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Far from the madding crowd’s ignoble strife
Their sober wishes never learn’d to stray;

Elegy Written in a Country Churchyard

Thomas Gray

1 Introduction

In his 2004 best-seller book “The Wisdom of Crowds” James Surowiecki provides
many examples and anecdotes of how, by aggregating the beliefs of independently
deciding individuals, one gets rather accurate predictions about some uncertain
events. Thus, a form of collective intelligence seems to emerge when different
opinions are collected and aggregated, letting a Crowd be wiser than any of its
members. The point raised by Surowiecki is not new in the economic literature: it
can be traced back to the classical article by Hayek (1945) “The Use of Knowledge
in Society”, where the famous economist supports the thesis that a decentralized
economy is successful in aggregating the large amount of sparse pieces of informa-
tion through prices. That is, the price that comes out from the market interaction
of agents with heterogeneous and incomplete information condenses all the relevant
knowledge and provides a means by which agents can take the right decisions.

The relevance of the informative role of markets is pervasive in the financial
literature and practice, from the valuation of equity to the option pricing, and
it is possibly epitomized in the so called prediction markets. These are markets
where bets on binary events are exchanged.1 The Iowa Electronic Market (IEM),
operated by the University of Iowa, is the most prominent example: in that market
people can bet on events like Presidential Elections or Congressional Control by
means of future contracts that pay 1 dollar if the event is realized and 0 otherwise.
In this frame it is common to interpret the price of the bet as the probability the
Crowd assigns to the realization of the event. About this point, a recent article ap-
peared on Science Magazine and coauthored by several famous economists (Arrow
et al., 2008) supported the development of prediction markets exactly because of
their ability to provide accurate evaluations of the likelihood of uncertain events.

However, the formal investigation of the precision and reliability of prediction
markets predictions is rather recent. The early contributions investigated whether
the price that comes out from a single round of betting matches the average belief
of the population. Gjerstad (2005) finds that, when agents are risk averse and
the distribution of beliefs is plausible, then the equilibrium price is very near

1Trading in some financial instruments is basically equivalent to betting on the outcome of
an uncertain event. For instance, the price of Credit Default Swaps is generally recognized as a
prediction about the probability of default of the underlying bond issuer.
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to population average belief. Wolfers and Zitzewitz (2006) confirm such result
extending it to a broad class of models. Both papers agree on the fact that
the estimation of the average beliefs provided by prediction market prices can
be biased, but they quantify that bias as small. Conversely Manski (2006) shows
that under risk neutrality the divergence between the price and the average belief
can be large. He and Treich (2012) summarize and complement the previous
results providing conditions for equilibrium price to match the average belief: for
every possible beliefs distribution it is necessary and sufficient that agents share a
logarithmic utility, or, alternatively, for every possible strictly concave utility, it is
necessary and sufficient that the beliefs distribution is symmetric around one half.

In recent years, the attention has increasingly switched to the case of repeated
prediction markets, which share more similarities with other financial market mod-
els. Beygelzimer et al. (2012) and Kets et al. (2014), in a dynamic version of the
previous models, assume that in every time step a prediction market on a binary
event is hold. The success probability of the binary event, constant over time, is
supposed unknown. Traders have a certain amount of wealth and in every pe-
riod they decide, according to their beliefs, how much to invest in the prediction
market and what position they shall take. In every time step a central auctioneer
collects the orders and establishes the price accordingly. At the end of the period
the outcome of the event is revealed, agents’ wealth is updated and the process is
repeated. This dynamic framework has the advantage of providing an objective
probability (the one that drives the Bernoulli trials) that acts as a benchmark for
evaluating the correctness of market price and agents’ beliefs. Beygelzimer et al.
(2012) find that, under the assumption that agents bet according to the Kelly cri-
terion (Kelly, 1956), the market price adapts to the success probability at optimal
rate (i.e. in a Bayesian fashion) and provides a prediction that is only slightly
worse than the best agent’s one. Kets et al. (2014) go further and show that with
Kelly investors only the agents with the most accurate beliefs survives in the long
run and, consequently, market prices converge there. Based on extensive numer-
ical simulations, they also suggest that if Kelly traders bet only a small fraction
of their wealth, according to the so-called “fractional Kelly” rule (see for instance
(MacLean et al., 1992, 2004, 2005)), then more than one agent will survive in the
long run and the market is efficient, as the expected price seems to converge to
the true probability of the binary event.

Exploiting the equivalence of prediction markets with Arrow security pure ex-
change economies2 we use the general results in Bottazzi and Dindo (2014, 2015)
to derive the conditions for the survival of multiple agents. In particular, and fol-
lowing Kets et al. (2014), we will focus on the case of two fractional Kelly traders.

2This is the origin of the similarity of the results in Kets et al. (2014) with those in Blume
and Easley (1992)
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The simple case of two agents might seem simplistic, but we will see that it is
complicated enough to account for a sufficient range of possible outcomes and it
already provides important hints on the expected behavior of the market also in
more complicated situations. Fractional Kelly investing relates to the traditional
framework of expected utility maximization if one assumes that agents myopically
maximize a CRRA utility with price dependent relative risk aversion coefficient.
We exploit this analogy to discuss the role of risk aversion in the survival of traders
and in the efficiency of the market.

We generally find that a difference between the expected price and the suc-
cess probability emerges and is persistent, so that the average price is neither a
consistent nor an unbiased estimator of the success probability. It turns out that
for reasonable levels of risk aversion, this bias is in fact quite big if compared to
the observed price fluctuations. We also show that there are generic situations
in which the average prevailing price is a worst estimate of the true probability
than the belief of one of the trader. Finally, we show that also when some useful
information is revealed in prices, if one agent tries to exploit it to obtain better
predictions, the information disappear and the overall informative efficiency of the
market is impaired, with a mechanism strongly reminiscent of the detrimental ef-
fect that social influence has on the Wisdom of Crowds, as suggested in Surowiecki
(2004) and experimentally identified by Lorenz et al. (2011).

