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1 Introduction

Two-stage estimation procedures wherein technical efficiency is estimated by data envelop-

ment analysis (DEA) or free disposal hull (FDH) estimators in the first stage, and the result-

ing efficiency estimates are regressed on some environmental variables in a second stage, are

very popular in the literature. Simar and Wilson (2007) cite 48 published papers that employ

this approach and commented that “as far as we have been able to determine, none of the

studies that employ this two-stage approach have described the underlying data-generating

process.” Simar and Wilson go on to (i) define a statistical model where truncated (but

not censored, i.e., tobit, nor ordinary least squares) regression yields consistent estimation

of model features, (ii) demonstrate that conventional, likelihood-based approaches to infer-

ence are invalid, and (iii) develop a bootstrap approach that yields valid inference in the

second-stage regression. The model defined by Simar and Wilson rationalizes second-stage

regressions of estimated efficiency on environmental variables in the sense that such a re-

gression estimates a feature of the model described by Simar and Wilson. However, as noted

by Simar and Wilson, the model contains a crucial feature—and a strong restriction—in

the form of a “separability condition” that appears below as Assumption 2.1. Without this

condition, second-stage regressions of estimated efficiency do not estimate any meaningful

model feature; as Simar and Wilson (2007), this condition should be tested before estimating

a second-stage regression, but until now no test has been available. Such a test is provided

in this paper.

A number of papers have appeared in recent years using the approach suggested by Simar

and Wilson (2007). However, papers that estimate technical efficiency in the first stage and

then regress these estimates on some environmental variables in a second-stage tobit model

continue to appear. As far as we know, none of these papers present a statistical model in

which second-stage tobit estimation would consistently estimate features of the model; the

approach is ad hoc in each case. Moreover, regardless of how the second-stage regression

is specified, any results from such regressions are meaningless for reasons given below when

the separability condition is violated.1

1 A search on Google Scholar on 14 August 2015 using the keywords “dea,” “efficiency,” “tobit,” and “two
stage” returned 3,240 papers with dates between 2008 and 2015. As far as we know, none of these papers
present a statistical model in which second-stage tobit estimation would consistently estimate features of
the model; the approach is ad hoc in each case. Repeating the search after dropping the keyword “tobit”
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Recently, Daraio and Simar (2005) develop conditional measures of efficiency, which allow

nonparametric estimation of technical efficiency conditional on some explanatory variables

in a single stage. This raises some important questions for practitioners, such as the ques-

tion of precisely how environmental variables might affect the production process. In the

model presented by Simar and Wilson (2007), environmental variables affect the shape (i.e.,

mean, variance, etc.) of the distribution of inefficiencies, but not the support of input or

output variables. Conceivably, however, environmental variables might have other effects; in

particular, they might affect the production possibilities themselves. The statistical model

in Simar and Wilson rationalizes second-stage regression of efficiency estimates on some en-

vironmental variables, but does not allow for the possibility that environmental variables

might affect the production possibilities. If they do, then a different model is needed, and

second-stage regression is not appropriate.

In this paper, we present a carefully-developed framework—i.e., a statistical model—

in order to make clear how environmental variables might be relevant, and how to test

whether two-stage approaches might be meaningful (i.e., whether the separability condition

described by Simar and Wilson, 2007 and required by studies that have used the two-stage

approach is satisfied). We then extend the CLT results of Kneip et al. (2015a) to conditional

efficiency estimators; while the new CLTs are useful in their own right for making various

hypothesis tests along the lines of Kneip et al. (2015b), they are needed to develop our

separability test. We then develop test statistics and prove that they have asymptotic

normal limiting distributions from which critical values for implementing the test can be

obtained. In addition, we describe a bootstrap method that can be used to assess the

significance of test statistics without incurring a large computational burden; results from

Monte Carlo simulations suggest that in many cases the bootstrap tests have better power

than those relying on asymptotic normality. In cases where two-stage approaches are found

to be inappropriate, one can (and should) estimate efficiency conditionally on environmental

variables, for reasons given below.

In the next section, we develop the statistical model. Estimators are discussed in Section

returned 19,300 papers over the same years. Even if only half of these hits are relevant, the searches indicate
that the practice of regressing nonparametric efficiency estimates on some environmental variables in a
second-stage regression is widespread, although perhaps many of these exercises yield meaningless results if
the separability condition is frequently violated.
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3, and the tests are developed in Section 4. Section 5 describes Monte Carlo experiments

used to assess the size and power of our tests as well as results. In Section 6 we provide

a real-world example by revisiting the work of Aly et al. (1990) and testing whether the

assumptions given by Simar and Wilson (2007) that are required for the two-stage approach

used by Aly et al. to be meaningful are satisfied. Conclusions are given in the final section.

Appendix A gives technical assumptions used to derive results in Section 4, and Appendix

B discusses how one can handle discrete environmental variables.

2 The Production Process in the Presence of Environ-

mental Factors

In this section we formalize a statistical model of the production process along the lines of

the probability framework of Cazals et al. (2002). The production process generates random

variables (X, Y, Z) in an appropriate probability space, where X ∈ R
p
+ is the vector of input

quantities, Y ∈ R
q
+ is the vector of output quantities and Z ∈ R

r is a vector of variables

describing environmental factors. These factors Z are neither inputs nor outputs and are

typically not under the control of the manager, but they may influence the production process

in different ways as explained below. Let fXY Z(x, y, z) denote the joint density of (X, Y, Z)

which has support P ⊂ R
p
+ × R

q
+ × R

r. This joint density can always be decomposed as

fXY Z(x, y, z) = fXY |Z(x, y | z)fZ(z). (2.1)

Let Ψz denote the conditional support of fXY |Z(x, y | z), i.e., the support of (x, y) given

Z = z, and let Z be the support of fZ(z). Then Ψz is the set of feasible combinations of

inputs and outputs for a firm facing the environmental conditions Z = z; i.e.,

Ψz = {(X, Y ) | X can produce Y when Z = z}. (2.2)

The environmental variables in Z can affect the production process either (i) only through

Ψz, the support of (X, Y ), or (ii) only through the density fXY |Z(x, y | z), thereby affecting

the probability for a firm to be near its optimal boundary, or (iii) through both Ψz and

fXY |Z(x, y | z). Let
Ψ =

⋃

z∈Z

Ψz. (2.3)
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Clearly, Ψ ⊂ R
p+q
+ , but whether Ψ is useful for benchmarking the performance of a firm pro-

ducing output levels y from input levels x while facing levels z of the environmental variables

depends on whether the “separability” condition described by Simar and Wilson (2007) is

satisfied. This condition requires that Z affect production only through the conditional den-

sity fXY |Z(x, y | z) without affecting its support Ψz, and is stated explicitly in Assumption

2.1.

Assumption 2.1. (Separability Condition): Ψz = Ψ for all z ∈ Z.

Clearly, when Assumption 2.1 holds the joint support of (X, Y, Z) can be factorized as

P = Ψ×Z, (2.4)

and Ψ can be interpreted as the unconditional attainable set

Ψ = {(X, Y ) | X can produce Y }. (2.5)

However, Ψ has the interpretation in (2.5) if and only if (iff) Assumption 2.1 holds. The sep-

arability condition is very strong and restrictive. Under Assumption 2.1, the environmental

factors influence neither the shape nor the level of the boundary of the attainable set, and

the potential effect of Z on the production process is only through the distribution of the

inefficiencies. If the separability condition holds, it is meaningful to measure the efficiency

of a particular production plan (x, y) by its distance to the boundary of Ψ. For example,

under separability, the output-oriented Farrell efficiency score is given by

λ(x, y) = sup{λ > 0 | (x, λy) ∈ Ψ}. (2.6)

In this case, it is meaningful to analyze the behavior of λ(x, y) as a function of Z by using

an appropriate regression model (see Simar and Wilson, 2007, 2011 for details).2

Alternatively, if the separability condition does not hold, then we have a more general

situation where the factor Z may influence the level and the shape of the boundary of the

attainable sets (and may also influence the conditional density fXY |Z(x, y | z)). The following
assumption characterizes this situation explicitly.

2 We focus the presentation in this paper using output-oriented measures of efficiency such as the one
in (2.6), but of course efficiency can be measured in other directions as desired. See the recent surveys
by Simar and Wilson (2013, 2015) and the references cited therein for details. All of the results here are
easily generalized to input, hyperbolic, and directional distance functions after straight-forward (but perhaps
tedious) changes in notation.
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Assumption 2.2. (Non Separability Assumption): Ψz 6= Ψ for some z ∈ Z, i.e., for some

z, z̃ ∈ Z, Ψz 6= Ψz̃.

Note that Assumptions 2.1 and 2.2 are mutually exclusive; one and only one holds in a given

situation.

Under Assumption 2.2, the efficiency measure in (2.6) is difficult to interpret; in fact,

it is economically meaningless because it does not measure the distance to the appropriate

boundary. If Assumption 2.2 holds, the set Ψ can still be defined as in (2.3), but for

benchmarking production units, the boundary of Ψ has little interest in this case because it

may be unattainable for some firms faced with unfavorable conditions represented described

by z. In such cases, the conditional measure

λ(x, y | z) = sup{λ > 0 | (x, λy) ∈ Ψz} (2.7)

introduced by Cazals et al. (2002) and Daraio and Simar (2005) gives a measure of distance to

the appropriate, relevant boundary (i.e., the boundary that is attainable by firms operating

under conditions described by z).

The distinction between Assumptions 2.1 and 2.2, and their implications for how en-

vironmental variables in Z affect the production process, has often been neglected in the

literature where researchers analyze the effect of Z on λ(X, Y ) by estimating some regres-

sion of λ(X, Y ) on Z. Typically, starting with a sample of observations (Xi, Yi, Zi), DEA

or FDH estimators λ̂(Xi, Yi) computed in a first stage are regressed on Zi in a second-stage

analysis. Even if Assumption 2.1 holds, additional problems described in Simar and Wilson

(2007) remain to be solved in the second stage to obtain sensible inference. Theoretical

results on how to make inference in a second stage linear regression, when appropriate, is

described in detail by Kneip et al. (2015a). However, if Assumption 2.2 holds, the two-stage

approach is almost certain to lead to incorrect results and inferences about the effect of Z

on the production process. This explains why it is important, as noted by Simar and Wil-

son (2007)—indeed, essential—to test Assumption 2.1 against Assumption 2.2. If the test

rejects separability in favor of Assumption 2.2, then only a second-stage regression of the

conditional measure λ(X, Y | Z) on Z can be meaningful, as described for example in Bădin

et al. (2012).3

3 A search for papers using Google Scholar on July 16, 2015 found approximately 4,500 hits using keywords
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In order to derive results below, the efficiency measures in (2.6) and (2.7) must be defined

in terms of components of our probability model. Cazals et al. (2002) show that under free

disposability (see Assumption 4.2 below) the output-oriented efficiency measure in (2.6) can

be written as

λ(x, y) = sup{λ > 0 | HXY (x, λy) > 0}, (2.8)

where HXY (x, y) = Pr(X ≤ x, Y ≥ y) is the probability of finding a firm dominating the

production unit operating at the level (x, y).4 This can be factored as Pr(X ≤ x) Pr(Y ≥
y | X ≤ x) = FX(x)SY |X(y | X ≤ x), where the latter conditional survival function is

nonstandard due to the the condition X ≤ x. For (x, y) such that x is in the interior of its

support (i.e., FX(x) > 0), the efficiency score can be written equivalently as

λ(x, y) = sup{λ > 0 | SY |X(λy | X ≤ x) > 0}. (2.9)

Along the same lines, the conditional efficiency score can be expressed as

λ(x, y | z) = sup{λ > 0 | HXY |Z(x, λy | z) > 0}, (2.10)

where HXY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | Z = z) is the probability of finding a firm dom-

inating the production unit operating at the level (x, y) and facing environmental conditions

z and is the distribution function corresponding to the conditional density fXY |Z(x, y | z)
introduced earlier. Analogous to (2.9), the conditional efficiency measure can also be written

as

λ(x, y | z) = sup{λ > 0 | SY |X,Z(λy | X ≤ x, Z = z) > 0} (2.11)

while noting the different roles of X and Z in the conditioning of the conditional survival

function SY |X,Z(y | X ≤ x, Z = z) = Pr(Y ≥ y | X ≤ x, Z = z).

