stroke a poorer area where there is less potential wealth
to be destroyed. Further, since a relative damage is time-invariant is also directly comparable across years. Such
an approach has been applied to insured disaster data (Barthel and Neumayer, 2012), to enable comparison of
impacts across disasters in small states, islands or counties (Noy, 2009; Ash et al., 2013) and between disasters
in Japan, Pakistan, and the USA (Gardoni and Murphy, 2010) and, more recently, to estimate the impact of
climate change and vulnerability on disaster-related damages (Visser et al., 2014).

14We notice that the conventional approach also fails to account for population dynamics since the population variable
in equation (B.2) is ruled out by the use of the per-capita wealth.
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Despite its features the Neumayer and Barthel (2011)’s normalization fails to solve the wealth data avail-
ability problem and, more relevantly, does not account for population dynamics. However, it is likely that
more populated areas exhibit higher total wealth and, in addition, that areas with higher population growth
experience higher GDP and wealth growth as well. For these reasons, we believe normalization should somehow
correct for these effects. Here we present descriptive evidences coming out from different loss normalizations to
show that they do not contradict our main findings.

To do so we take advantage of the Penn World Table dataset (Feenstra et al., 2015). While the unit of
analysis is retained at the observational level, normalization measures are at the country level 15; time unit
is year. Keeping the unit of analysis at the event level, compared to yearly or multi-year aggregation, has
the advantage of being able to exploit the various feature of the within year distribution of damages (which is
valuable information). More importantly, as already pointed out, focus on distributions substantially reduce
underreporting bias.

Normalized Deathsi,t =
Deathsi,t

Populationi,t
(B.4)

Normalized Affectedi,t =
People Affectedi,t

Populationi,t
(B.5)

Normalized Economic Damagei,t =
Economic Damagei,t
GDP per capitai,t

(B.6)

The intuitive normalization for death and affected people is carried out by dividing for the total population of
the relative country, as already shown in equation B.1. For what concern economic damages some clarifications
are needed. We follow the ATPL approach suggested by Neumayer and Barthel (2011): to ensure spatial
comparability, we simply divide the damage (at current PPP, U.S.A. Dollars) by a measure of wealth. Penn
World Table 9.0 offer us two suitable measures for wealth: GDP (at current PPP, U.S.A. Dollars) and capital
stock (at current PPP, U.S.A. Dollars). We are going to make use of both, as they can shed light on different
aspect of economic harms produced by natural disasters. In both cases, the PPP ensure spatial comparability
within years, while the ratio between two values expressed in current terms originate an a-dimensional measure
which can be compared over time. Unlike Neumayer and Barthel (2011), we choose to use per capita wealth
measures: as population size mechanically affect GDP (and capital), both in spatial and chronological terms,
we argue that it is crucial for a proper analysis to control for that effect.

Figure B.1, B.2 and B.3 provide insights into the evolution of normalized quantities following equations
(B.4), (B.5) and (B.6). Figures B.4 and B.5 present results from OLS regression on yearly summed data
for economic damages, following three different procedures: (i) and (ii) by normalizing observations through
equations (B.3) and (B.4) respectively, (iii) by summing observation and normalization factors before computing
the ratio. The latter approach is also discussed in Neumayer and Barthel (2011), arguing that results are pretty
similar to those obtained with (i), altough (iii) is in principle more tail sensitive. Results using a restricted time
sample starting from the 80’s are reported to ensure full comparability with Neumayer and Barthel (2011).

Finally, we notice that our approach (eqs. 1-3 in the main text) provides a generation of the APL method-
ology adopted in Neumayer and Barthel (2011), who normalize monetary damages using the GDP of the area
affected by the disaster, a proxy for the maximum potentially destroyable wealth. Once damages have been
normalized, the presence (or absence) of a trend is detected estimating a model of the following type:

Damageit
GDPit

= Normalized Damageit = a+ b · Trendt. (B.7)

Now, one can see that our specification (3) encompasses such a linear model (equation (B.7)) by simply adding
the interaction term between Trendt and GDPit in the control set x′′′

it :

Damageit = α3 + β3Trendt + γ3GDPit + θTrendt ·GDPit, (B.8)

and exogenously restricting (B.8) by imposing α3 = β3 = 0 to obtain (B.7).
Interestingly, we also notice

15See Appendix A for details on issues with PWT and on treatment of countries over time.
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Figure B.1: Summary of yearly normalized losses distributions based on moments, by type of loss.
Dashed lines are OLS trend estimates. Time span: 1960-2014.
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Figure B.2: Selected quantiles of yearly normalized losses distributions, by type of loss. Dashed lines
are OLS trend estimates. Time span: 1960-2014.
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Figure B.3: Normalized loss kernel density estimates, by type of loss. Data aggregated on a decade basis. Horizontal log-axis. Dashed red lines represent
medians. Zero losses disasters excluded from computations. Kernel is Gaussian. Bandwidth selection is done by Silverman’s rule-of-thumb (Silverman,
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power. Rug plots below each distribution represent marginal distributions. Time span 1960-2014.
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Figure B.4: Yearly global sum of economic damages, by type of normalization. Dashed lines are OLS
trend estimates. p-value: *** < 0.01, ** < 0.05, * < 0.10, two-tailed. Time span: 1960-2014.
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Figure B.5: Yearly global sum of economic damages, by type of normalization. Dashed lines are OLS
trend estimates. p-value: *** < 0.01, ** < 0.05, * < 0.10, two-tailed. Time span: 1980-2014.
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Appendix C Robustness

This section gathers all the regression performed. In particular, in addition to baseline regression presented in
Figure 6, we provide alternative model specifications and experiment with varying time span.

