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Abstract

Within a financial market where a risk-free bond and a long-lived risky asset are ex-
changed by investors with heterogeneous trading rules, we assume that the investors
most exposed to the risky asset are subject to joint liquidation needs. The latter encom-
pass a risk whenever the market impact of traders subject to them is large enough, due
to a fire-sale phenomenon. Our aim is to provide conditions for the transformation of
liquidation needs into liquidation risk, and to characterize the resulting asset price dy-
namics. We find that when the average position of traders subject to liquidation needs
is lower than the position of the other traders, the former vanish and asset prices are
driven solely by the dividend process. Whether liquidation risk becomes systemic or its
impact is mitigated by the position of other traders, depends on the relative wealth dy-
namics. We provide conditions on agents positions under which the liquidation risk is
always systemic because the aggressive traders dominate, as well as conditions under
which the size of the liquidation risk is endogenously determined because all traders
survive and the relative wealth dynamics is a mean reverting process.
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1. Introduction

In this paper, we investigate the impact of joint liquidation needs on the price dynamics of
a risky asset. When a group of investors liquidate their position in a coordinated fashion,
the impact on the price depends on the size of the group. If the group holds most of
the asset, then a fire-sale phenomenon occurs and the asset sells at a heavily discounted
price. If, otherwise, the group with joint liquidation needs is small, the market is able to
absorb their supply without a significant haircut. Therefore, the transformation of joint
liquidation needs into proper liquidation risk depends on the relative wealth dynamics
of different groups of traders. The purpose of this paper is to study the emergence of
liquidation risk by analysing the joint dynamics of risky asset prices and traders relative
wealth, as triggered by liquidation needs.

In order to address this question, we consider a stylized financial economy where agents
can choose between a long-lived risky security and risk-free bond. The market is popu-
lated by heterogeneous investors, each taking a position in the two assets depending on
her own characteristics (e.g. risk aversion, information, beliefs, discount factor) and object-
ive functions (e.g. payoff, utility). Investors’ demand for the bond absorbs only a fraction
of its total supply so that its price can be taken as fixed. Investors’ demand for the risky
asset instead absorbs all its supply. As a consequence the investors are exposed, other than
to the (exogenous) risk of its dividend payout, also to the (endogenous) risk of possible
variations in its price. If, for example, a sizeable fraction of traders (as measured by ag-
gregate wealth) decide to sell the asset, they will be able to do so only at a lower price, as
within a fire-sale. In other words, all these investors are exposed to liquidation risk, which
we define as the peril of having to liquidate the asset at a substantially discounted price.
On the contrary, when a small fraction of agents decides to sell the risky security, all of
their demand is absorbed by the market without a significant variation in its price, making
liquidation risk negligible.

Therefore, the source of liquidation risk is twofold. The first is the need to sell the risky
asset in a joint coordinated fashion. When agents liquidation needs are not synchronous,
the impact of each trader is negligible. Provided liquidation needs are joint, as we shall
assume, the second source of risk consists of the market impact of the traders exposed to
them.

In order to investigate the transformation of liquidation needs into liquidation risk, we
assume that two groups of traders are active in the market. The first group is subject to
joint liquidation needs, which we model as a random variable independent of the eco-
nomy dynamics. There might be multiple reasons for liquidation needs to be synchronous
within a group: all traders’ demand is updated by looking at the same signals, e.g. an exo-
genous source of sentiment; alternatively, all these investors have the same institutional
or financial constraints, e.g. they are all hedge funds who are overly exposed to the risky
asset and might need to reduce their position due to new regulations or an industry shock.
In our model the joint liquidation need is modelled as an exogenous Markov process that
moves the demand of agents between two levels, either a high fraction or a low fraction of
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wealth to be invested in the risky asset. The second group of agents is not vulnerable to
joint liquidation needs and has a constant exposure to the risky asset.

As it will become clear later on, the most meaningful scenario is the one in which the
group that bears the liquidation hazard also acts more aggressively on the market, in the
sense of committing to hold a larger share of their wealth in the risky security, relative to
the other group. In this case, the liquidation needs on behalf of a single group of traders can
be further rooted in their inability to cope with a systemic liquidity shortage by resorting
to their shallow bond holdings to be pledged as collateral buffer.

In a dynamic setting, where taking aggressive position carries liquidation risk, a trade-
off between different sources of risk clearly emerges. On the one hand, taking more funda-
mental risk brings a positive reward since riskier securities carry a higher expected return
(when looking only at the exogenous component of risk). On the other hand, a portfolio
which is exceedingly skewed towards the risky security also turns out to be vulnerable
to losses due to the said fire-sale phenomenon. When all aggressive traders sell and their
market impact is high, they have to bear a substantial haircut, which we identify as li-
quidation risk. We are able to analytically investigate this trade-off and provide sufficient
conditions for the emergence of endogenous liquidation risk in equilibrium.

From a mathematical point of view, the model outlined above can be described by a ran-
dom dynamical system. The state variables are the agents’ relative wealth, the risky asset’s
return, and the dividend yield. The random shocks play the role of the joint liquidation
needs. Contrary to the incumbent literature of heterogeneous agent model (reviewed in
the following Section), such a system cannot be studied simply by perturbing its determ-
inistic skeleton. Since the joint liquidation needs constitute the drivers of the dynamics,
their effect cannot be switched off. Technically, we study the local stability of the underly-
ing deterministic and stochastic steady states. We shall provide sufficient conditions under
which either the traders with a constant exposure dominate, i.e. there is no liquidation risk,
or the traders subject to liquidation risk dominate, i.e. there is systemic liquidation risk in
equilibrium. The most interesting scenario from an economic standpoint arises when both
these polar equilibria are simultaneously unstable. In this case, the extent of the liquidation
risk becomes endogenous and is coupled with the agents’ relative wealth dynamics.

Our results are as follows. We find that a riskier portfolio may systematically fail to out-
perform a relatively safer one, should the former incorporate the aforementioned liquid-
ation shocks. The emergence of endogenous liquidation risk, due to long-run heterogen-
eity of traders either subject or immune to the joint liquidation needs, arises as a generic
outcome, i.e. it occurs for a non-degenerate region of the parameters space. Somewhat
counter-intuitively, both trader types may co-exist even when the constant trader always
invests a strictly lower share of her wealth in the risky security, compared to the stochastic
trader. Losses due to fire-sales can be, on average, so severe that both groups of traders
survive. Moreover, we find that the constant portfolio can systematically earn a higher
return and eventually dominate the economy, even if it consists of a position which is on
average strictly less than that of the stochastic one. Overall, the transformation of liquid-
ation needs into liquidation risk brings an intrinsic penalty to the stochastic trader due
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to the well known effect of buying high and selling low associated with her fire-sale-like
behaviour.

The paper is organised as follows. The next Section reviews the related literature. In
Section 2 the financial model is outlined and the underlying random dynamical system
governing the economy is derived. Then, Section 3 analyses the representative agent re-
striction, namely the no liquidation risk case and the systemic liquidation risk case. These
two extreme cases are useful for the analysis of the full model, presented in Section 4. Here,
sufficient conditions for all possible long-run outcomes and the related emergence of en-
dogenous liquidation risk are obtained. Section 5 provides numerical simulation evidence
of some interesting scenarios generated by our model and the sensitivity analysis for its
relevant parameters. Finally, Section 6 concludes and proposes conceivable extensions to
our framework.

1.1. Related literature

By assuming that the market is populated by two classes of traders, our model is akin
to the still flourishing literature of Heterogeneous Agent Models (hereafter HAMs); see
e.g. Hommes (2006) for a survey. The literature has emerged with the aim of modelling
possible sources of endogenous risk. In particular, models close to ours that investigate
the joint asset prices and wealth dynamics are Chiarella and He (2001), Chiarella et al.
(2006), Anufriev et al. (2006), Anufriev and Bottazzi (2010), Anufriev and Dindo (2010),
Evstigneev et al. (2011), and Anufriev et al. (2012). However, to the best of our knowledge,
no contribution has so far analysed the transformation of random liquidation needs in
liquidation risk and its impact on the asset price dynamics.

Assuming joint liquidation needs that are modelled as an exogenous stochastic process,
our contribution is also linked to the concept of noise traders and to the impact of noise
unrelated to the exogenous dividend process, as put forth by Black (1986). In fact, as-
suming that the liquidation need is a random variable implies that a group of traders’
demand is stochastic. The concept has been incorporated by different streams of literature
to include portfolio decisions that are not strictly based on rational expectations. How-
ever, the HAMs literature has traditionally modelled noise traders with strategies driven
by deterministic feedback mechanisms from realised market outcomes, mainly in terms
of chartist (i.e. trend extrapolating) versus fundamentalist (i.e. mean reverting) rules (see
e.g. Chiarella, 1992, Brock and Hommes, 1998).

