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Abstract

In this paperwe develop the �rst agent-based integrated assessmentmodel, which o�ers an alternative to stan-

dard, computable general-equilibrium frameworks. The Dystopian Schumpeter meeting Keynes (DSK) model

is composed of heterogeneous �rms belonging to capital-good, consumption-good and energy sectors. Pro-

duction and energy generation lead to greenhouse gas emissions, which a�ect temperature dynamics in a

non-linear way. Increasing temperature triggers climate damages hitting, at the micro-level, workers’ labor

productivity, energy e�ciency, capital stock and inventories of �rms. In that, aggregate damages are emerg-

ing properties of the out-of-equilibrium interactions among heterogeneous and boundedly rational agents.

We �nd the DSK model is able to account for a wide ensemble of micro and macro empirical regularities

concerning both economic and climate dynamics. Moreover, di�erent types of shocks have heterogeneous

impact on output growth, unemployment rate, and the likelihood of economic crises. Finally, we show that

the magnitude and the uncertainty associated to climate change impacts increase over time, and that climate

damages are much larger than those estimated through standard IAMs. Our results point to the presence of

tipping points and irreversible trajectories, thereby suggesting the need of urgent policy interventions.
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mate Damages.
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Now I am become Death, the destroyer of

worlds.

J. Robert Oppenheimer

1 Introduction

This paper presents the �rst agent-based integrated assessment model, comprising a complex evolving economy,

populated by heterogeneous, boundedly-rational agents, a climate box, and a stochastic damage generating

function endogenously yielding climate shocks of di�erent magnitudes.

The Paris agreement signed by 195 countries at the 2015 United Nations Climate Change Conference con-

stitutes an unprecedented event. It legally binds parties to undertake e�orts to keep the global mean surface

temperature at the end of the century within the 2 degrees above preindustrial levels, and eventually to achieve

the 1.5 degree target. Unfortunately, climate change will signi�cantly impact on our societies and economies

even if such ambitious objectives are achieved (Weitzman, 2009; IPCC, 2014; Schleussner et al., 2016) and, in

case of failure, the e�ects will be catastrophic.1 Accordingly, there is a lively debate is on the size of climate

damages we may su�er (see e.g. Stern, 2007; IPCC, 2014; Nordhaus, 2014), and on the likelihood and e�ects of

overcoming tipping points in the Earth biophysical system (Greiner et al., 2010; Brook et al., 2013; Grune et al.,

2015).2

The impact of climate change and the design of adaptation and mitigation policies is commonly performed

in climate economics by relying on integrated assessment models (IAMs),3 which add a simple carbon cycle

module to a computable general equilibrium barebone (e.g. Nordhaus, 1992; Tol, 1997; Hope, 2006; Bosetti et al.,

2006; Golosov et al., 2014). However, IAMs have been �ercely criticized by an increasing number of scholars

for their simplifying assumptions (see Pindyck, 2013; Stern, 2013, 2016; Weitzman, 2013; Revesz et al., 2014;

Farmer et al., 2015; Balint et al., 2017, among many contributions). The reason is that IAMs make completely

ad-hoc assumptions on the relationship between CO2 atmospheric concentration and temperature increases,

as well as about the damage function linking climate change to socio-economic damages (Pindyck, 2013). As a

result, they usually underestimate or neglect the scale of the risks of climate change, which can possibly lead

to the emergence of tipping points and non-reversibilities (Stern, 2016). Moreover, IAMs rely on unreasonable

assumptions, such as homogenous preferences, rational expectations, inter-temporal optimization, market-

clearing and general equilibrium e�ects in order to determine welfare changes.4 Such assumptions are di�cult

to defend in presence of deep uncertainty characterizing the occurrence of extreme physical events and tech-

nical change. In addition, they do not allow to capture the e�ects of the interactions among heterogeneous,

adaptive agents on economic dynamics, and thus prevent the study of the dynamics of income and wealth

inequality in relation to climate change and to the possible policy responses.5

1See also Sections 1.3 and 2.3 of the IPCC (2014) for what concerns current and future impacts and the review in Carleton and

Hsiang (2016).
2On the latter theme, the literature on early warning indicators has been expanding as well, see Biggs et al. (2009); Brock and

Carpenter (2010); Bentley et al. (2014).
3As a possible alternative, Pindyck (2016) is recently proposing to substitute the use of integrated assessment models with statistical

analysis of expert opinions of future impacts of climate change.
4The assumption of the representative agent is questionable on both theoretical (Kirman, 1992) and empirical (Forni and Lippi, 1997;

Heckman, 2001). However, some attempts to include heterogeneity in integrated assessment models is currently under development

(Bosetti and Ma�ezzoli, 2013).
5A relevant disclaimer applies. In the present discussion we refer to standard integrated assessment models as those used in the

economics literature and pioneered by Nordhaus (1992). Thesemodels are mainly concernedwith cost-bene�t assessments. Di�erently,

mainmodels usedwithin the IPCC exercises, despite beingmostly CGE based, are employed to project socio-economic conditions under

di�erent scenarios and to assess di�erent mitigation pathways. See Clarke et al. (2009) for an overview of main models and Emmerling

et al. (2016) for recent and detailed example.
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Given the current impasse, new approaches to modeling the co-evolution of climate change and economic

dynamics are needed. Agent-based models (Tesfatsion and Judd, 2006; Fagiolo and Roventini, 2012, 2017) con-

stitute a valuable and promising alternative to IAMs (Smajgl et al., 2011; Farmer et al., 2015; Stern, 2016; Mer-

cure et al., 2016; Balint et al., 2017). Agent-based models consider the real world as a complex evolving system

(more on this in Farmer and Foley, 2009; Dosi, 2012; Dosi and Virgillito, 2016; Kirman, 2016), wherein the in-

teraction of many heterogenous agents, possibly across di�erent spatial and temporal scales, gives rise to the

emergence of aggregate properties that cannot be derived by the simple aggregation of individual ones. More-

over, agent-based models o�er �exible tools to study the evolution of persistently out-of-equilibrium systems,

where behaviours that are nearly stable for long time may change dramatically, stochastically, and irreversibly

in response to small endogenous shocks (Balint et al., 2017).6

A new generation of agent-based models studying the intricate links between economic growth, energy,

and climate change at regional, national, and global level has blossomed in the last years (see Gerst et al., 2013;

Hasselmann and Kovalevsky, 2013; Wolf et al., 2013; Ponta et al., 2016; Safarzyńska and van den Bergh, 2016

and the survey in Balint et al., 2017).7 However, little e�ort has been devoted to the development of integrated

frameworks, wherein the economy and the climate may endogenously interact.

For these reasons, we develop the Dystopian Schumpeter meeting Keynes (DSK) model, which is the �rst

attempt to provide a fully-�edged agent-based integrated assessment framework. It builds on Dosi et al. (2010,

2013, 2016) and extends theKeynes+Schumpeter (K+S) family of models, which account for endogenous growth,

business cycles and crises. The model is composed by heterogeneous �rms belonging to a capital-good indus-

try and to a consumption-good sector. Firms are fed by an energy sector, which employ dirty or green power

plants. The production activities of energy and manufacturing �rms lead to CO2 emissions, which increase

the Earth surface temperature in a non-linear way as in Sterman et al. (2013). Increasing temperatures trig-

ger micro stochastic climate damages impacting in a heterogeneous way on workers’ labour productivity, and

on the energy e�ciency, capital stock and inventories of �rms. The DSK model accounts both for frequent

and mild climate shocks and low-probability but extreme climate events. Technical change occurs both in the

manufacturing and energy sectors. Innovation determines the cost of energy produced by dirty and green

technologies, which, in turn, a�ect the energy-technology production mix and the total amount of CO2 emis-

sions. In that, structural change of the economy is intimately linked to the climate dynamics. At the same

time, climate shocks a�ect economic growth, business cycles, technical-change trajectories, green-house gas

emissions, and global temperatures.

The DSK model provides the �rst attempt to link a complex adaptive economy with endogenous technical

change, to a climate box characterized by feedback loops and non-linear relationships within the carbon cycle

(see Sterman et al., 2012). Moreover, it provides a genuine micro-foundation of climate-related damages. In

particular, we introduce a stochastic damage function, where the probability andmagnitude of damages evolves

according to the behaviour of Earth’s average temperature, which in turn is a�ected by the dynamics of the

economic system. A variety of shocks and their combinations are explored, and simulation results are compared

to recent results from standard IAMs (Nordhaus, 2014).

Simulation results show that the DSK model is able to replicate a wide array of micro and macro-economic

stylized facts and climate-related statistical regularities. Moreover, the exploration of di�erent climate shock

scenarios reveals that the impact of climate change on economic performances is substantial, but highly hetero-

6The adoption of agent-based integrated assessment model also ease stakeholder participation and scenario plausibility exploration

(Moss et al., 2001; Moss, 2002a). Indeed, the higher degree of realism of agent based models (Farmer and Foley, 2009; Farmer et al.,

2015; Fagiolo and Roventini, 2017) allows to involve policy makers in the process of the development of the model employed for policy

evaluation (Moss, 2002b).
7Some interesting attempts at providing mixed system dynamics and agent based frameworks (Monasterolo and Raberto, 2016), as

well as stock-�ow consistent macro simulation models (Dafermos et al., 2017) are appearing.
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geneous, depending on the type of climate damages. More speci�cally, climate shocks to labour productivity

and capital stocks lead to the largest output losses and the highest economic instability, respectively. We also

�nd that the ultimate macroeconomic damages emerging from the aggregation of agent-level shocks are more

severe than those obtained by standard IAMs, with the emergence of tipping-points and irreversible catas-

trophic events.

Our results highlight the role of agents’ heterogeneity and interactions in the transmission and magni�ca-

tion of climate shocks across the economy. In that, our results call for urgent of policy interventions to contain

the possibly enormous economic losses produced by climate change, which could bring the system towards

disasters along the current business-as-usual growth path.

The paper is organized as follows. Section 2 describes the structure of the DSK model. Section 3 illustrates

the dynamics generated by the model and its capability to account for economic and climate empirical regular-

ities. In Section 4, we explore a wide range of climate shock scenarios and their impact of economic dynamics.

Finally, 5 discusses the results and concludes the paper.

2 The DSK model

The Dystopian Schumpeter meeting Keynes (DSK) model couples an economy populated by heterogenous, in-

teracting �rms and a climate box. The economy and the climate are linked by multiple, non-linear feedbacks,

and co-evolve over time. Figure 1 provides a graphical representation of the model.

The economy builds on the K+S model (Dosi et al., 2010, 2013) and is composed by two vertically separated

industries, wherein �rms are fed by an energy sector and �nanced by loans from a bank - if needed. Capital-

good �rms invest in R&D and innovate to improve the productivity, and possibly the energy-e�ciency and

environmental friendliness of their machines. Consumption-good �rms invest in capital-goods and produce

an homogenous product.