Table C.1: Robustness analysis for economic damages. Quantile regressions estimates for selected
quantiles and OLS estimates on economic damages (except for model (6) where economic damages
over GDP is the dependent variable). Covariates on first column. Method is modified Barrodale-
Roberts algorithm (Koenker and d’Orey, 1987)). Bootstrapped standard errors according to x-y
pairwise resampling algorithm, as recommended in Efron and Tibshirani (1994). p-value: *** < 0.01,
** < 0.05, * < 0.10, two-tailed.

Variable 70th 80th 90th 95th 99th OLS

Intercept
0.466∗∗ 6.679∗∗∗ 20.755∗ 37.818 94.15 -38.368
(0.21) (2.133) (10.782) (42.002) (109.263) (56.267)

(1)
Trend

-0.016∗∗∗ -0.137∗∗∗ 1.226∗∗∗ 4.797∗∗∗ 26.385∗∗∗ 2.536∗

1960-2014 (0.005) (0.044) (0.403) (1.305) (6.847) (1.472)

GDP
0.023∗∗∗ 0.062∗∗∗ 0.148∗∗∗ 0.298∗∗∗ 1.251∗∗∗ 0.076∗∗∗

(0.002) (0.006) (0.015) (0.042) (0.289) (0.005)

Intercept
0.335 8.962∗∗ 60.114∗∗∗ 191.829∗∗∗ 431.572∗∗∗ -17.857
(0.224) (3.543) (18.399) (64.672) (146.034) (52.669)

(1)
Trend

-0.018∗∗∗ -0.233∗∗∗ 0.262 1.402 22.933∗∗∗ 2.677
1970-2014 (0.006) (0.086) (0.658) (2.291) (8.188) (1.766)

GDP
0.023∗∗∗ 0.062∗∗∗ 0.149∗∗∗ 0.301∗∗∗ 1.255∗∗∗ 0.076∗∗∗

(0.002) (0.007) (0.015) (0.044) (0.268) (0.005)

Intercept
0.159 10.225∗∗ 87.104∗∗∗ 248.78∗∗∗ 788.962∗∗∗ 0.213
(0.148) (4.055) (17.758) (57.518) (277.784) (50.14)

(1)
Trend

-0.018∗∗∗ -0.349∗∗∗ -0.8 -0.527 17.551 3.025
1980-2014 (0.006) (0.127) (0.97) (2.891) (14.117) (2.284)

GDP
0.023∗∗∗ 0.061∗∗∗ 0.15∗∗∗ 0.301∗∗∗ 1.253∗∗∗ 0.076∗∗∗

(0.002) (0.007) (0.015) (0.047) (0.276) (0.005)

Intercept
1.893∗ 0 0 0 35 -57.017

(2) (1.008) (1.642) (3.774) (12.151) (206.191) (56.146)
1960-2014

Trend
0.093∗∗∗ 1.42∗∗∗ 7.447∗∗∗ 21.852∗∗∗ 95.481∗∗∗ 7.105∗∗∗

(0.036) (0.145) (0.482) (1.33) (10.19) (1.442)

Intercept
3.904∗∗ 12.409∗∗ 37.895∗ 125∗∗ 411.613 -6.185

(2) (1.552) (5.265) (22.119) (48.979) (264.328) (53.172)
1970-2014

Trend
0.052 1.486*** 8.737*** 25*** 118.387*** 7.739***
(0.066) (0.29) (0.991) (2.78) (16.086) (1.751)

Continued on next page
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Table C.1: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
5.822∗∗∗ 32.5∗∗∗ 91∗∗∗ 321.538∗∗∗ 1326.364∗∗ 58.23

(2) (2.005) (8.615) (32.213) (64.901) (565.097) (50.553)
1980-2014

Trend
-0.016 1.25∗∗ 10.45∗∗∗ 27.308∗∗∗ 133.636∗∗∗ 8.297∗∗∗

(0.108) (0.552) (1.819) (4.36) (35.576) (2.281)

Intercept
1.354∗∗ 11.704∗∗∗ 26.877∗∗ 43.557 93.663 -27.428
(0.532) (3.569) (13.446) (38.412) (98.025) (56.557)

Trend
-0.029∗∗∗ -0.202∗∗∗ 1.104∗∗ 4.815∗∗∗ 25.624∗∗∗ 2.54∗

(3) (0.011) (0.074) (0.432) (1.308) (6.635) (1.472)
1960-2014

GDP
0.025∗∗∗ 0.069∗∗∗ 0.159∗∗∗ 0.316∗∗∗ 1.163∗∗∗ 0.081∗∗∗

(0.003) (0.007) (0.019) (0.055) (0.338) (0.006)

Population
-0.029∗∗∗ -0.083 ∗∗∗ -0.091 -0.205 0.796 -0.114∗

(0.004) (0.012) (0.068) (0.177) (1.37) (0.061)

Intercept
1.104* 17.959∗∗∗ 73.005∗∗∗ 197.616∗∗∗ 406.634∗∗∗ -5.627
(0.613) (4.095) (17.657) (59.516) (152.364) (53.076)