Little has been done so far to study the interaction between strategies incorporating
a truly random component that continually perturbs the system away from equilibrium.
In fact, it is not infrequent to spot well-defined stochastic processes and other sources of
noise in many HAMs. However, the effect of such randomness on the long-run dynamics
of the system is often deliberately nullified by the adoption, for tractability purposes, of
the so-called deterministic skeleton approach: when this is used, any realisation of a random
variable is substituted by its expected value, and any higher statistical moment is essen-
tially discarded. Although it is widely recognised that this, so-called indirect, approach
might fail to properly characterise the dynamics of the underlying stochastic system, very
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few studies have addressed the issue of exactly identifying the loss of generality induced
by adopting this practice. A notable exception is Chiarella et al. (2011), which employs a
direct and analytic approach to study a traditional fundamentalists vs. chartists asset pri-
cing model, in which the fundamental price follows a random walk process. The authors
find that when the memory of the fundamentalist traders approaches zero, the stochastic
dynamics displays very different features from those of the underlying deterministic skel-
eton.

Most of our results depend on the fact that when a liquidation shock hits those traders
who hold most of the risky asset supply, a fire-sale kicks in as in Shleifer and Vishny (2011).
This phenomenon is especially exacerbated when the related assets are somewhat ‘special-
ised’ and the shock is industry-wide. In this case, high potential bidders from the same
industry are themselves in financial shortage and more likely to sell, rather than purchase,
similar assets. The assets are eventually bought at a large discount by non-specialist out-
siders, distinguished by a much lower valuation than industry peers.1 The consequences
of a liquidity crisis can easily turn out pathological. On a theoretical ground, Caballero and
Simsek (2013) provide a model of self-reinforcing propagation of financial distress stem-
ming from a domino effect of fire-sales fostered by endogenously increasing uncertainty in
the banking sector. Studying mutual fund transactions between 1980 and 2004, Coval and
Stafford (2007) show that even in the most liquid equity markets there can be a significant
premium for immediacy, and price effects are relatively long-lasting. The tight connection
between funding and market liquidity is again apparent, and seems to apply even when
the initial ‘disorder’ is far from being economy-wide. Within this context, Wagner (2011)
studies the optimal portfolio choice, taking into account this systemic liquidation risk.

2. The model

Our framework is common to a number of contributions in the HAMs literature, in partic-
ular Anufriev et al. (2006) and Anufriev and Dindo (2010). We first lay down the general
market model and then introduce our specific assumptions regarding traders’ behaviour
in Section 2.1.

Consider a financial economy where a long-lived risky stock and a risk-free bond are
traded in discrete time t ∈N ∪ {0}. The amount of circulating shares of the risky security
is constant, while the supply of the bond is perfectly elastic. The market is populated by an
arbitrarily large number of traders divided in two groups indexed by i = 1,2. The detailed
behaviour of each group is described shortly afterwards.

Before trade at time t starts, each trader in group i chooses the fraction xi,t of her current
wealth Wi,t to be invested in the risky asset. The latter pays a non-negative dividend Dt

at the beginning of each period. The residual fraction of wealth, 1− xi,t, is allocated to
bond purchase, yielding a constant risk-free rate of return r f > 0. The current level of
individual wealth for group i depends on the past trading decision at time t − 1, i.e. on
the relative allocation of wealth between the risky and the risk-free investment, on the

1See e.g. Pulvino (1998) for an insightful empirical study on the market for commercial aircraft.
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amount of dividend Dt that is paid, and on security prices. The price of the risky asset Pt is
determined in equilibrium by equating aggregate demand and aggregate supply. Both the
price and the dividend are expressed in terms of the bond’s price, serving as the numéraire,
conventionally normalised to 1 in every period. The evolution of wealth for the agents
within group i holds

Wi,t = (1− xi,t−1)Wi,t−1(1 + r f ) + xi,t−1Wi,t−1

(
Pt + Dt

Pt−1

)
. (2.1)

The economy runs through a series of temporary equilibria in which the market clearing
condition is satisfied. By normalising, without loss of generality, the supply of the risky
security to 1, market clearing condition amounts to

Pt = ∑
i=1,2

xi,tWi,t. (2.2)

The system of Eqs. (2.1) and (2.2) describes a growing economy at a rate that is in part de-
terministic, corresponding to the risk-free return r f , and in part dependent on the realised
price and dividend. It is easy to check this by summing the individual wealth over all the
agents

Wt = ∑
i=1,2

Wi,t = Wt−1(1 + r f ) +
[

Pt + Dt − Pt−1

(
1 + r f

)]
. (2.3)

It is therefore useful to get rid of the constant growth component r f and define the rescaled
variables

wi,t =
Wi,t

(1 + r f )t , pt =
Pt

(1 + r f )t , dt =
Dt

(1 + r f )t , (2.4)

and the associated rescaled model
pt = ∑i=1,2 xi,twi,t

wi,t = wi,t−1

[
1 + xn,t−1

(
pt

pt−1
− 1 + et

)] , (2.5)

where et stands for the (rescaled) dividend yield, defined as

et :=
Dt

Pt−1(1 + r f )
=

dt

pt−1
. (2.6)

Note that in the first equation of system (2.5) the current price level pt appears both in the
LHS and in the RHS, as determinant of the level of wealth wi,t. Substituting the second
equation into the first and solving for pt yields the explicit evolution of the price

pt = pt−1
∑i=1,2 wi,t−1xi,t [1 + xi,t−1(et − 1)]

∑i=1,2 wi,t−1xi,t−1(1− xi,t)
. (2.7)

6



It will prove useful for the subsequent analysis to normalise each group’s wealth by the
total wealth. Computing the wealth share ϕi,t we obtain

ϕi,t :=
wi,t

∑i=1,2 wi,t
= ϕi,t−1

1 + xi,t−1(rt + et)

1 + (rt + et)∑i=1,2 ϕi,t−1xi,t−1
, (2.8)

where the last equality comes from the second equation of system (2.5), and rt denotes the
capital gain (in excess of the risk-free return). It is immediate to compute the latter in terms
of individual wealth shares from Eqs. (2.7) and (2.8) as follows:

rt :=
pt

pt−1
− 1 =

∑i=1,2 ϕi,t−1 [xi,t(1 + etxi,t−1)− xi,t−1]

∑i=1,2 ϕi,t−1xi,t−1(1− xi,t)
. (2.9)

The return depends on the wealth-weighted average of the relative portfolio position of
each group between the current and the preceding period, and on the dividend yield pro-
cess. Regarding the latter, in the past literature a few distinct practices emerge. Anufriev
and Bottazzi (2010), Anufriev et al. (2006) and Chiarella and He (2001) all assume an en-
dogenous dividend dynamics such that the dividend yield is an i.i.d. process; this directly
implies that any change in the price of the risky security causes an essentially instantan-
eous adjustment in the paid dividend of an identical magnitude. Evstigneev et al. (2011)
instead anchor the dividend to the aggregate wealth in the economy. As opposed to link-
ing the dividend to the endogenous dynamics of the economy, Chiarella et al. (2006) and
Anufriev and Dindo (2010) implement an exogenously growing dividend process with
i.i.d. rate of growth. We follow the latter proposal but for the sake of simplicity, in view of
the already cumbersome effect of random liquidation needs, we opt for a fully determin-
istic process. Switching the dividend noise off allows us to focus on traders’ behaviour as
the only source of randomness in the model, and therefore neglect the effect of the argu-
ably non-trivial2 correlation structure between the two processes. That said, we make the
following assumption:

Assumption 1. The paid dividend grows geometrically at a rate g > 0

dt = dt−1(1 + g). (2.10)

We deliberately restrict to a (strictly) positive rate of growth since our focus is on the se-
lective capacity of markets where risky asset, in the absence of liquidation risk, yield a
higher coupon with respect to the risk-free security (at least on average). Strictly speaking,
our Assumption clearly introduces profit opportunities whenever the stock price grows at
a constant rate, since g > 0 implies that the non-rescaled dividend Dt grows at a greater
pace than the risk-free return r f . However, we shall see that the presence of endogenous
liquidation risk might wipe such profit opportunities away.

2An extension of the present model featuring a stochastic dynamics of the dividend could be an interest issue
to be addressed in future research.

7



In terms of the dividend yield, Assumption 1 translates into

et =
dt

pt−1
= et−1

1 + g
1 + rt−1

. (2.11)

It is apparent in Eq. (2.11) that a negative feedback coming from the past realised return
negatively affects the current level of the yield. Eqs. (2.8), (2.9), and (2.11) together describe
the overall dynamics of the wealth shares, the rate of return, and the dividend yield. They
can be summarised in the following 3-dimensional system:

ϕ1,t = ϕ1,t−1
1 + x1,t−1(rt + et)

1 + (rt + et)∑i=1,2 ϕ1,t−1x1,t−1

rt =
∑i=1,2 ϕi,t−1 [xi,t (1 + etxi,t−1)− xi,t−1]

∑i=1,2 ϕi,t−1xi,t−1 (1− xi,t)

et = et−1
1 + g

1 + rt−1

. (2.12)

Notice that since, by definition, ∑i=1,2 ϕi,t = 1, the fraction of wealth of the second group
can be residually derived as ϕ2,t = 1− ϕ1,t.