3 Non-parametric Efficiency Estimators

The literature on nonparametric statistical inference for efficiency scores is by now well-

developed. Here, we summarize the definitions and properties needed to test Assumption

2.1 versus Assumption 2.2. Consider a sample of identically, independently (iid) observations

“dea,” “efficiency,” and “second-stage regression” while restricting the search to papers dated 2008 through
2015. Apparently, the warnings of Simar and Wilson (2007) have not been heeded.

4 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
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Sn = {(Xi, Yi, Zi) | i = 1, . . . , n}. Following Deprins et al. (1984), the FDH of the sample

Sn is the set

Ψ̂FDH(Sn) =
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ R

p+q
+ | y ≤ Yi, x ≥ Xi

}
. (3.1)

The convex hull of Ψ̂FDH(Sn) given by

Ψ̂DEA(Sn) =
{
(x, y) ∈ R

p+q
+ |y ≤

n∑

i=1

ωiYi, x ≥
n∑

i=1

ωiXi,

n∑

i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}

(3.2)

provides the DEA estimator proposed by Farrell (1957) and popularized by Charnes et al.

(1978).5

The corresponding efficiency estimators are obtained by plugging these estimators into

the definition of λ(x, y) in (2.6). Using Ψ̂FDH(Sn) in the FDH case leads to

λ̂FDH(x, y | Sn) = max
i=1,..., n|Xi≤x

(
min

j=1, ..., p

(
Y j
i

yj

))
, (3.3)

where yj, Y j
i denote the jth elements of y (i.e., the input vector corresponding to the fixed

point of interest) and Yi (i.e., the output vector corresponding to the ith observation in

Sn). This is simply the plug-in version of (2.8), where HXY (x, y) is replaced by its empirical

version

ĤXY (x, y) = n−1

n∑

i=1

I(Xi ≤ x, Yi ≥ y), (3.4)

where I(A) is the indicator function equal 1 if A is true and 0 otherwise. In the DEA case,

replacing Ψ in (2.6) with Ψ̂DEA(Sn) from (3.2) gives the DEA efficiency estimator

λ̂DEA(x, y | Sn) = max
λ,ω1, ..., ωn

{
λ > 0 |λy ≤

n∑

i=1

ωiYi, x ≥
n∑

i=1

ωiXi,

n∑

i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}
. (3.5)

For the conditional efficiency scores we need to use a smoothed estimator of HXY |Z(x, y |
z) to plug in (2.10), which requires a vector of bandwidths for Z. Denoting this r-vector

5 Note that in (3.1)–(3.2), the data on Zi are ignored; only the first (p + q) components of the ordered
(p+ q + r)-tuples in Sn are used.
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of bandwidths by h, the conditional distribution function HXY |Z(x, y | z) is replaced by the

estimator

ĤXY |Z(x, y | z) =
∑n

i=1 I(Xi ≤ x, Yi ≥ y)Kh(Zi − z)∑n
i=1 Kh(Zi − z)

, (3.6)

where Kh(·) = (h1 . . . hr)
−1K ((Zi − z)/h) and the division between vectors is understood

to be component-wise. As explained in the literature (e.g., see Daraio and Simar, 2007b),

the kernel function K(·) must have bounded support (e.g., the Epanechnikov kernel).6 This

provides the estimator

λ̂FDH(x, y | z,Sn) = max
i∈I(z,h)

(
min

j=1, ..., p

(
Y j
i

yj

))
, (3.7)

where I(z, h) = {i | z − h ≤ Zi ≤ z + h}.
Alternatively, where one is willing to assume that the conditional attainable sets are

convex, Daraio and Simar (2007b) suggest a conditional DEA estimator of λ(x, y | z), namely

λ̂DEA(x, y | z,Sn) = max
λ,ω1, ..., ωn

{
λ > 0 | λy ≤

∑

i∈I(z,h)

ωiYi, x ≥
∑

i∈I(z,h)

ωiXi,

for some ωi ≥ 0 such that
∑

i∈I(z,h)

ωi = 1,
}
. (3.8)

Note that the conditional estimators in (3.7) and (3.8) are just localized version of the

unconditional FDH and DEA efficiency estimators given in (3.3) and (3.5), where the degree

of localization is controlled by the bandwidth in h. Practical aspects for choosing bandwidths

are discussed below in Section 4.5.

The properties of nonparametric efficiency estimators have been examined in a number

of papers in recent years. Park et al. (2000) and Daouia et al. (2015) derive the rate of

convergence and limiting distribution of the FDH efficiency estimator. Kneip et al. (1998)

derived the rate of convergence of the DEA estimator in (3.5), while Kneip et al. (2008)

derived its limiting distribution. Kneip et al. (2015a) provide results on the moments of both

FDH and DEA estimators. See Simar and Wilson (2013, 2015) for comprehensive surveys

of the literature. To summarize relevant results for the unconditional efficiency estimators,

6 An alternative would be, following Bădin et al. (2010), to plug a smoothed estimator of SY |X,Z(y | X ≤
x, Z = z) into (2.11), but as shown in Simar et al. (2015), if the two methods are asymptotically equivalent,
the latter provides a bandwidth for z that depends on x and the resulting efficiency estimate may not be
monotone decreasing in x in finite samples, as the target λ(x, y | z) is.
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under Assumptions 2.1, 4.1, 4.2 and some additional, appropriate regularity conditions (e.g.,

monotonicity, smoothness of the frontier and smoothness of the density of (X, Y )), for a

fixed point (x, y) in the interior of Ψ, as n → ∞,

nκ
(
λ̂(x, y | Sn)− λ(x, y)

)
L−→ Qxy(·) (3.9)

where Qxy(·) is a regular, non-degenerate distribution with parameters depending on the

characteristics of the DGP and on (x, y), and κ determines the rate of convergence.7 For

the FDH estimator, κ = 1/(p + q) while for the DEA estimator, κ = 2/(p + q + 1). For

the FDH case, the limiting distribution belongs to the Weibull family, but with parameters

that are difficult to estimate. For the DEA case, the limiting distribution does not have a

closed form. Hence in either case, inference on individual efficiency scores requires bootstrap

techniques. In the DEA case, Kneip et al. (2008) provide theoretical results for both a

smoothed bootstrap and for subsampling, while Kneip et al. (2011) and Simar and Wilson

(2011) provide details and methods for practical implementation. Subsampling can also be

used for inference in the FDH case; see Jeong and Simar (2006) and Simar and Wilson

(2011).

Jeong et al. (2010) show that the conditional version of the FDH and DEA efficiency

estimators share properties similar to their unconditional counterparts whenever the elements

of Z are continuous.8 The sample size n is replaced by the effective sample size used to build

the estimates, which is of order nh1 . . . hr, which we write hereafter as nhr for simplicity

(hoping the reader will indulge the abuse of notation, since the individual bandwidths may

differ). For a fixed point (x, y) in the interior of Ψz, as n → ∞,

(nhr)κ
(
λ̂(x, y | z,Sn)− λ(x, y | z)

)
L−→ Qxy|z(·) (3.10)

where again Qxy|z(·) is a regular, non-degenerate limiting distribution analogous to the cor-

responding one for the unconditional case. The main argument in Jeong et al. (2010) relies

on regularity conditions discussed in the next section, but also on the property that there

are enough points in a neighborhood of z, which is obtained with the additional assumption

7 Here and in the exposition that follows, we omit the subscripts “FDH” and “DEA” from the efficiency
estimator in order to describe results in a generic fashion, thereby conserving space.

8 We discuss below in Appendix B how discrete “environmental” variables can be handled. Otherwise,
except in Appendix B, we assume throughout that all elements of Z are continuous.
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that fZ(z) is bounded away from zero at z and that if the bandwidth is going zero, it should

not go too fast (see Jeong et al., 2010, Proposition 1; if h → 0, h should be of order n−α

with α < 1/r). We will return to this point in the discussion following Lemma 4.1 below.

4 Testing Separability

4.1 Basic Ideas

The goal is to test the null hypothesis of separability (Assumption 2.1) against its complement

(Assumption 2.2). The idea for building a test statistics is to compare the conditional and

unconditional efficiency scores using relevant statistics that are functions of λ̂(Xi, Yi | Sn) and

λ̂(Xi, Yi | Zi,Sn) for i = 1, . . . , n. Note that under Assumption 2.1, λ(X, Y ) = λ(X, Y | Z)
with probability one, even if Z may influence the distribution of the inefficiencies inside the

attainable set, and the two estimators converge to the same object. But under Assumption

2.2, the conditional attainable sets Ψz are different and the two estimators converge to

different objects. Moreover, under Assumption 2.2, λ(X, Y ) ≥ λ(X, Y | Z) with strict

inequality holding for some (X, Y, Z) ∈ P .

The approach developed here is similar to those developed in Kneip et al. (2015b) for

testing constant versus variable returns to scale or for testing convexity versus non-convexity

of the attainable set. Now consider the sample means

µ̂n = n−1

n∑

i=1

λ̂(Xi, Yi | Sn) (4.1)

and

µ̂c,n = n−1

n∑

i=1

λ̂(Xi, Yi | Zi,Sn) (4.2)

of unconditional and conditional efficiency estimators. The efficiency estimators in (4.1) and

(4.2) could be either FDH or DEA estimators, but for purposes of the following discussion,

suppose the same type of estimators (FDH or DEA) are used in both (4.1) and (4.2). By

construction (µ̂n − µ̂c,n) ≥ 0, and the null hypothesis of separability should be rejected if

this difference is “too big”. However, several problems remain to be solved.