Trend
-0.03∗ -0.419∗∗∗ -0.032 1.27 24.05∗∗∗ 2.643

(3) (0.016) (0.1) (0.665) (2.006) (8.115) (1.766)
1970-2014

GDP
0.026∗∗∗ 0.069∗∗∗ 0.161∗∗∗ 0.32∗∗∗ 1.161∗∗∗ 0.081∗∗∗

(0.003) (0.007) (0.019) (0.055) (0.329) (0.006)

Population
-0.03∗∗∗ -0.089∗∗∗ -0.101 -0.215 0.855 -0.115∗

(0.005) (0.013) (0.073) (0.197) (1.822) (0.062)

Intercept
1.003 19.778∗∗∗ 99.011∗∗∗ 251.64∗∗∗ 783.248∗∗∗ 14.846
(0.68) (5.616) (19.602) (53.714) (270.797) (50.802)

Trend
-0.037 -0.613∗∗∗ -1.126 -0.661 18.239 2.88

(3) (0.024) (0.174) (0.997) (2.573) (14.197) (2.285)
1980-2014

GDP
0.026∗∗∗ 0.069∗∗∗ 0.161∗∗∗ 0.317∗∗∗ 1.162∗∗∗ 0.082∗∗∗

(0.003) (0.007) (0.018) (0.056) (0.367) (0.006)

Population
-0.03∗∗∗ -0.095∗∗∗ -0.144∗ -0.214 0.801 -0.116∗

(0.005) (0.016) (0.081) (0.209) (1.788) (0.065)

Intercept
-2.498∗∗∗ -7.689∗∗∗ -26.19∗∗∗ -46.027∗∗∗ -204.197∗∗∗ -134.651∗∗

(0.359) (1.199) (4.516) (13.29) (46.957) (56.97)
(4)

Trend
-0.013∗ 0.041∗ 0.552∗∗ 4.41∗∗∗ 37.345∗∗∗ 3.92∗∗∗

1960-2014 (0.007) (0.024) (0.255) (1.055) (8.476) (1.477)

GDP per capita
2.626∗∗∗ 8.016∗∗∗ 29.576∗∗∗ 52.454∗∗∗ 197.189∗∗∗ 15.494∗∗∗

(0.21) (0.75) (2.07) (6.627) (44.352) (1.361)
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Table C.1: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
3.01∗∗∗ 15.404∗∗∗ 31.023∗∗ 38.196 220.579 29.974
(0.822) (3.044) (14.066) (54.229) (258.583) (61.525)

Trend
-0.072∗∗∗ -0.317∗∗∗ 0.936∗∗ 4.795∗∗∗ 23.252∗∗ 0.885

(5) (0.018) (0.061) (0.469) (1.66) (10.387) (1.59)
1960-2014

GDP
-0.006∗∗∗ 0.005 0.093∗∗ 0.28∗∗∗ 0.747 0.01
(0.002) (0.012) (0.039) (0.107) (0.837) (0.024)

Trend*GDP
0.001∗∗∗ 0.001∗∗∗ 0.001 0 0.011 0.001∗∗∗

(0.00009) (0.0003) (0.001) (0.003) (0.021) (0.001)

Intercept
0.175∗∗∗ 0.784∗∗∗ 2.685∗∗∗ 7.194∗∗ 37.334 5.37

(6) (0.042) (0.134) (0.84) (3.173) (29.762) (26.369)
1960-2014

Trend
-0.002∗∗ -0.002 0.066∗∗∗ 0.278∗∗∗ 2.285∗∗∗ 0.465
(0.001) (0.004) (0.024) (0.095) (0.804) (0.676)

Table C.2: Robustness analysis for people affected. Quantile regressions estimates for selected quan-
tiles and OLS estimates on people affected. Covariates on first column. Method is modified Barrodale-
Roberts algorithm (Koenker and d’Orey, 1987)). Bootstrapped standard errors according to x-y pair-
wise resampling algorithm, as recommended in Efron and Tibshirani (1994). p-value: *** < 0.01, **
< 0.05, * < 0.10, two-tailed.

Variable 70th 80th 90th 95th 99th OLS

Intercept
7.317∗∗ 46.587∗∗∗ 251.707∗∗∗ 985.731∗∗∗ 4635.217∗∗∗ 621.94∗∗

(3.006) (10.685) (52.402) (190.572) (1154.012) (246.444)
(1)

Trend
0.025 -0.585∗∗ -3.638∗∗∗ -15.45∗∗∗ -81.321∗∗∗ -16.914∗∗∗

1960-2014 (0.07) (0.238) (1.175) (4.232) (22.578) (6.335)

Population
0.151∗∗∗ 0.699∗∗∗ 4.093∗∗∗ 12.538∗∗∗ 78.955∗∗∗ 3.812∗∗∗

(0.021) (0.132) (0.606) (1.871) (14.585) (0.226)

Intercept
4.917∗∗ 37.506∗∗∗ 261.967∗∗∗ 993.388∗∗∗ 3918.583∗∗∗ 620.013∗∗∗

(2.382) (10.03) (64.773) (223.328) (842.283) (229.384)
(1)

Trend
0.098 -0.524∗ -5.011∗∗∗ -20.395∗∗∗ -83.63∗∗∗ -22.102∗∗∗

1970-2014 (0.072) (0.274) (1.724) (5.99) (19.689) (7.532)

Population
0.153∗∗∗ 0.726∗∗∗ 4.131∗∗∗ 12.577∗∗∗ 78.823∗∗∗ 3.804∗∗∗

(0.02) (0.13) (0.48) (2.139) (14.136) (0.23)