2 The Model

Consider a discrete time economy populated by N agents who repeatedly bet on
a binary event. Agents can choose to gamble on the occurrence of the event or
against it. The amount of wealth which is not bet is considered invested in a
riskless security. Without loss of generality we assume that no interest is payed on
the riskless investment. The total amount bet is redistributed among the winners
proportionately to the amount they have bet, that is according to the procedure
commonly know as parimutuel. The risky bet is based on an independent Bernoulli
trial st with success probability π∗ unknown to the agents, st = 1 meaning that at
time t the event occurred and st = 0 that it did not. At every time t every agent
i has to decide the fraction of wealth bit ∈ [0, 1] bet on the uncertain outcome and
the side of the bet, σi

t ∈ {0, 1}. The fraction of wealth 1− bit, considered invested
in a riskless security, carries over to the next time step. Let wi

t denote the wealth
of agent i at time t, then given the parimutuel procedure, it is immediate to see
that the evolution of individual wealth reads

wi
t = (1− bit)w

i
t−1 + δst,σi

t
wi

t−1b
i
t

∑N
j=1 b

j
tw

j
t−1

∑N
j=1 δst,σj

t
bjtw

j
t−1
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where δa,b stands for the Kronecker delta: it is equal to 1 if a = b and 0 otherwise.
The parimutuel procedure simply redistributes the wealth among bettors, but does
not change its total amount so that, without loss of generality, we can assume
∑N

i=1 w
i
t = 1.

This is the model typically considered in the contributions discussed before. We
start by showing that this model is equivalent to a discrete time economy in which
two Arrow securities are exchanged: the first security pays 1 if the event occur and
zero otherwise, the second does the opposite. Let pt =

∑N
j=1 δ1,σj

t
bjtw

j
t−1/

∑N
j=1 b

j
tw

j
t−1.

This quantity is the fraction of the amount bet on the occurrence of the event over
the total amount bet, thus pt ∈ [0, 1]. It can be thought as the “price” of the first
Arrow security. The price of the second Arrow security is, consequently, 1 − pt.
Moreover, define the investment function

αi
t = (1− bit)pt + σi

tb
i
t .

Notice that, by definition, αi
t ∈ [0, 1]. The individual wealth evolution can then

be rewritten as

wi
t =



















αi(pt)

pt
wi

t−1 if st = 1 ,

1− αi(pt)

1− pt
wi

t−1 if st = 0 .

(1)

Thus, the evolution of wealth is equivalent to that of an agent investing a fraction
αi
t of his wealth in the first Arrow security and the remaining fraction 1 − αi

t in
the second. Indeed, it is trivially verified that the price of the securities is set by
the market clearing condition

pt =
N
∑

i=1

αi(pt)w
i
t−1 . (2)

Following Gjerstad (2005) and Kets et al. (2014), we assume that agents bet
according to constant rules that depend on the total wealth wagered on each
outcome, that is on the contemporaneous price, bit = bi(pt) and σi

t = σi(pt). These
assumptions imply that αi

t = αi(pt). With this further specification, (2) and (1)
describe a stochastic system which is a particular case of the one analyzed in
Bottazzi and Dindo (2014).

More specifically, the literature on repeated betting assumes that each agent
possesses an individual constant belief πi, in general different from the truth π∗,
about the probability of occurrence of the event and invests according to a frac-
tional Kelly rule, described by the simple function

αi(pt) = ci πi + (1− ci) pt , (3)

5



with ci ∈ (0, 1]. This investment rule is a generalization of the Kelly rule and
is defined as a linear combination of the individual belief and the market price,
with a “mixing” parameter ci. It is rather common in the literature (MacLean
et al., 1992, 2004, 2005, 2010; MacLean and Ziemba, 1999; Ziemba, 2003; Thorp,
2006; Beygelzimer et al., 2012; Kets et al., 2014) and can be considered a good
approximation of the behavior of a risk averse agent. In particular (3) is the
optimal investment rule for myopic expected utility maximizer with CRRA utility
function and a price dependent risk aversion coefficient (see Appendix A for the
derivation)

γi
t(pt) =

log
πi

1− πi
− log

pt
1− pt

log
ciπi + (1− ci)pt

1− ciπi − (1− ci)pt
− log

pt
1− pt

. (4)

Notice that ∂γi,t/∂c
i < 0 and ci = 1 implies γi

t = 1. Thus, if ci = 1 we recover the
case of a Kelly trader, which is equivalent to a log-utility investor, while considering
0 < ci < 1, one gets an agent with a relative risk aversion coefficient higher than
1 and increasing when the value of ci decreases.

3 Pairwise Comparison

Let us focus on the two-agent model, N = 2. As we will see in a moment, the
notion of “crowd” and “wisdom”, which are the core of the present analysis, can be
effectively discussed also in this simple case. Given the conservation of aggregate
wealth, with two agents the stochastic system is one dimensional and we simplify
the notation setting wt = w1

t , such that w2
t = 1 − wt. We consider investment

rules as in (3) and without loss of generality we assume π1 < π2. Thus, in terms
of (wt, pt), the dynamics of the economy is described by the following3

wt =



















c1 π1 + (1− c1) pt
pt

wt−1 if st = 1

1− c1 π1 − (1− c1) pt
1− pt

wt−1 if st = 0

(5)

together with the market clearing condition

pt =
c1π1wt−1 + c2π2(1− wt−1)

c1wt−1 + c2(1− wt−1)
. (6)

3Under these assumptions, the model matches exactly the example provided in Bottazzi and
Dindo (2014), Section 2.
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Then we say that agent 1 dominates (or, equivalently, agent 2 vanishes) if

lim
t→∞

wt = 1 almost surely (a.s.) , (7)

agent 2 dominates (or, equivalently, agent 1 vanishes) if

lim
t→∞

wt = 0 a.s. (8)

and both agents survive if

lim sup
t→∞

wt > 0 a.s. ∧ lim inf
t→∞

wt < 1 a.s. . (9)

Thus, in this simple model, what we identify with the persistent existence of a
crowd is nothing else than the asymptotic survival of both agents.

