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Abstract

We present a different approach to the study of networks where the formation of links

is driven by unilateral initiative of nodes. First, we propose a mathematical description of

the extreme introvert and extrovert model (XIE), a dynamic network model in which the

number of links fluctuates over time according to the degree-preferences of nodes. Second, we

introduce a generalization of the model in which intermittent states can make the evolution

of connectivity slower. In this class of networks, system evolution has nodes which can either

create or destroy links according to their target attitudes. This model belongs to a class

of networks not based on the rationale of linking probability between pair of nodes, but it

is based on the initiative of the single units when they act. We select the minimal case

of a bipartite network where we have two groups of nodes, each group has nodes with a

given capability to bear links. One group (high-target) is composed by nodes that create

as many links as possible, the extroverts. The other group (low-target) is composed by

nodes that delete as many links as possible, i.e. the introverts. We here provide a novel

analytical formulation of the system evolution through coupled Master Equations for the two

interacting populations, recovering the steady state degree distributions and a new analytical

description of the transient dynamics to the equilibrium. Moreover, we provide numerical

evidence supporting the existence of an extreme Thouless effect in this model, i.e. a mixed-

phase transition at which the order parameter, here given by the network connectivity,

displays a discontinuous jump and large dynamic fluctuations. Fluctuations are also shown

to be connected to a peak in degree correlation at the transition, corresponding to same size

populations of extroverts and introverts.

Keywords: Network formation, temporal evolution, stochastic process, financial networks,

critical transitions

JEL codes: D85, C62, G21

Introduction

The conceptual framework of network formation can well describe complex systems which exhibit

an intricate structure of evolving connections among the units.
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The vast majority of the scientific literature on network formation has focused on models

which are generated through an attachment probability approach where two random nodes have

a certain bilateral chance to be connected, generally depending on both nodes. The Erdos-Renyi

model based on a uniform linking probability, the Albert-Barabasi model [1] and the class of

preferential attachment models, and the generalized random graphs known as hidden-variable

or fitness models [5] adopt this kind of rationale. In the present paper we start from a different

approach introduced by [11], where the system dynamically evolves according to the unilateral

preferences of each agent. Passing from a pair-wise approach to a unit-wise one. This simple

difference actually introduces a deep change in the network structure and its dynamics with

emergent properties that arises for certain values of simple network parameters. In particular,

the extreme introverts and extroverts model (XIE) has been shown [3] to be characterized by a

critical behavior beyond Ehrenfest classification of phase transitions: the discontinuity displays

an extreme Thouless effect, where both a discontinuous jump in the order parameter, and large

dynamic fluctuations appear, two features of first order and second order phase transitions

respectively.

Despite its recent introduction, unit-driven mechanisms are in some cases more realistic than

pairwise ones. For instance, in social networks like Twitter, the decision over following another

user is strictly unilateral, and the ratio between followers and followed users, i.e. out-coming

and in-coming links, strongly characterizes the behavior and attitude of users [8].

Another interesting evidence for the presence of different agents attitudes which drives the

dynamics of a systems can be largely found in financial networks analysis [6, 9, 10, 2], where

various financial institution in the interbank market can be divided into different communities

related to their financial management.

In recent years, financial systems have represented an important field of application for the

network science, which naturally captures the linkage architecture of the financial agents and

their relations. The interest has increased even more as consequence of recent financial crisis

of the years 2007-2009, and a network approach is particularly crucial for assessing financial

stability, since it is possible to have models and methodological tools which could describe,

detect and eventually mitigate systemic risk [4]. There are different perspectives form which it

is possible to address financial network analysis, mainly the research has focused on the one hand

on topological structures and the dynamics of network formation, and the dynamic processes

occurring on the network on the other.

Here, we study a unit-driven model of network formation through a new mathematical

description based on dynamical Master Equation for the degree of the networks. The solution

we found provides both the transient non-equilibrium dynamics and the steady state of the

degree distribution. At the same time we recover the crucial emergent property with a phase

transition behavior as the proportion between the two interacting groups changes [3].

Moreover, we investigate the limits of such approach and shed lights on a new important

feature of such network that is the emergence of strong correlations among the agents when the

system is at criticality, connected with the extreme Thouless effect already shown in the XIE

model.

The paper is organized as follows: in Section 1 we introduce the unit-driven model and

describe in detail its rationale and dynamics. In Section 2 we outline the new coupled master

2



equation dynamics (CMED) for the degree-distribution of extroverts and introverts, explaining

how it is possible to couple them consistently. Further we present numerical results on the non-

equilibrium dynamics, showing how CMED succeeds in predicting the full dynamical evolution of

degree-distributions in the unit-driven model outside of the criticality. At the criticality degree

correlations are shown to be strongly affect the CMED approach. In Section 3, we introduce a

more realistic version of the agent-driven network based on XIE model where intermittency is

present in the degree trajectories. Finally in Section 4 we summarize results, stressing the need

for a robust methodology to model degree correlations and their role in mixed phase transitions

and suggesting the possible applications of the model - or similar generalizations - in the context

of systemic risk and financial stability.