Intercept
3.483∗ 29.543∗∗∗ 214.517∗∗∗ 747.409∗∗∗ 3599.584∗∗∗ 445.231∗∗

(1.985) (8.705) (53.569) (179.368) (955.835) (210.791)
(1)

Trend
0.188∗∗ -0.411 -5.011∗∗∗ -18.18∗∗∗ -100.287∗∗∗ -23.151∗∗

1980-2014 (0.083) (0.323) (1.86) (6.616) (27.624) (9.368)

Population
0.155∗∗∗ 0.726∗∗∗ 4.016∗∗∗ 12.085∗∗∗ 78.664∗∗∗ 3.716∗∗∗

(0.022) (0.132) (0.506) (2.078) (16.045) (0.232)
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Table C.2: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
14.565∗∗∗ 72.441∗∗∗ 396.667∗∗∗ 1500∗∗∗ 16134.867∗∗∗ 915.517∗∗∗

(2) (3.311) (13.266) (83.721) (312.503) (6013.169) (245.881)
1960-2014

Trend
0.109 0.014 0.185 0 -106.973 -4.887
(0.08) (0.328) (2.074) (8.319) (148.618) (6.314)

Intercept
13.736∗∗∗ 67.431∗∗∗ 452.458∗∗∗ 1845∗∗∗ 18060.476∗∗∗ 1047.654∗∗∗

(2) (3.28) (14.661) (82.387) (378.201) (5610.535) (230.69)
1970-2014

Trend
0.158 0.142 -1.319 -10.75 -187.316 -10.55
(0.104) (0.455) (2.626) (11.976) (170.897) (7.597)

Intercept
14.63∗∗∗ 69.769∗∗∗ 486.1∗∗∗ 1731.297∗∗∗ 18934.783∗∗∗ 1048.634∗∗∗

(2) (3.326) (11.318) (77.732) (310.845) (4567.733) (210.38)
1980-2014

Trend
0.185 0.116 -3.244 -10.13 -304.348∗ -14.964
(0.135) (0.477) (3.295) (12.423) (179.099) (9.491)

Intercept
0.772 23.112∗∗ 145.142∗∗∗ 622.935∗∗∗ 3820.792∗∗∗ 529.896∗∗

(2.211) (9.723) (45.166) (184.634) (1187.591) (246.746)

Trend
0.231∗∗∗ 0.084 -0.641 -6.773 -59.452∗∗ -11.166∗

(3) (0.057) (0.25) (1.09) (4.196) (23.493) (6.423)
1960-2014

Population
0.266∗∗∗ 1.165∗∗∗ 5.633∗∗∗ 17.001∗∗∗ 93.087∗∗∗ 4.515∗∗∗

(0.045) (0.234) (0.75) (2.919) (21.667) (0.264)

GDP
-0.006∗∗∗ -0.025∗∗∗ -0.118∗∗∗ -0.351∗∗∗ -1.84∗∗∗ -0.129∗∗∗

(0.001) (0.004) (0.014) (0.054) (0.408) (0.025)

Intercept
0.082 14.857∗ 151.65∗∗∗ 634.337∗∗∗ 3297.616∗∗∗ 560.058∗∗

(1.568) (8.076) (42.646) (179.912) (949.575) (229.389)

Trend
0.316∗∗∗ 0.318 -1.167 -9.475∗ -61.468∗∗∗ -15.66∗∗

(3) (0.05) (0.236) (1.341) (5.142) (22.31) (7.632)
1970-2014

Population
0.267∗∗∗ 1.182∗∗∗ 5.741∗∗∗ 16.996∗∗∗ 93.081∗∗∗ 4.498∗∗∗

(0.051) (0.236) (0.757) (2.849) (20.026) (0.269)

GDP
-0.006∗∗∗ -0.025∗∗∗ -0.12∗∗∗ -0.349∗∗∗ -1.839∗∗∗ -0.127∗∗∗

(0.001) (0.004) (0.014) (0.054) (0.373) (0.025)

Intercept
-0.077 11.427 115.269∗∗∗ 409.164∗∗∗ 2877.053∗∗∗ 427.948∗∗

(1.182) (7.548) (32.225) (139.241) (933.301) (210.546)

Trend
0.444∗∗∗ 0.606∗∗ -0.082 -3.389 -71.394∗∗ -16.156∗

(3) (0.062) (0.289) (1.342) (5.289) (28.801) (9.471)
1980-2014

Population
0.281∗∗∗ 1.176∗∗∗ 5.475∗∗∗ 16.452∗∗∗ 93.067∗∗∗ 4.386∗∗∗

(0.047) (0.22) (0.844) (3.275) (18.522) (0.271)

GDP
-0.006∗∗∗ -0.025∗∗∗ -0.115∗∗∗ -0.342∗∗∗ -1.83∗∗∗ -0.121∗∗∗

(0.001) (0.004) (0.015) (0.061) (0.351) (0.026)
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Table C.2: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
-0.26∗∗∗ -1.248∗∗ -7.795∗∗ 2.963 0.388 -191.741
(0.086) (0.527) (3.056) (12.375) (15.512) (421.847)

Trend
-0.016∗∗∗ -0.052∗∗ -0.156∗∗ -0.395 -0.057 -4.245
(0.005) (0.023) (0.065) (0.317) (0.369) (11.211)

Population
0.11∗∗∗ 0.511∗∗∗ 3.7∗∗∗ 11.612∗∗∗ 79.227∗∗∗ 3.711∗∗∗

(0.022) (0.146) (0.521) (2.098) (13.228) (0.237)

Low
165.734∗∗∗ 664.474∗∗∗ 1781.494∗∗∗ 2934.424∗∗∗ 6737.37∗∗∗ 716.152
(44.399) (142.212) (272.745) (1038.975) (1505.417) (941.768)

(7)
Lower-Mid.