3.1 Reconsidering the Crowd

Since the repeated prediction market considered here is a particular short-lived
assets market, we can exploit the analysis put forward in Bottazzi and Dindo
(2014) to investigate its long-run dynamics, providing an analytically background
for, and extending, the numerical results in Kets et al. (2014). First of all, notice
that pt ∈ [π1, π2] and that p = πi with i = 1, 2 are deterministic fixed points of
the dynamics. That is , if pt = πi, than it will be pτ = πi for any τ > t. In the
language of Bottazzi and Dindo (2014), these are two Market Selection Equilibria
(MSE). The discussion of this section relies on how the system behaves in the
proximity of these two MSE. Define the relative entropy of strategy αi at price pt
with respect to the true probability measure of the underlying Bernulli process as

Iπ∗(αi(pt)) = π∗ log
π∗

αi(pt)
+ (1− π∗) log

1− π∗

1− αi(pt)
.

Then from (5) it is immediate to see that the conditional expect drift of the log-
difference of the individual wealth

µ(pt) = E

[

log
wt

wt−1

− log
1− wt

1− wt−1

∣

∣

∣

∣

∣

pt

]

= (10)

π∗ log
α1(pt)

α2(pt)
+ (1− π∗) log

1− α1(pt)

1− α2(pt)
= Iπ∗(α2(pt))− Iπ∗(α1(pt)) ,

is equal to the difference of the relative entropy of the two strategies. The wealth
of the strategy with zero relative entropy, the one of a Kelly trader (c = 1) with
correct beliefs, never decreases in expectation. This is the optimal strategy for an
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Figure 1: Local Stability. Left panel: π∗ = 0.5, π1 = 0.6, c1 = 0.9, π2 = 0.8 and
c2 = 0.3. Right panel:π∗ = 0.5, π1 = 0.2, c1 = 0.5, π2 = 0.4 and c2 = 0.8.

agent, irrespective of what the other agents does, but it unrealistically requires
the precise knowledge of the probability π∗. More generally, if for some pt it is
Iπ∗(α1(pt)) > Iπ∗(α2(pt)), than, at that price, the wealth of agent 1 will decrease
and the wealth of agent 2 will increase, in expectation. As a consequence, if the
previous inequality is satisfied by any feasible price pt, it is reasonable to expect
that limt→∞ wt = 0 and agents 1 vanish. Conversely, if the opposite inequality
is persistently verified, it is agent 2 who is expected to vanish. With the lan-
guage of stochastic dynamical systems, Bottazzi and Dindo (2014) prove that if
Iπ∗(α1(π1)) < Iπ∗(α2(π1)) then the MSE in which agent 1 dominates (w1 = 1) is
asymptotically stable, while if Iπ∗(α1(π1)) > Iπ∗(α2(π1)) it is unstable. It works
analogously for the MSE in which agent 2 dominates (w1 = 0): just switch 1 and
2 in the previous inequalities. Before providing a formal proof of how the MSE
stability conditions translate into information about the global behaviour of the
system, it is useful to graphically inspect some cases.

Consider the situation in the left panel of Fig. 1. The inclined lines represent
to the two strategies α1 and α2 as function of price. Their intersections with
the diagonal (dotted line) represents the two MSE, p = π1 and p = π2, while the
horizontal line is the true probability, π∗ = 0.5. In this case the Euclidean distance
is proportional to the “information” distance measured using the relative entropy.
We can conclude thus that the MSE p = π1 is stable while the MSE p = π2 is
unstable. More generally, for all realized prices in [π1, π2], strategy α1 is always
nearer to the truth than strategy α2. As a consequence, along any trajectory, the
expected growth rate of the wealth of agent 1 is positive. On the right panel the
situation is the opposite. In this case the beliefs of both agents are below the
truth, and is the wealth of agent 2 that constantly increases on average. In fact
the MSE in which agent 2 dominates is the only stable MSE. These situations are
in fact rather generic: when both π1 and π2 are greater or lower than π∗, the agent
with the belief nearer to the truth always dominates, irrespective of the value of

8



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α1(p)
α2(p)

π*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α1(p)
α2(p)

π*

Figure 2: Local stability. In both the plots we set π∗ = 0.5, π1 = 0.3, π2 = 0.8,
c1 = 0.9. In the first c2 = 0.9, in the second c2 = 0.4.

the mixing coefficient c1 and c2.
The case when π1 < π∗ < π2 is more interesting. Consider the situation in

Fig. 2 where the belief of agent 1 is the closest to the truth. Notice that the
MSE p = π2 is always unstable: when the price is near to π2, the strategy of
the wealthier agent, agent 2, is always further from the truth that the strategy of
agent 1. Conversely, the stability of the MSE p = π1 depends on the value of c2:
for large values of c2 (right panel) it is asymptotically stable, while for low values
of c2 (left panel) it is unstable.

We can observe that there exists a value of c2, call it c̄2, such that the distance
between π1 and π∗ and the distance between α2(π1) and π∗ is the same. Then, if
c2 < c̄2 the MSE p = π1 is unstable, while if c2 > c̄2 it is asymptotically stable. In
the case in which the belief of agent 2 is the closest to the truth, the reverse holds
(see the right panel of Fig 2).

The analysis so far concerned the local stability of the two MSE of the system.
While in a generic stochastic dynamical system local results do not translate into
global predictions, in the present model, using the results in Bottazzi and Dindo
(2015), one can prove the following

Proposition 3.1. Given the system defined in (5) and (6), and with the definition
in (10), one has

i) if the MSE p = π1 is stable (µ(π1) > 0) then the MSE p = π2 is unstable
(µ(π2) > 0), agent 1 dominates, agent 2 vanishes and pt → π1 almost surely,

ii) if the MSE p = π2 is stable (µ(π2) < 0) then the MSE p = π1 is unstable
(µ(π1) < 0), agent 2 dominates, agent 1 vanishes and pt → π2 almost surely,

iii) if both MSE are unstable (µ(π1) ≤ 0 and µ(π2) ≥ 0) then both agents survive,
lim supt→∞

pt = π2 and lim inft→∞ pt = π1 almost surely.
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Proof. See Appendix B.