In particular, From Kneip et al. (2015a) we know that even under the null hypothesis,

standard central limit theorems (e.g., the Lindeberg-Feller theorem) cannot be used with µ̂n

10



to make inferences about population means unless (p+q) < 3 in the DEA case or (p+q) < 2

in the FDH case. As will be seen below, similar problems exist for µ̂c,n. Moreover, even

if with the applicable CLT from Kneip et al. (2015a) and the CLT proved below for the

conditional estimators, the (asymptotic) distribution of the difference (µ̂n − µ̂c,n) is quite

complicated due to the covariance between the two estimators. A viable solution to this

problem is to randomly split the sample Sn into two independent parts consisting of n1 and

n2 observations (such that n1 + n2 = n), and compute µ̂n1 using the first part Sn1 and µ̂c,n2

using the second part Sn2 . This provides two independent statistics where it will be possible

to apply the results of Kneip et al. (2015a) and additional results proved below to derive the

sampling distribution under the null. But this requires some preliminary steps to adapt the

existing results to the setup here. We demonstrate below in Section 5 that the procedure

works well in practice with finite sample sizes.

4.2 Sampling distribution of averages of the efficiency scores

As noted by Kneip et al. (2015a), availability of the asymptotic results for efficiency estimated

at a fixed point (x, y) is useful, but not sufficient for analyzing the behavior of statistics that

are function of FDH or DEA estimators evaluated at random points (Xi, Yi). In the discussion

below, we denote the FDH and DEA efficiency estimators by λ̂(Xi, Yi | Sn) to stress the fact

that the estimator is to be evaluated at a random point (Xi, Yi).

4.2.1 Asymptotic Moments of Efficiency Estimators

Kneip et al. (2015a) prove that for the unconditional FDH and DEA estimators, under some

regularity conditions (see Kneip et al., 2015a for details) and as n → ∞,

E
(
λ̂(Xi, Yi | Sn)− λ(Xi, Yi)

)
= Cn−κ +Rn,κ (4.3)

E

((
λ̂(Xi, Yi | Sn)− λ(Xi, Yi)

)2)
= o
(
n−κ

)
, (4.4)

and ∣∣∣COV
(
λ̂(Xi, Yi | Sn)− λ(Xi, Yi), λ̂(Xj, Yj | Sn)− λ(Xj, Yj)

)∣∣∣ = o
(
n−1
)

(4.5)

for all i, j ∈ {1, . . . , n}, i 6= j and where Rn,k = o (n−κ). The values of the constant

C, the rate κ, and the remainder term Rn,κ depends on which estimator is used. For the
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DEA estimator, κ = 2/(p + q + 1) and Rn,κ = O(n−3κ/2(log n)α1); for the FDH estimator,

κ = 1/(p+q) and Rn,κ = O(n−2κ(log n)α2). The values of αj > 1, j = 1, 2 are given in Kneip

et al. (2015a). For purposes of the results needed here, the log n factor contained in Rn,κ

does not play a role and can be ignored. The results outlined here are valid under a set of

corresponding regularity assumptions (see Theorems 3.1 and 3.3 in Kneip et al., 2015a).

Similar results are needed for the asymptotic moments of the conditional efficiency esti-

mators. To achieve this we follow the arguments of Jeong et al. (2010), who note that for a

given h, the conditional FDH and DEA estimators in (3.7) and (3.8) do not target λ(x, y | z),
but instead estimate

λh(x, y | z) = sup{λ > 0 | (x, y) ∈ Ψz,h}, (4.6)

with the conditional attainable set given by

Ψz,h = {(X, Y ) | X can produce Y, when |Z − z| ≤ h}
=
{
(x, y) ∈ R

p+q
+ | Hh

XY |Z(x, y | z) > 0
}

=
{
(x, y) ∈ R

p+q
+ | fh

XY |Z(·, · | z) > 0
}

(4.7)

whereHh
XY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | z−h ≤ Z ≤ z+h) gives the probability of finding

a firm dominating the production unit operating at the level (x, y) and facing environmental

conditions Z in an h-neighborhood of z and fh
XY |Z(·, · | z) is the corresponding conditional

density of (X, Y ) given |Z − z| ≤ h. Alternatively, (4.6) can be written as

λh(x, y | z) = sup
{
λ > 0 | Hh

XY |Z(x, λy | z) > 0
}
. (4.8)

Moreover, it is clear that Ψz,h =
⋃

|z̃−z|≤h Ψ
z̃.

Consequently, for all points (x, y) in the support of fXY |Z(x, y | z), the error of estimation

can be decomposed as

λ̂(x, y | z)− λ(x, y | z) = λ̂(x, y | z)− λh(x, y | z)︸ ︷︷ ︸
=∆1

+λh(x, y | z)− λ(x, y | z)︸ ︷︷ ︸
=∆2

, (4.9)

where the first difference (∆1) is due to the estimation error in the localized problem and

the second difference (∆2) is the non-random bias (≤ 0) introduced by the localization.

Some assumptions are needed to define a statistical model. The next three assumptions

are conditional analogs of standard assumptions made by Shephard (1970), Färe (1988),

Kneip et al. (2015a) and others.

12



Assumption 4.1. For all z ∈ Z, Ψz and Ψz,h are closed.

Assumption 4.2. For all z ∈ Z, both inputs and outputs are strongly disposable; i.e., for

any z ∈ Z, x̃ ≥ x and 0 ≤ ỹ ≤ y, if (x, y) ∈ Ψz then (x̃, y) ∈ Ψz and (x, ỹ) ∈ Ψz. Similarly,

if (x, y) ∈ Ψz,h then (x̃, y) ∈ Ψz,h and (x, ỹ) ∈ Ψz,h.

Assumption 4.2 corresponds to Assumption 1F in Jeong et al. (2010), and amounts to a

regularity condition on the conditional attainable sets justifying the use of the localized

versions of the FDH and DEA estimators. The assumption imposes weak monotonicity

on the frontier in the space of inputs and outputs for a given z ∈ Z, and is standard in

micro-economic theory of the firm.

When the DEA estimators are used, the following assumption (corresponding to Assump-

tion 1D in Jeong et al., 2010) is also needed.

Assumption 4.3. For all z ∈ Z, Ψz and Ψz,h are convex in R
p+q
+ .

The next assumption concerns the regularity of the density of Z and of the conditional

density of (X, Y ) given Z = z, as a function of z in particular near the efficient boundary of

Ψz (see Assumption 6 in Jeong et al., 2010).

Assumption 4.4. Z has a continuous density fZ(·) such that for all z ∈ Z fZ(z) is bounded

away from zero. Moreover the conditional density fXY |Z(·, · | z) is continuous in z and is

strictly positive in a neighborhood of the boundary points.

A number of additional assumptions are needed to complete the statistical model and

to permit statistical analysis of the conditional estimators that have been introduced above

as well as the test statistics introduced below. These assumptions are given in Appendix

A. Depending on the estimators that are used in a particular situation (i.e., either DEA or

FDH), only a subset of the assumptions listed in Appendix A are required.

Our first result establishes smoothness of the potential influence of z on the frontier of

Ψz. The result is needed in order to control the bias due to the localization, and is expressed

in terms of a continuity condition of λ(·, · | z) as a function of z.

Lemma 4.1. Under either Assumption A.5 (for FDH case) or under Assumption A.6 (for

the DEA case), For all (x, y) in the support of (X, Y ),

λh(x, y | z)− λ(x, y | z) = O(h) (4.10)
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as h → 0,

Proof. Either assumption A.5 or A.6 is sufficient to establish Lipschitz continuity of λ(x, y |
z) as a function of z. The result follows immediately.

Note that if Z is separable and has no effect on the frontier and (4.10) is trivially satisfied

for all h. As noted in Bădin et al. (2015), it is easy to show that if h ∝ n−γ with 1/r > γ >

1/(r + κ−1), the difference in (4.10) will be o ((nhr)−κ). We need γ < r−1 to ensure there

are enough observations in the h-neighborhood of z (see Proposition 1 in Jeong et al., 2010).

Since we cannot find an explicit expression for the second component ∆2 in (4.9), and since

the Weibull distribution linked to the first component ∆1 contains unknown parameters, the

best that can be done is to determine the order of an optimal bandwidth by balancing the

order of the two error terms which leads to h ∝ n−1/(r+κ−1), and then to take, as usual in

nonparametric smoothing techniques, a smaller bandwidth to eliminate the bias term due to

the localization as suggested in Jeong et al. (2010, Assumption 2). As expected, the order

of the optimal bandwidth depends on the dimensions of Z as well as of X and Y . Below, in

Section 4.5, we show how to select bandwidths h of appropriate order in applied work (see

also the discussions in Bădin et al., 2015).

The following result provides moments for the conditional efficiency estimators.

Theorem 4.1. Let nh = min(n, nhr). Suppose Assumptions 4.1, 4.2, 4.4, A.1, A.2, A.3

and A.4 hold. Then under Assumption A.5 for FDH case, or under Assumptions 4.3 and

A.6 for the DEA case, as n → ∞,

E
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)
= Ccn

−κ
h +Rc,nh,κ, (4.11)

where Rc,nh,κ = o
(
n−κ
h

)
,

E

((
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)2)
= o
(
n−κ
h

)
, (4.12)

and

∣∣COV
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi), λ̂(Xj, Yj | Zj,Sn)− λh(Xj, Yj | Zj)

) ∣∣ = o
(
n−1
h

)

(4.13)

for all i, j ∈ {1, . . . , n}, i 6= j. In addition, for the conditional DEA estimator Rc,nh,κ =

O(n
−3κ/2
h (log nh)

α1) and for the conditional FDH estimator Rc,nh,κ = O(n−2κ
h (log nh)

α2).
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Proof. Under (i) Assumptions 4.1, 4.2, 4.4, A.1, A.2 and two-times differentiability (due

to Assumption A.5) of λ(x, y | z) with respect to x and y for the FDH case, or under

(ii) Assumptions 4.1, 4.2, 4.3, 4.4, A.1, A.2 and three-times differentiability (due to As-

sumption A.6) of λ(x, y | z) with respect to x and y for the DEA case, Jeong et al.

(2010) prove, using the result in Lemma 4.1 and h = O ((nhr)−κ), that the asymptotic

behavior of (nhr)κ
(
λ̂(x, y | z,Sn)− λ(x, y | z)

)
is the same as the asymptotic behavior of

(nhr)κ
(
λ̂(x, y | z,Sn)− λh(x, y | z)

)
, which leads to the result in (3.10). For any given h,

we are in a localized version of the framework of Kneip et al. (2015a) for unconditional

efficiencies, except that here λh(Xi, Yi | Zi) is the object of interest.

If Z is irrelevant, i.e. if Assumption 2.1 holds, then the optimal h → ∞ and nh = n.

Otherwise Assumption 2.2 holds and h → 0 as n → ∞, and the order of the number

of observations affecting the estimator is nh = nhr. Moreover, this is the order of the

cardinality of I(z, h) for all z. Then for the FDH case, the results follow directly from the

proof of Theorem 3.3 in Kneip et al. (2015a) after changing notation there to reflect the

different number of observations. Similarly for the DEA case, the results follow directly

from the proof of Theorem 3.1 in Kneip et al. (2015a).