2.1. Trader behaviour

The specification of traders’ investment choice xi,t, i = 1,2, closes the model. For tractabil-
ity purposes we restrict investment rules to those of a fixed-mix type (see Mulvey and Kim,
2010). As long as a specific fixed-mix rule is adopted, each trader rebalances her portfolio
to keep the weight xi of the risky security unchanged by selling (respectively, buying) the
asset if its price has increased (respectively, decreased).

In order to be economically meaningful, the price of an asset supplied in finite amount
needs to be, at the very least, strictly positive. A sufficient condition thereof, stemming
from Eq. (2.7) and widely adopted in the literature, coincides with preventing each trader
from short-selling or leverage-buy the risky asset, i.e. requiring xi,t ∈ (0,1), i = 1,2. Note
that this condition is not necessary, since the restriction only needs to apply to the aggreg-
ate market-portfolio. Note also that this assumption does not stand at odds with empirical
evidence: for instance, studying a sample of U.S. domestic equity funds in the 1994–2000
period, Almazan et al. (2004) show that short-sale restrictions are not exceptional, due to
both regulatory and self-imposed constraints.

The first group of traders is characterised by a constant x1,t = x. We shall name this
group the constant group and denote it by C. The second group of traders enact a likewise
constant exposure to the risky asset, but are subject to random liquidation shocks. In nor-
mal times these traders adopt the rule x2,t = xu. When a liquidation shock hits, say at time
t̄, the exposure to the risky asset decreases to x2,t̄ = xd < xu. We also assume that the ex-
posure rests at the lower level xd for a prolonged amount of time, before recovering to the
higher level xu. Hence, the portfolio of traders in such group consists of a stochastic vari-
able with two admitted values. In particular, we model the transition between these two
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xu xd1− πd

πd

1− πu

πu

Figure 1: The Markov process {xt, t ∈N}.

levels by an exogenous Markov process. We shall name this group the stochastic group
and denote it by S.

The following Assumption fully summarises the behaviour of the two groups of agents.

Assumption 2. Each trader in group C adopts the portfolio rule x ∈ (0,1) in every period.
Each trader in group S adopts the portfolio rule xt ∈ {xu, xd} according to a Markov process
{xt, t ∈N}, characterised by the following transition probability matrix:

P =


xu xd

xu 1− πd πd

xd πu 1− πu

, (2.13)

where

0 < xd < xu < 1, πu > 0, πd > 0. (2.14)

Given the transition probabilities P , we name P the induced probability measure on the probability
space created by the sequences {xt, t ∈N} ∈

�
∞{xu, xd}.

The Markov process {xt}, also pictured in Fig. 1, constitutes the driver of liquidation
shocks, both for what concerns their occurrence and the time needed to recover from them.
The transition probability πd determines the probability of having a liquidation shock, con-
ditional on being exposed to the risky asset at a ‘up’ level. Liquidation shocks only occur
when the exposure to the risky asset is high. The transition probability πu determines the
probability of recovering from a liquidation shock (i.e. from the ‘down’ level). Given the
transition probabilities, the average duration of a ‘down’ or a ‘up’ level of investment on a
given realisation {xt}∞

t=0 equals (πd)−1 and (πu)−1, respectively.
In terms of the two groups just outlined, the 3-dimensional random dynamical system is
the composition of group S stochastic demand {xt} and of the four maps Fxt−1,xt : D→D,
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each defined over the phase space D = ∆× (−1,+∞)×R++ and given by

Fxt−1,xt :



ϕt = ϕt−1
1 + xt−1 (rt + et)

1 + (rt + et) [ϕt−1xt−1 + (1− ϕt−1)x]

rt =
ϕt−1 [xt (1 + etxt−1)− xt−1] + (1− ϕt−1)etx2

ϕt−1xt−1 (1− xt) + (1− ϕt−1)x(1− x)

et = et−1
1 + g

1 + rt−1

, (2.15)

where we adopt the convention that ϕt denotes the time-t aggregate wealth share of traders
within group S, i.e.

ϕt :=
wS,t

wC,t + wS,t
, (2.16)

so that 1 − ϕt residually stands for the time-t aggregate wealth share of traders within
group C.

3. Representative trader economies

Let us first consider an economy populated only by traders of the same type, either con-
stant or stochastic. This case is insightful since it allows to properly disentangle the fea-
tures of the long-run dynamics implied by each behavioural specification from those stem-
ming from the market interaction induced by liquidation shocks. The resulting reduced
system is lower dimensional with respect to (2.15) since the underlying wealth share ϕt is
fixed to zero (respectively, one) whenever we consider an economy populated uniquely by
constant (respectively, stochastic) traders.

3.1. The economy with a constant trader: no liquidation risk

The reduced system F̃C : D̃ → D̃, over the phase space D̃ = (−1,+∞)×R++ is fully de-
terministic and reads

F̃C :


rt = et

x
1− x

et = et−1
1 + g

1 + rt−1

. (3.1)

By lagging and substituting the first equation into the second, it is easy to further reduce
system (3.1) to a 1-dimensional map f̃ C : R++→R++ solely in terms of the dividend yield:

et = f̃ C(et−1) = et−1
1− x

1 + x(et−1 − 1)
(1 + g). (3.2)

Definition 1. A steady state of system (3.1) is a vector (r∗, e∗) ∈ D̃ such that (r∗, e∗) =

F̃C(r∗, e∗).
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The following Proposition characterises the asymptotic dynamics of the economy.

Proposition 1. The market dynamics (3.1) admits a unique, globally stable, steady state

C̃=

(
g , g

1− x
x

)
. (3.3)

Proof. See Appendix A.

The price of the risky security grows, proportionally to the dividend, at a rate of g. In-
tuitively, since the asset is in finite constant supply, its price has to fully account for the
new wealth injected by means of the paid dividend. From the second equation of sys-
tem (2.5), since the portfolio rule x is itself constant, the market clearing price must adjust
accordingly.

3.2. The economy with a stochastic trader: systemic liquidation risk

For each pair (xt−1, xt) ∈
�

2{xu, xd}, when all traders are affected by a synchronous li-
quidity shock, the returns and dividend yield dynamics F̃S

xt−1,xt : D̃ → D̃ over the phase
space D̃ = (−1,+∞)×R++ read

F̃S
xt−1,xt :


rt =

xt (1 + etxt−1)− xt−1

xt−1 (1− xt)

et = et−1
1 + g

1 + rt−1

. (3.4)

By lagging and substituting the first equation into the second, it is easy to further reduce
system (3.4) to a 1-dimensional stochastic map f̃ Sxt−2,xt−1

: R++ → R++ solely in terms of
the dividend yield:

et = f̃ Sxt−2,xt−1
(et−1) = et−1

xt−2(1− xt−1)

xt−1 [1 + xt−2(et−1 − 1)]
(1 + g). (3.5)

Notice that this map, also pictured3 in Fig. 2(a), only depends on the past realisations
xt−1 and xt−2 of the Markov process {xt}, while the current realisation xt plays no role in
determining the current level of the dividend yield et. As a matter of notation, we shall use
x−1 and x−2 to denote the 1-period and 2-period lagged values of the generic realization
of the shock x.

Definition 2. Call D̃∗ the space of all random vectors (R∗, E∗) :
�

2{xu, xd} → D̃. A steady state
of system (3.4) is a random vector (R∗, E∗) ∈ D̃∗ such that (R∗, E∗)x−1,x = F̃x−1,x(R∗, E∗)x−2,x−1 ,
for all (x−2, x−1) and (x−1, x) in

�
2{xu, xd}.

The following Proposition shows that, in an economy where all traders are subject to li-
quidation shocks, there exists a globally stable stochastic steady state.

3Fig. 2(a) is intended as a qualitative picture; it is not generally true that lime−1→0+ f̃ ′du > 1 since the slope of the
map in fact depends on the underlying value of g.
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Figure 2: (a) The four realisations of the stochastic map f̃xt−2,xt−1 and the bisector line
(dashed). (b): The stochastic 4-cycle associated with steady state S̃.

Proposition 2. For every realization of the Markov process {xt}, the market dynamics (3.4) admits
a unique, steady state

S̃=

(
g

x(1− x−1)

x−1(1− x)
+

x− x−1

x−1(1− x)
, g

1− x−1

x−1

)
, ∀(x−1, x) ∈

�
2

{xu, xd}. (3.6)

Moreover, S̃ is globally stable:

lim
t→∞
F̃S

x−1,x

(
F̃S

xt ,x−1
◦ F̃S

xt−1,xt ◦ · · · ◦ F̃
S
x0,x1

(R0, E0)
)
= (R∗, E∗)x−1,x, (3.7)

for every sequence {xt}, for all (x−1, x) ∈
�

2{xu, xd}, and for every initial condition (R0, E0) ∈
D̃.

Proof. See Appendix B.