The previous theorem derives global predictions about the asymptotic dynam-
ics of the system from the local stability analysis of MSE. The theorem rules out
the possibility that both MSE are asymptotically stable4

It is easy to see that the last condition requires π1 < π∗ < π2. That is, a
persistent crowd requires not only a certain degree of divergence of opinions, but
also the contemporaneous presence of a “pessimist” and an “optimist” belief, that
is beliefs respectively lower and higher than the true success probability. Moreover,
agents can both survive only if the wealth share of each agent grows, in expectation,
when the other agent is wealthier. This entails the seemingly counter-intuitive
condition that when the prevailing market price is near to one agent’s belief, that
agent, on average, loses wealth in favor of the opponent. This is made possible by
the presence of the mixing coefficient. When agent 1 dominates the market, agent
2 invests according to a strategy that mixes his belief with the belief of the other
agent, producing a result that might have a lower relative entropy with respect to
the success probability than the belief of agent 1. It is immediate to see that this
can be the case only when the “mixing” coefficient of the agent with the worst
belief is small enough (c.f. Fig 2).5. The combinations of beliefs that allow for the
survival of both agents covers a substantial part of the parameter space, see Fig 3,
and is greater the lower the value of c. One can interpret this conclusion as saying
that, not knowing the true probability, the agent with the lowest c has ex-ante the
highest chances to survive. Under the CRRA interpretation, this translate into
the fact that the chances of survival are higher for the more risk averse agent.6

Hence, consistently with what done in Kets et al. (2014), and to avoid favoring,
so to speak, one agent over the other, in what follows we will assume c1 = c2 = c.

3.2 Reconsidering the Wisdom

In the analysis of one shot prediction markets the contributions mentioned in
Section 1 ascribe two possible degrees of wisdom to the crowd. The prevailing

4This is not a general properties of this kind of market models, however. This result depends
on the assumption that agents adopt fractional Kelly rules. What might happen with different
CRRA strategies, for instance, is discussed in Bottazzi and Dindo (2013)

5Conversely, the agent’s mixing parameter does not affect the ability of a trader to dominate
the market. However, as MacLean et al. (1992) argue, there is a trade-off between risk and
expected growth. Nonetheless here we are interested in asymptotic outcomes, thus, assuming
that we are in a situation in which an agent dominates, the fact that her c is small only implies
that her wealth will converge to 1 slower than a case in which her c is large.

6This is generally true because we are considering risk aversion coefficients not lower than
one. For a more general analysis of the relation between risk aversion and survival in short lived
security markets see Bottazzi and Dindo (2013)
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Figure 3: Combinations of beliefs that let both agents survive. Shaded areas of
increasing dark color correspond to increasing values of c1 = c2 = c: the lightest
is 0.01, then 0.1, 0.25 and 0.5 which is the darkest. Every shaded area contains
those darker than itself.

price could replicate (almost) exactly the true value of the asset, a sort of “strong”
wisdom, or it could be just more precise than (almost) any individual evaluation,
a sort of “weak” wisdom. When we extend the analysis to repeated markets, the
question arises if these properties are to be considered (almost) always satisfied or,
conversely, satisfied only on average. In the present setting, we formally advance
the following

Definition 3.1. Let Et[p] stands for the unconditional price average computed
after the initial transient of t periods

Et[p] = lim
T→∞

1

T

T
∑

τ=t

pτ ,

then when t → ∞

1. the crowd is almost surely strongly wise if Prob{pt = π∗} → 1;

2. the crowd is almost surely weakly wise if Prob{|pt − π∗| < |πi − π∗|} → 1 for
any agent i;

3. the crowd is on average strongly wise if Et[p] → π∗;

4. the crowd is on average weakly wise if |Et[p]− π∗| < |πi − π∗| for any agent
i.

By expressing the above properties asymptotically, we allow for a possible
initial transient phase and focus on the long run dynamics of the system. Since we
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Figure 4: E[p]− π∗ for π1 = 0.3, π2 = 0.8, c = 0.01 and π∗ ∈ {0.35, 0.4, . . . , 0.75}.
Confidence intervals are set to three standard errors.

are interested in investigating the properties of the crowd, the analysis is obviously
limited to the region of the parameters space in which both agents survive, that is
in which the conditions of point iii in Proposition 3.1 are satisfied. The implication
of that Proposition is, however, that in this case the price fluctuates between π1 and
π2. Consequently, conditions 1 in Definition 3.1 is never satisfied while condition
2 occurs only when agents’ beliefs are at the same distance from the truth. One
has the following

Corollary 3.1. In the economy with two fractional Kelly traders as defined in (5)
and (6), when both traders survive, the crowd is never almost surely strongly wise
while it is almost surely weakly wise if and only if π∗ − π1 = π2 − π∗.

Thus, the asymptotic probability that the prevailing price is equal to the success
probability is zero, irrespective of agent’s belief and the mixing parameter they
adopt.7

Consider now two beliefs π1 and π2 whose relative entropy with respect to
the success probability is opposite to their Euclidean distance, that is such that
Iπ∗(π1) > Iπ∗(π2) but π∗ − π1 < π2 − π∗. Due to the convexity of the relative
entropy function this is possible and generic. Let c̃ be the value of the mixing
parameter for which µ(π2) = 0. Then when c > c̃, agents 2 dominates and it

7Following the same reasoning, it is easy to show that this also applies to the more general
case when c1 6= c2.
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is limt→∞ Et[p] = π2. Conversely if c < c̃ both agents survive. However, for
continuity argument, if c is sufficiently near to c̃, the expected price will be near
to π2, thus not only different from π∗, but also farther away from π∗ than π1.8 We
can then conclude that

Corollary 3.2. In the economy with two fractionally Kelly traders as defined in
(5) and (6), generically there exist individual beliefs and mixing coefficients for
which the crowd is neither on average strongly wise nor on average weakly wise.