111.449∗∗∗ 343.448∗∗∗ 1266.318∗∗∗ 3037.499∗∗∗ 12898.44 1983.826∗∗∗

1960-2014 (31.441) (80.123) (339.541) (758.68) (8488.664) (600.097)

Upper-Mid.
21.924∗∗∗ 66.631∗∗∗ 168.605∗∗∗ 363.538 1991.597 576.807
(7.509) (21.167) (50.719) (237.538) (1530.529) (654.784)

Trend*Low
-2.573∗∗∗ -11.744∗∗∗ -29.559∗∗∗ -41.943∗ -87.724∗ -3.194
(0.924) (3.005) (6.571) (24.619) (45.394) (23.507)

Trend*Lower
-0.896 -3.186∗ -17.444∗∗ -45.884∗∗∗ -239.115 -38.345∗∗

(0.703) (1.898) (7.558) (16.326) (160.125) (15.689)

Trend*Upper
-0.143 -0.763 -2.041∗ -4.455 -32.678 -3.419
(0.166) (0.471) (1.209) (5.361) (35.069) (16.848)

Intercept
70.155∗∗∗ 213.319∗∗∗ 810.595∗∗∗ 2272.737∗∗∗ 7390.086∗∗ 843.846∗∗

(19.311) (56.708) (215.526) (526.653) (3234.173) (392.506)

Trend
-0.475 -1.985 -11.081∗∗ -36.738∗∗∗ -133.81∗∗ -21.617∗∗

(0.452) (1.417) (4.934) (12.276) (62.223) (10.081)

Population
0.133∗∗∗ 0.606∗∗∗ 4.076∗∗∗ 12.122∗∗∗ 79.329∗∗∗ 3.817∗∗∗

(0.023) (0.144) (0.531) (1.859) (15.556) (0.23)

Arid
-22.748 -77.501 -258.74 -840.852 3557.975 987.07
(24.044) (74.769) (374.042) (716.261) (21120.534) (780.405)

Cold
-71.974∗∗∗ -219.383∗∗∗ -842.517∗∗∗ -2353.992∗∗∗ -7078.74∗∗ -1064.478
(19.276) (56.682) (215.601) (524.195) (3200.946) (1078.828)

(8)
Temperate

-70.776∗∗∗ -214.283∗∗∗ -806.978∗∗∗ -2257.998∗∗∗ -5916.004∗ -669.426
1960-2014 (19.306) (56.727) (215.417) (534.465) (3313.526) (550.854)

Polar
-72.833∗∗∗ -217.159∗∗∗ -801.042∗∗∗ -2211.32∗∗∗ -7392.216∗∗ -1547.555
(19.671) (56.513) (217.469) (540.655) (3414.343) (2317.75)

Trend*Arid
-0.151 0.363 4.982 28.916 -50.029 -19.539
(0.552) (1.904) (8.787) (19.634) (408.444) (19.965)

Trend*Cold
0.503 2.058 11.482∗∗ 37.751∗∗∗ 125.803∗∗ 16.203
(0.452) (1.417) (4.943) (12.31) (62.922) (27.49)

Trend*Temper.
0.485 1.979 10.852∗∗ 36.205∗∗∗ 109.255∗ 15.492
(0.452) (1.415) (4.932) (12.457) (64.948) (14.175)

Trend*Polar
0.553 2.043 10.336∗∗ 33.944∗∗ 133.266∗ 12.802
(0.474) (1.406) (4.985) (14.495) (69.429) (59.811)
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Table C.2: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
-0.301 5.548 39.684 188.659 1074.484∗ -186.175
(0.744) (5.011) (29.293) (115.71) (563.901) (387.604)

Trend
0.03 -0.042 -0.329 -3.587 -21.171∗ -10.477

(0.024) (0.124) (0.768) (2.549) (11.738) (10.328)

Population
0.138∗∗∗ 0.645∗∗∗ 3.981∗∗∗ 11.726∗∗∗ 77.716∗∗∗ 4∗∗∗

(0.023) (0.133) (0.554) (1.853) (15.703) (0.226)

Drought
46.827 634.543∗ 2372.501∗ 4186.458 70088.958 4361.594∗∗∗

(242.248) (370.459) (1362.813) (6078.071) (66283.1) (911.671)

Extreme T.
-12.89∗∗∗ -33.419∗∗∗ -105.563∗∗∗ -304.253∗∗ -991.822 -1329.936
(3.815) (11.9) (35.859) (129.753) (1568.822) (1469.726)

flood
39.879∗∗∗ 116.119∗∗∗ 243.685∗∗∗ 795.928∗∗∗ 3121.33 1022.038∗

(7.383) (25.087) (70.648) (296.247) (2370.75) (553.518)
(9)

Landslide
-0.167 -7.465 -47.375 -190.716 -880.968 255.889

1960-2014 (0.883) (5.049) (30.249) (120.07) (618.948) (1037.935)

Wildfire
0.366 -6.697 -52.044∗ -217.564∗ -1097.523∗ 212.997
(0.805) (5.029) (30.432) (114.95) (572.299) (1423.281)