Corollary 1. The steady state S̃ is an irreducible, time-homogeneous Markov chain characterised
by the following transition probability matrix

P̃ =



(xu, xu) (xu, xd) (xd, xu) (xd, xd)

(xu, xu) 1− πd πd 0 0

(xu, xd) 0 0 1− πu πu

(xd, xu) 1− πd πd 0 0

(xd, xd) 0 0 1− πu πu

. (3.8)

Since all states are positive-recurrent, there exists a unique invariant distribution π̃ satisfying the
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condition π̃ = π̃P̃ . In particular it holds

π̃ =

[
πu(1− πd)

πu + πd ,
πuπd

πu + πd ,
πuπd

πu + πd ,
πd(1− πu)

πu + πd

]
. (3.9)

The steady state S̃ consists of 4 ‘periodic’ states (R∗, E∗)S̃x−2,x−1
∈ D̃, associated to all

possible couples (x−2, x−1) ∈
�

2{xu, xd}. The four maps F̃S
x−1,x, associated to all pos-

sible couples (x−1, x) ∈
�

2{xu, xd}, govern the transition between them, as depicted in
Fig. 2(b). In particular, there exist:

� three equilibrium values of the return

rS̃(x−1, x) =



g if x−1 = x

rud = g
xd(1− xu)

xu(1− xd)
− xu − xd

xu(1− xd)
if (x−1, x) = (xu, xd)

rdu = g
xu(1− xd)

xd(1− xu)
+

xu − xd

xd(1− xu)
if (x−1, x) = (xd, xu)

,

(3.10)

� two equilibrium values of the dividend yield

eS̃(x−1, x) =


eu = g

1− xu

xu if x−1 = xu

ed = g
1− xd

xd if x−1 = xd
, (3.11)

� and four maps

F̃S
x−1,x(R∗, E∗)x−2,x−1 :


x
[
1 + eS̃(x−1, x)

]
− x−1

x−1(1− x)

eS̃(x−2, x−1)
1 + g

1 + rS̃(x−2, x−1)

∀ x−2, x−1, x ∈ {xu, xd},

(3.12)

such that the ‘periodic’ states read

(R∗, E∗)S̃uu :

rS̃ = g

eS̃ = eu
, (R∗, E∗)S̃dd :

rS̃ = g

eS̃ = ed
,

(R∗, E∗)S̃ud :

rS̃ = rud

eS̃ = eu
, (R∗, E∗)S̃du :

rS̃ = rdu

eS̃ = ed
,

(3.13)
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and the following equalities are satisfied

(R∗, E∗)S̃uu = F̃S
uu(R∗, E∗)S̃uu = F̃S

uu(R∗, E∗)S̃du,

(R∗, E∗)S̃dd = F̃
S

dd(R∗, E∗)S̃dd = F̃
S

dd(R∗, E∗)S̃ud,

(R∗, E∗)S̃ud = F̃
S

ud(R∗, E∗)S̃uu = F̃S

ud(R∗, E∗)S̃du,

(R∗, E∗)S̃du = F̃S

du(R∗, E∗)S̃dd = F̃
S

du(R∗, E∗)S̃ud,

(3.14)

where subscripts i, j ∈ {u,d} are shorthand for i, j ∈ {xu, xd}.
Since by assumption no constant trader is present, the excess supply of the risky asset

when the shock hits is neither absorbed nor mitigated, and the effect of liquidation shocks
is maximised. The price of the risky security has to adjust for the continually injected new
wealth by means of the paid dividend (in analogous fashion as within steady state C̃), and
for the jumps in the market portfolio induced by the effect of liquidation needs. A closer
inspection of Eqs. (3.10) and (3.11) reveals that the following relations hold:

rud < g < rdu, (3.15)

eu < ed. (3.16)

Intuitively, in those periods in which x = x−1 the equilibrium locally resembles steady
state C̃, and the return must equal the rate of growth of the dividend g for the said reason,
irrespective of the prevailing portfolio fraction. Conversely, the return is rud < g whenever
the liquidation shock hits, and stochastic traders pass from a high to a low investment in
the risky asset. The opposite occurs when the traders recover to the high level on invest-
ment, with rdu > g.

When the liquidation shock hits, the capital gain rud may even be negative. In particular
it holds

rud < 0 ⇐⇒ g < g̃ =
xu − xd

xd(1− xu)
. (3.17)

The threshold g̃ below which rud is negative depends inversely on the magnitude of the
portfolio shift in terms of wealth, i.e. on the difference xu − xd, and is influenced by the
overall position of xu and xd within the unit simplex. For an extremely mild drop of around
1% of the wealth invested in the risky security, min(g̃) ≈ 0.04 (and note that the function
g̃(xu, xd) is highly convex). When a more economically meaningful deviation occurs, say
xu − xd = 0.1, then min(g̃) ≈ 0.49, meaning that only a substantial dividend growth rate
is required for rud to be positive; such a rate is clearly unsustainable in the long run and
at sharp odd with actual market data. Therefore, in most conceivable cases, in response
to a downward portfolio shock, the stochastic trader has to ‘fictionally’ pay a significant
premium in order to immediately sell part of her holdings. This is typical of a fire-sale in
the sense of Shleifer and Vishny (2011). Conversely, during an upward portfolio shift, the
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stochastic trader exerts an ab-normal pressure on the demand of the risky security, cap-
tured in turns by a higher realised return rdu > g, eventually driving the market-clearing
price upwards. As we shall see, both movements are mitigated by the presence of so-called
constant traders, as long as the latter survive in the long-run.

4. Heterogeneous traders economy

We can now proceed with studying the effect of liquidation shocks in an economy with
heterogeneous traders, the latter partitioned into the constant group C and the stochastic
group S. To this aim, we need to investigate the asymptotic survival of both groups.
Should we find that the stochastic group vanishes in the long-run, then the impact of li-
quidation shocks would simply be transient. To this purpose, we shall use the following
Terminology.

Terminology. Group i ∈ {C, S} is said to

� survive if its asymptotic wealth-share is strictly positive P-almost surely, i.e. if

P

{
lim
t→∞

sup ϕn,t > 0
}
= 1;

� vanish if its asymptotic wealth-share is zero P-almost surely, i.e. if

P

{
lim
t→∞

sup ϕn,t = 0
}
= 1;

� dominate if its asymptotic wealth-share is one P-almost surely, i.e. if

P

{
lim
t→∞

inf ϕn,t = 1
}
= 1.

We are interested in characterising all the possible long-run outcomes. We adapt the con-
cepts of steady state given for homogeneous traders economies in Definition 1 and 2 to the
current heterogeneous traders set-up, leading to Definition 3 and 4, respectively.

Definition 3. A deterministic steady state of system (2.15) is a vector (ϕ∗,r∗, e∗) ∈ D such that
(ϕ∗,r∗, e∗) = Fx−1,x(ϕ∗,r∗, e∗) for all (x−1, x) in

�
2{xu, xd}.

Definition 4. Call D∗ the space of all random vectors (Φ∗, R∗, E∗) :
�

2{xu, xd} → D.
A stochastic steady state of system (2.15) is a random vector (Φ∗, R∗, E∗) ∈ D∗ such that
(Φ∗, R∗, E∗)x−1,x = Fx−1,x(Φ∗, R∗, E∗)x−2,x−1 , for all (x−2, x−1) and (x−1, x) in

�
2{xu, xd}.

It is possible to show that, under the stated assumptions, system (2.15) admits exactly two
steady states, one for each of the the aforementioned types.4

Proposition 3. System (2.15) admits:

� a deterministic steady state C in which the constant group dominates and the stochastic group
vanishes

C=

(
0, g , g

1− x
x

)
, (4.1)

4With an abuse of notation we denote by i ∈ {C,S} the steady state in which group i itself dominates.
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� a stochastic steady state S in which the stochastic group dominates and the constant group
vanishes

S=

(
1, g

x(1− x−1)

x−1(1− x)
+

x− x−1

x−1(1− x)
, g

1− x−1

x−1

)
. (4.2)

Proof. See Appendix C.

Importantly for our purposes, at steady state C the liquidation shocks do not lead to li-
quidation risk, for the fraction of wealth (and therein of risky asset) in the hands of the
traders who are subject to liquidation shocks is negligible. On the contrary, at steady state
S liquidation shocks do lead to a systemic liquidation risk, since now it is the fraction of
traders who are not subject to liquidation shocks that is negligible, in aggregate wealth
terms. In what follows we shall investigate the convergence to this two scenarios as well
as the case in which both groups of agents survive. In the latter case, liquidation risk is en-
dogenous in that its extent and systemic nature also depend on the traders’ relative wealth
dynamics.

4.1. Su�icient conditions for no liquidation risk

Here we investigate the conditions that prompt the constant group to dominate in the
long-run, and consequently the stochastic group and associated liquidation risk to vanish.

In order to characterise the asymptotic stability of this steady state,5 we restrict to its
local analysis for tractability reasons. The following Lemma is useful.

Lemma 1. The local asymptotic stability of steady state C is uniquely determined by the value of
the (gross) growth rate ∂ϕ

∂ϕ−1

∣∣∣
C

of the wealth share ϕ, computed at the equilibrium.

Proof. See Appendix D.

Let us define ρi
∣∣

j as the expected (gross) growth rate of the wealth share of group i when
the system is at the steady state j, with i, j ∈ {C,S}. The following Proposition provides
sufficient conditions for the local asymptotic stability of steady state C.