As will be seen, the log(nh) factors appearing in the expressions for Rc,nh,κ do not play a

role in the results that are derived below. The results here should not be surprising since the

number of observations used to estimate the moments is reduced by the bandwidths; e.g., the

rates nκ for the unconditional estimators are reduced to nκ
h for the conditional estimators.

4.2.2 Central Limit Theorems (CLT)

Here, we use the properties of moments of the conditional efficiency estimators derived in

Section 4.2.1 to develop CLTs for means of conditional efficiency estimators.

For the case of means of unconditional efficiency estimators, Theorem 4.1 of Kneip et al.

(2015a) establishes that

√
n
(
µ̂n − µ− Cn−κ −Rn,κ

) L−→ N(0, σ2) (4.14)

as n → ∞, where µ = E (λ(X, Y )) and σ2 = VAR (λ(X, Y )). The theorem also establishes

that σ̂2 = n−1
∑n

i=1

(
λ̂(Xi, Yi | Sn)− µ̂n

)2
is a consistent estimator of σ2. Conventional

CLTs (e.g., the Lindeberg-Feller CLT) do not account for the bias term Cn−κ, and hence are
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invalid for means of unconditional efficiency estimators unless unless κ > 1/2. In the case of

FDH estimators, κ > 1/2 iff (p+q) ≤ 1; in the case of DEA estimators, κ > 1/2 iff (p+q) ≤ 2.

If κ = 1/2, the bias is stable as n → ∞, but if κ < 1/2, the bias explodes asymptotically.

Kneip et al. (2015a) solve this problem by incorporating a generalized jackknife estimate of

the bias and considering, when needed, test statistics based on averages over a subsample of

observations. We use a similar approach below, although with the unconditional efficiency

estimators, the problem is rather more complicated than the one in Kneip et al. (2015a) due

to the localization in the conditional efficiency estimators.

Define

µh
c = E

(
λh(X, Y | Z)

)
=

∫

P

λh(x, y | z)fXY Z(x, y, z) dx dy dz (4.15)

and

σ2,h
c = VAR

(
λh(X, Y | Z)

)
=

∫

P

(
λh(x, y | z)− µh

c

)2
fXY Z(x, y, z) dx dy dz. (4.16)

These are the localized analogs of µ and σ2. Next, let µc,n = n−1
∑n

i=1 λ
h(Xi, Yi | Zi).

Although µc,n is not observed, by the Lindeberg-Feller CLT

√
n
(
µc,n − µh

c

) L−→ N(0, σ2,h
c ) (4.17)

under mild assumptions.

An obvious solution might be to estimate µh
c by µ̂c,n, but this proves problematic. To

see this, define ζn = µ̂c,n − µc,n. It is clear that E(ζn) = Ccn
−κ
h + Rc,nh,κ by (4.11), and

VAR(ζn) = o
(
n−1
h

)
due to (4.12) and (4.13). It follows that ζn − E(ζn) = op

(
n
−1/2
h

)
. Now

define µ̃c,n = E (µ̂c,n). Then

µ̃c,n = µh
c + Ccn

−κ
h +Rc,nh,κ, (4.18)

and it follows that

µ̂c,n − µ̃c,n = µc,n − µh
c + ζn − E(ζn),

= µc,n − µh
c + op

(
n
−1/2
h

)
. (4.19)

Clearly
√
n(µ̂c,n − µ̃c,n) diverges as n → ∞ since although

√
n(µc,n − µh

c )
L−→ N(0, σ2,h

c ),

n1/2op

(
n
−1/2
h

)
diverges if nh < n since nh = nhr = n1−γr with 1/(r + κ−1) < γ < 1/r.
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Moreover, unless Z is irrelevant, nh < n for an optimal choice of h. Changing the scaling

and considering na(µ̂c,n − µ̃c,n) for some a such that 0 < a < (1 − γr)/2 < 1/2 does

not work because the limiting distribution collapses to a point mass at zero in this case.

Consequently, it seems there is no way to develop a CLT for means of conditional efficiency

estimators analogous to the one in (4.14) for means of unconditional efficiency estimators.

The following result will be useful for the results developed below.

Lemma 4.2. Under the assumptions Theorem 4.1, for κ = 1/(p+ q) in the case of the FDH

estimator and for κ = 2/(p+ q + 2) in the case of the DEA estimator,

E
(
λ̂(Xi, Yi | Zi,Sn)

)
= µh

c + Ccn
−κ
h +Rc,nh,κ (4.20)

and

VAR
(
λ̂(Xi, Yi | Zi,Sn)

)
= σ2,h

c + o
(
n
−κ/2
h

)
, (4.21)

where Rc,nh,κ = o(n−κ
h ).

Proof. The result in (4.20) follows directly from Theorem 4.1. In addition,

VAR(λ̂(Xi, Yi | Zi,Sn)) =E

((
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)2)

+ E

((
λh(Xi, Yi | Zi)− E

(
λ̂(Xi, Yi | Zi,Sn)

))2)

+ 2E
((

λh(Xi, Yi | Zi)− E
(
λ̂(Xi, Yi | Zi,Sn)

))

(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

))
. (4.22)

Using the result in (4.11) from Theorem 4.1,

E

([
λh(Xi, Yi | Zi)− E

(
λ̂(Xi, Yi | Zi,Sn)

)]2)
= σ2,h

c +
[
E
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)]2

= σ2,h
c + C2

cn
−2κ
h + o

(
n−2κ
h

)
. (4.23)

Applying the Cauchy-Schwartz inequality, the result in (4.21) in Theorem 4.1 and (4.23),

the last term in (4.22) is bounded by o
(
n
κ/2
h

)
, establishing the result in (4.21).

Next, suppose nh < n (i.e., Z is relevant), and consider a random subsample S∗
nh

from

Sn of size nh where for simplicity we use the optimal rates for the bandwidths so that

nh = ⌊n1/(κr+1)⌋ where ⌊a⌋ denotes floor(a), i.e., the integer part of a. Define

µ̂c,nh
=

1

nh

∑

{(Xi,Yi,Zi)∈S∗

nh
}

λ̂(Xi, Yi | Zi,Sn), (4.24)
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and let µ̃c,nh
= E(µ̂c,nh

). Note that the estimators on the right-hand side of (4.24) are

computed relative to the full sample Sn, but the summation is over elements of the sub-

sample S∗
nh
.

The next result provides our first CLT for means of conditional efficiency estimators.

Theorem 4.2. Under the assumptions of Theorem 4.1, the following conditions hold

as n → ∞ with κ = 1/(p + q) for the FDH case and κ = 2/(p + q + 1) for

the DEA case: (i) µ̃c,nh
= µh

c + Ccn
−κ
h + Rc,nh,κ; (ii) µ̂c,nh

− µ̃c,nh
= µc,nh

− µh
c +

o
(
n
−1/2
h

)
; (iii)

√
nh

(
µ̂c,nh

− µh
c − Ccn

−κ
h −Rc,nh,κ

) L−→ N(0, σ2,h
c ); and (iv) σ̂2,h

c,n =

n−1
∑n

i=1

[
λ̂(Xi, Yi | Zi,Sn)− µ̂c,n

]2 p−→ σ2,h
c .

Proof: Let

µc,nh
=

1

nh

∑

(Xi,Yi,Zi)∈S∗

nh

λh(Xi, Yi | Zi). (4.25)

By the Lindeberg-Feller CLT,
√
nh(µc,nh

− µh
c )

L−→ N(0, σ2,h
c ). Define ζnh

= µ̂c,nh
− µc,nh

.

Using Lemma 4.2, we have E(ζnh
) = Ccn

−κ
h +Rc,nh,κ, VAR(ζnh

) = o
(
n−1
h

)
and ζnh

−E(ζnh
) =

op

(
n
−1/2
h

)
.

It can be shown that µ̃c,nh
= µh

c + E(ζnh
), and part (i) of the results is obtained by

substitution for E(ζnh
). Next, note that µ̂c,nh

− µ̃c,nh
=
(
ζnh

+ µc,nh

)
−
(
µh
c − E(ζnh

)
)
=

µc,nh
−
(
µh
c + (ζnh

+ E(ζnh
)
)
. The last term in parentheses is op

(
n
−1/2
h

)
, establishing the

result in (ii). Part (iii) follows directly from part (ii). Finally,

σ̂2,h
c,n = n−1

n∑

i=1

(λ̂(Xi, Yi | Zi,Sn))
2 − µ̂2

c,nh

p−→ E[(λ̂(Xi, Yi | Zi,Sn))
2]− (µh

c )
2

= VAR(λ̂(Xi, Yi | Zi,Sn)) +
[
E
(
λ̂(Xi, Yi | Zi,Sn)

)]2
− (µh

c )
2.

The result obtains after applying the results of Lemma 4.2.

There are no cases where standard CLTs with rate
√
n may be used with means of

conditional efficiency estimators, unless Z is irrelevant (i.e., unless Assumption 2.1 holds).

Theorem 4.2 provides a CLT for means of conditional efficiency estimators, but the conver-

gence rate is
√
nh as opposed to

√
n, and the result is of practical use only if κ > 1/2. If

κ = 1/2, the bias term Ccn
−κ
h does not vanish, and if κ < 1/2, the bias term explodes as

n → ∞. These cases are addressed below.
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4.2.3 Bias corrections and subsample averaging

For the unconditional case, all necessary details can be found in Kneip et al. (2015a, Theo-

rems 4.3 and 4.4). Here, we derive corresponding results for conditional efficiency estimators.

Assume the observations in Sn are randomly ordered, and to simplify notation, assume n is

even. Let S(1)
n/2 denote the set of the first n/2 observations from Sn, and let S(2)

n/2 denote the

set of remaining n/2 observations from Sn.
9 Next, for j ∈ {1, 2} define

µ̂j
c,n/2 = (n/2)−1

∑

(Xi,Yi,Zi)∈S
(j)
n/2

λ̂(Xi, Yi | Zi,S(j)
n/2). (4.26)

Let µ̃c,n/2 = E
(
µ̂1
c,n/2

)
= E

(
µ̂2
c,n/2

)
and define

µj
c,n/2 =

2

n

∑

(Xi,Yi,Zi)∈S
(j)
n/2

λh(Xi, Yi | Zi). (4.27)

By (4.19),

µ̂j
c,n/2 − µ̃c,n/2 = µj

c,n/2 − µh
c + op(n

−1/2
h ) (4.28)

for j ∈ {1, 2}. Now define µ̂∗
c,n/2 =

(
µ̂1
c,n/2 + µ̂2

c,n/2

)
/2. Clearly,

µ̂∗
c,n/2 − µ̃c,n/2 = µc,n − µh

c + op(n
−1/2
h ). (4.29)

Subtracting (4.19) from (4.29) and re-arranging terms yields

µ̂∗
c,n/2 − µ̂c,n = µ̃c,n/2 − µ̃c,n + op(n

−1/2
h ). (4.30)

Since µ̃c,n/2 − µ̃c,n = Cc(2
κ − 1)n−κ

h +Rc,nh,κ we obtain an estimator

B̃c
κ,nh

= (2κ − 1)−1
(
µ̂∗
c,n/2 − µ̂c,n

)
= Ccn

−κ
h +Rc,nh,κ + op(n

−1/2
h ), (4.31)

of the leading bias term Ccn
−κ
h in Theorem 4.2, part (iii), noting that the remainder term

Rc,nh,κ = o(n−κ
h ) can be neglected.