Trend*Drought
24.972∗∗∗ 37.262∗∗∗ 50.608 81.927 -1247.911 -16.484
(7.941) (14.051) (45.94) (159.827) (1515.776) (25.212)

Trend*Extreme
0.236∗∗∗ 0.584∗∗ 1.502∗ 5.736∗ 19.699 33.013
(0.089) (0.28) (0.906) (2.965) (33.812) (34.703)

Trend*Flood
-0.407∗∗ -1.723∗∗∗ -4.025∗∗ -14.653∗∗ -59.362 -7.799
(0.169) (0.57) (1.593) (6.039) (45.583) (14.231)

Trend*Landsl.
-0.097∗∗∗ -0.138 -0.259 1.903 8.974 -20.495
(0.029) (0.149) (0.8) (2.72) (13.544) (27.361)

Trend*Wildfire
-0.069∗∗ -0.063 0.141 3.298 20.399 -1.826
(0.028) (0.134) (0.815) (2.606) (14.149) (37.397)

Table C.3: Robustness analysis for deaths. Quantile regressions estimates for selected quantiles and
OLS estimates on deaths. Covariates on first column. Method is modified Barrodale-Roberts algorithm
(Koenker and d’Orey, 1987)). Bootstrapped standard errors according to x-y pairwise resampling
algorithm, as recommended in Efron and Tibshirani (1994). p-value: *** < 0.01, ** < 0.05, * < 0.10,
two-tailed.

Variable 70th 80th 90th 95th 99th OLS

Intercept
52.38∗∗∗ 98.155∗∗∗ 236.245∗∗∗ 488.322∗∗∗ 3663.826∗∗∗ 2135.091∗∗∗

(2.978) (5.398) (19.704) (47.681) (1286.07) (528.131)
(1)

Trend
-0.933∗∗∗ -1.734∗∗∗ -4.207∗∗∗ -8.619∗∗∗ -66.677∗∗∗ -49.854∗∗∗

1960-2014 (0.063) (0.115) (0.389) (0.922) (24.418) (13.575)

Population
0.055∗∗∗ 0.088∗∗∗ 0.161∗∗∗ 0.363∗∗∗ 1.015∗∗ 0.487
(0.004) (0.009) (0.019) (0.083) (0.459) (0.485)
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Table C.3: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
35.591∗∗∗ 68.696∗∗∗ 153.487∗∗∗ 330.848∗∗∗ 1612.991∗∗∗ 787.912∗∗∗

(2.007) (4.408) (14.159) (37.153) (498.961) (161.823)
(1)

Trend
-0.723∗∗∗ -1.396∗∗∗ -3.137∗∗∗ -6.802∗∗∗ -31.497∗∗ -19.893∗∗∗

1970-2014 (0.054) (0.118) (0.359) (0.875) (12.607) (5.314)

Population
0.054∗∗∗ 0.087∗∗∗ 0.172∗∗∗ 0.384∗∗∗ 1.053∗∗∗ -0.029
(0.005) (0.009) (0.019) (0.082) (0.365) (0.162)

Intercept
26.413∗∗∗ 49.447∗∗∗ 111.492∗∗∗ 232∗∗∗ 1092.117∗∗∗ 484.34∗∗∗

(1.55) (3.884) (8.558) (25.157) (236.964) (122.497)
(1)

Trend
-0.643∗∗∗ -1.182∗∗∗ -2.71∗∗∗ -5.661∗∗∗ -23.986∗∗∗ -15.076∗∗∗

1980-2014 (0.057) (0.141) (0.298) (0.839) (8.396) (5.444)

Population
0.051∗∗∗ 0.082∗∗∗ 0.165∗∗∗ 0.382∗∗∗ 0.99∗∗∗ -0.03
(0.005) (0.009) (0.017) (0.079) (0.28) (0.135)

Intercept
61∗∗∗ 112.889∗∗∗ 292.286∗∗∗ 627.097∗∗∗ 4676∗∗∗ 2128.773∗∗∗

(2) (3.283) (5.108) (20.247) (53.876) (1196.442) (519.053)
1960-2014

Trend
-0.938∗∗∗ -1.778∗∗∗ -4.786∗∗∗ -10.323∗∗∗ -84∗∗∗ -47.281∗∗∗

(0.07) (0.108) (0.417) (1.1) (23.226) (13.328)

Intercept
43.8∗∗∗ 86.545∗∗∗ 203.7∗∗∗ 454.952∗∗∗ 2215.231∗∗∗ 781.06∗∗∗

(2) (2.74) (4.612) (16.358) (39.525) (513.206) (160.287)
1970-2014

Trend
-0.72∗∗∗ -1.545∗∗∗ -3.7∗∗∗ -8.476∗∗∗ -41.615∗∗∗ -19.873∗∗∗

(0.075) (0.125) (0.439) (1.056) (14.413) (5.278)

Intercept
34.957∗∗∗ 68.778∗∗∗ 156∗∗∗ 347.6∗∗∗ 1581.2∗∗∗ 478.866∗∗∗

(2) (1.858) (3.566) (11.974) (29.627) (288.569) (120.377)
1980-2014

Trend
-0.652∗∗∗ -1.444∗∗∗ -3.294∗∗∗ -7.6∗∗∗ -32.8∗∗∗ -15.116∗∗∗

(0.069) (0.132) (0.424) (1.102) (11.797) (5.43)