Proposition 4. If parameters x, xu, xd, g, πu, and πd are such that the following condition holds

(
1 + g

xu

x

) πu

πu+πd
(

x + g
xd

x

) πd

πu+πd

= ρS
∣∣
C
< ρC

∣∣
C
= 1 + g, (4.3)

then steady state C is locally asymptotically stable, whereas if ρS
∣∣
C
> ρC

∣∣
C

then C is unstable.

Proof. See Appendix E.

By restricting to a local analysis, we are evaluating the conditions for the stochastic group,
and hereby of the liquidation risk, to survive when returns are determined by constant

5For random dynamical systems, a steady state (either deterministic or stochastic) is asymptotically stable when,
for P-almost all sequences of random shocks {xt, t ∈N}, the path of states generated by the composition of
maps F̃S

xt−1 ,xt
◦ · · · ◦ F̃S

x0 ,x1
converges to it, provided the initial state is chosen close enough.
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traders. In this case the stochastic traders hold a tiny fraction of wealth and liquidation
needs are perfectly absorbed by the market. In other words, no fire-sale phenomenon
occurs. The same happens for price increases that follow the recovery of the stochastic
traders’ positions. No such price upsurge occurs because the fraction of stochastic traders
triggering them is too small. Under these conditions, if x ≥ xu then the constant traders
enjoy a higher growth for all realizations of the shock. Inequality (4.3) is always satisfied
and the steady state is locally asymptotically stable. Conversely, if x ≤ xd then the constant
traders experience a lower growth with probability one, and the steady state is unstable. In
a locally asymptotically stable equilibrium the survivor group must invest a higher share
of wealth in the risky asset with respect to the vanisher. Intuitively, were it not the case,
for the risky security yields a higher return with respect to the bond, an arbitrarily small
redistribution in favour of the vanisher would bring the system further and further away
from the initial steady state, implying the latter is unstable. The results presented here
are the stochastic generalisation of those already present in the literature (Anufriev and
Dindo, 2010, Proposition 5.2) regarding so-called ‘fundamentalist’ rules.

The interesting case is when xd < x < xu holds. Whenever x−1 = xu the wealth share ϕ

of the stochastic traders increases, i.e. ∂ϕ
∂ϕ−1

> 1; conversely, whenever x−1 = xd, ϕ shrinks,

i.e. ∂ϕ
∂ϕ−1

< 1. The geometric average of growth rates ultimately determines the relevant
long-run outcomes. Cœteris paribus, the larger πd, or the smaller πu, the higher the likeli-
ness that condition (4.3) is satisfied.

In general, it is not possible to obtain a closed form solution of the inequality in (4.3)
in terms of x since ρS

∣∣
C

is not algebraic. We are only able to analytically work out the
following:

Special case. πu = πd

When the transition probabilities coincide, implying that the average duration of aggressive in-
vestment equals that of modest investment, inequality (4.3) translates into the following algebraic
condition in terms of the constant trader portfolio rule:

x >
xu + xd +

√
4gxuxd(2 + g) +

(
xu + xd

)2

2g + 4

=
xu + xd

2
− h(g),

with h(g) ≥ 0, h(0) = 0, h′(g) > 0.

(4.4)

The last equality shows that the RHS of inequality. (4.4) converges from below to the simple arith-
metic average between xu and xd, as g approaches zero.

This result implies that there would indeed be loss of generality should one adopt the so-
called deterministic skeleton approach and substitute the {xt} process with its (geometric)
expected value. The noise component incorporated into the stochastic traders’ portfolio
brings a detrimental effect to their own survival, at least in the πu = πd case, since the con-
stant traders can dominate even investing a portfolio that is strictly safer than the average
of the stochastic ones. In other words, the results of Anufriev et al. (2006) and Anufriev
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and Dindo (2010) regarding the asymptotic dominance of fixed-mix strategies are not alone
sufficient to infer the long-run dynamics if at least one of the portfolios incorporate some
noise.

The following Proposition provides a sufficient condition for the dominance of the con-
stant trader even when πu , πd.

Proposition 5. If x ≥ E[xt] then steady state C is locally asymptotically stable.

Proof. See Appendix F.

Importantly, for liquidation shocks to turn into liquidation risk, the stochastic traders must
be, on average, more ‘aggressive’ than the rest of the traders.

Finally, it is possible to show that there always exists exactly one value x′ of x where a
bifurcation occurs. Moreover, such value is bounded from below by xd and from above by
xu.

Proposition 6. ∃! x′ ∈ (0,1) such that steady state C is locally asymptotically stable ∀ x > x′

and is unstable ∀ x < x′. Moreover, the following relation holds:

xd < x′ < xu.

Proof. See Appendix G.

4.2. Su�icient conditions for systemic liquidation risk

Here we investigate the conditions that prompt the stochastic group to dominate, so that
liquidation shocks turn, in the long run, into the systemic liquidation risk implied by the
stochastic steady state S. As before, for tractability reasons, we proceed with the stability
analysis for initial wealth distribution skewed in favour of the stochastic group.

Corollary 1 is useful in order to derive the condition for local asymptotic stability of
steady state S in Proposition 7.

Proposition 7. If parameters x, xu, xd, g, πu, and πd are such that the following condition holds

[
1 +

gx
xu

] πu (1−πd )
πu+πd

·
[

1 + g
x

xu +
(xu − x)(xu − xd)

xu(1− xu)

] πuπd

πu+πd

·
[

1 + g
x
xd +

(x− xd)(xu − xd)

xd(1− xd)

] πuπd

πu+πd

·
[

1 +
gx
xd

] πd (1−πu )
πu+πd

= ρC
∣∣
S
< ρS

∣∣
S
= 1 + g,

(4.5)

then steady state S is locally asymptotically stable, whereas if ρC
∣∣
S
> ρS

∣∣
S

then C is unstable.

Proof. See Appendix H.

Similar to the previous case regarding steady state C, the eigenvalue ρC
∣∣
S

is non-algebraic
and therefore a closed form solution in terms of of x is in general unfeasible. The following
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Proposition derives sufficient conditions regarding stability and instability of steady state
S in terms of the constant group portfolio rule.

Proposition 8. Given πu, πd, xu and xd, a sufficient condition for local asymptotic stability of
steady state S is

x ≤ xd ∧ g ≥ xu − xd

1− xu , (4.6)

with at least one strict inequality sign. Conversely, a sufficient condition for instability of steady
state S is

x ≥ xu ∧ g ≤ xu − xd

1− xu , (4.7)

with at least one strict inequality sign.

Proof. See Appendix I.

Proposition 8 also sheds some light on the role played by the dividend rate of growth.
From Eq. (2.11) and the first equation of system (2.15) it is clear that, cœteris paribus, the
higher g, the higher the dividend yield and, in turns, the greater the wealth share of the
group which is more exposed towards the risky security.

The following Conjecture, based on a numerical investigation of the parameters space,
is the analogous of Proposition 6 regarding steady state S.

Conjecture 1. ∃! x′′ ∈ (0,1) such that steady state S is locally asymptotically stable ∀ x < x′′

and is unstable ∀ x > x′′.

Hint. See Appendix J.

4.3. Su�icient conditions for endogenous liquidation risk

So far we have investigated the conditions under which either no liquidation risk (Sec-
tion 4.1) or systemic liquidation risk occurs asymptotically (Section 4.2). In this section we
prove the existence of a non-degenerate region of the parameters space for which liquid-
ation risk is endogenous. Given that both groups of traders survive, their relative wealth
dynamics is a mean reverting process, and the transformation of liquidation shocks into
liquidation risk depends on the fraction of wealth in the hands of the traders subject to
liquidation needs. The following Proposition provides a sufficient condition for the emer-
gence of endogenous liquidation risk.

Proposition 9. ∃ ĝ > 0 such that ∀g < ĝ the following relation holds:

x′′ < x′. (4.8)

Proof. See Appendix K.
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Figure 3: Stability regions of steady states C and S and emergence of liquidation risk as a
function of x. (a): Regime with xd < x′′. (b): Regime with xd > x′′.

While Proposition 9 only provides a sufficient condition for the existence of long-run het-
erogeneity, and consequently of endogenous liquidation risk, a closer look at Eq. (4.5)
reveals that the interaction between different parameters is non-trivial. For example, a
certain degree of substitutability between the rate of growth of the dividend and the prob-
ability of a liquidity crisis is apparent in Eq. (K.1): depending on the relative magnitude
of ρC

uu
∣∣
S
(xd) and ρC

ud

∣∣
S
(xd) there might exists π̂d ∈ (0,1) such that ∀πd > π̂d the relation

x′′ < x′ holds even though g ≥ ĝ. A numerical inspection of the parameters space validates
the following Conjecture.

Conjecture 2. The following relation holds ∀ g > 0:

x′′ < x′. (4.9)

Hint. See Appendix L.

Fig. 3 portrays the relevant findings about the emergence of liquidation risk for all the
steady states.