Both the energy and industrial sectors emit CO2, whose concentrations in the atmosphere a�ect the evo-

lution of the climate. Speci�cally, we model a carbon cycle characterized by feedback loops linking Earth’s

radiative forcing and the global mean surface temperature. The e�ects of an increase in Earth’s temperature

on the economic system are captured by a stochastic disaster generating function. Under a warming climate,

the probability of large shocks hitting, e.g. �rms’ labour productivity or capital stocks, increases together with

the mean size of the damage. Therefore, an increase in Earth’s surface temperature does not translate automat-

ically in higher aggregate damages as in most IAM, but rather, it modi�es the very structure of the economy,

thus a�ecting stochastic process characterizing economic growth. The details on model structure are spelled

out in Appendix A.

2.1 Consumption and capital good sectors

The economy comprises a capital-good and a consumption-good sector, which are vertically related by invest-

ment in machines.

Firms in the capital-good industry produce machine-tools using labour and energy. The technology of the

machines of vintage � is captured by their labour productivity, energy e�ciency and environmental friendliness

and it is represented by a set of six coe�cients (Aki,� , Bki,� ), with k ∈ {L, EE, EF}. Let us start with labor produc-

tivity, L: ALi,� stands for the productivity of the capital-good in the consumption-good industry, while BLi,� is the
productivity of the production tecnique needed to manufacture the machine. The apex EE, instead, refers to
energy e�ciency: AEEi,� represents the output per energy unit obtained by a consumption-good �rm using the

machine-tool, and BEEi,� is the corresponding ratio characterizing the production of the capital-goodmanufactrer
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Figure 1: A stylized representation of the DSK model.

technique. Given the monetary wage, w(t), and the cost of energy, cen(t), the unitary cost of production for

capital-good �rm i is given by:

ccapi (t) = w(t)
BLi,� + cen(t)

BEEi,� . (1)

Similarly, the unitary production cost of a consumption-good �rm j is:
cconj (t) = w(t)

ALi,� + cen(t)
AEEi,� . (2)

Finally, machines and techniques are characterized by their degree of environmental friendliness (identi�ed

by the apex EF ), which corresponds to the amount of polluting substances they emit in each period for each

unit of energy employed throughout the production process. Pollutants can be of di�erent sources and a�ect

the quality of air, water and ground.8 In what follows, we focus only on Greenhouse Gases (GHGs) and, in

particular, on CO2 as it represents the major driver of climate change (IPCC, 2013). Hence, AEFi,� refers to the

environmental friendliness of the machine-tool, while AEFi,� to that of �rm i’s production technique.

Firms in the capital-good industry adaptively strive to increase market shares and pro�ts trying to improve

their technology via innovation and imitation. They are both costly processes: �rms invest in R&D a fraction

of their past sales in the attempt to discover new technology or to imitate more advanced competitors. As in

Dosi et al. (2010), both innovation and imitation are modelled as two step processes. The �rst step captures

the stochastic nature of technical change and determines whether a �rm successfully innovates or imitates

through a draw from a Bernoulli distribution, where the (real) amount invested in R&D, that is, ultimately,

number of people devoted to search, a�ects the likelihood of success. The second step determines the size of

the technological advance via additional stochastic processes:

Aki,�+1 = Aki,� (1 + �kA,i) for k = L, EE (3)

Bki,�+1 = Bki,� (1 + �kB,i) for k = L, EE, (4)

8See the website of the US Environmental Protection Agency (EPA) for additional information about speci�c pollutants, http:

//epa.gov.

5

http://epa.gov
http://epa.gov


AEFi,�+1 = AEFi,� (1 − �EFA,i ) (5)

BEFi,�+1 = BEFi,� (1 − �EFB,i ), (6)

where �kA,i and �kB,i are independent draws from Beta(�k , �k) distributions over the supports [xk , xk], respec-
tively for k ∈ {L, EE, EF}. The support of each distribution de�nes the potential size of the technological

opportunity (Dosi, 1988) along the corresponding dimension. Speci�cally, in case of successful innovation,

the new vintage of capital-goods will be characterized by a novel combination of labour productivity, energy-

e�ciency and environmental friendliness (i.e. amount of pollutants per unit of energy used in the production

process, see equations 5 and 6). Finally, sucessful imitators have the opportunity to copy the technology of the

closest competitors in the technological space.

Firms in the consumption-good industry produce a homogeneous good using their stock of machines, en-

ergy and labour under constant returns to scale. Their demand comes from the consumption expenditures of

workers. Firms plan their production according to (adaptive) demand expectations, 9 desired inventories, and

their stock of inventories. Whenever the capital stock is not su�cient to produce the desired amount, �rms

invest in order to expand their production capacity.

Firms also invest to replace current machines with more technologically advanced ones. In particular, given

Ξi(t), the set of all vintages of machines owned by �rm j at time t , the machine of vintage � is replaced with a

new one if pnew
cconj (t) − cnew = pnew

[w(t)ALi,� + cen(t)AEEi,� ] − cnewj
≤ b (7)

where pnew and cnew are the price and unitary cost of production associated to the new machine and b is

a pay-back parameter determining �rms’ “patience” in obtaining net returns on their investments.10 Gross

investment of each �rm is the sum of expansion and replacement investments. Aggregate investment just

sums over the investments of all consumption good �rms.

Labour productivities, energy consumption and emissions in the consumption-good industry evolve ac-

cording to the technology embedded in the capital stock of each �rm. Consumption-good �rms choose their

capital-good supplier comparing price, productivity, and energy e�ciency of the currently manufactured ma-

chine tools they are aware of. Indeed, as the capital-good market is characterized by imperfect information,

consumption-good �rms can directly buy from a subset of machine-tool producers. Machine production is

a time-consuming process: consumption-good �rms receive the ordered machines at the end of the period.

Pricing follows a variable mark up rule.11

Consumption-good �rms must �nance their investments as well as their production. In line with a large

body of literature (Stiglitz and Weiss, 1981; Greenwald and Stiglitz, 1993) we assume imperfect credit markets.

Firms �rst employ their cash stock, and if the latter does not fully cover total production and investment costs,

they borrow external funds from a bank. More precisely, we assume that each �rm deposits its net cash �ows

at the bank and, if it falls short of that, it can get access to an overdraft credit line. The bank sets the maximum

amount of credit as a multiple of �rms’ deposits and it allocates them to borrowers on a pecking-order basis

according to the ratio between net worth and sales (see Dosi et al., 2013). 12 Total credit demand by �rms can

9In the benchmark setup, expectations are myopic. The results are robust for di�erent expectation setups. More on that in Dosi

et al. (2006) and Dosi et al. (2017a).
10This is in line with a large body of empirical analyses showing that replacement investment is typically not proportional to the

capital stock (e.g. Feldstein and Foot, 1971; Eisner, 1972; Goolsbee, 1998).
11These assumptions �nds all in line with large bodies of literature; see, e.g., Rotemberg (2008) for details on pricing, imperfect

information and behavioural attitudes of consumers and Boca et al. (2008) for presence of gestation lag e�ects in �rms’ investments.
12Notice that �rms’ deposits constitute the only “debt” of the bank in the model. Accordingly, the rule for the determination of

maximum credit is equivalent to one where the bank sets credit supply in order not to violate a desired target on the debt-to-asset

ratio.
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be higher than the maximum supply of credit, in which case credit rationing arises. 13.

Firms sets the price of their �nal good applying a variable mark-up (�j ) on their unit cost of production:

pconj (t) = cconj (t)[1 + �j(t)]. (8)

The mark-up change over time according to the evolution of �rm’s market share, fj (in line with a lot of

evolutionary literature and also with “customer market” models originally described by Phelps and Winter,

1970):

�j(t) = �j(t − 1) [1 + �
fj(t − 1) − fj(t − 2)fj(t − 2) ] (9)

with 0 ≤ � ≤ 1.
Also the consumption-good market is characterized by imperfect information (see Rotemberg, 2008, for

a survey on consumers’ imperfect price knowledge). As a consequence, consumers cannot instantaneously

switch to the most competitive producer even if the good is homogenous. In turn, market shares evolve ac-

cording to a “quasi replicator” dynamics: more competitive �rms expand while �rms with a relatively lower

competitiveness level shrink. The competitiveness of �rms depends on price as well as on un�lled demand.

At the end of every period, capital- and consumption-good �rms compute their pro�ts, pay taxes, and

update their stock of liquid assets. A �rm exits the market if its stock of liquid assets is negative or if its market

share falls to zero. As the number of �rms is �xed over time, each dead �rm is replaced by a new entrant.14

2.2 The energy industry

Energy production is performed by a pro�t-seeking, vertically-integrated monopolist through power plants

embodying green and dirty technologies.15 The energy monopolist produces on demand De(t) units of elec-
tricity for �rms in the capital-good and consumption-good industries (we exclude the possibility of energy

blackouts). The pro�ts of the energy producer are equal to:

Πe(t) = pe(t)De(t) − PCe(t) − ICe(t) − RDe(t), (10)

where pe(t) is energy price, PCe(t) is the total cost of generating an amount De(t) of energy, ICe(t) denotes
expansion and replacement investments,RDe(t) is the R&D expenditure. In the next sections, we explain in

details the elements in equation 10.

2.2.1 Electricity producing technologies, costs and revenues

The energy �rms produce electricity from a portfolio of power plants. The plants are heterogeneous in terms

of cost structures, thermal e�ciencies and environmental impacts. Green plants convert freely available, re-

newable sources of energy (such as wind, sunlight, water) into electrical power at a null unit production cost,

i.e. cge(t) = 0, and produce no greenhouse gas emissions. We shall assume for simplicity that green plants work

at full capacity, hence the quantity of electricity that can be produced through the green technology, Qge(t), is
equal to its capacity Kge(t). Dirty plants burn fossil fuels (e.g. natural gas, coal, oil) through a process charac-

terized by thermal e�ciency A�de , where � denotes the technology vintage. Hence, the average production cost

13Finally, also the �rms that are not credit rationed face limits in the utilization of their overdraft credit. The ratio between a �rm’s

debt and its sales cannot exceed a maximum threshold that depends on the �rm’s past sales (see Dosi et al., 2013, for more details)
14Furthermore, in line with the empirical literature on �rm entry (Caves, 1998), we assume that entrants are on average smaller

capital and stock of liquid assets than incumbents.
15The assumption of monopolistic production may sound questionable in light of the liberalization process at work in the energy

markets, but it is worth noting that oligopolistic liberalized electricitymarkets are prone to tacit collusion rooted in repeated interaction,

tall entry barriers, and a relatively high degree of transparency in supply o�ers (see e.g. Fabra and Toro, 2005).
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for a dirty plant of vintage � is given by

cde(� , t) = pf (t)
A�de (11)

where pf (t) is the price of fossil fuels, exogenously determined on internationalmarkets.16 The dirty technology

leaves a carbon footprint, in that burning fossil fuels yields em�de emissions per energy unit.