Intercept
48.989∗∗∗ 92.323∗∗∗ 216.507∗∗∗ 445.295∗∗∗ 3529.95∗∗ 2107.043∗∗∗

(2.788) (5.258) (20.651) (42.035) (1396.859) (529.527)

Trend
-0.828∗∗∗ -1.556∗∗∗ -3.669∗∗∗ -7.637∗∗∗ -63.857∗∗ -48.102∗∗∗

(3) (0.059) (0.112) (0.418) (0.825) (26.763) (13.784)
1960-2014

Population
0.072∗∗∗ 0.116∗∗∗ 0.226∗∗∗ 0.571∗∗∗ 1.349∗∗∗ 0.702
(0.004) (0.01) (0.042) (0.12) (0.453) (0.566)

GDP
-0.002*** -0.003∗∗∗ -0.006∗∗∗ -0.013∗∗∗ -0.03∗∗∗ -0.039

(0) (0) (0.001) (0.002) (0.01) (0.054)
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Table C.3: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
34.039∗∗∗ 64.31∗∗∗ 138.686∗∗∗ 296.385∗∗∗ 1505.322∗∗∗ 782.335∗∗∗

(1.845) (3.973) (11.633) (28.555) (411.647) (162.051)

Trend
-0.635∗∗∗ -1.208∗∗∗ -2.581∗∗∗ -5.682∗∗∗ -28.214∗∗ -19.294∗∗∗

(3) (0.052) (0.102) (0.298) (0.707) (11.033) (5.391)
1970-2014

Population
0.073∗∗∗ 0.114∗∗∗ 0.221*** 0.556∗∗∗ 1.367∗∗ 0.036
(0.005) (0.009) (0.043) (0.122) (0.582) (0.19)

GDP
-0.002∗∗∗ -0.003∗∗∗ -0.006∗∗∗ -0.013∗∗∗ -0.041∗∗∗ -0.012

(0) (0) (0.001) (0.002) (0.013) (0.018)

Intercept
25.891∗∗∗ 47.557∗∗∗ 102.498∗∗∗ 207.265∗∗∗ 953.522∗∗∗ 482.773∗∗∗

(1.601) (3.255) (7.805) (21.072) (225.345) (122.519)

Trend
-0.55∗∗∗ -1.018∗∗∗ -2.144∗∗∗ -4.39∗∗∗ -16.981∗∗ -14.442∗∗∗

(3) (0.061) (0.118) (0.282) (0.714) (8.472) (5.511)
1980-2014

Population
0.07∗∗∗ 0.111∗∗∗ 0.208∗∗∗ 0.526∗∗∗ 1.374∗∗∗ 0.031
(0.006) (0.008) (0.034) (0.121) (0.41) (0.158)

GDP
-0.002∗∗∗ -0.003∗∗∗ -0.006∗∗∗ -0.013∗∗∗ -0.047∗∗∗ -0.011

(0) (0) (0.001) (0.002) (0.011) (0.015)

Intercept
25.646∗∗∗ 43.203∗∗∗ 103.591∗∗∗ 180.611∗∗∗ 475.631∗∗∗ 16.399
(2.062) (3.311) (8.216) (28.803) (110.221) (903.686)

Trend
-0.495∗∗∗ -0.82∗∗∗ -1.91∗∗∗ -3.283∗∗∗ -3 -0.393
(0.041) (0.067) (0.161) (0.575) (4.337) (24.017)

Population
0.046∗∗∗ 0.074∗∗∗ 0.114∗∗∗ 0.261∗∗∗ 0.845∗∗∗ 0.446
(0.004) (0.007) (0.015) (0.063) (0.328) (0.508)

Low
4.728 50.988∗∗∗ 118.777 344.389∗ 4809.733 3237.623

(12.497) (16.594) (85.676) (184.651) (73488.164) (2017.464)
(7)

Lower-Mid.
90.509∗∗∗ 186.922∗∗∗ 540.438∗∗∗ 1105.447∗∗∗ 11046.738 5572.378∗∗∗

1960-2014 (9.21) (25.29) (90.145) (217.176) (6793.144) (1285.534)

Upper-Mid.
29.164∗∗∗ 40.884∗∗∗ 79.661∗∗ 201.94∗∗∗ 289.672 28.335
(4.467) (7.888) (31.357) (47.228) (194.628) (1402.685)

Trend*Low
0.112 -0.698∗ -1.639 -5.405 -93.268 -68.224
(0.264) (0.356) (1.785) (3.666) (1360.854) (50.356)

Trend*Lower
-1.482∗∗∗ -3.252∗∗∗ -9.712∗∗∗ -20.102∗∗∗ -210∗ -128.976∗∗∗

(0.193) (0.513) (1.772) (4.21) (125.6) (33.609)

Trend*Upper
-0.51∗∗∗ -0.69∗∗∗ -1.325∗∗ -3.474∗∗∗ -7.443 -2.414
(0.093) (0.161) (0.639) (0.941) (5.815) (36.093)

Continued on next page
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Table C.3: (continued)

Variable 70th 80th 90th 95th 99th OLS

Intercept
80.101∗∗∗ 149.451∗∗∗ 401.514∗∗∗ 933.471∗∗∗ 11144.71∗∗∗ 1426.825∗

(6.247) (12.774) (42.966) (105.911) (4271.256) (839.66)

Trend
-1.394∗∗∗ -2.63∗∗∗ -7.256∗∗∗ -17.014∗∗∗ -206.299∗∗∗ -30.512
(0.13) (0.262) (0.857) (2.039) (79.407) (21.565)