1 Bipartite target network model

The network model is based on an intergroup dynamics where individual agents connect accord-

ing to a degree target, i.e. tending to reach a preferred number of neighbors. In the simplified

and extreme situation the nodes in the network are divided between a group of link generators

and a group of link destroyers. The dynamics is defined as follows: a single agent is randomly

chosen and it acts according to its nature (attitude) so pushing towards its target (desired)

degree. At this level, each agent can add or create a connection per time, and the network is

made up of only two types of agents in a bipartite graph framework: high-target agents are able

only to generate links (when possible) and the low-target agents which can only destroy links

among its neighbors (if any). In this extreme view, the agent in action overbear the attitude of

chosen neighbor, which at its turn it will be able to act towards its preferred degree. This new

perspective is crucial for the nature of fluctuations on the links dynamics as well as in the arising

of emergent properties. The generators are agents with an infinite target degree, and destroyers

are agents with a zero target degree. Moreover, links are bi-directional, and there can be at

most one link between any two units. Neither self-links nor intragroup links are considered.

The generators create links as long as there is at least one destroyer without a link. Destroyers

remove links until there is at least one generator with a link. A node which has reached its

preferred degree does not act in the network. Another difference with the model described in

[3], is that we just study the bipartite version of the network, since the high target nodes if

involved in the creations of links inside their groups gives only a fixed and constant values, not

contributing to the dynamics of the network.

Let us define a bipartite graph as as a triplet G = (⊤,⊥, E) where ⊤ is the set of high-target

nodes (extrovert units) and ⊥ is the set of low-target nodes (introvert units), and E ⊆ ⊤ × ⊥

is the set of links that can vary in the domain [0, |⊤| × |⊥|] where | · | is the number of elements

of the set.

Then, the time evolution of the this bipartite graph is an ordered sequence of M graphs

{G1, G2, . . . , GM} defined over N nodes, where each graph Gm in the sequence represents the

state of the network, i.e., the configuration of links in the time-window [tm, tm + ∆tm], m =

0, . . . ,M − 1.

The time-varying graph G is fully described by means of a time-dependent adjacency matrix

A(tm),m = 0, . . . ,M − 1, where aij(tm) are the entries of the adjacency matrix of the graph at
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time tm. Tuning the size of the time window used to build each snapshot, we obtain different

representations of the system at different temporal scales.

In particular, in the limit case when ∆t → 0, we obtain an infinite sequence of graphs, where

each graph corresponds to the configuration of connections at time instant t.

On the contrary if we set ∆t = T , the time-varying graph degenerates into the corresponding

aggregated graph, loosing all the temporal information and obtaining a static graph.

In order to write an equation of the degree distributions of the graph we split the analytical

description in terms of the two groups.

In principle we should know at each time step the configuration of the network N described

for example by the adjacency matrix. We actually study the degree distribution defined as:

ρ(k, t) =
∑

{N}

∑

i

δ(k − ki)P (N , t). (1)

where δ is the Kronecker delta, and P (N , t) is the probability to find our network in the config-

uration N at time t, where each node has degree ki.

In our particular case, we expect to have a master equation that takes in account the add-cut

links prescription of the target-model in which the equation to find the ⊤ system in the state k

(the degree) at time t+ 1 is:

ρ⊤(k, t+ 1) = ρ⊤(k, t)+

+ Probt(pick a ⊤ node with degree k − 1)

− Probt(pick a ⊤ node with degree k)

− Probt(pick a ⊥ node cutting a link with one of ⊤ nodes with degree k)

+ Probt(pick a ⊥ node cutting a link with one of ⊤ nodes with degree k + 1)

since high-target nodes can only generate links and low-target nodes can only destroy links.

It useful to describe the model in a more simplified version in order to obtain a solvable

macroscopic equation. First let us define the average number of high-target nodes as

⟨n1(k, t)⟩ := ρ⊤(k, t) ·N1

, and the number of low-target nodes as

⟨n0(k, t)⟩ := ρ⊥(k, t) ·N0

where N1 = |⊤| and N0 = |⊥| , and N1 +N0 = N which indicates the total number of nodes in

the whole network which is constant.

In the minimal case of two extreme groups, after a transient the network, dynamics of links

between different groups is fluctuating. So in the steady state the dynamics of the network is

fully described by the bipartite graph between the two groups of agents. So the bipartite model

fully describes the evolution of cutting-adding of links as shown in Fig.1, where a bipartite

structure is clear for off-diagonal blocks in the adjacency matrix.

In this regime and using the mean field approximation it is possible to write the evolving
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(a) Snapshot at a given time of the adjacency ma-
trix of the bipartite target network. Off-diagonal
blocks are symmetric since we do consider links to
be undirected, total number of links are nz = 326.

(b) Graphical representation of the bipartite target
network at a given time, inner circle nodes are the
high target nodes N1. Node sizes in the graph is
proportional to their degrees.