As the electricity production is a highly capital-intensive process, which mainly requires power generation

assets and resources, we assume away labour from electricity production. The total production cost depends

on which plants are used. As the marginal cost of electricity production of green plants is null, the monopolist

will employ them �rst and it will switch on the dirty plants only if the green capacity is insu�cient to satisfy

demand. Even in that case, the cheapest dirty plants will be used �rst.17

Let IM be the set of infra-marginal power plants, whose total production equals demand. If De(t) ≤ Kge(t),
IM only includes green plants and the total production cost is zero. IfDe(t) > Kge(t), the total energy production
cost (PCe) is positive as dirty power plants are activated:

PCe(t) = ∑�∈IM gde(� , t)cde(� , t)A
�de , (12)

where gde(� , t) is the absolute frequency of vintage � plants.
The energy producer adds a �xed markup �e ≥ 0 on the average cost of the most expensive infra-marginal

plant. Hence the selling price reads:

pe(t) =
⎧⎪⎪⎨⎪⎪⎩
�e if De(t) ≤ Kge(t)
cde(� , t) + �e if De(t) > Kge(t) , (13)

where cde(� , t) = max�∈IM cde(� , t). Note that according to equation 13, the energy producer gains a positive

net revenue on all infra-marginal plants.18

2.2.2 Energy plant investment

The energy producing �rm needs to replace obsolete plants, as well as to perform expansion investments

whenever the current capacity is insu�cient to cover demand. New plants are built in house, but the costs of

building new green and dirty plants di�er. More speci�cally, we normalize to zero the costs of building new

dirty plants, whereas a cost of IC�ge must be sustained in order to install a new green plant.

The capacity stock Ke(t) is de�ned as the sum of the capacities of all power plants across technologies

(green, dirty) and vintages. As the capacities of individual plants are normalized to one, the capacity stock

reads:

Ke(t) = ∑� gde(� , t) +∑� gge(� , t), (14)

where gde(� , t) denotes the absolute frequency of vintage-� dirty plants, and gge(� , t) is the same for green

plants. Given that green power plants produce at full capacity and dirty plants are characterized by thermal

16The markets for fossil fuels are globally integrated and the prices of di�erent fuels are linked, as also shown by the evidence of co-

integration of their time series. Recently, the shale gas revolution has blurred this relationship (Caporin and Fontini, 2016). However,

in presence of institutional factors, such as prices indexed on baskets of energy goods, we can consider fossil fuels as homogeneous in

their impacts on electricity production costs.
17Such a merit order rule is based on the actual functioning of the electricity industry. Even before liberalization, the traditional

goal of energy systems management was the minimization of system-wide electricity production, transmission, and distribution costs.
18Other empirically observed ways of exploiting market power include withholding relatively cheap plants and causing network

congestion. We think thatmodelingmarket power throughmarkups captures all these practices. Note also that amonopolistic producer

could arbitrarily increase the price beyond any limit, but this usually does not occur as producers fear regulatory intervention, wish

to discourage entry, or there is a price cap set by the regulatory agency.
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e�ciencies A�de , the maximum production level that can be obtained with the available capacity stock is

Qe(t) = ∑� gde(� , t)A�de + ∑� gge(� , t). (15)

Whenever the maximum electricity production level Qe(t) falls short of the electricity demand De(t), the
monopolist invests (EI de ) to expand the capital stock:

EI de (t) =
⎧⎪⎪⎨⎪⎪⎩
Kde (t) − Ke(t) if Qe(t) < De(t)0 if Qe(t) ≥ De(t) . (16)

The energy producers employ a payback period routine to choose the technology of its expansion investment.

More speci�cally, the expansion investment involves only new green capacity, whenever the �xed cost of

building the cheapest vintage of green plants (ICge) is below the discounted production cost of the cheapest

dirty plant (cde): ICge ≤ becde
where be is a discount factor, ICge = min� IC�ge , and cde = min� c�de . If so, the producer builds EI de (t) units of
new green capacity and the expansion investment cost amounts to

ECe(t) = ICgeEI de (t) (17)

If instead the payback rule is not met, the entire expansion investment consists of the cheapest dirty plants and

is undertaken at no cost (ECe(t) = 0).

2.2.3 R&D expenditures and outcomes

The energy producer tries to innovate in order to discover new green and dirty technologies. The R&D invest-

ment is a fraction ve ∈ (0, 1) of previous period sales:

RDe(t) = veSe(t − 1) (18)

The R&D budget is split among green (INge) and dirty (INde) technologies according to the following rule:

INge(t) = �eRDe(t) INde(t) = (1 − �e)RDe(t),
with �e ∈ (0, 1). Given the R&D investment, the innovative search in the green and dirty technological trajec-

tories is successful with probabilities �ge(t) and �de(t):
�ge(t) = 1 − e−�ge INge (t) �de(t) = 1 − e−�de INde (t) (19)

with �ge ∈ (0, 1), �de ∈ (0, 1).
Successful innovation in the green technology reduces the �xed costs, thus encouraging the installment

of green plants.19 Formally, the installment cost of a new vintage of green plants, IC�ge , is lowered by a factor

19In real world, the thermal e�ciencies of green technologies is far below 100% and there can be e�ciency-improving innovations.

As higher thermal e�ciency allows a faster amortization of the �xed construction cost, we think that our modeling choice yields the

same e�ects (lower �xed construction costs reduce the break-even point) in a more parsimonious setting.
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xge ∈ (0, 1) (a random draw from a Beta distribution) with respect to the previous vintage:

IC�ge = IC�−1ge xge (20)

A successful innovation in the dirty technology, instead, works through a better thermal e�ciency and the

abatement of greenhouse gas emissions. The e�ciency and emissions of a new dirty technology (vintage � )
are represented as a pair (A�de , em�de), related to the existing values as follows:

A�de = A�−1de (1 + xAde) em�de = em�−1de (1 − xemde ) (21)

where xAde and xemde are independent random draws from a Beta distribution. Note that the new dirty technology

could also be characterized by higher thermal e�ciency but higher levels of emissions.

2.3 The climate box

The climate box links CO2 emissions with atmospheric carbon concentrations and the dynamics of Earth’s

mean surface temperature. Such relationships are modeled through a core carbon cycle as in Sterman et al.

(2012, 2013). The climate box captures the major features of the physical and chemical relations governing

climate change, paying particular attention to the feedbacks that might give rise to non-linear dynamics, while

avoiding a complex and detailed description of the climatic process. Note that such feedbacks are generally

overlooked by standard climate-economy models, even though there is ample evidence of their importance in

accelerating global warming (Cox et al., 2000).20

2.3.1 The carbon cycle

Our carbon cycle is modelled as a one-dimensional compartment box based on Goudriaan and Ketner (1984)

and Oeschger et al. (1975). On the one hand, atmospheric CO2 is determined in each period by the interplay of

anthropogenic emissions, exchanges with the oceans, and natural emissions from the biosphere. On the other

hand, CO2 is removed from the atmosphere as it is dissolved in the oceans and taken up by biomass through

net primary production. To simplify, we model the biosphere as an aggregate stock of biomass endowed with

a �rst order kinetics.

Net primary production (NPP), modeled here as the �ux of carbon from the atmosphere to biomass, grows

logarithmically with the CO2 stock (Wullschleger et al., 1995) and it is negatively a�ected by temperature’s

increase:

NPP (t) = NPP (0)(1 + �C log Ca(t)Ca(0)) (1 − �T1Tm(t − 1)), (22)

where Ca(t) represents the stock of carbon in the atmosphere at time t , Tm is the increase in mean surface

temperature from the pre-industrial level (corresponding to t = 0), �C is the strength of the CO2 fertilization

feedback,21 while �T1 captures themagnitude of the temperature e�ect onNPP. A negative relationship between

NPP and surface temperature is included to account for such an important climate-carbon feedback. Note that

in line with recent �ndings (Zhao and Running, 2010), the second term of equation 22 captures the negative

impact of global warming on the biosphere uptake, which gives rise to positive climate-carbon cycle feedbacks

20Our modelling e�ort give rise to a structure that can be categorized in between so-called Simple Climate Models (Harvey et al.,

1997, for a review) and Earth-system Models of Intermediate Complexity (Claussen et al., 2002, for a review).
21The fertilization feedback refers to the phenomenon of increasing biosphere’s carbon uptake due to the stimulus that CO2 atmo-

spheric concentrations exerts on vegetation productivity (Allen, 1990; Allen and Amthor, 1995; Matthews, 2007).
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(Sterman et al., 2012).22

The concentration of carbon in the atmosphere depends also on the structure of exchanges with the oceans.

The latter are represented by a two-layer eddy di�usion box which simpli�es Oeschger et al. (1975).23 In

particular, it is composed by a 100 meters mixed layer (which constitutes upper oceans) and a deep layer of

3700 meters for an average total depth of 3800 meters. The equilibrium concentration of carbon in the mixed

layer (Cm) depends on the atmospheric concentration and the bu�ering e�ect in the oceans created by carbonate

chemistry:

Cm(t) = C∗m(t) [Ca(t)Ca(0)]
1/� (t)

(23)

where C∗m is the reference carbon concentration in the mixed layer, Ca(t) and Ca(0) are respectiviely the con-

centrations of atmospheric carbon at time t and at the initial point of the simulation, and � is the bu�er (or

Revelle) factor.24

The Revelle factor is not constant and rises with atmospheric CO2 (Goudriaan and Ketner, 1984; Rotmans,

1990) implying that the oceans’ marginal capacity to uptake carbon diminishes as its concentration in the

atmosphere increases:

� (t) = �0 + � log [Ca(t − 1)

Ca(0) ] (24)

where �0 is the initial value of the Revelle factor, and � > 0 expresses the sensitivity of � to the relative

atmospheric concentration of carbon.

The reference carbon concentration in the mixed layer (C∗m) is a�ected by the negative e�ect of global

warming on the seawater solubility of CO2 (Fung, 1993; Sarmiento et al., 1998), which, in turn accelerates

climate change (Cox et al., 2000). As in the previous case, we approximate this feedback to a �rst order term:

C∗m(t) = Cm(0)[1 − �T2Tm(t − 1)] (25)

whereCm(0) is the initial concentration of carbon in themixed layer of the oceans, and �T2 models the sensitivity

to temperature changes of the equilibrium carbon concentration in seawater .