The position of the threshold value x′′ may be either to the left or to the right of xd,
depending on the underlying parametrisation of the model. Following Proposition 9, if
g < ĝ then x′′ < xd. Remarkably, when this is the case, liquidity risk is endogenous. The
constant group is able to invade, albeit not to dominate, the stochastic one even though the
demand of the constant traders is always lower than that of the stochastic traders, i.e. when
the relation x′′ < x < xd holds. Along these equilibrium paths, losses due to fire-sales are
particularly severe.

5. Simulations and sensitivity analysis

In the previous Section we have outlined a liquidation risk taxonomy of all the long-run
outcomes that system (2.15) admits. In this section, we focus on the case where liquidation
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Description Variable Value

dividend rate of growth g 0.05
constant investment x 0.45
stochastic investment up xu 0.7
stochastic investment down xd 0.3
probability down when up πd 0.01
probability up when down πu 0.01
initial wealth share ϕ0 0.5
initial return r0 null
initial yield e0 0.01

Table 1: Parameters value and initial conditions.

risk is endogenous and we investigate its main determinants in terms of the interaction
between the underlying parameters of the economy.

5.1. Simulations

Following Fig. 3, we distinguish two main regimes. In the first, the relation x′′ > xd holds,
and the constant traders need to invest x ∈ (xd, xu) in order to invade, let alone domin-
ate, the stochastic group and thus mitigate the transformation of liquidation shocks into
liquidation risk. In the second regime instead x′′ < xd, and the constant traders are able
to invade, although not to dominate, by investing a strictly less fraction of their wealth
in the risky asset. Albeit the long-run outcome of the two regimes is analytically analog-
ous, the economic interpretation of the inherent trade-off is quite different. Fig. 4 portrays
a typical simulation run within the first regime (cf. Fig. 3). The model is parametrised
according to Table 1. To ensure a situation of long-run heterogeneity, the value of x is se-
lected close to the mid-point between the thresholds x′ and x′′, the latter being evaluated
numerically. The first panel depicts the portfolio fraction x of the constant group (green)
and a realisation of the stochastic group {xt} process (blue). The second panel reports the
dynamics of the wealth share ϕt. At the beginning of the run, the overall endowment is
evenly split between the two groups. As trading unfolds, wide and sharp fluctuations in
the distribution of aggregate wealth appear and persist indefinitely, as the system never
converges towards a steady state. We find that the value of the growth rate of the di-
vidend is largely responsible for this wild dynamics. In general, the higher g, the wider
the fluctuations of ϕt. In both the price (third panel)6 and return (fourth panel) series, a
clear pattern emerges when compared to the wealth share dynamics. When ϕt is large,
both prices and returns are highly volatile; conversely, when ϕt is small, pt and rt are re-
latively stable. Intuitively, when the stochastic group controls most of the wealth in the
economy, it has a great impact on the market portfolio, and eventually on the clearing
price. When this is the case, the regime shifts implied by the Markov process {xt} are to
a large extent incorporated into the prevailing price and the liquidation risk is high. This
pattern closely resembles the famous volatility clustering stylised fact, i.e. the observation

6To get a more appreciable picture, the price reported in the third panel has been discounted by its non-
stationary component 1 + g.
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Figure 4: Typical simulation run within the first regime (cf. Fig. 3). Green and blue series
refer to the constant and stochastic stochastic trader variables, respectively. Ini-
tialisation as of Table 1.
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that ‘large changes tend to be followed by large changes, of either sign, and small changes
tend to be followed by small changes’ (see Mandelbrot, 1963). A similar argument goes
for the dynamics of traders’ level of wealth (fifth panel)7 and actual exchanged quantity
of the risky asset (sixth panel). When the stochastic group is predominantly influential,
the system locally resembles steady state S where prices, and hence the market value of
the portfolio, fluctuate according to the aforementioned stochastic 4-cycle (cf. Fig. 2(b) and
Corollary 1) while a null quantity of the asset is actually exchanged.

As representative of the second regime, Fig. 5 shows the same simulation as before
(i.e. with the same seed), but featuring a lower rate of growth of the dividend and the con-
stant portfolio is always strictly less than the stochastic one. In particular, it is g = 0.005
and x = 0.25 (close to the midpoint between x′′ and xd), while everything else remains as
of Table 1. The fluctuations in the wealth share (second panel) appear dampened com-
pared to Fig. 4. Intuitively, g has a positive influence on the speed of wealth adjustment
for the group holding the greatest part of wealth invested in the risky security. Moreover,
the wealth share itself remains, on average, relatively high; after all, the stochastic trader is
exploiting a strong arbitrage at every time step (cf. Assumption 1), and more than the con-
stant trader does. Consequently, the volatility of all the ensuing series is necessarily more
persistent. In the fifth panel it is also clearly visible that the randomness incorporated in
the stochastic traders behaviour generates an externality since it not only exerts an effect
on the market value of their own portfolio through its influence on the prevailing price, but
also on the level of wealth of the constant group. That said, what really makes a difference
from an economic point of view with respect to the previous scenario lies in the response
of the system in terms of wealth allocation to the local realisation of the Markov process
{xt}. As already shown, the dynamics of the economy locally depends on two consecutive
realisations of the stochastic process (cf. system 2.15). Fig. 6 provides a close-up of both
the simulations presented before, covering a shorter period for visibility purposes. In both
the scenarios, as long as xt−1 = xt = xu the wealth of the stochastic group grows faster
than that of the constant group, since xu > x; as a result, the wealth share goes up. When
the stochastic portfolio suddenly shifts from high to low investment in the risky security,
i.e. when xt−1 = xu and xt = xd, a fire-sale phenomenon puts downward pressure on the
price and consequently reduces the level of wealth of both the groups, proportionally on
their relative positions at time t− 1. Again, since xu is always greater than x, the deflation
hits the stochastic group to a larger extent, and in both cases the wealth share plummets
accordingly. During the phases in which xt−1 = xt = xd, instead, the stochastic group is
worse off in the first scenario, since xd < x, and better off in the second, where the opposite
relation holds true. Hence, the wealth share shrinks in the left panel and expands in the
right one. For the same reason, when the stochastic portfolio suddenly shifts from low to
high investment in the risky security, i.e. when xt−1 = xd and xt = xu, the ensuing inflation
favours the stochastic group in the second scenario but penalises it in the first. Therefore,
the wealth shares jump downwards in the first regime and upwards in the second.8

7Again, for representational purposes, the series have been made stationary by discounting by 1 + g.
8Within the second regime, x = xd constitutes a special case in which no jump occurs when (xt−1, xt) = (xd, xu)

and the wealth share is constant whenever xt−1 = xt = xd.
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Figure 5: Typical simulation run within the second regime (cf. Fig. 3). Green and blue
series refer to the constant and stochastic stochastic trader variables, respectively.
Initialisation as of Table 1 except g = 0.005 and x = 0.25.
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Figure 6: Close-up of simulations in Fig. 4 (left) and Fig. 5 (right).

Unsurprisingly, within the second regime, whenever xt−1 = xt the stochastic traders
outperform the constant ones, irrespectively of whether they invest xu or xd. But then,
how comes that the stochastic group does not dominate in the long run? Notice that both
the speed of adjustment during recurrence phases (when xt−1 = xt) and the magnitude of
the jumps during transience phases (when xt−1 , xt) are positively related, cœteris paribus,
to the relative distance between the traded portfolios. Intuitively, the larger |xt − x|, the
higher the dividend gain during recurrence phases for the group holding the greatest posi-
tion in the risky asset, and the higher the excess demand/supply during transience phases,
in turns translating into a greater absolute return. Since the difference xu − x is necessarily
larger in the second scenario, the continuous wealth rebalancing takes place by means of
smoothly increasing and decreasing recurrence phases in the first regime, whilst it occurs
as sharp, discrete downward jumps in the market clearing price in the second. Apparently,
the very nature of the underlying trade-off differs in the two cases.

5.2. Sensitivity analysis

We are left with studying to what extent changes in the values of the underlying paramet-
ers influence the asymptotic dynamics of the economy. Starting from the usual paramet-
risation of Table 1, Fig. 7 shows the evolution of the threshold values x′ and x′′ in terms of
the constant trader portfolio x for changes in g (top-left panel), in the position of xt within
the unit simplex with constant jumps xu − xd (top-right), in the dispersion of xt around
a constant mean (bottom-left), and in the transition probability π, under the special case
π = πu = πd (bottom-right). In each plot, the relative position of the two thresholds splits
the Carthesian plane in three distinct areas, corresponding to the stable regions of both
steady state C and S, and their jointly unstable region where long-run heterogeneity, and
herein endogenous liquidation risk, occur.