Figure 1: The temporal bipartite target network ,at a given time step, has a typical adjacency matrix
(a) where only the off-diagonal blocks are involved in the dynamics. The same bipartite structure can be
visualized in (b) as a core (high target nodes) represented by blue circles and the periphery (low target
nodes) represented by red circles. Arcs are the links between the two groups made up of N1 = 130 and
N0 = 70.

network in terms of birth-death process with time-dependent transition rates. However, the

system always reach a steady state, since it is a finite and closed [3].

In the bipartite version, let us describe the change of states of the network from the ”point

of view” of the high-target degree nodes, N1. Let ⟨n1(k, tn)⟩ the average number of high-target

degree units with degree k at the time step tn. It is possible to write the following approximated

rate equation:

⟨n1(k, tn + 1)⟩ = ⟨n1(k, tn)⟩ + (2)

+
N1

N

⟨n1(k − 1, tn)⟩

N1
−

N1

N

⟨n1(k, tn)⟩

N1
+ (3)

−
N0

N

k⟨n1(k, tn)⟩

N0

ϵ

k0
+

N0

N

(k + 1)⟨n1(k + 1, tn)⟩

N0

ϵ

k0
(4)

The right side gives the combination of factors for which we have ⟨n1(k, tn+1)⟩ average number

of high target nodes with degree k at time step tn + 1.

� The first row eq.(2) are the average number of units at the previous time step.

� The second row eq.(3) represents the chance for gaining or loosing a connection due to

the fact that one high-target unit has been randomly drawn among N , this happens with

a frequency of N1/N . Then there is the chance to pick a high-target node with a certain

degree with frequency ⟨n1(k, tn)⟩/N1.

� The third row eq.(4) represents the chance for gaining or loosing a connection due to

the fact that one low-target unit has been randomly drawn among N total nodes in the
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network. This happens with a frequency of N0/N . Then each high-target node has k links

connected to k different (no-multilinks) low-target nodes. So the rate to pick one of this

low-target-node is k/N0 and this must be independently replicated for other ⟨n1(k, tn)⟩

high-target nodes. At this point, the drawn low-target node will cut one over all their total

neighbors and we need to know how many links that particular low-target node has, and

how many connections among its neighbors belong to one over the ⟨n1(k, tn)⟩ high-target

nodes. Due to the difficulty of this last task, we use a mean-field approximation where we

imagine the probability to cut one k-high-target nodes is 1/k0 where k0 = ⟨k⟩0 represents

the average degree of low-target nodes. In principle we should take only those low-target

units which have at least one connection (not isolated nodes). The correction factor takes

in account this issue and considers the fact that there is a decrease of the cutting rate

when an isolated low-degree node has been picked 1.

The process description in eq.(2)-(3)-(4) is valid for k = 1 . . . N0 − 1, and the boundary

conditions at k = 0 and k = N0 are:

⟨n1(0, tn + 1)⟩ = ⟨n1(0, tn)⟩ −
⟨n1(0, tn)⟩

N
+

⟨n1(1, tn)⟩

Nk0
ϵ (5a)

⟨n1(N0, tn + 1)⟩ = ⟨n1(N0, tn)⟩ +
⟨n1(N0 − 1, tn)⟩

N
−

N0⟨n1(N0, tn)⟩

Nk0
ϵ (5b)

In order to get the full description of the model, we have to know the number of empty

low-target nodes where in the master equation appears as:

ϵ =
N0 − ⟨n0(0, tn)⟩

N0
(7)

that is the rate to not pick an empty low-target node over the total N0 low-target nodes.

At this point we can evaluate ⟨n0(0, tn)⟩ directly from a correspondent master equation for

the low-target nodes with a symmetric reasoning. We define as ”shadow links” the total number

of possible links minus the actual links. In some sense they are the ”imaginary” links that are

possible in our network. In this perspective low-target nodes are generators of shadow-links and

high-target nodes are destroyers. In particular we have that if we have a total number of L links

in the networks, then the shadow-links are N0N1 − L. Per each low-target nodes, the shadow

degree is s = N1 − k with k = 0 . . . N1.

It is possible to symmetrically write the master equation for low-target nodes in terms of

1The third row eq.(4) can be also seen in terms degree distribution of the neighboring node for uncorrelated

networks P0(q) = k⟨n1(k,t)⟩
N1⟨k⟩∞

, that is the frequency with which end nodes of a randomly chosen link have degree
q. It is the probability that among the high-target nodes, a neighbor of the selecetd low-target node has degree
k (i.e. assuming neighbor degrees are not correlated). After that we do need to multiply by the rate to select a
low-target node N0/N and the correction factor to not pick an empty node ϵ.
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shadow links as:

⟨n0(s, tn + 1)⟩ = ⟨n0(s, tn)⟩ + (8)

+
N0

N

⟨n0(s− 1, tn)⟩

N0
−

N0

N

⟨n0(s, tn)⟩

N0
+ (9)

−
N1

N

s⟨n1(s, tn)⟩

N1

ϵ̃

s1
+

N1

N

(s+ 1)⟨n0(s+ 1, tn)⟩

N1

ϵ̃

s1
(10)