Net �ux of carbon through the oceans is determined by the relative concentrations of carbon in the two

layers. In particular, the net �ux from the mixed to the deep layer (ΔCmd ), is de�ned by:

ΔCmd (t) = keddy [
Cm(t−1)dm − Cd (t−1)dd ]

d̄md (26)

where dd and dm are respectively the thickness of deep and mixed layers, d̄md is the mean thickness of the

mixed and deep oceans, and keddy is the eddy di�usion parameter. The �ux of carbon through the atmosphere,

biosphere and oceans a�ects the heat transfer across the system and, hence, the dynamics of Earth’s surface

mean temperature.

22The role of warming on the biosphere uptake of carbon is still debated and strongly depends on local conditions (Shaver et al.,

2000; Chiang et al., 2008; IPCC, 2001, ch. 3). However, the IPCC (2007b) reports evidences of stronger positive climate-carbon cycle

feedbacks than previously thought, which would increase future estimates of CO2 concentrations in the atmosphere.
23Our representation of the oceans resembles that in Nordhaus (1992). The eddy di�usion refers to any di�usion process by which

substances are mixed in a �uid as a result of a turbulent �ow. A simplifying example consists in the di�usion of a dissolved sugar

molecule across a co�ee cup due to the eddies generated by the movements of the spoon.
24The Revelle factor (Revelle and Suess, 1957) expresses the absorption resistance of atmospheric carbon dioxide by the ocean surface

layer. The capacity of the ocean waters to take up surplus CO2 is inversely proportional to its value.
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2.3.2 Global warming

Once carbon exchanges among the atmosphere, the oceans and the biomass reach a new equilibrium, the

updated concentrations of carbon a�ect global warming mainly via radiative forcing. In particular, the global

mean surface temperature is determined by the heat content of the surface and mixed layer of the oceans,

which are aggregated into a single compartment. We model the behavior of temperatures in the di�erent

layers building on Schneider and Thompson (1981) and Nordhaus (1992). The heat content of the di�erent

layers is modulated by their reciprocal exchanges and, with respect to the upper compartment (atmosphere

and surface oceans), by the CO2 radiative forcing (FCO2 ).25 Therefore, the dynamics of the temperature in the

mixed (Tm) and deep (Td ) layers can be modelled as follows:

Tm(t) = Tm(t − 1) + c1 {FCO2(t) − �Tm(t − 1) − c3[Tm(t − 1) − Td (t − 1)]} (27)

Td (t) = Td (t − 1) + c4 {�md [Tm(t − 1) − Td (t − 1)]} (28)

where temperature (T ) is expressed as to pre-industrial levels, Rm and Rd are the thermal inertias in the two

layers, � is a climate feedback parameter, FCO2 represents the radiative forcing in the atmosphere from GHG

(relative to pre-industrial levels) and �md is a transfer rate of water from the upper to lower oceans accounting

also for the heat capacity of water. The main climate variable we are interested in is the temperature of the

surface-upper oceans compartment, Tm.
Accumulation of GHG leads to global warming through increasing radiative forcing (FCO2 ) according to:

FCO2(t) = 
 log(Ca(t)Ca(0)) , (29)

with 
 > 0. The anthropogenic emissions contributes to increase carbon concentration in the atmosphere (see

Section 2.4), thus inducing climate change via the radiative forcing of GHGs. At the same time, global warming

exerts two important feedbacks on the dynamics of carbon, a�ecting its exchanges with the biosphere (eq. 22)

and the oceans (eq. 25).

2.3.3 The timeline of events in the climate box

In each period, we assume that events in the economy and the climate box happen sequentially with the surface

temperature as the last variable to be determined:

1. total emissions produced in period t add to the current stock of atmospheric CO2 concentrations, thereby

modifying the biophysical equilibrium;

2. the increased carbon concentration a�ects oceans’ marginal capacity to uptake CO2;

3. carbon exchanges between the atmosphere and both biosphere and oceans take place, with the possible

feedbacks from global warming;

4. the new equilibrium concentration of carbon in the atmosphere, Ca(t), is determined;

5. Ca(t) a�ects the new radiative forcing of GHG;

25Radiative forcing is a measure of the in�uence a factor has in altering the balance of incoming and outgoing energy in the Earth-

atmosphere system and it is an index of the importance of the factor as a potential climate change mechanism (IPCC, 2007a). To

simplify, we use CO2 as a proxy for all greenhouse gases and we consider only its radiative forcing.
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6. the radiative forcing determines the entity of climate change, i.e. the increase in mean surface and upper

oceans’ temperature;

7. a set of stochastic shocks hitting the economy are drawn from a distribution whose density function is

a�ected by the dynamics of surface temperature.

The last point provides the feedback between the climate evolution and the dynamics of the economy. We

describe it in more details in the next Section.

2.4 Climate and economy co-evolution

The dynamics of climate and the economy are intimately intertwined, with multiple feedbacks a�ecting their

evolution.

First, production of goods and energy entails CO2 emissions in the atmosphere, thereby increasing its

concentration. Total emissions (Em) are simply obtained by summing CO2 emissions in the machine-tool

industry (Emcap), consumption-good sector (Emcon) and in energy production (Emen):

Em(t) = ∑� (∑i Em
capi,� (t) +∑j Em

coni,� (t) + Emen� (t)) , (30)

where � denote the vintage of machine or power plant. Emissions are obtained straightforwardly multiplying

the coe�cient of environmental friendliness of the machine (plant) at stake with the total amount of energy

units (fuel units, in the case of the energy sector) used in period t .
At the same time, climate change impacts on the economic system via multiple, possibly catastrophic,

events hitting labour productivity, �rm energy e�ciency, �rm-level capital stocks and inventories, etc. (see

section 4 for further details). Climate change originates from increasing radiative forcing due to higher and

higher CO2 concentration in the atmosphere. As it is well discussed in Pindyck (2013), the choice of how to

represent global-warming induced damages is the most speculative element of the analysis, both because of

the lack of robust empirical evidence and because of the neglect of societal adaptation processes.26 At the same

time it is the litmus test of the exercise.

Most IAMs simply assess the impact of climate-change on the economy via aggregate fractional GDP losses.

The usual practice consists in specifying an ad-hoc functional form for the so-called damage function with

arbitrary parameters.27 The adoption of simple aggregate damage functions brings three further problems.

First, by considering only GDP losses, IAMs do not distinguish between di�erent types of possible damages.

Second, the adoption of continuous and “smooth” damage functions rules out the treatment of catastrophic,

more or less rare climate events. Finally, there is an absolute degree of certainty in the occurrence of the

damage: whenever an increase in average surface temperature materializes, some output is deterministically

destroyed.

In the attempt to overcome such problems, we employ a genuine bottom-up approach to climate impact

modeling (Ciscar et al., 2011, 2012). More speci�cally, our stochastic agent-based damage generating func-

tion evolves over time according to the dynamics of the climate. At the end of each period, a draw from the

distribution establishes the size of the shock a�ecting �rms and workers. The impact of climate shocks are

heterogeneous across agents (e.g. some �rms can face disasters, while others mild events) and it can a�ect

di�erent variables (e.g. labor productivity, capital stock, etc.).

26We notice that some advances in the empirical analysis of climate impacts are materializing (see Carleton and Hsiang, 2016) but,

on the other side, we are not aware of attempts at accounting for these insights within standard IAMs.
27For example, Nordhaus (2008) uses an inverse quadratic loss function, Weitzman (2009) proposes a negative exponential functional

speci�cation emphasizing the catastrophic role of large climate changes, while Tol (2002) uses sector and area speci�c loss functions.
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The disaster generating function takes the form of a Beta distribution over the support [0, 1], whose density
satis�es: f (s; a, b) = 1

B(a, b) sa−1(1 − s)b−1, (31)

where B(⋅) is the Beta function and a, b are respectively the location and scale parameters. Both parameters

are assumed to evolve across time re�ecting changes in climate variables:

a(t) = a0[1 + log Tm(t)] (32)

b(t) = b0�10y (0)�10y (t) , (33)

where �10y (t) captures the variability of surface temperatures across the previous decade and a0, b0 are pos-

itive integers.28 Equations (32) and (33) shape the disaster generating function as a right-skewed, unimodal

distribution, whose mass shifts rightward as temperature increases, thereby raising the likelihood of larger

shocks.29 Equation (33) determines the size of the right tail of the distribution and it allows one to account for

the importance of climate variability on natural disasters (Katz and Brown, 1992; Renton et al., 2014), which has

been increasingly recognized as a major driver of climate disasters (Thomalla et al., 2006; IPCC, 2012; Revesz

et al., 2014), even if most of the models do not even mention it.30

3 Macroeconomic and climate dynamics in the DSK model

The DSKmodel allows to jointly study the short- and long-run behavior of the economy under global warming

and increasingly large and volatile climate shocks. The rising temperature associated with increasing emissions

can lead to stronger and more volatile climate shocks, which in their turn can induce recessions and crises,

possibly hampering also the growth performance of the economy even letting alone deeper welfare shocks

(more in the conclusions). Hence, in presence of climate change, Solow’s plea for macroeconomic models to

jointly account for short- and long-run dynamics is evenmore relevant (see also Rogo�, 2016, on the importance

of climate shocks for short-run dynamics). Thus, the ability of the DSK model to simultaneously account for

short- and long-run features is, in our opinion, a key aspect of the overall exercise and also a major advantage

over standard IAMs.

Wewill study the dynamics of theDSKmodel in the business-as-usual (BAU) benchmark scenario, where no

climate policies are in place. The model is calibrated and initialized on the main features of the global economy

in year 2000 and climate shocks are switched o�.31 As it is typically the case in agent-based computational

economics, the DSK model does not allow for analytical, closed-form solutions (for a discussion, Fagiolo and

Roventini, 2012, 2017). We then perform extensive Monte Carlo simulation exercises to study the properties of

the stochastic processes governing the co-evolution of micro- and macroeconomic variables. More speci�cally,

28For modelling purposes we estimate the standard deviation of the previous ten recorded temperatures; however, a widely used

measure of climate variability corresponds to the count of extreme temperatures (IPCC, 2012).
29Naturally, any distribution would be feasible for sampling climate shocks. Our choice should be considered as a �rst attempt

towards a micro-foundation of climate damages. The Beta distribution is �exible enough to explore a wide range of scenarios and to

genuinely account for fat-tailed climate risks (Ackerman et al., 2010; Weitzman, 2011; Pindyck, 2012).
30The majority of studies accounting for climate catastrophes employ some variant of the DICE model (see also Gerst et al., 2010;

Berger et al., 2016) where an arbitrary large output loss is identi�ed as a catastrophe. To the contrary, our modeling e�ort should be

seen as an attempt at providing evidence of how large shocks at the individual level might impact on aggregate dynamics, outside

optimal growth paths.
31In particular, the model has been calibrated through an indirect calibration exercise (Windrum et al., 2007).
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(a) Output. (b) Energy demand.