Of course, for n even there are
(

n
n/2

)
possible splits of the sample Sn. As noted by

Kneip et al. (2015b), the variation in B̃c
κ,nh

can be reduced by repeating the above steps

9 If n is odd, S(1)
n/2 can contain the first ⌊n/2⌋ observations and S(2)

n/2 can contain remaining n − ⌊n/2⌋
observations from Sn. The fact that S(2)

n/2 contains one more observation than S(1)
n/2 makes no difference

asymptotically.
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K ≪
(

n
n/2

)
times, shuffling the observations before each split of Sn, and then averaging the

bias estimates. This yields a generalized jackknife estimate

B̂c
κ,nh

= K−1

k∑

k=1

B̃c
κ,nh,k

, (4.32)

where B̃c
κ,nh,k

represents the value computed from (4.31) using the kth sample split.

Combining results yields the following:

Theorem 4.3. Under the Assumptions of Theorem 4.1, with κ = 1/(p + q) ≥ 1/3 in the

FDH case or κ = 2/(p+ q + 1) ≥ /2/5 in the DEA case,

√
nh

(
µ̂c,nh

− µh
c − B̂c

κ,nh
−Rc,nh,κ

)
L−→ N(0, σ2,h

c ) (4.33)

as n → ∞.

Proof. The result follows by substituting (4.32) in Theorem 4.2, part (iii), and noting that

for the indicated ranges of values for κ,
√
nhRc,nh,κ = o(1).

If κ is smaller than 1/3 in the FDH case, or 2/5 in the DEA case, then the remainder term

does not vanish fast enough and
√
nhRc,nh,κ → ∞ as n → ∞. In such cases, the approach of

averaging efficiency scores over a subsample of smaller size as in Kneip et al. (2015a) must

be employed.

Define nh,κ = ⌊n2κ
h ⌋ so that

√
nh,κ < n

1/2
h when κ < 1/2. Then define

µ̂c,nh,κ
=

1

nh,κ

∑

(Xi,Yi,Zi)∈S∗∗

nh,κ

λ̂(Xi, Yi | Zi,Sn) (4.34)

where S∗∗
nh,κ

is a random subsample of size nh,κ from Sn.

Theorem 4.4. Under the Assumptions of Theorem 4.1, with κ = 1/(p+ q) in the FDH case

or κ = 2/(p+ q + 1) in the DEA case,

√
nh,κ

(
µ̂c,nh,κ

− µh
c − B̂c

κ,nh
−Rc,nh,κ

)
L−→ N(0, σ2,h

c ), (4.35)

as n → ∞ whenever κ < 1/2.

Proof. let

µc,nh,κ
=

1

nh,κ

∑

(Xi,Yi,Zi)∈S∗∗

nh,κ

λh(Xi, Yi | Zi). (4.36)

20



Clearly,

µ̂c,nh,κ
− µh

c = µc,nh,κ
− µh

c +
1

nh,κ

∑

(Xi,Yi,Zi)∈S∗∗

nh,κ

(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)
. (4.37)

Since nh,κ → ∞ as n → ∞,
√
nh,κ

(
µc,nh,κ

− µh
c

)
L−→ N(0, σ2,h

c ). By Lemma 4.2, the third

term on the right-hand side of (4.37) has expectation µh
c + Ccn

−κ
h + Rc,nh,κ and variance

σ2,h
c +o(n

−κ/2
h ). Replacing Ccn

−κ
h with B̂c

κ,nh
and then multiplying both sides by

√
nh,κ yields

the result.

Remark 4.1. Kneip et al. (2015a) note that for selected values of p + q, two different

CLTs are available for means of unconditional efficiency estimators. The same is true for

the conditional cases. With the DEA estimator when p + q = 4 (so that κ = 2/5), using

Theorem 4.3 neglects a term
√
nhRc,nh,κ = O

(
n
−1/10
h

)
, whereas using Theorem 4.4, and an

average over a subsample we neglect a term
√
nh,κRc,nh,κ = O

(
n
−1/5
h

)
and we might expect

a better approximation. For the conditional FDH estimator when p + q = 3 (and hence

κ = 1/3), using Theorem 4.3 implies an error of order O
(
n
−1/6
h

)
, and using an average

over a subsample implies, by Theorem 4.4, an error of the smaller order O
(
n
−1/3
h

)
.

4.3 Test Statistics

As noted above, in order to test the hypothesis that Z is separable, i.e., to test

H0 : Assumption 2.1 holds versus H1 : Assumption 2.2 holds, one might consider the dif-

ference between estimators of µ = E(λ(X, Y )) and µh
c = E(λh(X, Y | Z)), which under the

null estimate the same quantity. When the null is true, λ(X, Y ) ≡ λh(X, Y |Z) with proba-

bility one, for all values of h. Under the null, The two estimators µ̂n and µ̂c,nh
have (when

appropriately rescaled, depending on the value of κ), an asymptotic normal distribution with

mean µ = µh
c and variance σ2 = σ2,h

c for all h, and so both are consistent estimators of the

common µ. As explained in the preceding section, we can also, in both cases, correct for the

inherent bias of the estimators.

However, the properties of (µ̂n−µ̂c,nh
) (and their bias-corrected versions) are complicated

due to the covariance between the two estimators, and this covariance is hard to estimate.

Even in the limiting case where h is big enough so that nh = n, it is clear that under the
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null, the asymptotic distribution of (µ̂n − µ̂c,nh
) will be degenerate with mass one at zero.10

The solution used here is analogous to the method used in the test for convexity of

Ψ described by Kneip et al. (2015b). In particular, the sample Sn can be split into two

independent, parts S1,n1 , S2,n2 such that n1 + n2 = n, S1,n1

⋃S2,n2 = Sn, and S1,n1

⋂S2,n2 =

∅. The n1 observations in S1,n1 are used for the unconditional estimates, while the n2

observations in S2,n2 are used for the conditional estimates. Recall that the unconditional

efficiency estimators converge at rate nκ, while the conditional efficiency estimators converge

at rate (nhr)κ. The optimal bandwidths are of order n−κ/(rκ+1), giving a rate of nκ/(rκ+1) for

the conditional efficiency estimators. The full sample Sn can be split so that the estimators

in the two subsamples achieve the same rate of convergence by setting nκ
1 = n

κ/(rκ+1)
2 . This

gives n1 = n
1/(rκ+1)
2 . Value of n1, n2 are obtained by finding the root η0 in n− η − η1/(rκ+1)

and setting n2 = [η0] and n1 = n− n2, where [a] denotes the integer nearest a.

After splitting the sample, compute the estimators

µ̂n1 = n−1
1

∑

(Xi,Yi)∈S1,n1

λ̂(Xi, Yi | S1,n1) (4.38)

and

µ̂c,n2,h
= n−1

2,h

∑

(Xi,Yi,Zi)∈S∗

2,n2,h

λ̂(Xi, Yi | Zi,S2,n2), (4.39)

where as above in Section 4.2.2, S∗
2,n2,h

in (4.39), is a random subsample from S2,n2 of size

n2,h = min(n2, n2h
r). Consistent estimators of the variances are given in the two independent

samples by

σ̂2
n1

= n−1
1

∑

(Xi,Yi)∈S1,n1

(
λ̂(Xi, Yi | S1,n1)− µ̂n1

)2
(4.40)

and

σ̂2,h
c,n2

= n−1
2

∑

(Xi,Yi,Zi)∈S2,n2

(
λ̂(Xi, Yi | Zi,S2,n2)− µ̂c,n2

)2
(4.41)

(respectively), where the full (sub)sample S2,n2 to estimate the variance σ2,h
c of the conditional

efficiency measures.

10 As observed by Hall et al. (2004), if Z is irrelevant in the production process (independent of (X,Y )),
the optimal value of the bandwidth is infinity. This limiting case is more restrictive that the hypothesis to
be tested here, but may arise in practice.
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The estimators of bias corresponding to (4.31) for a single split of each subsample for the

unconditional and conditional cases are given by

B̃κ,n1 = (2κ − 1)−1
(
µ̂∗
n1/2

− µ̂n1

)
(4.42)

and

B̃c
κ,n2,h

= (2κ − 1)−1
(
µ̂∗
c,n2/2

− µ̂c,n2

)
. (4.43)

For the unconditional case in (4.42), µ̂∗
n1/2

=
(
µ̂1
n1/2

+ µ̂2
n1/2

)
/2, and for j ∈ {1, 2},

µ̂j
n1/2

= (n1/2)
−1
∑

(Xi,Yi,Zi)∈S
(j)
n1/2

λ̂(Xi, Yi | S(j)
n1/2

), where S(j)
n1/2

is the jth part of a ran-

dom split of the full (sub)sample Sn1 . Details are given in Kneip et al. (2015a). For the

conditional case in (4.43), µ̂∗
c,n2/2

=
(
µ̂1
c,n2/2

+ µ̂2
c,n2/2

)
/2, and for j ∈ {1, 2}, µ̂j

c,n2/2
=

(n2/2)
−1
∑

(Xi,Yi,Zi)∈S
(j)
n2/2

λ̂(Xi, Yi | Zi,S(j)
n2/2

), where S(j)
n2/2

is the jth part of a random split

of the full (sub)sample Sn2 . The bias estimates in (4.42)–(4.43) can then be averaged over

K random splits of the two subsamples Sn1 and Sn2 to obtain bias estimates B̂κ,n1 for the

unconditional case and B̂c
κ,n2,h

for the conditional case.

For small values of (p + q) such that κ ≥ 1/3 in the FDH case or κ ≥ 2/5 when DEA

estimators are used, Theorem 4.3 and Kneip et al. (2015a, Theorem 4.3) can be used to con-

struct an asymptotically normal test statistic for testing the null hypothesis of separability.

In particular, since our bias-corrected sample means are independent due to splitting the

original sample into independent parts, and since two sequences of independent variables

each with normal limiting distributions have a joint bivariate normal limiting distribution

with independent marginals, if follows that for the values of (p+ q) given above

T1,n =

(
µ̂n1 − µ̂c,n2,h

)
−
(
B̂κ,n1 − B̂c

κ,n2,h

)

√
σ̂2
n1

n1
+

σ̂2,h
c,n2

n2,h

L−→ N(0, 1) (4.44)

under the null. Alternatively, for κ < 1/2, similar reasoning with Theorem 4.4 and Kneip

et al. (2015a, Theorem 4.4) leads to

T2,n =

(
µ̂n1,κ − µ̂c,n2,h,κ

)
−
(
B̂κ,n1 − B̂c

κ,n2,h

)

√
σ̂2
n1

n1,κ
+

σ̂2,h
c,n2

n2,h,κ

L−→ N(0, 1) (4.45)

under the null, where n1,κ = ⌊n2κ
1 ⌋ with µ̂n1,κ = n−1

1,κ

∑
(Xi,Yi)∈S∗

n1,κ
λ̂(Xi, Yi | Sn1), and S∗

n1,κ
is

a random subsample of size n1,κ taken from Sn1 (see Kneip et al., 2015a for details). For the
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conditional part, we have similarly and as described in the preceding section, n2,h,κ = [n2κ
2,h],

with µ̂c,n2,h,κ
= n−1

2,h,κ

∑
(Xi,Yi,Zi)∈S∗

n2,h,κ

λ̂(Xi, Yi | Zi,Sn2) where S∗
n2,h,κ

is a random subsample

of size n2,h,κ from Sn2 .