The average number of high-target s-isolated nodes (full degree nodes) is indicated with ⟨n1(k =

N0, tn)⟩. The dual correction factor can be taken as

ϵ̃ = 1−
⟨n1(k = N0, tn)⟩

N1
= 1−

⟨n1(s = 0, tn)⟩

N1
(11)

the boundary conditions are:

⟨n0(s = 0, tn + 1)⟩ = ⟨n0(0, tn)⟩ −
⟨n0(0, tn)⟩

N
+

⟨n0(1, tn)⟩

Ns1
ϵ̃ (12a)

⟨n0(s = N1, tn + 1)⟩ = ⟨n0(N1, tn)⟩ +
⟨n0(N1 − 1, tn)⟩

N
−

N1⟨n0(N1, tn)⟩

Ns1
ϵ̃ (12b)

where we have the fundamental relation for the interdependent average degrees as:

s0 = N1 − k1
N1

N0
(13)

At this point the model can be described by the coupled master equations of the two inter-

acting populations.

2 Statistical properties and degree dynamics of the model

The master equation for the degree distribution can be recovered from the rate equation con-

sidering that ρ1(k, tn) = ⟨n1(k, tn)⟩/N1 where
∑N0

k=0⟨n1(k, tn)⟩ = N1, ∀tn = 0, 1, 2, . . .:

ρ1(k, t+ 1) = ρ1(k, t)+

+ Γ+[k − 1] ρ1(k − 1, t)− Γ+[k] ρ1(k, t)+ (15)

− Γ−[k, t] ρ1(k, t) + Γ−[k + 1, t] ρ1(k + 1, t)

that represents a general non-homogeneous birth-death process that describes the add-cut link

procedure in the network. The transition probability Γ+[k − 1] is the birth rate from the state

k− 1 to k, and the transition probability Γ−[k+1, t] is the time-dependent death rate from the

state k + 1 to k.
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From the ”point of view” of the high-target units, the transition rates are can be written as:

Γ+[k − 1] =
N1

N

1

N1
(16)

Γ−[k, t] ≈ k ·
N0

N

1

N0

ϵ

⟨k⟩0
(17)

The equation follows the reflecting boundary conditions:

Γ+[k = N0] = 0 (18)

Γ−[k = 0] = 0 (19)

which takes in account that a node cannot have less than zero link, and it has the limitation of

a full connected node.

The master equation of the degree distribution remind of a generalize birth-death process

where the rate are time dependent. Following the authors [3] the systems reach a state where

the transition rates become homogeneous recovering the detailed balance condition property.

Anyway we use only the fact that the master equation is restricted under reflecting boundary

conditions within a closed systems, that is enough to guarantee the existence of a stationary

distribution regardless of the number of links at the beginning of the process [7]. In our simula-

tions we took the initial network to be empty, i.e. n1(k, t = 0) = N1δ0,k. So the only parameter

that has an impact on the statistical structure of the network is the proportion between the two

populations.

Finally let us consider that this kind of description is based on a mean-field approximation

based of ⟨k⟩0 for which we expect to have a good approximation on the first order of the degree-

distribution, for higher order moments it would be necessary to more considerations on the cut

rate probability.

2.1 Degree distribution and average degree

As results of our mathematical interpretation of the model we compare the degree distributions

obtained by the Montecarlo simulation of the model with the distributions obtained as numerical

results of the coupled master equations. As expressed in the appendix A, the distributions

obtained by the master equation approach are bounded poisson distributions.

According to the values N0 and N1 the network behaves differently, so we define as control

parameter of the system the quantity

h =
N1 −N0

N1 +N0

that is the proportion variable between the two groups.

In Fig.2 the degree distributions of the network is plotted for several values of N1 and N0. It

is evident as the model prediction is exact when considering the first moment of the distribution

(the expected value of the degree). This is consequence of the first order approximation made

in the master equation representation with a mean field approach. As regards with the entire
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degree distribution it is exact for all the values of h but when we are at the values for which

N1 = N0: here the degree distribution departs from the poisson distribution and and it is closer

to a fatter distribution which can be represented as a normal distribution with mean equal to

the exact average degree µ = ⟨k⟩1 but variance of the order of the support of the distribution

σ2 ∼ N2
0 .

All these results are in line with the solutions obtained in [3] via numerical convergence of

a fixed-point procedure; the consequent degree distributions have been compared numerically

with the master equation solution. Compared to the true model distributions we obtained the

same Kullback-Leibler divergence up to a factor of 10−6 as analyzed in the appendix A.

Figure 2: In a network of N = 100, with ensemble averages of 1000 samples. Where h = (N1 −N0)/N
is the population control parameter. The stem plot represents the degree distribution from the model
simulations of the target network, the continuous gray lines are degree distributions obtained directly
from the coupled master equations. The two distributions always coincide on the shape and are centered
exactly at the average degree values. An exception happens for populations such that N1 = N0 (h = 0),
here the approximated distributions (dashed line) is less fat then the real distribution. This is a direct
consequence of the mean-field approximation made in the master equation representation of the model.