(c) Emissions. (d) Atmospheric concentrations of CO2.
Figure 2: Long-run evolution of selected variables, log-scale for panels 2a, 2b and 2c.

we run the model for 400 periods, which are to be interpreted as quarters, thereby obtaining projections until

year 2100. As the model generates multiple possible trajectories, each linked to a di�erent pattern of technical

change in the industrial and energy sectors, we rely onMonte Carlo experiments of size 100. Note that emergent

non-ergodicity, tipping points, irreversibility and hysteretic phenomena typically characterize the dynamic of

the DSK model (more on that in Brock, 1988; Brock and Xepapadeas, 2003; Dosi et al., 2017b).32

We will �rst discuss in Section 3.1 the macroeconomic and climate variable projections obtained by sim-

ulating the DSK model. We will then show the economic and climate stylized facts that the model is able to

replicate (cf. Section 3.2).

3.1 Macroeconomic and climate variable projections

Simulation results show that the DSKmodel is able to track the empirical evolution of the economywith respect

to a variety of measures, including output growth rates, unemployment levels, emissions growth rates and

energy consumption. Figure 2 shows a representative run for some quantities of interest, while MC averages

and standard deviations for the main macroeconomic and climate variables are collected in Table 1.

We robustly �nd endogenous growth of output and energy demand, which increase at relatively similar

rates. Emissions steadily grow as well, but at a lower pace, in line with recent evidence (cf. Olivier et al., 2015).

Moreover, projections indicate that the economic system grows with endogenous �uctuations punctuated by

major crises,33 which in turn leads to the emergence of persistent unemployment. Finally, the share of re-

32Extensive tests show that the results are robust to changes in the initial conditions for the microeconomic variables of the model.

In addition,they show that, for the statistics under study, Monte Carlo distributions are su�ciently symmetric and unimodal. This

justi�es the use of across-run averages as meaningful synthetic indicators. All our results do not signi�cantly change if the Monte

Carlo sample size is increased. Details available from the authors.
33See e.g. NBER (2010); Claessens and Kose (2013). In our framework, a crisis is de�ned as an event where the yearly loss of output

is higher than a 5% threshold.
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Table 1: Summary statistics on selected variables under business-as-usual scenario and no climate shocks.

MC average MC st. dev. MC average MC st. dev.

GDP growth 0.032 0.005 Share of emissions from energy sector 0.614 0.201

Likelihood of crises 0.121 0.076 Share of green energy 0.299 0.285

Unemployment 0.120 0.032 Periods green energy above 20% 0.330 0.103

Energy demand growth 0.031 0.002 Emissions growth 0.031 0.003

GDP volatility 0.278 0.024 Consumption volatility 0.187 0.021

Investment volatility 0.313 0.022 Volatility of �rm total debt 0.638 0.069

Volatility of energy demand 0.212 0.040 Emissions volatility 0.327 0.025

Emissions at 2100 26.90 9.236 Temperature at 2100 4.54 0.509

Note: All values refer to aMonte Carlo of size 100. Emissions are expressed in GtC, which can be converted in GtCO2 using the following conversion
factor: 1 GtC = 3.67 GtCO2. Temperature is expressed in Celsius degrees above the preindustrial level, which is assumed to be 14 Celsius degrees.

newable energies in total energy production exhibits an average of 30% over the whole time span (which we

take to stand for the period 2000-2010). Renewable energies account for more than 20% only in one third of

the periods, thus indicating that transitions towards a green economy in a business-as-usual scenario are quite

unlikely.

The DSK model delivers also reasonable results in terms of projected global mean surface temperature.

Figure 3 shows the dynamics of temperature along the whole time span for a Monte Carlo of size 50 and reports

their distribution at the middle (2050) and �nal point (2100) of the simulation. Our results are relatively in line

with those from the most widely used IAMs (see Clarke et al., 2009; Gillingham et al., 2015). Note, however, that

the mean and median values of our projections are somewhat higher than those of other models (details are

provided in Appendix B). This outcome is driven by the presence, within the carbon cycle (see Section 2.3), of

di�erent feedback loops yielding non-linear dynamics.34 In particular, we robustly �nd a precise behavior in the

projection of temperature: a �rst phase of gradual increase is followed by a period (indicatively located between

2025 and 2050) where climate change accelerates dramatically, and a third phase, where climate change lowers

its pace and displays an almost constant growth. The path-dependency showed by such projections calls for

policy interventions that occur early enough to avoid an increase in temperatures which is substantially above

the two percent threshold. Finally, Figure 3b shows the Monte Carlo distribution of temperature at the middle

(2050) and �nal (2100) point of the simulation. As in the BAU benchmark scenario, climate shocks are switched

o�, such distributions characterize the uncertainty surrounding temperature projections stemming only from

technical change (Dosi, 1988). The mean, support, and tails of the temperature distribution all increase over

time, again suggesting the non-linear and accelerating dynamics of climate change.

3.2 Replication of empirical regularities

Beyond these general features, the DSK model is able to jointly reproduce a large ensemble of micro and macro

stylized facts characterizing short- and long-run behavior of economies. Table 2 reports the main empirical

regularities replicated by the model together with the corresponding empirical studies. We discuss here the

most relevant empirical regularities, leaving additional details to appendix A.

Let us begin with business cycle stylized facts.35 Once we remove the trend with a bandpass �lter (Baxter

and King, 1999), output, investment and consumption series display the familiar “roller-coaster” dynamics (see

e.g. Stock and Watson, 1999; Napoletano et al., 2006, and Appendix B for plots of the �ltered series). In line

with the empirical evidence, consumption is less volatile than GDP, while the �uctuation of investment are

34These feedbacks have been calibrated according to Sterman et al. (2013) and C-ROADS model documentation. See https://
www.climateinteractive.org/tools/c-roads/technical.

35On the relevance of accounting for business cycles features for a climate-oriented macroeconomic model ssee Rogo� (2016).
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(a) Temperature projections. (b) Distribution of temperature.

Figure 3: Temperature projections and their density estimates. Both graphs refers to a Monte Carlo of size 50.

Red dashed lines in panel 3b indicate mean values.

wilder. Moreover, �rms’ total debt, which is an imperfect proxy for the �nancial side of the model, shows

signi�cantly ampler �uctuations than output (see table 1). Finally, the real, �nancial and energy parts of the

economic system appear to be are strongly correlated across down-swings and, to a lower extent, upswings (see

appendix B for details). This �nding corroborates some recent evidence (Albuquerque et al., 2015) showing that

correlations between economic fundamentals and �nancial markets are particularly strong across “episodes”.

The co-movements between macroeconomic variables at the business cycle frequencies are well in tuned

with the literature (see �gure 7c in Appendix B; cf. Stock and Watson, 1999; Napoletano et al., 2006). Cross-

correlations between GDP and the other main macroeconomic variables (see �gure 4 and Appendix A) reveal

that consumption and investments are pro-cyclical and coincident. Unemployment and prices are counter-

cyclical and in�ation is slightly pro-cyclical. Finally, energy demand shows a lagging and pro-cyclical pattern

akin to the one of �rm-level debt (see Claessens et al., 2009 on the credit cycle). This is in line with the evidence

that industrial production causes energy use at business-cycle frequencies (Thoma, 2004).

Beyond business-cycle properties, theDSKmodel reproduces fairlywell the long-run positive co-integrating

relationships between energy and output (for a survey see Ozturk, 2010) and GDP and emissions (Triacca, 2001;

Attanasio et al., 2012). Figure 2 shows that energy demand, output and emissions co-evolve in the baseline sce-

nario (see also Figure 7c in Appendix B for details). Such patterns are con�rmed by a series of co-integration

tests (cf. Table 3), which show a statistically signi�cant connections between output growth, energy demand,

and emissions.

Finally, we have checked the consistency of the DSK model’s emission and temperature projections with

those produced by other IAMs. This step is crucial to meaningfully compare the e�ects of micro climate dam-

ages on macroeconomic performances with those obtained by other models. Results are in line with the liter-

ature and further details are included in Appendix B.

4 Climate damages

Climate damages are usually perceived as the most speculative element of the overall integrated assessment

modelling e�ort (Pindyck, 2013) and often rely on ad-hoc damage functions (Tol, 2002). Even though the e�ects

of climate change are hardly understandable without extensive data and reasonable variance in temperatures,

we try to provide a genuine micro-foundation of aggregate climate damages exploiting the potentiality of
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Table 2: Main empirical stylized facts replicated by the DSK model.

Stylized facts Empirical studies (among others)

Macroeconomic stylized facts

SF1 Endogenous self-sustained growth Burns and Mitchell (1946); Kuznets and Murphy (1966)

with persistent �uctuations Zarnowitz (1985); Stock and Watson (1999)

SF2 Fat-tailed GDP growth-rate distribution Fagiolo et al. (2008); Castaldi and Dosi (2009)

Lamperti and Mattei (2016)

SF3 Recession duration exponentially distributed Ausloos et al. (2004); Wright (2005)

SF4 Relative volatility of GDP, consumption, investments and debt Stock and Watson (1999); Napoletano et al. (2006)

SF5 Cross-correlations of macro variables Stock and Watson (1999); Napoletano et al. (2006)

SF6 Pro-cyclical aggregate R&D investment Wälde and Woitek (2004)

SF7 Cross-correlations of credit-related variables Lown and Morgan (2006); Leary (2009)

SF8 Cross-correlation between �rm debt and loan losses Foos et al. (2010); Mendoza and Terrones (2012)

SF9 Pro-cyclical energy demand Moosa (2000)

SF10 Syncronization of emissions dynamics and business cycles Peters et al. (2012); Doda (2014)

SF11 Co-integration of output, energy demand and emissions Triacca (2001); Ozturk (2010); Attanasio et al. (2012)

Microeconomic stylized facts

SF12 Firm (log) size distribution is right-skewed Dosi (2007)

SF13 Fat-tailed �rm growth-rate distribution Bottazzi and Secchi (2003, 2006)

SF14 Productivity heterogeneity across �rms Bartelsman and Doms (2000); Dosi (2007)

SF15 Persistent productivity di�erential across �rms Bartelsman and Doms (2000); Dosi (2007)

SF16 Lumpy investment rates at �rm-level Doms and Dunne (1998)

SF17 Persistent energy and carbon e�ciency heterogeneity across �rms DeCanio and Watkins (1998); Petrick et al. (2013)

Figure 4: Cross-correlations between output and main macroeconomic aggregates. Bandpass-�ltered (6,32,12)

series. Average cross-correlations from a Monte Carlo of size 100. Cons: consumption; Inv: investment; Tot-

Debt: Firm total debt; EnDem: energy demand; In�: in�ation; Unempl: unemployment.
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Table 3: Cointegration tests for output, energy demand and emissions. All values refer to a Monte Carlo of size

100. In the Engle-Granger procedure critical values for signi�cance levels are taken from Banerjee et al. (1993)

and there is evidence of cointegration if the test statistic is lower than the threshold. In the Phillips-Ouliaris

procedure we used the so-called Pz test; evidence of cointegration if test statistic larger than the threshold. In

the Johansen procedure both constant and trends are assumed, while seasonality is not considered, the lag order

is set to 2 and critical values are taken from Osterwald-Lenum (1992). There is evidence of two cointegrating

vectors if the r=0 and r<=1 hypothesis are rejected while the r<=2 is not; if the latter is rejected as well, all

vectors are co-integrated.