Since this seems to contradict the finding in Kets et al. (2014), we repeat their
numerical experiment to analyze the source of disagreement. We set π1 = 0.3,
π2 = 0.8, c = 0.01 and for each value of π∗ ∈ {0.35, 0.4, . . . , 0.75} we set the initial
price equal to π∗. We iterate the stochastic map generated by (5) and (6) for a
sufficiently high number of steps. The number of steps depends on the parameter
values and it is choosen high enough for the price history to distribute according to
the invariant distribution of the process. The procedure is independently repeated
for N = 1000000 times and from the N independent runs the average and standard
deviation are computed. Figure 4 reports the difference of the average over final
prices and the true value π∗, together with ∼ 99% confidence intervals obtained
adding and subtracting from the difference three times the standard deviation
over

√
N . The hypothesis that the crowd is on average strongly wise is rejected

for a large set of π∗ values. The difference with respect to the results presented
in Kets et al. (2014) lies in the computation of confidence intervals. In Kets et al.
(2014) the authors compute 1000 time averages over the last 10000 observations
of runs consisting of 100000 periods. They estimate the expected price as the
average across the 1000 time averages, while they use the 5-th and the 95-th
percentiles of the time averages’ empirical distribution as confidence interval. The
price dynamics is however strongly autocorrelated and this can cause biases in the
estimation of the time averages which result in too wide confidence intervals.

As a robustness check we also compute the expected price using the Fokker-
Planck approximation of the invariant distribution of agents relative wealth. Specif-
ically, we consider the dynamics of the log wealth difference zt = logwt/(1− wt).
We embed the discrete dynamics for zt in continuous time using a homogeneous
Poisson process. Then we truncate the Kramer-Moyal expansion of the resulting
continuous time Chapman-Kolmogorov equation at the second order, to obtain
the diffusive approximation of the invariant probability distribution Fz.

9 Form
this distribution, one can simply obtain an estimate of the asymptotic expected

8As a specific example, take π∗ = 0.2, π1 = 0.1, π2 = 0.32 and c = 0.96. Numerical
simulations show that in this case it is E[p] = 0.3191± 0.00003.

9The derivation is sketched in Appendix D. For more details see Bottazzi and Giachini (2016)
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Figure 5: E[p]− π∗ for π1 = 0.3, π2 = 0.8, c = 0.01 and π∗ ∈ {0.35, 0.4, . . . , 0.75}.
Confidence intervals are set to three standard errors.

price using (6)

E[p] =

∫ +∞

−∞

dFz
π1ez + π2

ez + 1
. (11)

In Fig. 5 we report the difference between the average price computed with (11)
and π∗, together with the result of the previous numerical exercise. As can be seen,
the result obtained through the Fokker-Planck approximation is never significantly
different from the numerical simulations and provide more robust evidence of the
discrepancy between the average price and the true probability. Moreover, since
Fz approximates the invariant distribution, we can conclude that the average price
is not only a biased estimator of π∗, but, in general, it is also inconsistent. That is,
the lack of wisdom is not a matter of how long one averages the price: even letting
the number of observation become arbitrary large, the bias does not disappear.
Notice that the bias goes in the direction of the agent that is, in terms of relative
entropy, closest to the truth, suggesting that the market rewards the agent that
has the best belief with an higher average wealth.

If instead of looking at the distance between prices and true probabilities one
looks at their relative entropy, the efficiency of the market mechanism seems im-
proved, as one can easily prove the following

Proposition 3.2. In the economy with two fractionally Kelly traders as defined
in (5) and (6), if both agents survive, then the relative entropy of the average price
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Figure 6: (E[p] − π∗)/σ(p) for π1 = 0.3, π2 = 0.8, π∗ ∈ (0.35, 0.75) and different
values of c.

with respect to the true probability is always lower then the relative entropy of their
beliefs.

Proof. See Appendix C.

This is not surprising. As already suggested elsewhere (Blume and Easley, 2009;
Evstigneev et al., 2009; Bottazzi and Dindo, 2014), the information processed by
the market and revealed by prices is more conveniently compared using the relative
entropy then a metric distance. If one adopts the former kind of measure instead
of the latter, then the market is always on average weakly efficient.

After having established the existence of a persistent difference between the
true probability π∗ and the prevailing prices pt, we try to quantify it. A natural
way to do it is to compare the bias with the magnitude of price fluctuations, by
considering the ratio (E[p]− π∗)/σ(p). If this ratio is small, the estimate obtained
by taking the price average is better then just picking one realized price at random.

Figure 6 shows the values of (E[p]−π∗)/σ(p) for π∗ ∈ (0.35, 0.75) and different
values of c computed using the approximate invariant distribution in (14). Notice
that for all the c considered, it is E[p] = π∗ for π∗ ≃ 0.5656 which is close, but
not equal, to the point, π∗ ≃ 0.5609, in which the relative entropy of agents’
beliefs with respect to the truth is equal. With lower values of c, one gets lower
values of (E[p] − π∗)/σ(p). About this point, Kets et al. (2014) conjecture that
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Figure 7: (E[p] − π∗)/σ(p) for π1 = 0.3, π2 = 0.8, π∗ ∈ {0.35, 0.4, . . . , 0.75} and
c = 0.25, 0.5.

limc→0 E[p] = π∗. Using the diffusive approximation of Fz we prove that, as c → 0,
one has E[p] → π∗ while the variance of p goes to zero, confirming the conjecture
(See Appendix D for the derivation). However, notice that a smaller value of c
implies a higher risk aversion. Thus, in principle, we should allow agents to became
infinitely risk averse in order to have the convergence of the expected price to the
success probability. Referring to the price-depend coefficient in (4), c = 0.05
corresponds to a γ between 15 and 25, c = 0.01 corresponds to a γ between 75
and 120 and c = 0.005 corresponds to a γ between 150 and 220. According to the
classical experiment of Holt and Laury (2002), just a small fraction of their sample
(between 1% and 6%, depending on the treatment) show a relative risk aversion
larger than 1.37, hence such large values of risk aversion seem quite unrealistic.
Indeed, MacLean et al. (1992) take as realistic examples of fractional Kelly betting
the half and the quarter Kelly betting (respectively c = 0.5 and c = 0.25). If we
adopt his proposal, we obtain the situation shown in Fig. 7. The bias shows the
same patterns discussed in advance, but here the magnitude of the error is much
larger.