Using the interacting master equations we can also obtain and plot the temporal evolution

of the degree distributions and consequently the average time needed to reach the stationary

distributions, as well illustrated in Fig.3.

The same type of results are obtained in the evaluation of the number of empty low target

nodes and the full high target ones, see Fig.4.

Once we obtained numerically the value of the average degree and the number of empty

nodes we can recover the shape of the degree distribution to be a bounded poisson distribution

as shown in the appendix A:

ρ1(k) =
1

eχ Γ(N0+1,χ)
Γ(N0+1) − 1

χk

k!
, k = 0 . . . N0 (20)

where χ = N1
N0−n00

k1, and n00 = ⟨n0(0, tn)⟩ is the average number of empty low-target nodes.
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(a) Stem plot distributions are from the montecarlo simulations of the model,
the continuous lines are the distributions from the master equation. Different
time snapshots shows the agreement between the two approaches. The dashed
curve represent the stationary distribution.

(b) The three lines are three different realizations of the model versus the black
dashed line representing the time-evolution of the average degree in the mas-
ter equation numerical solutions. The dotted curve represents the stationary
degree distribution.

Figure 3: Time evolution of the degree distribution (a) and the average degree (b) of the bipar-
tite network simulations and its mathematical counterpart of coupled master equations for the case
of N1 = 51, N0 = 49 where h = −0.02. We notice how good is the approximations both maintain-
ing the distribution shape both detecting the right average convergencing time towards the equilibrium
distribution.

2.2 Phase transition and criticality

Other than the degree, we can better characterize the network formation defining the effective

degree:

ξ =
k

N0
, ∈ [0, 1] (21)

which is the normalized degree; it measure the number of links created by an high-target node

over the total number of possible links it can make (i.e. N0). The average over all the high-target

nodes gives just the network degree efficiency ⟨ξ⟩: values close to 0 indicates that the high target

nodes create very few links respect to the possible links they can make. On the opposite, values

of the efficiency close to 1 indicates an high capability for each high target node to generate

links with the other group nodes. The passage between these two extreme situations exhibit a

typical phase transition where we have an abrupt change of efficiency when N1 = N0.

We can plot and reproduce the phase transition in Fig.5. Exploring the average value of
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(a) Time evolution for the number of low-target
empty nodes towards the equilibrium value n00 =
N0 −N1 = 2 since N0 = 51 and N1 = 49.

(b) Time evolution for the full high target nodes
towards the equilibrium valuen11 = N1 − N0 = 2
since N0 = 49 and N1 = 51.

Figure 4: In a network with N = 100 total number of nodes, two cases: (a) the convergence of empty
low-target nodes in the case N0 = 51, and (b) the convergence of full high-target nodes in the case
N0 = 49. Gray noisy curves are the montecarlo simulation of a single trajectory of the model, the black
dashed lines are the estimations obtained by the master equations. For both cases an empty network is
the initial condition. This explains the apparent different convergence times in the two cases.

the mean field variable ξ for all the possible values of the population in the two groups, we

have a phase transition, where the critical point is the case N1 = N0, in which we have a big

jump from an minimal-efficient network to a maximal-efficient network. The figure shows as

the numerical solution of the coupled master equations approach gives an exact behavior of the

phase transition which accounts only for the first moment of the distribution.

Figure 5: Phase transition of the mean value of the mean-field variable ⟨ξ⟩ (the network efficiency) over
the possible values of N1 and N0 in a bipartite network with N = 100 total nodes.The bold black line is
the curve corresponding to the model simulation, the dashed white line is the curve made up using the
coupled master equations. The plot suggests the idea that, in a target-network, for a node being part of
a group endogenously increase (o decrease) its ability to follow its preference.

Let us notice that the phase transition is a property of the network efficiency and not of the

average degree by itself. Anyway they share the same emergent properties mostly based on a

second order effect related to the variance of the average degree and the nodes correlation in the

network.
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2.3 Second order effects and emergent properties

Despite the presence of the phase transition, the emergent property of the target network resides

in higher moments of the degree distribution, those which are not satisfactorily addressed when

the network is at criticality. The first important emergent property is the variance of the degree

distributions, which exhibits an abrupt large value at criticality (h = 0). We want to give some

heuristic explanation of this phenomenon.

The stochastic process associated to the the network dynamics can be also analyzed through

the time series of the average degree as in Fig.6, which shows a given mean value and a standard

deviation.

(a) Temporal behavior of the average degree or
equivalently of the degree efficiency ⟨ξ⟩ = ⟨k⟩1/N0

where N = 100: the black central line represent
the mean-field parameter ξ in the equal proportion
case of N1 = N0 = 50 in which we have a ”quasi”
diffusion process which explores all the the states
in the degree domain. The top gray line is the case
N1 > N0 = 45, and the bottom gray line is for the
case N1 < N0 = 55. In these two cases the brown-
ian motion is attenuated by the reflecting boundary
condition, resulting in much smaller fluctuations.