Test statistic 5%-threshold MC st. dev. Runs passing test

Engle-Granger Procedure

Output-EnDem -6.738 -2.58 2.456 96%

Emissions-Output -3.861 -2.58 2.969 64%

Emissions-EnDem -7.004 -2.58 3.401 92%

Phillips-Ouliaris Procedure

Output-EnDem 272.196 55.19 115.231 100%

Emissions-Output 136.393 55.19 131.115 100%

Emissions-EnDem 258.777 55.19 132.856 100%

Johansen Procedure (three-variate VAR)

r<=2 9.245 12.25 4.116 59% (null rejected)

r<=1 40.146 25.32 13.007 91% (null rejected)

r=0 97.849 42.44 17.581 100% (null rejected)

Table 4: First and second moment of climate shock size over time. Reported values are averages over a Monte

Carlo of size 100.

2000 2025 2050 2075 2100

Average value of shocks 1.044% 1.099% 1.905% 5.357% 4.788%

Standard deviation of shocks 1.006% 1.053% 1.768% 4.583% 4.034%

Coe�cient of variation 0.963 0.958 0.929 0.868 0.844

19



Figure 5: Climate Damages and Shocks. The �gure presents monetary estimates (in 2010 USD) of climate and

weather related damages. The overall losses do not include those associated to geophysical events. Source:

IPCC (2013).

agent-based models (Balint et al., 2017; Lamperti et al., 2016).

We now allow for feedbacks from climate to the economy in the DSK model, switching on climate shocks,

whose likelihood andmagnitude depend on the dynamics of temperature anomaly (cf. Section 2.4). The average

size of climate shocks lies between 1% (at the beginning of the simulation) and 5.4% (during the last quarter of

the simulation), and they are fairly consistent with those used in other IAMs (e.g. Nordhaus and Sztorc, 2013).

However, contrary to standard IAMs, the damage generation in the DSKmodel accounts for both increasing size

and inter-annual variability of damages (cf. Table 4), as documented by IPCC (2013) for the period 1980-2010

(see Figure 5).

We analyze eight scenarios characterized by di�erent targets for climate damages (see Dell et al., 2014,

for a survey of the empirical literature addressing micro impacts of temperature and weather changes), which

heterogenously impact on �rms and workers. In particular, we consider the following four climate shock

regimes and their possible combinations:

• Labour productivity (LP) shocks. Labor productivity (ALi,� and BLi,� ) falls by a factor that varies across �rms,

as climate change negatively impacts on workers’ operative and cognitive tasks (Seppanen et al., 2003,

2006).

• Energy e�ciency (EF) shocks. Firm-level energy e�ciency (AEEi,� and BEEi,� ) is reduced as climate shocks

increase energy requirements in production activities (e.g. more stringent needs of cooling in response

to higher temperatures or partially ruined machines in response to natural disasters).

• Capital stock (CS) shocks. Climate shocks destroy �rm-level endowments of physical capital. Consumption-

good �rms loose part of their stock of machines, while capital-good �rms loose part of the machines they

are producing.

• Inventories (INV) shocks. Firms’ consumption good inventories are reduced due to the e�ects of climate

and weather events, such as typhoons and tornado.

While the �rst two scenarios account for the gradual e�ects of climate change, which modi�es working con-

ditions, the latter ones refer to direct damages stemming from the realization of possibly extreme climate or
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Table 5: Main economic performances under heterogeneous climate damages and shock scenarios. Monte

Carlo standard deviations in parentheses.

Shock scenario Output growth rate Likelihood of crises Unemployment

No shocks 3.21% 12.1% 12.0%

(0.005) (0.076) (0.032)

Labour productivity (LP) 1.27% 21.6% 22.2%

(0.006) (0.051) (0.041)

Energy e�ciency (EF) 3.05% 17.5% 13.2%

(0.004) (0.033) (0.033)

Capital stock (CS) 2.91% 23.4% 13.8%

(0.004) (0.052) (0.035)

Inventories (INV) 3.16% 18.6% 13.1%

(0.004) (0.048) (0.046)

LP&EF 1.03% 25.9% 22.6%

(0.003) (0.074) (0.047)

LP&CS 0.82% 26.0% 21.0%

(0.006) (0.044) (0.050)

CS&EF 2.65% 20.1% 14.6%

(0.004) (0.039) (0.038)

CS&INV 2.88% 21.1% 14.0%

(0.003) (0.053) (0.047)

Note: All values refer to a Monte Carlo of size 100.

weather related events (e.g. IPCC, 2013). Even if the ultimate e�ect of all these scenarios is a loss of GDP,

di�erent channels are at stake and tipping points and non-linear e�ects can possibly arise.36

The results of our computational experiments are summarized in Table 5, where we report the average

values of output growth, unemployment and likelihood of crises together with their Monte Carlo standard

deviations for each explored scenario. Simulation results show that climate shocks targeting di�erent variables

(labor productivity, energy e�ciency, capital stock, inventories) have a di�erent impact on economic dynamics,

with labour productivity and capital stock shocks producing the largest harm to the economic system (cf. Table

5).37 For instance, GDP growth under labor productivity shocks is almost one third of the one obtained in

absence of climate damages (1.27% vs. 3.21%), with employment and the likelihood of crises rising by a factor

close to 1.8 (see Table 5). On the other hand, when shocks hit �rms’ inventories, the economy exhibits a pace of

growth similar to the benchmark scenario, climate damages exacerbate economic instability and the emergence

of crises.

Such a heterogenous impact of climate shocks stems from the di�erent channels through which climate

change harms the economy. Labour productivity shocks sabotage the �rms’ “Schumpeterian engine”, thus in-

creasing production costs more than in presence of energy e�ciency shocks (in line with the empirical evidence

EU, 2014). This, in its turn, leads to a harsher contraction in GDP growth and to a surge in unemployment. In

a di�erent manner, climate shocks to the capital stock magnify the instability of the economy — mainly via the

private debt channel and lower �rms’ productive capacity — while keeping a relatively moderate unemploy-

ment level, as the loss of the most e�cient machines increase labour demand.

36The empirical literature has con�rmed that both warming and climate events exert a non-negligible impact. For example, high

temperatures are found to reduce output at plant level by 2% in the automobile sector, while extreme windstorms produce a 26% decline

of daily output (Cachon et al., 2012).
37Further scenarios, obtained by means of further combinations of shock targets, are not reported for the sake of brevity and are

available from the authors upon request.
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Table 6: Heterogeneous climate shocks vs. standard damage function. Up to the last column normalized

economic performances relative to those obtained with Nordhaus and Sztorc (2013) damage function targeting

output are reported. Absolute value of simulation t-statistic of H0: “no di�erence between baseline (Nordhaus

and Sztorc, 2013) and the experiment” in parentheses. In the last column, instead, we report performances

relative to the “no shocks” scenario.

Shock Scenario Output growth rate Likelihood of crises Unemployment GDP2100
GDP2100(“no shocks”)

Standard IAM 1.000 1.000 1.000 0.944∗
(0.00) (0.00) (0.00) (1.90)

Labour productivity (LP) 0.428∗∗ 1.854∗∗ 1.872∗∗ 0.151∗∗
(24.07) (10.96) (19.61) (38.12)

Energy e�ciency (EF) 0.947 1.445∗∗ 1.126∗∗ 0.865∗∗
(1.56) (6.97) (2.61) (8.07)

Capital stock (CS) 0.917∗∗ 1.986∗∗ 1.167∗∗ 0.744∗∗
(3.74) (12.96) (3.79) (12.34)

Inventories (INV) 1.001 1.478∗∗ 1.092∗ 0.989

(-0.56) (7.64) (1.96) (0.45)

LP&EF 0.327∗∗ 2.152∗∗ 1.836∗∗ 0.119∗∗
(36.35) (13.54) (18.64) (39.81)

LP&CS 0.303∗∗ 2.211∗∗ 1.748∗∗ 0.104∗∗
(29.84) (16.81) (15.16) (44.27)

CS&EF 0.853∗∗ 1.580∗∗ 1.222∗∗ 0.596∗∗
(7.80) (9.98) (5.23) (22.76)

CS&INV 0.910∗∗ 1.748∗∗ 1.179∗∗ 0.731∗∗
(4.63) (10.39) (3.51) (8.45)

Note: All values refer to a Monte Carlo of size 100. ∗∗ Signi�cant at 5% level; ∗ Signi�cant at 10% level.
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Figure 6: Economic performances under climate shocks by time slices. LP: Labour Productivity shocks ; EN:

Energy E�ciency shocks; CS: Capital Stock shocks; IN: Inventories shocks.
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(b) Output growth; shocks combined.
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(c) Likelihood of crises; shocks un-combined.
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(d) Likelihood of crises; shocks combined.
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(e) Unemployment; shocks un-combined.
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(f) Unemployment; shocks combined.

Note: All panels refer to a Monte Carlo of size 100. Average values are reported. Monte Carlo standard deviations for each case are

available from the authors.
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The heterogeneous impact of shocks is also linked by the highly non-linear dynamics of the economy.

We report in Figure 6 the average MC value of output growth rate, likelihood of crises and unemployment

in the di�erent scenarios, segmenting the simulation into 4 non-overlapping windows lasting 25 years each.

While in most of scenarios, growth and economic stability are almost una�ected in the �rst time period, the

impact of shocks magnify and diverge over time. In line with our previous results, capital stock (CS) and labour

productivity (LP) shocks have a di�erent impact on the dynamics of the economy. In the LP scenario, growth

performance is progressively harmed until the economy reaches a stagnation plateau, with low volatility and

rising unemployment. On the contrary, in presence of CS damages, rising temperatures have amilder impact on

output growth, but the economy becomesmore andmore unstable over time. These results are reinforced when

inventories shocks are also present. Finally, energy e�ciency shocks are less harmful that other scenarios, but

by increasing energy demand, they amplify the direct impact of IN, CS and LP damages.