Summarizing, a trade-off emerges between the size of the bias (compared to
standard deviation and in absolute terms) and the implied risk aversion of the
agents. In fact, realistic risk attitudes imply large bias and in order to keep the
bias low, one should allow for unrealistically high levels of risk aversion.
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4 More than two agents

The analysis so far concerned the seemingly special case of just two traders. Al-
though this small number might appear peculiar, we have seen that also in this
simple case, we are able to discuss, measure and explain the presence of wisdom,
or madness, in prevailing market prices. The aim of this section is to show that
when more agents are considered, the qualitative dynamics of the market and its
efficiency are not expected to change much. Assume N > 2 agents are trading in
the market, with individual beliefs π1 < . . . < πk < π∗ < πk+1 < . . . < πN . Thus
agent k and k + 1 have the most correct beliefs, while agent 1 and N are char-
acterized by somehow extreme beliefs, and are farthest from the truth. Consider
j < k and notice that

Iπ∗(αk(πj)) = Iπ∗(cπk + (1− c)πj) ≤ cIπ∗(πk) + (1− c)Iπ∗(πj) < Iπ∗(πj) ,

which means that when an agent in {1, . . . , k − 1} owns almost all wealth, agent
k grows more than him. As a consequence, none of these agents will ever domi-
nate. An identical argument shows that also the agents in {k + 2, . . . , N} never
dominate.

But will the agents with believes farther from the truth survive in the long
run? The fate of these agents depends on the value of the mixing parameter c.
When this value is sufficiently large, for j < k it is

Iπ∗(αk(p)) ∼ Iπ∗(πk) < Iπ∗(πj) ∼ Iπ∗(αj(p)) , ∀p .

In this case, the drift of the relative wealth of agents k with respect to agent
j is always positive so that limt→∞ log(wk

t /w
j
t ) = +∞ almost surely and agent

j vanishes. Following the same argument, it is limt→∞ log(wk+1
t /wj

t ) = +∞ for
j > k+1. Thus, all agents different from k and k+1 vanish when c is sufficiently
large.

Conversely, using the Taylor expansion of the logarithm, one simply has

lim
c→0

Iπ∗(αj(p))− Iπ∗(αi(p)) ∼ c(πi − πj)
π∗ − p

p(1− p)
.

Thus, when c → 0, the price keeps fluctuating in the interval (π1, πN). When
p > π∗, the wealth of all agents with beliefs below π∗ increases in expectation with
respect to the wealth of any agent with beliefs above it. This brings the price
below π∗ and now the reverse happens. This dynamics is qualitatively similar to
what would happen if only agents 1 and N were present in the market.

Summarizing, when c is sufficiently close to zero, all agents in the market
survive. As c grows, the agents with the less accurate beliefs gradually disappear.
When the mixing parameter is sufficiently large, only the two agents with the most
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accurate beliefs, one above and one below the truth, survive. In all these cases, the
dynamics of the market is similar to a pairwise comparison, in which the beliefs
to be compared belong to the surviving agents with extremal beliefs.

5 Exploiting the Wisdom

Even if the wisdom seems to be present only in modest amounts in the crowd we
are studying, and a sizeable difference does generally emerge between prevailing
market prices and underlying probabilities, still we have seen that the former
convey some information about the latter. The question we start to address in
this section is whether this information can be actually exploited by a trader. For
instance, one might advance the argument that recording past prices and using
them to guess π∗, might improve the betting behavior of an agent. In order to
investigate this issue we consider the simplest possible situation in which a bettor
employs as belief the last realized market price10.

We start with the “exogenous” case in which the imitating fractional Kelly
bettor exists outside the market and bets on the outcomes of the process without
influencing the price. The evolution of her wealth w′

t reads

w′

t =























cpt−1 + (1− c)pt
pt

w′

t−1 if st = 1 ,

1− cpt−1 − (1− c)pt
1− pt

w′

t−1 if st = 0 .

(12)

Once the state of the word at time t is realized, the relation between pt and pt−1

is know, specifically

p1t = pt(st = 1) = pt−1 +
c(pt−1 − π1)(π2 − pt−1)

pt−1

p0t = pt(st = 0) = pt−1 −
c(pt−1 − π1)(π2 − pt−1)

1− pt−1

.

Thus we can compute the expected growth rate of this external agent conditional

10Notice that, in the present model, if agents can upgrade their beliefs, it is smarter to learn
the success probability recording the sequence of states of the world than looking at prices.
However, here the point is not to analyze learning issues, but to investigate what happens to the
agent who adopt some form of imitative behavior based exclusively on price information. This
is reminiscent of what happens in real markets, in which agents lack a reliable description of the
underlying process, the world economy, and try to build efficient portfolios based on the past
realized prices
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Figure 8: E[logw′

t− logw′

t−1] for π
1 = 0.3, π2 = 0.8, and different values of π∗ and

c.

on pt−1, namely

E
[

logw′

t − logw′

t−1

∣

∣

∣
pt−1

]

=

= (π∗)2 log

(

cpt−1 + (1− c)p1t
p1t

)

+ π∗(1− π∗) log

(

1− cpt−1 − (1− c)p1t
1− p1t

)

+π∗(1− π∗) log

(

cpt−1 + (1− c)p0t
p0t

)

+ (1− π∗)2 log

(

1− cpt−1 − (1− c)p0t
1− p0t

)

.

and finally we can use the approximate expression of the price distribution derived
from (14) to compute the unconditional growth rate.