(b) The usual phase transition of the degree effi-
ciency but this time we plot twice the standard
devition of the relative time series. It is evident
the huge amplitude of the fluctuations at critical-
ity, so defining the onset of an emergent propery
of the network when the systems is at the critical
point N1 = N0.

Figure 6: The average degree and the relative efficiency variable can also be described in terms of their
time series along the simulation time as in (a). This is equivalent to evaluating several times the average
degree for different trajectories at a given time. The resulting variable is ⟨k⟩ that is mean degree, in (b)
we also plotted the error bars which corresponds to the standard deviation of average degree along the
time.

Given the ergodicity of the process we can freely interchange the mean values over time

and the average over different trajectories. Finally we can build the distribution of the average

degree and the degree distribution. We do plot those probabilities on Fig.7.

The two distributions, as their moments, are related by convolution of the distributions of

each node, since ⟨k⟩1 =
1
N1

∑N1
i=1 ki, defining a sort of a sampling distribution for the mean. The

expected value results to be

E[k] = ⟨k⟩ (22)

and the variance is:

V ar(k) =
σ2

N1
+ ρ

N1 − 1

N1
σ2 (23)
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(a) The two distributions on the left are for N1 =
45, N0 = 55 in the sub-critical case, the two right
distributions are for N1 = 55, N0 = 45 in the super-
critical regime.

(b) The special case of criticality (N1 = N0), where
the two distributions are both fat with same mean
and different variance

Figure 7: comparison between two distributions: stem black lines indicates the ordinary degree distri-
bution ρ(k) and the gray bars indicate the sampling distribution of the average degree. In (a) there is
the case in which N1 ̸= N0 and in (b) the case N1 = N0 at criticality.

where σ2 is the variance of the degree distribution, and the V ar(k̄) is the variance of average

degree distribution (the sampling distribution). If the nodes were independent, the average

correlation factor ρ would be zero. Actually from the empirical studies of the model we can esti-

mate the value of the correlation factor ρ, just comparing the variances of the two distributions

evaluated via simulations

ρ =
V ar(k)

σ2

N1

N1 − 1
−

1

N1 − 1
(24)

which for large networks the average correlation ratio between the average of the sample mean

distribution over the variance of the degree distribution. What is obtained is well expressed in

Fig.8, where strong correlations arise among the nodes at criticality i.e. N1 = N0. This is an

evidence on how it is not possible ignore the presence of nodes correlation in the mathematical

description of the model. For example, the model prescription prevents the node to go beyond its

capacity, so that if an low-target node is already full, an high target node is forced to exclude it

from its candidate neigbors. On the contrary, the master equation which describes the network

dynamics has been addressed using a first-order mean field approximation. In evaluating the

cutting rates we only consider first-order effect ingoring any possible correlation among the nodes

in selecting the nodes to connect with.

Despite these limitations of the master equation representation, we can reach the conclusion

that another important emergent property of the bipartite target network is the onset of strong

correlations among the agents at criticality.

As important variable in the network, we consider the total number of links in the network,

which we call network linkage, in order to distinguish it from the related to the degree of nodes.

These variable are connected though the relation:

L ≡ ⟨k⟩1N1 = ⟨k⟩0N0 (25)

that is the total number of links in the bipartite network.

The phase transition property and the temporal evolution behaviors of the linkage are iden-
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Figure 8: Average correlation estimation obtained comparing the sampling distributions of the average
degree with the ordinary degree distributions. It is evident how at criticality (h = 0) the correlation is
much higher then in the off-critical cases (h ̸= 0). This shows how neglecting the correlation among the
nodes make the master equation approach fail at criticality.

tical to the average degree case since they are proportional, so sharing the same statistical

properties as shown in Fig.9.

In order to capture the efficiency of the network in the linking creation let us call connectance

ℓ the number of actual edges, expressed as a proportion of the total number of potential edges:

ℓ =
L

N0N1
(26)

=
⟨k⟩1
N0

(27)

i.e. the links density as the ratio between the actual number of links created for that particular

populations sizes and the total possible links available (bipartite all to all case). Anyway we

treat connectance as a temporal variable, and becasue of the ergodic property of the process,

we use time averages in the place of the ensamble averages for the total number of links L and

the connectance ℓ.

3 A more general model: intermittent CMED and connection

velocity

As an extension of the previous model, we provide an more plausible agent-driven network based

on the XIE model where the unilateral initiatives are smoothed by the possibility that the unit

does not manage to act according to its attitude of preferred degree.

Specifically, let us take in account the chance that the action of the agent to generate

(or destroy) a link is not accomplished. So that, for several reasons, the connection (or de-

conncetion) attempt fails, for example because of the opposition of the counterpart agent. So

whenever a unit is drawn, it tries to act according his preference, adding or cutting a link, but

14



(a) Time series of the linkage (i.e. link density)
for three different cases: top gray series for N1 =
55, N0 = 45 that is the over-connected network.
The down gray series is the case N1 = 45, N0 =
45 the minimal-connected network, the black time
series represent the critical point N1 = N0.