Let us now compare the economic damages from climate change observed in the DSK model with those

generated by standard IAMs. More speci�callly, in Table 6, we test for the existence of a statistically signi�cant

di�erence with respect to the results we would have obtained employing a standard damage function targeting

output adopted in Nordhaus and Sztorc (2013), which is the latest available version of the most widely used

IAM.38 We �nd that climate shocks have a much more catastrophic impact on the economy in our model

than in CGE-based IAMs (see Table 6). And this holds notwithstanding the average size of climate shocks

is comparable (see Nordhaus, 2014). In particular, in all eight scenarios, at least two third of the economic

indicators are signi�cantly worse than the ones obtained employing the aggregate quadratic damage function

à la Nordhaus and Sztorc (2013). In some cases, when shocks are combined, the di�erence is dramatic (see,

in particular, LP&EF and LP&CS scenarios in Table 6). The more catastrophic impact of climate change in the

DSK model vis-à-vis CGE-based IAMs is due to the presence of non-linearities and the endogenous emergence

of tipping points provoked by heterogenous micro-schocks percolating via di�erent channels (see Figure 6).

Such di�erences are even more vivid when one considers output levels at the end of the century, as com-

monly done in the integrated assessment literature (cf. last column of Table 6). The ratio of GDP levels in 2100

between the “no shocks” and the Nordhaus-Sztorc damage function case is 94%. However, the ratio falls to

74% when climate shocks hit the capital stock and even to 15% when climate change harms labor productivity.

When LP and CS climate shocks are coupled, the economic performance collapses: GDP average growth falls

below the 1% average over the century, unemployment doubles, and the likelihood of crises reaches 25%. Note

also that the results robustly con�rm the wide heterogeneity observed in the di�erent climate-shock scenarios

5 Discussion and concluding remarks

In this paper, we have presented the �rst agent-based integrated assessment model, which explore the co-

evolution between economic dynamics and climate change. The Dystopian Schumpeter meeting Keynes (DSK)

model builds upon Dosi et al. (2010, 2013, 2016) and it allows for non-linear climate dynamics as in Sterman

et al. (2013). Economic activity is linked to the emissions of greenhouse gasses, which increase temperature

and lead to climate change. Higher temperatures trigger micro climate shocks, which, by di�erently impact-

ing on workers’ labor productivity and on �rms’ energy e�ciency, capital stock and inventories, a�ect the

macroeconomic performance via possible catastrophic events.

Simulation results show that the DSK model is able to match a wide ensemble of micro and macro stylized

facts concerning climate change and economic dynamics. Moreover, simulation experiments show a substan-

tial lack of isomorphism between the e�ects of micro and macro level shocks, as it is typical in complex system

38The damage function in Nordhaus and Sztorc (2013) takes the following form: L(x) = 1/(0.00267x2).
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models (see Flake, 1988; Tesfatsion and Judd, 2006). The e�ects of micro climate shocks are indeed ampli�ed

by the interactions of heterogeneous agents along an evolving network structure of investment relationships

across �rms, and by the deep uncertainty resulting from technical and climate change dynamics. System stabil-

ity is particularly harmed by climate shocks a�ecting capital stocks and inventories, while stagnating growth

and soaring unemployment result from shocks to the labour productivity of workers.

Our results also show that climate damages from uncontrolled emissions are substantial and much more

severe than predicted by standard integrated-assessment models (IAMs, see e.g. Nordhaus, 1992, 2014), possibly

leading to the emergence of tipping points and irreversible outcomes. In the next future, we are planning to

extend our impact analysis to include health and mortality. However, even at the current stage our results thus

provide a clear support to the hypothesis that the current estimates of economic losses produced by climate

shocks are biased downwards (see also Hallegatte et al., 2007; Stern, 2016) and that, in view of the increasing

magnitude and variance in impacts, timing for climate policy is crucial (see also Lamperti et al., 2015).

In such a framework, policy interventions become more complex than in standard IAMs, which simply

study monetary incentives (subsidies) and carbon taxes. The DSK model can provide a �exible laboratory for

more ambitious policy experiments, to study the joint impact of di�erent climate, energy, innovation, �scal

and monetary interventions on economic and climate change dynamics. This is the most urgent point in our

future research agenda. Further, we plan to use the model to explore the issue of policy urgency, paying

particular attention at the path-dependent nature of di�erent economic and climate processes. Finally, as for

model development, we will exploit the structural heterogeneity brought about by agent based modelling to

analyse the climate-inequality nexus and the links between energy industry and the �nancial system.
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A Appendix - Model details and model closure

In this appendix we present the full formal structure of the real side of the model discussed in section 2. We start with the
equations describing the search processes and the determination of production and prices in the capital-good sector. Next,
we turn to the equations related to the determination of production, investment, prices and pro�ts in the consumption-
good sector.

A.1 The capital good industry, complements.

Capital-good �rms’ technology is de�ned by a set of six �rm-speci�c coe�cients composed by Aki,� with k = {L, EE, EF},
which represent the technical features of the machine produced, and Bki,� , which represent the features of the production
technique employed by �rm i, with � being the technology vintage. Firms de�ne their price by applying a �xed mark-up(�1 > 0) on their unit cost of production de�ned by the nominal wage, nominal cost of energy, labour productivity, energy
e�ciency and, eventually, a carbon tax. Capital-good �rms can increase both their process and product technology levels
via (costly) innovation and imitation. Indeed, R&D expenditures, de�ned in each period as a fraction of past sales are
split between both activities according to the parameter � ∈ [0, 1].

The innovation process has two steps: �rst a random draw from a Bernoulli distribution with parameter # ini (t) =1 − exp−&1INNOVi (t) determines whether �rm i innovates or not, with 0 ≤ &1 ≤ 1. Note that higher amounts of R&D
expenditures allocated to innovation, INNOVi(t), increase the probability to innovate. If an innovation occurs, the �rm
draws the new technology whose main features are described by equations (3), (5) and (6) in section 2. The imitation
process is similarly performed in two steps. A Bernoulli draw (# imi (t) = 1 − exp−&2IMI Ti (t)) de�nes access to imitation
given the imitation expenditures, IMI Ti(t), with 0 ≤ &2 ≤ 1. In the second stage, a competitor technology is imitated,
based on an imitation probability which decreases in the technological distance (computed adopting Euclidean metrics)
between every pair of �rms. Note that the innovative and imitation processes are not always successful as the newly
discovered technology might not outperform �rm i’s current vintage. The comparison between the new and incumbent
generations of machines is made taking into account both price and e�ciency, as speci�ed by equation (7). Next, capital-
good �rms advertise their machine’s price and productivity by sending a “brochure” to potential customers (both to
historical clients, HCi(t), and to a random sample of potential new customers, NCi(t)39 consumption-good �rms thus
have access to imperfect information about the available machines.

A.2 The consumption good industry, complements.

Consumption-good �rms produce a homogeneous good using two types of inputs (labor and capital) with constant returns
to scale. The desired level of production Qdj depends upon adaptive expectations Dej = f [Dj (t − 1), Dj (t − 2), ..., Dj (t − ℎ)],
desired inventories (N dj ), and the actual stock of inventories (Nj ):

Qj (t)d = Dej (t) + N dj (t) − Nj (t), (34)

where Nj (t) = �Dej (t), � ∈ [0, 1].
Consumption-good �rms’ production is limited by their capital stock (Kj (t)). Given the desired level of production

�rms evaluate their desired capital stock (Kd ), which, in case it is higher than their current one, calls for desired expan-
sionary investment (EI d ):40 EI dj (t) = Kdj (t) − Kj (t). (35)

Each �rms’ stock of capital is made of a set of di�erent vintages of machines with heterogeneous productivity. As time
passes by, machines are scrapped according to (7) . Total replacement investment is then computed at �rm level as
the number of scrapped machines satisfying the previous condition, and those with age above � periods, � > 0. Firms
compute the average productivity of their capital stock, the unit cost of production, and set prices by applying a variable
mark-up on unit costs of production as expressed by equation (9). Consumers have imperfect information regarding the
�nal product (see Rotemberg, 2008 , for a survey on consumers’ imperfect price knowledge) which prevents them from
instantaneously switching to the most competitive producer. Still, a �rm’s competitiveness (Ej (t)) is directly determined
by its price, but also by the amount of past un�lled demand lj (t):

Ej (t) = −!1pj (t) − !2Ij (t), (36)

where w1,2 ≥ 0.41 At the aggregate level, the average competitiveness of the consumption-good sector is computed
averaging the competitiveness of each consumption-good �rm weighted by its past market share, fj . Market shares are

39The random sample of new customers is proportional to the size of HCi(t). In particular, NCi(t) = ΥHCi(t), with 0 ≤ Υ ≤ 1.
40In linewith the empirical literature on �rm investment behaviour (Doms andDunne, 1998), �rms’ expansion in production capacity

is limited by a �xed maximum threshold. Moreover, as described below, credit-constrained �rms’ e�ective investment does not reach

the desired level.
41Such un�lled demand is due to the di�erence between expected and actual demand. Firms set their production according to the
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�nally linked to their competitiveness through a “quasi” replicator dynamics:

fj (t) = fj,t−1(1 + � Ej (t) − ĒtĒt ) , (37)

where � > 0 and Ēt is the average competitiveness of the consumption good sector.

A.3 The banking industry, complements.

We assume a banking sector composed by a unique commercial bank (or multiple identical ones) that gathers deposits
and provides credit to �rms. In what follows, we �rst describe how credit demand is calculated by each �rm. Next, we
discuss how total credit is determined by the bank, and how credit is allocated to each �rm.

The �nancial structure of �rms matters (external funds are more expensive than internal ones) and �rms may be
credit rationed. Consumption-good �rms have to �nance their investments as well as their production and start by using
their net worth. If the latter does not fully cover total production and investment costs, �rms borrow external funds from
the bank. Total production and investment expenditures of �rms must therefore satisfy the following constraint

cj (t)Qj (t) + EIj (t)d + RIj (t)d ≤ NWj (t)d + Debj (t)d (38)

where cj (t)Qj (t) indicates total production costs, EIj (t)d expansion investment, RIj (t)d replacement investment, NWj (t)
the net worth and Debj (t) is the credit demand by the �rm. Firms have limited borrowing capacity: the ratio between
debt and sales cannot exceed a maximum threshold: the maximum credit demand of each �rm is limited by its past sales
according to a loan-to-value ratio 0 ≤ � ≤ +∞.

The maximum credit available in the economy is set through a credit multiplier rule. More precisely, in each period
the bank is allowed by an unmodeled Central Bank to grant credit above the funds obtained through deposits from �rms
according to a multiplier k > 0:

MTCt = k N∑j=1NWj,t−1. (39)

Total credit is allocated to each �rm in the consumption-good sector on a pecking order basis, according to the ratio
between net worth and sales. If the total credit available is insu�cient to ful�ll the demand of all the �rms in the pecking
order list, some �rms that are lower in the pecking order are credit rationed. Conversely, the total demand for credit
can also be lower than the total notional supply. In this case all credit demand of �rms is ful�lled and there are no
credit-rationed �rms. It follows that in any period the stock of loans of the bank satis�es the following constraint:

N∑j=1Debj (t) = Loan(t) ≤ MTCt . (40)

The pro�ts of the bank are equal to interest rate receipts from redeemable loans and from interests on reserves held
at the Central Bank minus interests paid on deposits. Furthermore, the bank �xes its deposit and loan rates applying
respectively a mark-down and a mark-up on the Central Bank rate.