Given a random sample Sn, one can compute values T̂1,n or T̂2,n depending on the value

of (p+ q). From the discussion in Section 4.1, it is clear that a one-sided test is appropriate;

hence the null should be rejected whenever null whenever 1−Φ(T̂1,n) or 1−Φ(T̂2,n) is less than

the desired test size, e.g., .1, .05, or .01, where Φ(·) denotes the standard normal distribution

function.

4.4 Bootstrap Approximation

Under the null hypothesis of separability, the test statistics T1,n and T2,n in (4.44) and

(4.45) are asymptotically pivotal as well as asymptotically normally distributed. It is well-

known that bootstrap methods sometimes provide better performance than tests based on

asymptotic normality, particularly when asymptotically pivotal statistics are available.

Given a sample Sn, a bootstrap test of separability can be implemented by estimating

a one-sided bootstrap confidence interval for one of the statistics in (4.44) or (4.45) and

rejecting the null hypothesis if this estimated interval does not cover zero. The test is

very fast from a computational viewpoint, although implementation requires re-ordering the

computations leading to the bias corrections as discussed in Kneip et al. (2015b). Since the

test statistics in (4.44) and (4.45) involve differences in sample means, a “naive” bootstrap

can be used; i.e., once the original firm-specific efficiencies have been estimate, no new

efficiency estimates have to be computed. See Kneip et al. (2015b) for details.

4.5 Bandwidth Optimization

As noted above, explicit expressions for the two components ∆1 and ∆2 of the estimation

error in (4.9) are not available. Consequently, the best that can be done is to determine

the order of optimal bandwidths by balancing the order of the two error terms yielding

h ∝ n−1/(r+κ−1) as explained earlier. Although the order by itself is of little help in appli-

cations, following the suggestion of Jeong et al. (2010) one can select optimal bandwidths

for estimating the conditional distribution HXY |Z(x, y | z) by ĤXY |Z(x, y | z) given in (3.6).

This can be accomplished using the least-squares cross-validation (LSCV) procedure de-
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scribed by Li et al. (2013), smoothing only on the r conditioning variables in Z, and not the

dependent variables (X, Y ). Note that, as proved by Hall et al. (2004), if one component

of Z is irrelevant, then the corresponding bandwidth obtained by LSCV will converge to

infinity as n → ∞; but for relevant components of Z, LSCV gives a bandwidth with optimal

rate h ∝ n−1/(r+4) for estimating HXY |Z(x, y | z).
Recall that if Z is relevant, the optimal bandwidths for estimating λ(x, y | z) have a differ-

ent order (h ∝ n−1/(r+κ−1), as opposed to h ∝ n−1/(r+4)) due to the presence of the localizing

bias. In practice, one can optimize bandwidths using LSCV, and then correct the resulting

bandwidths by multiplying by the scaling factor n1/(r+4)n−1/(r+κ−1) = n(κ−1−4)/((r+4)(r+κ−1)

to obtain optimal bandwidths h for estimating λ(x, y | z). To avoid numerical difficulties,

for the jth element Zj
i of Zi, j = 1, . . . , r, i = 1, . . . , n, one should in practice bound

the LSCV search between a small factor, say 0.01, times the normal reference rule band-

width (i.e., 0.01× 1.06σ̂jn
1/5, where σ̂j is the sample standard deviation of the observations

Zj
i , j = 1, . . . , n) and 2 times the difference (maxi(Z

j
i ) − mini(Z

j
i )). If Zj

i is irrelevant,

LSCV will drive the jth element hj of h to its upper bound; using a bounded kernel (e.g.,

the Epanechnikov kernel), no smoothing will be done in the jth dimension of Z when this

happens. In such cases, there is no need to apply the scaling factor above to hj.

5 Monte Carlo Evidence

We perform Monte Carlo experiments to gauge the performance of the separability test

described in Section 4. In each experiment, we simulate n ∈ {100, 200, 1000} observations

with r = 1 and (p, q) ∈ {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3)} so that (p+ q) ∈ {2, 3, 4, 5, 6}.
To generate an observation (Xi, Y,, Zi), we first simulate a draw Zi ∼ N(0, 1). Next, we

generate a (p+ q)-tuple u =
[
u′
p, u

′
q

]′
uniformly distributed on a unit sphere centered at the

origin in R
p+q, where up and uq are column vectors of length p and q, respectively. We then

set X = (1− abs(up)) and Y = abs(uq)
(
|Z ′β|δλ−1

)
where Z is (r× 1), β is an (r× 1) vector

of ones, λ ≥ 1 is a scalar-valued pseudo random variable such that (λ − 1) ∼ N+(0, 1),

abs(a) denotes the vector containing the absolute values of elements of a vector a, and

δ ∈ {0, 0.1, . . . , 0.9, 1.0, 1.5, 2.0}. When δ = 0, Z plays no role and Assumption 2.1

(separability of Z) holds. Otherwise, when Z > 0, separability does not hold and instead
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Assumption 2.2 holds.11

The results of our experiments are shown in Tables 1–4. In Tables 1-2, we test for

separability using DEA estimators. In Table 1 we rely on the asymptotic normality of the

test statistics in (4.44)–(4.45), while in Table 2 we use bootstrap methods as described

in Section 4.4. In Tables 3–4 give results for the corresponding experiments using FDH

estimators. Each table contains 3 groups of results corresponding to 100, 200, or 1,000

observations. Within each of these groups, we show, for various values of δ, rejection rates

for the separability tests for nominal test sizes of .10, .05, and .01. The first row in each group

corresponds to δ = 0, where the null hypothesis is true; the remaining rows give rejection

rates with increasing departures from the null, corresponding to increasing values of δ.

Overall, the results in Tables 1–4 confirm that the tests tend to reject the null hypothesis

of separability at increasing rates both with increasing departure from the null and as sample

size increases. Comparing the results in Tables 1–2 where DEA estimators are used with the

corresponding results in Tables 3–4 where FDH estimators are used reveals that the tests

have greater power when DEA estimators are used than when FDH estimators are used.

Given the slower convergence rate of the FDH estimator, this is as expected.

Focusing on Tables 1–2, where DEA estimators are used, our experiments suggest that

both the tests based on asymptotic normality as well as those based on bootstrap methods

are conservative in the sense that they tend to reject the null at rates less than the nominal

size when the null is true. for the cases where (p+q) ≤ 4 and the statistic T1,n can be used, the

tests based on asymptotic normality and on bootstrap methods provide very similar rejection

rates for given values of δ, (p + q), and nominal test size. However, for (p + q) > 4 where

the statistic T2,n based on subsamples must me used, the bootstrap tests are seen to provide

greater power than the tests based on asymptotic normality in many cases, particularly for

11 Given a (p+ q)-vector v of draws from the uniform distribution on [0, 1], u = v(v′v)−1/2 is a vector of
coordinates from a uniform distribution on the unit sphere in R

p+q. Setting Y = |uq| amounts to reflecting
any point that lies below one or more of the up axes around those axes. Similarly, −|up| reflects around the
uq axes, but in negative directions; adding 1 shifts the resulting points to the positive orthant in R

p+q. This

amounts to generating uniform points on a unit sphere centered at
[
1
′
p,0

′
q

]′
, reflecting the points so that all

lie on the part of the sphere in the unit hypercube with in the positive orthant with a corner at the origin.
We then projecting points away from this “frontier” in the output directions. We use the massively parallel
Palmetto Cluster at Clemson University for our experiments, generating pseudo-random uniform deviates
using independent Mersenne Twister generators on each processor; see Matsumoto and Nishimura (2000)
for details. Standard normal deviates are generated from uniform (0, 1) deviates using the transformation
method.
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larger values of δ. In a number of cases where (p + q > 4, the power of the bootstrap tests

is almost twice that of the corresponding tests based on asymptotic normality.

Similar remarks hold for the results in Tables 3–4 where FDH estimators are used. Using

FDH estimators, the results in Table 3 suggest that the tests provide reasonable power when

(p + q) ≤ 3 and the statistic T1,n can be used. However, for larger dimensionality where

(p + q) > 3, even with n = 1, 000 and δ = 2, the tests that rely on asymptotic normality

have almost no power. This is not true for the bootstrap tests. The results in Table 4 reveal

that for (p+ q) = 5 or 6, the tests using FDH and bootstrap methods result in greater power

than the corresponding tests using DEA and relying on asymptotic normality.12

The simulation results in Tables 1–4 show rejection rates when r = 1. One should expect

the power of the tests to decrease with increasing values of r for given values p, q, and n.

However, as the empirical example in the next section illustrates, one can perform marginal

tests for each element of Z, ignoring the other elements when r > 1, before performing a joint

test with all the elements of Z. If one is testing the separability condition in order to justify a

second-stage regression, any rejection of Assumption 2.1 should rule out use of a second-stage

regression. In other words, if one of the marginal tests rejects Assumption 2.1, there is no

need to incur the computational expense of further marginal or joint tests, and any plans for

a second-stage regression should be abandoned. Moreover, when confronted with evidence

that an element of Z affects the shape of the frontier (as is the case whenever Assumption

2.1 is rejected), one should use conditional efficiency estimators instead of unconditional

efficiency estimators.

6 Empirical Illustration using Bank Data

As a final exercise, we revisit the empirical examples provided by Simar and Wilson (2007),

where estimated efficiency of U.S. Banks is regressed on some explanatory variables in a

second-stage analysis. We start with the same data used by Simar and Wilson (2007), and

consider both the subsample of 322 banks as well as the full sample of 6,955 banks examined

by Simar and Wilson. The data include observations on 3 inputs (purchased funds, core

deposits, and labor) and 4 outputs (consumer loans, business loans, real estate loans, and

12 The favorable comparison does not carry over to (p + q) = 4. But in this case, T1,n can be used with
DEA estimators, but T2,n must be used with FDH estimators.

27



securities held). The data also include observations for two continuous explanatory variables

used by Simar and Wilson (2007), namely SIZE (i.e., the log of total assets, reflecting

banks’ sizes) and DIVERSE (i.e., a measure of diversity of banks’ loan portfolios). Specific

definitions of variables and other data details are given in Simar and Wilson (2007).

Our empirical examples here and in Simar and Wilson (2007) are motivated by Aly et al.