(b) Three examples of link distribution strictly re-
late to the previously discussed average degree dis-
tribution. The center flatter histogram corresponds
to the critical case.

(c) Time series of the connectance (i.e. link density) for three different cases: top
gray series for N1 = 55, N0 = 45 that is the over-connected network. The down gray
series is the case N1 = 45, N0 = 45 the minimal-connected network, the black time
series represent the critical point N1 = N0.

Figure 9: We plot the connectance ℓ = L/(N1N0), namely the link density of the network. From the
side of the toal links we get the same statistical behavior of the average degree of the groups. Usually
the link dynamics can be chosen as time series. In (a) we plot three different typical temporal dynamics
in the subcritical regime, in the critical point and in the supercritical phase. The same three regimes are
studied from the point the distribution perspective, observing the exaggerate ”flat” behavior at criticality.
The entire figure of the phase transition is given in (c) where the emergent property is evident in the
errorplots.

here we consider the chance that this attempt fails with a rate λ (target-failure probability). It

is possible to generalize the CMED approach just rewriting the master equation as in eq.(15)

but taking in account two modes of the degree motion, the add-cut process phase and the resting

phase that justifies the presence of ”idle” states due to the missed action of the node tendency.

Consequently, we consider the population density at rest ρ
(i)
1 (k, t) in addition to the population
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density in motion ρ1(k, t), and we can rewrite the CMED equation as:



























ρ1(k, t+ 1)− ρ1(k, t) = Γ+[k − 1] ρ1(k − 1, t)− Γ+[k] ρ1(k, t)+

− Γ−[k, t] ρ1(k, t) + Γ−[k + 1, t] ρ1(k + 1, t)+

− λρ1(k, t) + λρ
(i)
1 (k, t)

ρ
(i)
1 (k, t+ 1)− ρ

(i)
1 (k, t) = λρ1(k, t)− λρ

(i)
1 (k, t)

(28)

with the usual transition rates eqs.(16),(17) and boundary conditions as in eqs (18),(19). This

new master equation described the intermittent add-cut process where idle states introduce

pauses in the process due to the probability of each nodes to fail in their intention. Here we

considered that the failure rates are the same for all the units in the network. The existence

of a stationary solution is guaranteed by the closed domain and the intermittent phases do not

contribute to the steady state degree distribution2. Finally we have the same truncated poisson

stationary distribution as in the classical case of XIE. In principle we can also consider different

failure rates for the two groups λ1 and λ0, then the degree distributions differ from the standard

case of XIE. Finally as shown in Fig.10, the generalized network model shows the same degree

distribution of the original CMED but the process is slowed down by the connection failures,

so that the trajectories of the degree are time series where ”pauses” arise in correspondence of

connection failures. This in practice introduces a delay in reaching the equilibrium state as well

as a slower speed in the linking mechanism.

4 Conclusions

In the present paper we described the time evolution of the agent-driven model of XIE via

a dynamics of coupled master equations. Our modeling predicts correctly both the transient

and the equilibrium distribution of degree outside the transition, and our analysis supports the

existence of an extreme Thouless effect, i.e. a discontinuous jump and large dynamic fluctuations,

at the critical point where the sizes of extroverts and introverts populations coincide. This type

of model, due to its minimal dynamical rules, may shed lights on a broad range of phenomena in

complex systems with agents displaying opposed behaviors. In particular, the mixed transition

at criticality may help explaining abrupt changes in financial behavior during market crisis. The

Thouless effect predicts an explosive, non-linear, collective behavior at a precise critical point,

suggesting that controlling for - exogenous or endogenous - changes in agents’s behavior could

keep the system far from abrupt transitions. In particular, this model of network formation, or

its similar generalizations, may help understanding sudden freezes in financial markets, when

agents collectively stop trading a specific instrument between each other after a small change

in market conditions. This phenomenon will be the subject of further studies. Moreover the

introduction of intermittency in the network can give a more realistic approach on networks

dynamics where there are times in which system jumps from idle states to active ones. and vice-

2the stationary degree distribution can be also recovered just using the ordinary CMED approach as in eq.(15)
and using an event-based representation of temporal networks [12]. We can here modify the transition rates
defining : Γ̃+[k− 1] = Γ+[k− 1](1− λ) and Γ̃−[k, t] = Γ−[k, t](1− λ). The problem with this approach is that we
ignore the idle states and that the process has pauses in its trajectories. But, at the end, it reaches, with different
transient times, the same degree distribution as using the intermittent CMED.
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(a) Transition to equilibrium obtained using the model and the CMED
in two cases: standard model with no failure rate, and the intermittent
case where the failur target probability is λ = 0.4. CMED approach ap-
proximates well both cases, and the introduction of a λ makes the system
slower to reach the stationary solution for the average degree.

(b) An inset of the trajectories for large timee, where we notice the pres-
ence of pauses in the case where failure rate is present. This slows down
the system but at large times it gives the same degree distribution of the
standard model (λ = 0).