Population
0.055∗∗∗ 0.087∗∗∗ 0.175∗∗∗ 0.374∗∗∗ 1.144∗∗∗ 0.513
(0.004) (0.008) (0.023) (0.078) (0.305) (0.492)

Arid
-38.969∗∗∗ -79.89∗∗∗ -138.61∗ -389.277∗∗∗ -8210.026 9346.071∗∗∗

(8.276) (16.523) (73.629) (148.173) (31740.168) (1669.464)

Cold
-35.713∗∗∗ -67.05∗∗∗ -187.661∗∗∗ -590.111∗∗∗ -10364.268∗∗ -1525.608
(10.5) (20.103) (60.546) (129.438) (4323.54) (2307.859)

(8)
Temperate

-40.802∗∗∗ -79.623∗∗∗ -265.381∗∗∗ -685.907∗∗∗ -10685.735∗∗ -1050.844
1960-2014 (6.821) (14.119) (44.899) (110.891) (4277.44) (1178.401)

Polar
0.263 -34.494 -265.987∗ -799.994∗∗ -10501.463∗∗ -1421.561
(39.82) (53.325) (157.897) (318.867) (4290.646) (4958.194)

Trend*Arid
0.741∗∗∗ 1.562∗∗∗ 2.519∗ 7.471∗∗ 152.214 -226.048∗∗∗

(0.181) (0.352) (1.49) (2.954) (588.044) (42.709)

Trend*Cold
0.507∗∗ 1.025∗∗ 3.208∗∗∗ 10.851∗∗∗ 194.138∗∗ 34.109
(0.224) (0.408) (1.216) (2.57) (80.45) (58.807)

Trend*Temper.
0.671∗∗∗ 1.36∗∗∗ 4.843∗∗∗ 12.819∗∗∗ 206.364∗∗∗ 20.621
(0.141) (0.29) (0.898) (2.186) (80.025) (30.324)

Trend*Polar
-0.054 0.724 5.803∗ 15.794∗∗ 200.942∗∗ 27.606
(0.857) (1.241) (3.336) (6.626) (79.466) (127.949)

Intercept
59.002∗∗∗ 105.054∗∗∗ 233.237∗∗∗ 538.712∗∗∗ 8827.695∗∗ 962.74

(3.9) (6.895) (22.447) (100.582) (3468.712) (832.39)

Trend
-1.12∗∗∗ -1.983∗∗∗ -4.345∗∗∗ -10.01∗∗∗ -163.608∗∗ -22.718
(0.078) (0.135) (0.431) (1.929) (64.985) (22.18)

Population
0.045∗∗∗ 0.078∗∗∗ 0.137∗∗∗ 0.311∗∗∗ 1.11∗∗∗ 0.592
(0.004) (0.009) (0.019) (0.084) (0.411) (0.486)

Drought
-59.065∗∗∗ -105.066∗∗∗ -233.153∗∗∗ -144.089 154790.7 17829.452∗∗∗

(3.902) (6.894) (28.376) (395.526) (456705.437) (1957.838)

Extreme T.
64.52∗∗∗ 73.747 107.304 -66.039 -9155.375** -1174.756
(24.555) (81.82) (129.632) (518.044) (3554.244) (3156.274)

Flood
-1.45 -0.685 42.666 -7.273 -7149.293∗∗ -786.845
(7.091) (10.822) (35.49) (109.771) (3445.519) (1188.695)

(9)
Landslide

38.546∗∗∗ 42.316∗ 38.242 -118.362 -6866.275∗ -800.36
1960-2014 (14.53) (23.581) (64.018) (148.401) (3619.686) (2228.991)

Wildfire
-59.293∗∗∗ -105.618∗∗∗ -229.842∗∗∗ -532.089∗∗∗ -8777.047∗∗ -955.782
(3.906) (7.336) (23.848) (102.572) (3468.38) (3056.532)

Trend*Drought
1.115∗∗∗ 1.977∗∗∗ 4.34∗∗∗ 2.61 -2866.486 -434.164∗∗∗

(0.078) (0.135) (0.544) (7.385) (8457.98) (54.143)

Trend*Extreme
-0.709 -0.083 1.429 10.525 386.68∗ 33.341
(0.538) (1.726) (3.084) (11.788) (198.968) (74.525)

Trend*Flood
0.141 0.211 -0.534 0.687 134.081∗∗ 17.22
(0.146) (0.223) (0.701) (2.142) (64.628) (30.561)

Trend*Landsl.
-0.442 -0.481 -0.18 2.795 129.901∗ 15.674
(0.319) (0.511) (1.386) (2.968) (68.075) (58.758)

Trend*Wildfire
1.131∗∗∗ 2.036∗∗∗ 4.46∗∗∗ 10.203∗∗∗ 163.31∗∗ 20.916
(0.079) (0.151) (0.481) (2.012) (65.138) (80.312)
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Figure D.1: Yearly sum of losses, by type of loss and income level. Red dashed lines are OLS trend estimates. Time span: 1960-2015.
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Figure D.2: Yearly sum of losses, by type of loss and Köppen-Geiger climate zone. Red dashed lines are OLS trend estimates. Time span: 1960-2015.
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Figure D.3: Yearly sum of losses, by type of loss and disaster type. Red dashed lines are OLS trend estimates. Time span: 1960-2015.
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Figure D.4: Yearly sum of losses, by type of loss and continent. Red dashed lines are OLS trend estimates. Time span: 1960-2015.
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