(1990), who similarly estimate efficiency for a sample of 322 U.S. banks operating during the

fourth quarter of 1986, and then attempt to explain variation in the first-stage efficiency esti-

mates in a second-stage regression by regressing estimated efficiency on continuous variables

reflecting bank size and loan-type diversity, as well as binary dummy variables reflecting

membership in a multi-bank holding company and presence in a metropolitan statistical

area. Whereas Aly et al. used the second-stage regression in an attempt to better under-

stand the performance of U.S. banks’ operations, Simar and Wilson carefully note that their

second-stage regressions are only for purposes of illustrating the bootstrap methods for infer-

ence developed in their paper. As discussed above, and as noted by Simar and Wilson, such

second-stage regressions can only be meaningful if the separability condition in Assumption

2.1 holds. Simar and Wilson also noted that this condition should be tested before employing

a second-stage regression, but until now no such test has been available.

It is well-known that the distribution of U.S. bank sizes is heavily skewed to the right;

in fact, the distribution of total assets of U.S. banks is roughly log-log-normal (e.g., see

Wheelock and Wilson, 2001 for discussion). In order to use global bandwidths, as opposed

to adaptive bandwidths (which would increase computational burden), we first eliminate

very large banks and other outliers from the sub-sample of 322 observations as described

by Florens et al. (2014) (who used the same data in an empirical illustration), leaving 303

observations for analysis. Similarly, we omit the largest 5-percent of banks from the full

sample of 6,955 observations, leaving 6,607 observations. To further reduce computational

burden, we exploit multicollinearity among the input and output variables by aggregating

inputs into a single measure and also aggregating outputs into a single measure using eigen-

system techniques employed by Florens et al. (2014) in their analysis of the subsample of our

data and as described by Daraio and Simar (2007a, pp. 148–150). Due to the high degrees of

correlation among the original input and output variables, little information is lost by this

aggregation, while dimensionality is reduced from (p+ q) = 7 to 2.
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We test the separability condition (Assumption 2.1) using both the subsample of 303

observations and the “full” sample of 6,607 observations using DEA estimators in both

input and output directions, with bandwidths optimized by least-squares cross-validation

and then adjusted to obtain the optimal order as discussed above. We first test separability

marginally by considering only SIZE, and then by considering only DIVERSE so that r = 1.

We also perform joint tests (r = 2) considering both SIZE and DIVERSE.

Results for the tests for both samples are shown in Table 5. With the subsample, in the

input orientation, both the asymptotic normal and the bootstrap tests yield p values smaller

than 0.05 for SIZE ; in the output orientation, the asymptotic normal test also yields a p-

value less than 0.05, while the bootstrap test gives a p-value just larger than 0.10. There is no

evidence against separability in the marginal tests with DIVERSE. The joint test yields one

p-value less than 0.10, while two of the other three p-values are just larger than 0.10. With

the sample of 6,607 observations, it becomes even more clear that SIZE violates separability,

while there is no evidence that DIVERSE violates the condition.

Again, the second-stage regression in Simar and Wilson (2007) was used only to illustrate

how one might apply the bootstrap methods proposed there. But, results from the second-

stage regression in Aly et al. (1990), and those from similar exercises in other papers that

have regressed estimates of bank efficiency on total assets, are rendered dubious and likely

meaningless by the results obtained here.

7 Conclusions

We have provided a test of the separability condition described by Simar and Wilson (2007)

on which many papers that regress estimated efficiency scores on some environmental vari-

ables depend. The condition is a restrictive, but can now be tested empirically. In our

empirical example in Section 6, patterned after the application by Aly et al. (1990), we

easily reject separability. This suggests that results of the second-stage regression in Aly

et al. (1990) are meaningless, or at best very difficult to interpret. Furthermore, it raises the

question of whether separability would similarly be rejected in the hundreds or thousands

of papers that have regressed estimated efficiencies on environmental variables in a second

stage regression. It is perhaps too much to expect that all of these studies be re-examined,

but now that an easily-implemented test of separability has been made available, researchers
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should employ the test before proceeding to a second-stage regression. Moreover, whenever

the test rejects separability, the researcher should use conditional efficiency estimators in-

stead of unconditional estimators in order to estimate distance to the relevant frontier (i.e.,

to the frontier of Ψz instead of the frontier of Ψ which has no particular economic meaning

when separability does not hold).

Of course, failure to reject the null hypothesis of separability does not by itself imply

that separability holds. As is always the case, our test can do only one of two things: it can

either reject, or fail to reject the null hypothesis. Failure to reject might be due to other

factors, such as insufficient data, or too many dimensions. In the later case, we have shown

in our empirical example how dimensionality can be reduced before testing separability.

It should be remembered, as noted in Section 3, that the conditional efficiency estimators

provide consistent estimates regardless of whether separability holds, but the unconditional

efficiency estimators provide meaningfully consistent estimates if and only if separability

holds. Of course, if separability holds, the unconditional estimators converge faster than

their unconditional counterparts. But when testing separability, these points argue in favor

of a conservative test. Whereas one might ordinarily test a null hypothesis at the 10, 5, or

1-percent level, here one might want to test at a 20, 30, 40, or even larger percentage level.

The cost of a type-I error is slower convergence due to subsequent use of the conditional

efficiency estimators, whereas the cost of a type-II error is statistical inefficiency due to

subsequent inappropriate use of unconditional efficiency estimators. The cost of a type-II

error here is arguably greater than the cost of a type-I error, which is the reverse of the usual

situation in hypothesis testing. Here, however, reversing things by testing a null hypothesis

of non-separability versus an alternative hypothesis of separability would result in a test

with poor size and power properties, as separability is a much more restrictive condition

than non-separability.

Appendix A Technical Details

The assumptions listed here impose regularity conditions on the data-generating process.

The first assumption appears as Assumption 4 in Jeong et al. (2010).

Assumption A.1. The joint density fXY Z(·, ·, ·) of (X, Y, Z) is continuous on its support.
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The next assumptions are needed to establish results for the moments of the conditional

FDH and DEA estimators in Section 4.2.1. The assumptions here are conditional analogs of

Assumptions 3.1–3.4 and 3.6 (respectively) in Kneip et al. (2015a). Assumption A.2, part

(iii) and Assumption A.3, part(iii) appear as Assumption 5 in Jeong et al. (2010).

Assumption A.2. For all z ∈ Z, (i) the conditional density fXY |Z(·, · | z) of (X, Y ) | Z = z

exists and has support Dz ⊂ Ψz; (ii) fXY |Z(·, · | z) is continuously differentiable on Dz; and

(iii) fh
XY |Z(·, · | z) converges to fXY |Z(·, · | z) as h → 0.

Assumption A.3. (i) Dz∗ := {(x, λ(x, y | z)y) | (x, y) ∈ Dz} ⊂ Dz; (ii) Dz∗ is compact;

and (iii) fXY |Z(x, λ(x, y | z)y | z) > 0 for all (x, y) ∈ Dz.

Assumption A.4. For any z ∈ Z, Dz is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈
Dz with

(
x

||x||
, y
)
6=
(

x̃
||x̃||

, ỹ
)
, the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((x̃, ỹ)) for some α ∈ (0, 1)}

is a subset of the interior of Dz.

Assumption A.5. For all z ∈ Z, (i) λ(x, y | z) is twice continuously differentiable on Dz;

and (ii) all the first-order partial derivatives of λ(x, y | z) with respect to x and y are nonzero

at any point (x, y) ∈ Dz.

Assumption A.6. For any z ∈ Z, λ(x, y | z) is three times continuously differentiable with

respect to x and y on Dz.

When the conditional FDH estimator is used, Assumption A.5 is needed; when the condi-

tional DEA estimator is used, this is replaced by the stronger Assumption A.6.

Note that under the separability condition in Assumption 2.1, the assumptions here

reduce to the corresponding assumptions in Kneip et al. (2015a) due to the discussion in

Section 2.

Appendix B Discrete Environmental Variables

In applied work, it is often the case that researchers include binary or categorical variables in

second-stage regressions of estimated efficiency on environmental variables. All of the results

obtained in the main part of this paper assume Z is continuous. However, in order for second-

stage regressions to estimate any useful, meaningful feature, the separability condition in

Assumption 2.1 must also hold with respect to discrete environmental variables.
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Testing the separability condition in the case of discrete variables can be done using

results and ideas from Kneip et al. (2015b), where a test of equivalent mean efficiency across

two groups of producers is developed. To illustrate, suppose r = 1 and Z is a binary dummy

variable. To test separability, first shuffle the observations, and then divide into two groups

of size n1 = ⌊n/2⌋ and n2 = n − n1. Apply the unconditional efficiency estimator to group

1. For group 2, a conditional efficiency estimator is needed, but since Z is discrete, there

is no smoothing to be done.13 Since Z is binary, there are only two sets Ψz. Hence, in the

second group, divide observations into two sub-groups according to whether Z = 0 or Z = 1;

observations in each sub-group, estimate efficiency using the same unconditional efficiency

estimator used with group 1, ignoring observations in the other group. This will yield a

set of n2 conditional efficiency estimates since the n2 observations have been divided into

sub-groups.

Note that the conditional estimates from group 2 have the usual convergence rate of

the unconditional efficiency estimator since no bandwidth is involved since Z is discrete.

One can now apply the difference-in-means test as described in Kneip et al. (2015b), taking

care to compute the bias-correction terms for group 2 separately and independently for

observations in the subgroup (of group 2) where Z = 0 and the subgroup where Z = 1. This

will necessitate splitting each sub-group (of group 2) to compute the generalized jackknife

estimates of bias for observations in each sub-group. See Kneip et al. (2015b) for details.

13 The problem here is rather different from the problem of nonparametric estimation of regressions or
densities, where one can smooth across discrete categories of data using the methods discussed by Li and
Racine (2007). Here, we are interested in boundaries of support, as opposed to densities or conditional mean
functions.
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Table 1: Rejection Rates for Separability Test using DEA, Asymptotic Normality (r = 1)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

100 0.00 0.055 0.028 0.012 0.047 0.030 0.009 0.054 0.037 0.011 0.044 0.029 0.008 0.046 0.026 0.008
0.10 0.074 0.038 0.008 0.052 0.033 0.011 0.048 0.033 0.016 0.042 0.025 0.010 0.043 0.028 0.009
0.20 0.124 0.083 0.034 0.094 0.069 0.027 0.084 0.053 0.019 0.043 0.027 0.012 0.053 0.041 0.016
0.30 0.193 0.135 0.040 0.123 0.080 0.033 0.098 0.066 0.027 0.070 0.044 0.020 0.077 0.046 0.015
0.40 0.311 0.241 0.108 0.149 0.105 0.054 0.132 0.096 0.049 0.071 0.049 0.017 0.083 0.056 0.024
0.50 0.383 0.291 0.160 0.213 0.149 0.059 0.204 0.132 0.063 0.083 0.054 0.030 0.080 0.063 0.029
0.60 0.475 0.364 0.179 0.225 0.166 0.072 0.203 0.163 0.078 0.104 0.074 0.031 0.098 0.069 0.038
0.70 0.509 0.387 0.197 0.269 0.193 0.096 0.261 0.204 0.109 0.097 0.071 0.031 0.087 0.066 0.031
0.80 0.539 0.416 0.218 0.317 0.242 0.114 0.296 0.225 0.130 0.115 0.078 0.025 0.117 0.083 0.044
0.90 0.561 0.421 0.202 0.323 0.238 0.113 0.321 0.266 0.158 0.128 0.084 0.035 0.101 0.077 0.040
1.00 0.583 0.455 0.237 0.329 0.253 0.126 0.336 0.278 0.160 0.142 0.108 0.054 0.122 0.090 0.052
1.50 0.639 0.495 0.225 0.395 0.321 0.177 0.393 0.340 0.198 0.145 0.109 0.064 0.137 0.098 0.046
2.00 0.738 0.588 0.266 0.446 0.396 0.197 0.476 0.417 0.235 0.173 0.116 0.065 0.154 0.111 0.066