A.4 Consumption, taxes and public expenditures

The public sector levies taxes on �rm pro�ts and worker wages (or on pro�ts only) and pays to unemployed workers
a subsidy, which corresponds to a fraction of the current market wage. In fact, taxes and subsidies are the �scal in-
struments that contribute to the aggregate demand management. All wages and subsidies are consumed: the aggregate
consumption (Ct ) is the sum of income of both employed and unemployed workers. The model satis�es the standard
national account identities: the sum of value added of capital- and consumption-goods �rms (Yt ) equals their aggregate
production since in our simpli�ed economy there are no intermediate goods, and that in turn coincides with the sum of
aggregate consumption, investment (It = EIt + RIt ) and change in inventories (ΔN ):

∑i=1Qi(t) +∑j Qj (t) = Yt ≡ Ct + It + ΔN . (41)

B Appendix - Model validation and model dynamics

In line with the indirect inference approach discussed in Windrum et al. (2007) and Fagiolo et al. (2007) and following the
prevailing practice in the agent based modelling literature (see, among others, Dosi et al., 2010, 2013; Riccetti et al., 2013;
Lengnick, 2013; Dosi et al., 2015; Assenza et al., 2015; Safarzyńska and van den Bergh, 2016), the DSK model is validated

expected demand. If a �rms is not able to satisfy the actual demand, its competitiveness is accordingly reduced. On the contrary, if

expected demand is higher than actual one, inventories accumulate.
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through the replication of empirical stylized facts, both concerning micro and macro aspects of the economic system.42

Table 2 in the main text reports the empirical regularities that the model replicates. Due to space availability, we invite
the interested reader to contact the authors in order to obtain additional information on the estimation of parametric or
non-parametric distributions that are requested to examine the presence of some empirical regularities (e.g. fat-tails). For
what concerns other properties, this appendix provides evidences that complement the main text. In addition, we refer
to Dosi et al. (2016) for an extensive illustration of the stylized facts reproduced by a previous version of the DSK model.

Figure 7 shows di�erent panels reporting the behaviour of main macroeconomic aggregates at business cycle fre-
quency and their correlation structure. The relationships among main macroeconomic aggregates is well tuned with the
literature (see �gure 7c). Output, aggregate consumption, investments, �rms’ debt and demand of energy are positively
and strongly correlated, while prices negatively associate with investments. Unemployment decreases when economy
expands and its correlation with in�ation is extremely close to zero. Beyond these general tendencies, table 7 provides
evidence on leading and lagging indicators, which appear fairly similar to those proposed in Stock and Watson (1999)
and Napoletano et al. (2006).

Table 7: Auto-cross correlations between output and main macroeconomic aggregates. Bandpass-�ltered

(6,32,12) series. Average auto-cross correlations from a Monte Carlo of size 100. Monte Carlo standard de-

viations are reported below each coe�cient.

Lag of Output

-3 -2 -1 0 1 2 3

Output 0.311 0.642 0.902 1.000 0.902 0.642 0.311

0.040 0.031 0.010 0.00 0.010 0.031 0.040

Cons 0.354 0.652 0.890 0.981 0.901 0.684 0.392

0.051 0.031 0.022 0.004 0.011 0.020 0.033

Inv 0.073 0.282 0.491 0.664 0.761 0.752 0.631

0.111 0.104 0.084 0.061 0.060 0.060 0.060

Prices 0.023 -0.063 -0.184 -0.362 -0.522 -0.591 -0.534

0.141 0.140 0.110 0.081 0.064 0.062 0.071

TotDebt 0.684 0.811 0.852 0.794 0.640 0.412 0.172

0.044 0.032 0.021 0.023 0.032 0.041 0.040

EnDem 0.590 0.821 0.902 0.791 0.514 0.170 -0.124

0.041 0.040 0.040 0.041 0.051 0.053 0.054

In� 0.054 0.081 0.104 0.103 0.042 -0.031 -0.092

0.021 0.030 0.031 0.034 0.021 0.022 0.023

Unemployment -0.330 -0.562 -0.754 -0.843 -0.801 -0.663 -0.453

0.041 0.041 0.032 0.031 0.030 0.021 0.032

Here we also check whether the emissions pathways generated by the model deliver reasonable results in terms of
projected global mean surface temperature. Figure 3 in the main text shows the dynamics of temperature along the whole
time span for each of the runs used in a typical Monte Carlo ensemble and report their distribution at the middle and �nal
point of the simulation. Our results �nd relatively in line with those frommost widely used IAMs (8b), even though mean
and median values of our projections (reported also in table 1) are slightly higher than counterparts from other models
(see also Clarke et al., 2009; Gillingham et al., 2015). A possible reason for this e�ect is given by the presence, within the
carbon cycle (see section 2.3), of di�erent feedbacks loops giving rise to non-linear dynamics.43

42Notice that alternative approaches for large scale models are under development. See Barde (2016); Lamperti (2017, 2016); Lamperti

et al. (2017); Guerini and Moneta (2016).
43These feedbacks have been calibrated according to Sterman et al. (2013) and C-ROADS model documentation. See https:

//www.climateinteractive.org/tools/c-roads/technical.
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Figure 7: Filtered series and their correlation structure. Panel 7a and Panel 7b presents the behaviour of selected

Bandpass-�ltered (6,32,12) series for a randomly chosen Monte Carlo run. Panel 7c presents the correlation

structure emerging from �ltered series and refers to a Monte Carlo of size 100.

(a) Output, Consumption and Investments.

(b) Output, Total private debt, Energy demand.

(c) Correlation structure.
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Figure 8: Industrial emissions and temperature projections from di�erent models. Source: Nordhaus (2014)

(a) Industrial emissions.

Note: Projected industrial CO2 emissions in baseline scenario. The heavy dashed line with triangles is the average of the 11 models

surveyed in the EMF-22 project. The heavy line with squares is the DICE-2013R version. The light lines are the individual EMF-22

models. The EMF results are described in Clarke et al. (2009) Emissions are expressed in GtCO2, which can be converted in GtC using

the following conversion factor: 1 GtC = 3.67 GtCO2.

(b) Temperature anomaly.

Note: Global mean temperature increase as projected by IPCC scenarios and integrated assessment economic models. The �gure

compares the projections of four scenarios using IPCC scenarios with those of the DICE-2013R model and the average of 10 EMF-

22 integrated economic models. The letters A1B, A2, B1, and B2 represent the results of four IPCC standardized emissions and the

ensemble of climate model projections from the IPCC Fourth Assessment Report. The runs shown in panel 8b take the industrial

CO2 concentrations from the EMF-22 models. These are then combined with estimates of land-use CO2 emissions and the radiative

forcings for other GHGs from the RICE-2010 model and �nally put into the climate module of the RICE-2010 model. The 10 models

were ETSAPTIAM, FUND, GTEM, MERGE Optimistic, MERGE Pessimistic, MESSAGE, MiniCAMBASE, POLES, SGM, and WITCH.
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C Appendix - Model parameters

Table 8: Main parameters and initial conditions in the economic system. For previous parametrization of some

sub-portions of the model and for model sensitivity to key parameters see Dosi et al. (2006, 2010, 2013).

Description Symbol Value

Monte Carlo replications MC 100

Time sample in economic system T 400

Time sample in climate system T 400

Number of �rms in capital-good industry F1 50

Number of �rms in consumption-good industry F2 200

Capital-good �rms’ mark-up �1 0.04

Consumption-good �rm initial mark-up �̄0 0.28

Energy monopolist’ mark-up �e 0.01

Uniform distribution supports ['1, '2] [0.10, 0.90]
Wage setting ΔĀB weight  1 1

Wage setting Δcpi weight  2 0

Wage setting ΔU weight  3 0

R&D investment propensity (industrial) � 0.04

R&D allocation to innovative search � 0.5

Firm search capabilities parameters �1,2 0.3

R&D investment propensity (energy) �e 0.01

R&D share investment in green tech. �ge 0.4

Beta distribution parameters (innovation) (�1, �1) (3, 3)
Beta distribution support (innovation) [�1, �̄1] [−0.15, 0.15]
New customer sample parameter !̄ 0.5

Desired inventories l 0.1

Physical scrapping age (industrial) � 20

Physical scrapping age (energy) �e 80

Payback period (industrial) b 3

Payback period (energy) be 10

Initial (2000) share of green energy 0.1
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Table 9: Climate box main parameters and initial conditions.

Parameter Symbol Value Unit of Measurement Source

Preindustrial Global Mean Surface Temp. Tpre 14 degree Celsius Sterman et al. (2013)

Preindustrial carbon in the ocean (per meter) 10.237 GtonC Sterman et al. (2013)

Preindustrial reference CO2 in atmosphere Ca0 590 GtonC Sterman et al. (2013)

Preindustrial Net Primary Production NPPpre 85.177 GtonC/year Goudriaan and Ketner (1984)

Initial carbon in the atmosphere 830.000 GtonC Nordhaus and Sztorc (2013)

Initial carbon in deep oceans 10,010.000 GtonC Nordhaus and Sztorc (2013)

Initial temperature in atmosphere T0 14.800 degree Celsius Nordhaus and Sztorc (2013)

Response of primary production to carbon conc. �C 1 Dmnl Goudriaan and Ketner (1984)

Reference bu�er factor revelle 9.7 Dmnl Goudriaan and Ketner (1984)

Index for response of bu�er factor to carbon conc. deltaC 3.92 Dmnl Goudriaan and Ketner (1984)

Eddy di�usion coe�cient for circulation in oceans deddy 1 Dmnl Oeschger et al. (1975)

Mixed oceans depth dmixed 100 m Oeschger et al. (1975)

Deep oceans depth ddeep 3500 m Sterman et al. (2013)

Sensitivity of carbon uptake to temperature by land �TC -0.01 1/degree Celsius Friedlingstein et al. (2006)

Sensitivity of carbon uptake to temperature �T 0.003 1/degree Celsius Friedlingstein et al. (2006)

Di�usion for atmospheric temperature equation c1 0.098 Nordhaus and Sztorc (2013)

Equilibrium climate sensitivity � 2.9 degree Celsius Nordhaus and Sztorc (2013)

Di�usion in deep oceans temp. equation c3 0.088 Nordhaus and Sztorc (2013)

Sensitivity of atmospheric temp. to deep ocean temp. c4 0.025 Nordhaus and Sztorc (2013)

Radiative forcing coe�cient 
 5.35 W/m2 Sterman et al. (2013)

GtC to GtCO2 conversion factor 3.67 IPCC (2001)

Climate Shocks

Sensitivity to location a0 1 authors

Sensitivity to scale b0 100 authors
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