Figure 10: trajectories of the average degree for the agent-driven network with target failures and the
relative intermittent CMED description. In (a) we notice that the two model and the numerical solution
coincides, reflecting that the introduction of failure probability λ slows down the transient state and the
reaching of the equilibrium state. The speed factor λ does not affect the final degree distribution but , as
shown in (b), introduces pauses in the trajectories of the average degree over time so making the system
slower

versa, giving to the entire system a notion of connection velocity. Finally, numerical simulations

show that degree fluctuations in time are connected to a peak in degree correlation at the

transition, suggesting the need to develop a theory beyond mean-field that will incorporate

degree correlations to gain a better description at the transition.
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Appendix A Bounded Poisson degree distribution

Let us take in account that we know the correction factor of the cut rate ϵ in eq.(17) so we can

define:

χ =
⟨k⟩0
ϵ

(29)

In the stationary regime the master equation eq.(15) can be written:

[

k + 1

χ
ρst1 (k + 1)− ρst1 (k)

]

−

[

k

χ
ρst1 (k)− ρst1 (k − 1)

]

= 0 (30)

with the boundary conditions as ρst1 (k = −1) = 0 and ρst1 (k = N0 + 1) = 0.

As proved by the authors in [3], in such closed system the stationary distribution corresponds

to the steady state where the detailed balance relation is valid and fulfills the following recurrence

equation:

ρst1 (k) =
χ

k
ρst1 (k − 1) (31)

and by applying the iteration successively we obtain the relation:

ρst1 (k) = ρst1 (0)

k
∏

m=1

χ

m
. (32)

Taking into account the normalization condition:

ρst1 (0) +

N0
∑

k=1

ρst1 (k) = 1, (33)

the stationary probability distribution in finite network becomes:

ρst1 (k) =















































k
∏

m=1

χ
m

1 +
N0
∑

j=1

j
∏

m=1

χ
m

for k = 1, . . . , N0

1

1 +
N0
∑

j=1

j
∏

m=1

χ
m

for k = 0.

(34)

Since
j
∏

m=1

a
m

= aj

j! , we get the the truncated poissonian distribution :

ρst1 (k) =
1

eχ Γ(N0+1,χ)
Γ(N0+1) − 1

χk

k!
, k = 0 . . . N0 (35)

18



where Γ(N0 + 1, χ) is the incomplete gamma function3. We want to notice that is the same

solutions the authors in [3] found the same numerical solution where the term χ had been

evaluated using a fixed-point algorithm, which gives the exact same distributions at equilibrium

of our approach of interacting master equations as shown in fig.11 and the correspondent tables

1 and 2 where we compute also a distance between distributions in terms of Kullback-Leibler

divergence (KL). This is a measure of how estimated probability distribution diverges from a

true expected probability distribution obtained, in this case, from the network model. The

results are that the CMED approach and the fixed-point algorithm provide the same solution

in determining the stationary degree distributions. Despite the fixed-point approach converge

faster to the solution, the CMED approach allows a complete description of the degree motion

capturing also the transient states as well as the it can be easy modify to obtain more general

agent-driven models. We can observe that the information lost when we use the CMED and

fixed-point distribution to approximate the real distribution is not zero even if very small. This

is in line with the fact that we are neglecting the although smal correlations among the nodes

in the network. Actually at criticality, the KL-divergence is much larger (typically two order

of magnitude) highlighting the presence of ignored strong correlations. In order to have a full

exploration of all the values of h we ned a consistent measure for the distance of approximated

distribution from the true one. We used the Hellinger distance since is a metric satisfying

Cauchy-Schwarz inequality. In Fig.12, plotting the Hellinger distance versus the population

difference we notice again that the approximation is pretty good for all the cases except for the

critical point h = 0 where the distance is 10 times larger.

Figure 11: Comparison among the three distributions obtained via montecarlo simulation of the model,
using the CMED approach and then substituting the the bounded poisson formula as in eq.(35) and
then runngin the numerical solution through the fixed point algorithm used in [3]. We explore the
case of N = 10, the left distributions is for the case N0 = 55, N1 = 45 and the right distribution for
N0 = 45, N1 = 55.

3 for N0 → ∞ we can write
N0∑

j=1

aj

j!
≈ ea − 1, getting the Zero-truncated Poisson distribution:

ρst1 (k) =
χk

(eχ − 1)

1

k!
, k = 0 . . . N0.

19



N0 = 45, N1 = 55 AverageDegree Variance KL divenrgence

model (true distribution) 41.525 10.224 0

CMED Bounded Poisson 41.582 10.001 0.0022275
fixed point 41.582 10.001 0.0022275

Table 1

N0 = 55, N1 = 45 AverageDegree Variance KL divenrgence

model (true distribution) 4.0878 4.1881 0

CMED Bounded Poisson 4.1772 4.1772 0.0023504
fixed point 4.1772 4.1772 0.0023504

Table 2

Figure 12: Hellinger distance as measure of divergence between the estimated degree distribution (via
CMED) and the true probability obtained from the model. We notice a peak at the critical value, reveling
again a much stronger discrepancy between the two distributions since in our mathematical description
we consider the network to be uncorrelated.
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