From the top-left panel, we can see that g has a (slightly) negative effect on the threshold
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Figure 7: Sensitivity analysis. Initialisation as of Table 1 when not otherwise specified.
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x′ and a positive effect on x′′; the first result has been already shown in Special case 2 and
generalised in Appendix F. Therefore, the higher g, the narrower the interval of x for which
there is long-run heterogeneity. For even higher g, this interval shrinks even further, and
at the limit it collapses into one point:

lim
g→+∞

x′(·) = lim
g→+∞

x′′(·) = Eπ
G [xt], (5.1)

where Eπ
G [·] denotes the geometric expected value with respect to the invariant distribu-

tion π of the Markov process {xt}. The top right panel shows what happens when the
support of the stochastic portfolio xt shifts within the unit simplex, keeping the range,
i.e. the extent of the liquidation need xu − xd, constant. Clearly, the width of the long-run
heterogeneity corridor has a non-linear relation with E[xt]. In particular, the difference
x′ − x′′ is especially large at the extrema of the simplex. Note also that x′′(·) is not mono-
tone, and for sufficiently high values of E[xt] it is decreasing. When x′′ crosses the bisector
(the dotted line, along which x = xd) from above, a non-degenerate region between the
two curves appear. For any point in this region, the constant group is able to invade the
stochastic group by investing a strictly less fraction of wealth in the risky asset; this is what
we previously dubbed the ‘second regime’. When we simulated our second scenario we
opted for keeping xu and xd unchanged and reducing the dividend growth rate g that,
following what we said about the top-left panel, lowers the x′′ threshold and enlarges the
shaded area below the bisector line. As the top-right panel shows, however we could have
kept both g and the jump xu − xd unchanged, increased xd close to 0.6, and eventually end
up in a mathematically equivalent dynamics. In the bottom-left panel the thresholds are
plotted against the symmetric range of xt around a constant E[xt] = 0.5. Both functions
are decreasing but x′′ is steeper, so that the interval of long-run heterogeneity widens as
the dispersion increases. Intuitively, the more abrupt the change in the positions of the
stochastic traders during transience phases, the more the effect of ‘buying high and selling
low’ penalises them and favours the constant group, that is able to dominate with a lower
risky position x. For similar reasons, the more frequent the transience phases of xt, the
more the stochastic traders are disadvantaged. This is highlighted in the bottom-right
panel, where the range of xu and xd are fixed, but π = πu = πd varies. From eq. (E.1),
the invariant distribution π relative to steady state C always equals

[
1
2 , 1

2

]
when πu = πd,

and therefore x′ is a horizontal line. The invariant distribution π̃ of S in eq. (3.9) instead
depends on the specific value of π. The higher π, the more likely the transience phases
compared to recurrence phases, and the larger the buy-high and sell-low effect.

6. Concluding remarks

We investigate asset prices and wealth-driven selection in a simple financial market where
traders have heterogeneous constantly rebalanced portfolios of a risk-free and a risky long-
lived asset, and those with the most aggressive position in the risky security are subject to
joint liquidation needs. When a liquidation shock hits the economy, depending on the re-
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lative wealth of the two groups of traders, the extra supply of risky asset is either fully
absorbed by the market, or it generates a fire-sale phenomenon. We provide conditions on
the economy parameters such that liquidation needs are always fully absorbed in the long-
run, when the stabilizing constant agents dominate, as well as conditions under which li-
quidation shocks always lead to a fire-sale phenomenon, when the constant agents vanish.
Moreover, there exist cases when both groups survive and liquidation needs may or may
not lead to a sharp drop in the risky asset price. In this case we say that liquidation risk
is endogenous, its occurrence being coupled with the traders’ wealth dynamics. In order
to derive these results we study the random dynamical system characterizing the dynam-
ics of relative wealth, risky asset returns, and dividend yield, as driven by an exogenous
liquidation stochastic process. Our results are unobtainable from the study of the under-
lying deterministic skeleton alone. In particular, we show that simply taking into account
the expected value of the stochastic portfolio is not sufficient to determine the long-run
dynamics of the system.

Our framework can be further extended in a number of directions. A straightforward
improvement is to allow for an arbitrarily large number of risky securities to be traded in
the market, e.g. along the lines of the deterministic wealth selection model in Anufriev et
al. (2012). This would enable the investigation of the spillover effect of liquidation shocks
hitting one asset onto other assets. Another interesting dimension would be to explicitly
account for the noise generated by the dividend rate of growth and to endogenise the li-
quidation needs based on agents expectations regarding the dividend growth rate. Finally,
the investigation of more complex portfolio responses to liquidation needs, e.g. staircase
adjustment, constitutes another intriguing augmentation of our framework.
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Appendices

A. Proof of Proposition 1

Recall, first of all, that a null dividend yield is ruled out by our phase space, and therefore
the trivial steady state (0,0) is not applicable. The map (3.2) admits a unique non-trivial
steady state

e∗ = g
1− x

x
. (A.1)

Substituting e∗ into the first equation of system (3.1) yields the equilibrium return r∗ = g.
It is also possible to show that:

� the map f C̃(·) is strictly increasing over R++ since

( f C̃)′(·) = (x− 1)2

[1 + x(et−1 − 1)]2
(1 + g) > 0; (A.2)

� the slope of f C̃ at the steady state lies within the unit circle since

( f C̃)′(e∗) =
1

1 + g
∈ (0,1). (A.3)

Therefore, steady state C̃ =
(

g , g 1−x
x

)
is the unique, globally stable steady state of the

system.

B. Proof of Proposition 2

Recall, first of all, that a null dividend yield is ruled out by our phase space, and therefore
the trivial (deterministic) steady state (0,0) is not applicable. We shall show that the 1-
dimensional map (3.5) admits a unique globally stable stochastic steady state. In fact,
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defining

eu = g
1− xu

xu and ed = g
1− xd

xd ,

as in (3.11), it holds

eu = f S̃du(e
d) = f S̃uu(e

u), (B.1)

ed = f S̃ud(e
u) = f S̃dd(e

d). (B.2)

Therefore, the state eS̃(x−1, x) = g
1− x−1

x−1
is a stochastic steady state of the map (3.5). To

show uniqueness and stability we shall use the following properties:

� for every couple (xt−2, xt−1) ∈
�

2{xu, xd} the map f S̃xt−2,xt−1
is both strictly increas-

ing,

( f S̃xt−2,xt−1
)′(·) = xt−2(xt−2 − 1)(xt−1 − 1)

xt−1 [1 + xt−2(et−1 − 1)]2
(1 + g) > 0, (B.3)

and concave over R++,

( f S̃xt−2,xt−1
)′′(·) = −2(xt−2)

2(1− xt−2)(1− xt−1)

xt−1 [1 + xt−2(et−1 − 1)]3
(1 + g) < 0. (B.4)

� for every couple (xt−2, xt−1) ∈
�

2{xu, xd}

( f S̃xt−2,xt−1
)′(·)

∣∣∣
e=ext−2

=
1

1 + g
∈ (0,1) , (B.5)

where ext−2 = eu when xt−2 = xu and ext−2 = ed when xt−2 = xd .

Uniqueness Given monotonicity and concavity, there exists only one ē such that fuu(ē) =
ē. It follows that the stochastic steady state is unique.

Global stability For every t and for every realisation of the Markov process {xt} the
composition of maps

f S̃xt−2,xt−1
◦ · · · ◦ f S̃x0,x1

is monotone and concave because it is the composition of monotone and concave maps.
Moreover, due to (B.1), (B.2), and (B.5)

( f S̃xt−2,xt−1
◦ . . . ◦ f S̃x0,x1

)′
∣∣∣
e=ex0

=

(
1

1 + g

)t
.
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It follows that for all initial dividend yields in the open interval (0, ed) the dynamics con-
verges to eS̃ from below, whereas for all initial dividend yields in the open interval (ed,∞),
the dynamics converges to eS̃ from above. Note that the convergence does not depend on
P.

Having proved the global stability of eS̃ for the map f in (3.5), the globaly stability of S̃
for the map F in (3.4) follows from the implications of the dynamics of the dividend yield
for the dynamics of returns, first equation in (3.4).

C. Proof of Proposition 3

Steady states C and S are straightforward generalisations of steady states C̃ and S̃ de-
rived in Proposition 1 and Proposition 2 when border conditions ϕ∗ = 0 and ϕ∗ = 1 are,
respectively, imposed. It suffices to show that there exists no steady state other than the
aforementioned. Hence, consider the case ϕ∗ ∈ (0,1): the first equation of system (2.15)
reduces to

x−1 = ϕ∗x−1 + (1− ϕ∗)x. (C.1)

Under Assumption 2 this condition is never satisfied since xd , xu. Therefore there exist
no steady states other than those found above.

D. Proof of Lemma 1

Consider the Jacobian matrix J C of system (2.15) computed at the steady state C

J C =



∂ϕ

∂ϕ−1

∣∣∣∣∣
C

∂ϕ

∂r−1

∣∣∣∣∣
C

∂ϕ

∂e−1

∣∣∣∣∣
C

∂r
∂ϕ−1

∣∣∣∣∣
C

∂r
∂r−1

∣∣∣∣∣
C

∂r
∂e−1

∣∣∣∣∣
C

∂e
∂ϕ−1

∣∣∣∣∣
C

∂e
∂r−1

∣∣∣∣∣
C

∂e
∂e−1

∣∣∣∣∣
C


=



x + gx−1
x(1 + g)

0 0

x(x− x−1)− g(x− x)
x2(1− x)

− g
1 + g

x
1− x

0 − g
1 + g

· 1− x
x

1


.