Figure 8 reports the result of this computation as a function of π∗ for one
specific set of parameters. The log-growth rates are positive for all the values of
π∗ and c considered. Our numerical investigation suggests that this is always the
case.11 Hence, using as belief the last realized price is a winning strategy for an
agent who does not influence the price. This consideration is also informative of
the performance of an imitating agent that participates in the market but owns a
negligible share of the total wealth. In that case, the wealth of the imitator will
grow in expectation. In other terms, adopting the last observed price as belief,
seems to be a viable survival strategy, at least.

What happens, instead, if we assume that the imitating agent does actually
trade in the market? To answer that question, consider the model of Section 3 and
assume that agent 1 starts at t = 1 with a fixed belief π1, but in each subsequent
time step t > 1, adopts as belief the last observed price. Remember that at each
time step the market price is a convex combination of agents beliefs, thus p1 ∈
(π1, π2). Since the next time the belief of agent 1 becomes p1, it is p2 ∈ (p1, π

2).

11Details available upon request.
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In other terms, pt ∈ (p1−1, π
2) and the sequence of prices pt is strictly increasing

on any realization of the underlying process. Since there are no other fixed points
apart the MSE discussed in Section 3, this implies that limt→∞ pt = π2, that is, the
price converges to π2 in the long-run12. Notice how, in terms of price’s informative
power, the situation is now worse than in the case of fixed beliefs, in particular
the distance between E[p] and π∗ becomes larger. Even assuming that agent 1
initially knew the truth, π1 = π∗, with the updating procedure the price converges
to the belief of agent 2. We pass from a situation which is (potentially) the most
beneficial for market efficiency, agent 1 dominates and sets pt = π∗ in the long-
run, to a situation in which the asymptotic price that emerges is far away from
the truth.

This simple example shows that there exist cases in which having agents that
try to take advantage of the information embedded in the price can be noxious for
the efficiency of the market. In fact, adopting as belief the last realized price, the
agent does not convey any piece of information that is new with respect to what
already is in the market. On the contrary, in a sort of social influence, by setting
as belief the past price, she gradually incorporates the piece of information owned
by the other and discards her own. As time goes by, the updating agent ends
up having the same piece of information of the opponent (that is, she becomes
completely “influenced”) and the price reveals it. In fact, this argument is not
new. The detrimental effect of social influence for the Wisdom of Crowds was
already mentioned by the same Surowiecki (2004) and showed in the experiments
of Lorenz et al. (2011).

6 Conclusion

We presented a very simple model in which two fractional Kelly traders repeatedly
bet on a uncertain binary outcome, occurring with fixed and unknown probability.
If agent beliefs about the probability of success are one bigger and one lower then
the truth, and if their risk aversion is sufficiently high, then they both survive
and none ends up winning all the money. This is the effect of the fractional Kelly
strategies, which mixes a priori beliefs with contemporary prices, and leads to
a situation in which the wealthier agents is, persistently, the one who gains less
(or loses more). Some previous contributions in the literature suggest that in
this case the “crowd” of the two survivors becomes “wise”, in the sense that the
price history emerging from their interaction carries more information about the
true probability than the individual beliefs of the agents. We show that this is
not always true. Specifically, we show that, in general, the price does not converge

12This example can be easily generalized to a case in which agent 1 adopt a fixed belief for T
periods and then starts updating.
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almost surely, nor in expectation, to the true unknown probability. Moreover, there
are situations in which the average prevailing price, while having a lower relative
entropy with respect to the truth than the beliefs of agents, is farther from it.
This consideration, while stressing the necessity to adopt the right quantity to
compare strategies and outcomes (along the lines discussed in Blume and Easley
(2009); Evstigneev et al. (2009); Bottazzi and Dindo (2014)), gets rid of the naive
presumption that market prices, emerging from the interaction of heterogeneous
traders, are intrinsically “better” than their individual opinions.

Notice that our agents are not able to learn the probability of success. Absurd
as it seems, this is done in search of a higher realism. Indeed, if we endow the agents
with the ability to learn the truth, not only the realized prices will converge there,
but the crowd essentially disappears as agents becomes asymptotically identical.
Since the progressive convergence of opinions is clearly not something that we
observe in real markets, we can deduce that traders there are not able to learn the
truth, whatever it might be. We decided to shape our agents on their example.

In addition, we simply illustrate the detrimental effects that social influence
might have on the wisdom of the crowds, as argued by some scholars: if an agent
in our model tries to exploit market prices to build more accurate predictions and
invest accordingly, the informative content of prices is further spoiled and prices
may end up revealing the worst, that is less accurate, opinion, among those initially
available.
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A Fractional Kelly and expected utility maxi-

mization

The fractional Kelly investing can be mapped in the optimal rule of an agents
that maximize next period utility under CRRA preferences with price dependent
risk aversion coefficient γi,t (see also MacLean et al. (2010)). Consider the utility
function

ui,t(w
i
t) =















(wi
t)

1−γi,t − 1

1− γi,t
if γi,t ∈ (0,+∞), γi,t 6= 1

log(wi
t) if γi,t = 1

Solving the expected utility maximization problem under the agent specific belief
πi, one gets

αi(pt) =
(1− pt)

1−γi,t

γi,t (πi)
1

γi,t

(1− pt)
1−γi,t

γi,t (πi)
1

γi,t + pt
1−γi,t

γi,t (1− πi)
1

γi,t

. (13)

Setting (13) equal to (3) and solving for γi,t, one obtains (4).
One can also show that fractional Kelly investing emerges as investing be-

havior of a fully rational agent who intertemporally maximizes the geometrically
discounted expected logarithmic utility of wealth under price dependent beliefs
πi
t = ciπi + (1− ci)pt.