(D.1)

The matrix is stochastic since it depends on two consecutive realisations x−1 and x of the
liquidity trader’s portfolio position. Moreover, it displays the following structure:

J C =

♣ 0

r ♠

 , (D.2)
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where

♣ =

[
∂ϕ

∂ϕ−1

∣∣∣∣∣
C

]
, 0=

[
0 0

]
, r=


∂r

∂ϕ−1

∣∣∣∣∣
C

0

 , ♠ =


∂r

∂r−1

∣∣∣∣∣
C

∂r
∂e−1

∣∣∣∣∣
C

∂e
∂r−1

∣∣∣∣∣
C

∂e
∂e−1

∣∣∣∣∣
C


(D.3)

The null block 0 prevents the r block from having any long-lasting effect on the steady
state stability. Under Assumption 1, the rate of growth of paid dividends is strictly positive
and the deterministic eigenvalues associated with the♠ block are always non-negative and
less than unity:

λ♠1 =
1

1 + g
< 1 if and only if g > 0, (D.4)

λ♠2 = 0 < 1. (D.5)

Therefore, the only eigenvalue relevant for the asymptotic dynamics is the one associated
to the stochastic block ♣.

E. Proof of Proposition 4

Following Lemma 1, since the stochastic block ♣ of the Jacobian matrix (D.1) is 1× 1 and
non-negative, and thanks to the adjacent null block 0, the associated eigenvalue coincides
with the geometric expected value of the ♣ element itself, according to the invariant dis-
tribution π of the Markov process {xt}. In particular, it holds

π =

[
πu

πu + πd ,
πd

πu + πd

]
(E.1)

and therefore the relevant eigenvalue reads

ρS
∣∣
C
= Eπ

G

[
∂ϕ

∂ϕ−1

∣∣∣
C

]
=

(
x + gxu

) πu

πu+πd
(

x + gxd
) πd

πu+πd

x(1 + g)
. (E.2)

Inequality (4.3) guarantees that the eingevalue is inside the unit circle. Local asymp-
totic stability follows by applying the same argument used in Theorem 4.3 Bottazzi and
Dindo (2014) that exploits Oseledets’ multiplicative ergodic theorem and the local Hart-
man–Grobman theorem (Coayla-Teran and Ruffino, 2004, see Theorem 2.1 and 3.2, re-
spectively). When the eigenvalue is outside the unit circle instability follows along the
same lines.
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F. Proof of Proposition 5

Due to the strict concavity of the logarithm function, for the growth rate ρS
∣∣
C

it holds

log

(1 + g
xu

x

) πu

πu+πd
(

1 + g
xd

x

) πd

πu+πd

 < log

[
1 +

g
x

(
πu

πu + πd · x
u +

πd

πu + πd · x
d

)]

= log
[

1 + g
E[xt]

x

]
.

It follows that if x ≤ E[xt] then ρS
∣∣
C
< ρC

∣∣
C

.

G. Proof of Proposition 6

ρS
∣∣
C
(·) is a continuous and strictly decreasing function of x on the open interval (0,1) as it

holds

∂

∂x
ρS
∣∣
C
(·) = − g

∑
i∈{u,d},j∈{u,d},i,j

πixi(x + gxi)
πi

πi+π j (x + gxj)
πi+2π j

πi+π j

x2(πu + πd)(1 + g)(x + gxu)(x + gxd)
< 0. (G.1)

Moreover, its limiting behaviour at the extrema of the support is characterised by

lim
x→0+

ρS
∣∣
C
(·) = +∞, (G.2)

lim
x→1−

ρS
∣∣
C
(·) = Eπ

G

[
1 + gx−1

1 + g

]
< 1. (G.3)

Applying the intermediate value theorem yields the desired result.

xd < x′

If x = xd, then condition (4.3) is violated since

[
xd + gxu

xd + gxd

] πu

πu+πd

> 1. (G.4)

Since by Proposition 6 ρS
∣∣
C
(·) is monotone decreasing in x, it must be that x′ > xd.

x′ < xu
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If x = xu, then LHS of Eq. (4.3) reads

[
xu + gxd

xu + gxu

] πd

πu+πd

< 1. (G.5)

Since by Proposition 6 ρS
∣∣
C
(·) is monotone decreasing in x, by continuity ∃ ε > 0 such

that ρS
∣∣
C
(xu − ε) < 1. Therefore, it must be that x′ < xu.

H. Proof of Proposition 7

Consider the stochastic Jacobian matrix J S of system (2.15) computed at the steady state
S. It is straightforward to check that J S is structurally analogous to J C, and therefore
it is possible to apply Lemma 1. Since the stochastic block ♣ of J S is 1 × 1 and non-
negative, and thanks to the adjacent null block 0, the associated eigenvalue coincides with
the geometric expected value of the♣ element itself, according to the invariant distribution
π̃ of the stochastic limit 4-cycle derived in Corollary 1, i.e.

ρC
∣∣
S
= Eπ̃

G

[
∂ϕ

∂ϕ−1

∣∣∣
S

]
. (H.1)

Inequality (4.5) guarantees that the usual unit circle condition is satisfied. Local asymptotic
stability and instability follow as for the proof of Proposition 4 in Appendix E.

I. Proof of Proposition 8

Start by decomposing Eq. (4.5) in its multiplicative components. Let us define ρC

ij

∣∣
S

as

the value of ∂ϕ
∂ϕ−1

∣∣∣
S

when x−1 = xi and x = xj, with xi, xj ∈ {xu, xd}. Note that we can
safely get rid of the probability exponent since it plays no role in the current analysis. It is
straightforward to check that

ρC
uu
∣∣
S
< 1 ⇐⇒ x < xu, (I.1)

ρC

ud

∣∣
S
< 1 ⇐⇒ x > xu Y g >

xu − xd

1− xu , (I.2)

ρC

du

∣∣
S
< 1 ⇐⇒ x < xd, (I.3)

ρC

dd

∣∣
S
< 1 ⇐⇒ x < xd, (I.4)
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where the symbol Y stands for the logical exclusive disjunction operator. Conditions (4.6)
and (4.7) follow from the joint satisfaction (dissatisfaction, respectively) of the four state-
ments above.

J. Hint of Conjecture 1

ρC
∣∣
S
(·) is a continuous and differentiable function of x over the open interval (0,1). At the

extrema of the support it holds

lim
x→0+

ρC
∣∣
S
(·) =

1
1 + g

< 1, (J.1)

lim
x→1−

ρC
∣∣
S
(·) =

1
1 + g

·Eπ̃
G

[
1 +

g
x−1

]
> 1. (J.2)

Moreover, it is possible to numerically show that ρC
∣∣
S
(·) exhibit no inflection points over

x ∈ (0,1). We look for the roots of ∂2

∂x2 ρC
∣∣
S
(·) = 0 using the Anderson-Björck method

∀xu, xd,πu,πd ∈ {0.01,0.02, . . . ,0.99} such that xu > xd, ∀g ∈ 10k,k ∈ {−4,−3, . . . ,+1}. We
then check that none of them belong to the interval (0,1), finding no exceptions. Applying
the intermediate value theorem yields the desired result.

K. Proof of Proposition 9

Start by decomposing Eq. (4.5) in its multiplicative components. Let us define ρC

ij

∣∣
S

as the

value of ∂ϕ
∂ϕ−1

∣∣∣
S

when x−1 = xi and x = xj, with xi, xj ∈ {xu, xd}. It is straightforward to

check that if x = xd then ρC

du

∣∣
S
(xd) = ρC

dd

∣∣
S
(xd) = 1 and ρC

∣∣
S

reduces to

ρC
∣∣
S
(xd) = ρC

uu
∣∣
S
(xd)

πu(1−πd)
πu+πd · ρC

ud

∣∣
S
(xd)

πuπd

πu+πd . (K.1)

From Proposition 8 it follows that

ρC
uu
∣∣
S
(xd) < 1, (K.2)

ρC

ud

∣∣
S
(xd) R 1 ⇐⇒ g Q

xu − xd

1− xu . (K.3)

Moreover,

lim
g→0+

ρC
uu
∣∣
S
(xd) = 1, (K.4)

lim
g→0+

ρC

ud

∣∣
S
(xd) =

xu + xd(2xu − xd)

xu(1− xu)
> 1. (K.5)
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Therefore, there exists a ĝ > 0 such that ∀ g < ĝ condition (4.5) is strictly violated,
i.e. ρC

∣∣
S
(xd) > 1. Since from Conjecture 1 the solution to the problem ρC

∣∣
S
(xd) = 1 is

unique, then ∀ g < ĝ it must be that x′′ < xd. Finally, Proposition 6 implies that in such
cases the following relations hold:

x′′ < xd < x′. (K.6)

L. Hint of Conjecture 2

The unique solution x′ of ρS
∣∣
C
(x) = 1 is computed using the Anderson-Björck method

and then the condition ρC
∣∣
S
(x′) > 1 is tested ∀xu, xd,πu,πd ∈ {0.01,0.02, . . . ,0.99} such that

xu > xd, and ∀g = ĝ · 10k, k ∈N+ under the restriction g ≤ 10. No exception is found.
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