B Proof of Proposition 3.1

Let us define

∆π∗(π1||π2) = π∗ log
π1

π2
+ (1− π∗) log

1− π1

1− π2
.

Using the strict concavity of the logarithmic function it is immediate to see that
µ(π1) < c2∆π∗(π1||π2) and µ(π2) > c1∆π∗(π1||π2).

Then µ(π1) > 0 implies ∆π∗(π1||π2) > 0 and, in turn, µ(π2) > 0. Analogously,
µ(π2) < 0 implies ∆π∗(π1||π2) < 0 and µ(π1) < 0.

Consider the dynamics of the ratio of individual wealth zt = logwt/(1−wt). If
π1 < pt < π2, then zt− zt−1 < 0 if st = 1 and zt− zt−1 > 0 if st = 0. This excludes
the possibility of a finite deterministic fixed point or of deterministic drift for zt.
Moreover, since

log
π1

π2
≤ zt − zt−1 ≤ log

1− π1

1− π2
,
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the process zt has bounded increments. Finally notice that

lim
z→+∞

E[zt − zt−1|zt−1 = z] = µ(π2)

and
lim

z→−∞

E[zt − zt−1|zt−1 = z] = µ(π1) .

Then if µ(π1) > 0 and µ(π2) > 0, according to (Bottazzi and Dindo, 2015,
Theorem 3.1), zt diverges to +∞ a.s. and the first statement of the proposition
follows.

If µ(π2) < 0 and µ(π1) < 0, according to (Bottazzi and Dindo, 2015, Corollary
3.1), zt diverges to −∞ a.s. and the second statement of the proposition follows.

Finally if µ(π2) > 0 and µ(π1) < 0, according to (Bottazzi and Dindo, 2015,
Theorem 2.2), the process of zt is persistent. Since zt increases with probability
1 − π∗ and decreases with probability π∗, one has that, as long as π∗ ∈ (0, 1), it
is lim supt→∞

zt = +∞ and lim inft→∞ zt = −∞ a.s., so that the third statement
follows.

C Proof of Proposition 3.2

Without loss of generality consider the wealth of the first agent. If both agents
survive it must be E[logwt/wt−1] = 0, which implies

cE
[

Iπ∗(p)− Iπ∗(π1)
]

= cE

[

π∗ log
π1

π∗
+ (1− π∗) log

1− π1

1− π∗

]

≤

E

[

π∗ log

(

c
π1

p
+ 1− c

)

+ (1− π∗) log

(

c
1− π1

1− p
+ 1− c

)]

= 0 ,

so that
E [Iπ∗(p)] ≤ Iπ∗(π1) .

Moreover, from the convexity of the relative entropy and the Jensen inequality, it
is

Iπ∗(E[p]) ≤ E [Iπ∗(p)] ,

which proves the assertion.
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D Diffusive Approximation

The dynamics of zt = logwt/(1− wt) reads

zt+1 = zt +



















log
cπ1 + (1− c)p(zt)

cπ2 + (1− c)p(zt)
if st = 1 ,

log
1− cπ1 − (1− c)p(zt)

1− cπ2 − (1− c)p(zt)
if st = 0 .

with p(z) = (π1ez + π2)/(ez + 1). By embedding the process in continuous time
through a Poisson arrival with homogeneous intensity λ and truncating at the
second order the Kramer-Moyal expansion of the resulting Champan-Kolmogorov
equation we obtain the diffusive limit

∂

∂t
f(z, t) = − ∂

∂z

(

λm(z)f(z, t)− ∂

∂z
(λv(z)f(z, t))

)

where

m(z) = π∗ log
cπ1 + (1− c)p(z)

cπ2 + (1− c)p(z)
+ (1− π∗) log

1− cπ1 − (1− c)p(z)

1− cπ2 − (1− c)p(z)
,

v(z) =
π∗

2

(

log
cπ1 + (1− c)p(z)

cπ2 + (1− c)p(z)

)2

+
1− π∗

2

(

log
1− cπ1 − (1− c)p(z)

1− cπ2 − (1− c)p(z)

)2

.

are obtained by the first central cumulants of the increment, m(z) = E[zt+1 −
zt|zt = z] and v(z) = E[(zt+1−zt)

2|zt = z]/2. Since the process for zt is unbounded,
we can safely assume that the distribution is asymptotically vanishing so that we
can solve the previous equation to obtain the density

fz(x) = F ′

z(x) =
f0
v(x)

e
∫ x

z0
dy

m(y)
v(y) , (14)

where z0 is the unique value for which m(z0) = 0. This values does in general
depend on all the parameters of the model. Bottazzi and Giachini (2016) show
that (14) constitutes a good approximation of the actual distribution in all the
points of the parameter space. Moreover, the approximation is better the lower
the value of c. One can rewrite (14) as

fz(x) =
f0

c2V (x)
e
−

1
c

∫ x

z0
dy

M(y)
V (y) ,

where M(x) = −m(x)/c and V (x) = v(x)/c2. Let

W (x) =

∫ x

z0

dy
M(y)

V (y)
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and note that W ′(z0) = 0 and W (z) ≥ 0 for any z. Then, when c is small, one can
use the asymptotic expansion of Laplace-like integrals to obtain

Mn(c) =

∫ +∞

−∞

dx fz(x) x
n = f0

√

2π

c3W ′′(z0)

zn0
V (z0)

e−W (z0) + o(c−3/2) .

so that

lim
c→0

E[z] = lim
c→0

M1(c)

M0(c)
= lim

c→0
z0

and

lim
c→0

V[z] = lim
c→0

M2(c)

M0(c)
−

(

M1(c)

M0(c)

)2

= 0 .

In the limit c → 0 the distribution of z becomes atomic and peaked around the
point z0. Since limc→0 p(z0) = π∗, the distribution of prices is, in the limit, atomic
and peaked around π∗.
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