200 0.00 0.073 0.039 0.017 0.035 0.018 0.003 0.045 0.032 0.011 0.030 0.013 0.003 0.040 0.019 0.005
0.10 0.075 0.044 0.019 0.036 0.025 0.009 0.074 0.045 0.019 0.028 0.016 0.003 0.034 0.016 0.002
0.20 0.187 0.133 0.063 0.099 0.073 0.027 0.093 0.066 0.027 0.039 0.022 0.010 0.037 0.018 0.005
0.30 0.368 0.290 0.146 0.178 0.129 0.070 0.164 0.121 0.059 0.051 0.030 0.012 0.069 0.040 0.011
0.40 0.541 0.429 0.246 0.296 0.226 0.126 0.273 0.194 0.099 0.085 0.051 0.016 0.053 0.035 0.012
0.50 0.630 0.521 0.314 0.338 0.261 0.141 0.373 0.307 0.179 0.127 0.078 0.031 0.089 0.059 0.025
0.60 0.694 0.581 0.352 0.444 0.336 0.204 0.381 0.318 0.182 0.161 0.107 0.047 0.106 0.069 0.026
0.70 0.719 0.602 0.369 0.472 0.366 0.220 0.450 0.361 0.214 0.149 0.108 0.041 0.106 0.073 0.037
0.80 0.706 0.603 0.364 0.541 0.429 0.250 0.504 0.425 0.255 0.176 0.123 0.053 0.138 0.100 0.057
0.90 0.733 0.608 0.377 0.533 0.435 0.245 0.488 0.410 0.260 0.174 0.124 0.066 0.125 0.098 0.051
1.00 0.750 0.615 0.351 0.530 0.422 0.243 0.532 0.439 0.260 0.169 0.125 0.064 0.136 0.099 0.062
1.50 0.765 0.593 0.296 0.609 0.510 0.267 0.567 0.490 0.289 0.206 0.152 0.097 0.136 0.102 0.055
2.00 0.913 0.732 0.358 0.727 0.615 0.339 0.713 0.652 0.402 0.282 0.220 0.137 0.185 0.140 0.101
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Table 1: Rejection Rates for Separability Test using DEA, Asymptotic Normality (r = 1, continued)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

1000 0.00 0.065 0.041 0.004 0.021 0.010 0.001 0.040 0.024 0.006 0.025 0.012 0.007 0.030 0.017 0.010
0.10 0.156 0.120 0.048 0.057 0.037 0.016 0.074 0.039 0.014 0.033 0.019 0.003 0.047 0.029 0.008
0.20 0.515 0.449 0.317 0.323 0.254 0.175 0.330 0.268 0.164 0.091 0.057 0.017 0.080 0.050 0.021
0.30 0.737 0.707 0.584 0.632 0.567 0.441 0.618 0.564 0.441 0.249 0.173 0.083 0.189 0.124 0.041
0.40 0.789 0.778 0.711 0.755 0.719 0.621 0.761 0.712 0.621 0.373 0.276 0.134 0.268 0.189 0.092
0.50 0.822 0.812 0.757 0.791 0.759 0.688 0.809 0.790 0.706 0.418 0.326 0.176 0.287 0.199 0.100
0.60 0.836 0.813 0.744 0.829 0.807 0.701 0.825 0.798 0.714 0.479 0.381 0.218 0.313 0.229 0.123
0.70 0.856 0.827 0.728 0.802 0.777 0.657 0.803 0.764 0.667 0.455 0.354 0.217 0.287 0.204 0.101
0.80 0.833 0.785 0.679 0.780 0.733 0.617 0.790 0.744 0.614 0.419 0.320 0.186 0.253 0.182 0.097
0.90 0.815 0.769 0.635 0.777 0.723 0.583 0.786 0.725 0.582 0.352 0.271 0.156 0.242 0.163 0.093
1.00 0.806 0.741 0.576 0.784 0.699 0.538 0.760 0.697 0.524 0.344 0.253 0.157 0.208 0.146 0.093
1.50 0.819 0.689 0.481 0.842 0.749 0.507 0.854 0.800 0.556 0.323 0.247 0.160 0.193 0.145 0.100
2.00 0.796 0.685 0.385 0.851 0.810 0.558 0.869 0.857 0.710 0.432 0.319 0.208 0.297 0.220 0.142
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Table 2: Rejection Rates for Separability Test using DEA, Bootstrap (r = 1)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

100 0.00 0.056 0.030 0.006 0.050 0.029 0.008 0.048 0.033 0.007 0.021 0.010 0.003 0.027 0.014 0.005
0.10 0.070 0.027 0.002 0.050 0.021 0.007 0.045 0.027 0.011 0.020 0.006 0.002 0.036 0.017 0.004
0.20 0.122 0.064 0.016 0.100 0.059 0.018 0.084 0.051 0.013 0.029 0.017 0.005 0.041 0.023 0.005
0.30 0.176 0.099 0.023 0.119 0.077 0.022 0.095 0.063 0.024 0.064 0.035 0.009 0.047 0.027 0.012
0.40 0.281 0.192 0.063 0.142 0.102 0.045 0.130 0.096 0.048 0.076 0.050 0.026 0.081 0.050 0.023
0.50 0.358 0.250 0.098 0.200 0.140 0.052 0.192 0.128 0.063 0.100 0.069 0.036 0.098 0.072 0.037
0.60 0.441 0.310 0.119 0.214 0.156 0.072 0.206 0.165 0.088 0.143 0.108 0.059 0.139 0.097 0.057
0.70 0.477 0.340 0.138 0.260 0.181 0.091 0.250 0.204 0.125 0.162 0.116 0.056 0.152 0.113 0.068
0.80 0.520 0.365 0.161 0.310 0.223 0.110 0.288 0.224 0.146 0.157 0.116 0.075 0.164 0.115 0.072
0.90 0.544 0.364 0.151 0.319 0.231 0.119 0.320 0.272 0.183 0.197 0.151 0.104 0.188 0.148 0.100
1.00 0.567 0.414 0.184 0.323 0.243 0.134 0.333 0.282 0.187 0.201 0.152 0.097 0.206 0.166 0.122
1.50 0.633 0.433 0.180 0.392 0.319 0.187 0.392 0.340 0.242 0.246 0.220 0.165 0.282 0.242 0.201
2.00 0.736 0.533 0.221 0.451 0.394 0.233 0.469 0.434 0.304 0.280 0.250 0.191 0.293 0.260 0.218

200 0.00 0.079 0.041 0.010 0.036 0.019 0.004 0.050 0.027 0.008 0.003 0.000 0.000 0.006 0.002 0.000
0.10 0.069 0.043 0.008 0.038 0.021 0.006 0.068 0.041 0.016 0.012 0.002 0.001 0.007 0.005 0.000
0.20 0.162 0.103 0.044 0.088 0.066 0.023 0.084 0.060 0.026 0.022 0.008 0.002 0.019 0.008 0.002
0.30 0.323 0.240 0.115 0.168 0.121 0.057 0.157 0.110 0.049 0.035 0.014 0.002 0.033 0.015 0.005
0.40 0.486 0.363 0.178 0.269 0.219 0.114 0.256 0.189 0.106 0.067 0.039 0.017 0.064 0.039 0.013
0.50 0.589 0.466 0.242 0.325 0.244 0.138 0.366 0.304 0.189 0.133 0.087 0.033 0.116 0.078 0.038
0.60 0.646 0.523 0.295 0.428 0.327 0.201 0.374 0.312 0.204 0.178 0.133 0.061 0.153 0.095 0.045
0.70 0.685 0.566 0.329 0.460 0.367 0.223 0.442 0.362 0.240 0.214 0.170 0.087 0.182 0.143 0.075
0.80 0.698 0.566 0.331 0.527 0.432 0.260 0.495 0.427 0.286 0.255 0.199 0.117 0.229 0.176 0.106
0.90 0.728 0.574 0.327 0.522 0.432 0.271 0.481 0.410 0.299 0.274 0.218 0.141 0.249 0.205 0.142
1.00 0.740 0.589 0.328 0.529 0.427 0.276 0.520 0.460 0.309 0.282 0.231 0.161 0.275 0.226 0.143
1.50 0.764 0.570 0.293 0.611 0.526 0.325 0.562 0.511 0.365 0.389 0.347 0.249 0.362 0.314 0.254
2.00 0.919 0.710 0.352 0.725 0.648 0.412 0.710 0.665 0.512 0.481 0.436 0.322 0.466 0.429 0.356
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Table 2: Rejection Rates for Separability Test using DEA, Bootstrap (r = 1, continued)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

1000 0.00 0.074 0.039 0.007 0.021 0.012 0.001 0.044 0.022 0.004 0.000 0.000 0.000 0.001 0.000 0.000
0.10 0.140 0.099 0.034 0.057 0.033 0.014 0.069 0.034 0.011 0.003 0.000 0.000 0.000 0.000 0.000
0.20 0.444 0.371 0.241 0.288 0.221 0.131 0.297 0.232 0.137 0.041 0.018 0.003 0.019 0.007 0.003
0.30 0.698 0.648 0.514 0.587 0.522 0.390 0.588 0.517 0.410 0.201 0.116 0.037 0.101 0.048 0.018
0.40 0.773 0.748 0.677 0.736 0.692 0.582 0.731 0.678 0.605 0.400 0.286 0.120 0.242 0.141 0.046
0.50 0.815 0.796 0.749 0.778 0.745 0.682 0.802 0.772 0.695 0.533 0.398 0.204 0.369 0.251 0.110
0.60 0.829 0.807 0.731 0.818 0.795 0.704 0.812 0.791 0.728 0.615 0.511 0.298 0.461 0.329 0.173
0.70 0.852 0.824 0.730 0.789 0.766 0.677 0.784 0.752 0.681 0.621 0.519 0.337 0.481 0.374 0.203
0.80 0.834 0.779 0.690 0.770 0.724 0.644 0.776 0.737 0.650 0.614 0.523 0.356 0.488 0.390 0.244
0.90 0.819 0.767 0.653 0.776 0.713 0.621 0.775 0.729 0.622 0.585 0.516 0.367 0.507 0.404 0.284
1.00 0.808 0.734 0.605 0.769 0.718 0.594 0.744 0.710 0.589 0.606 0.529 0.385 0.523 0.432 0.323
1.50 0.837 0.700 0.520 0.841 0.782 0.609 0.853 0.827 0.681 0.731 0.655 0.522 0.676 0.588 0.474
2.00 0.814 0.694 0.441 0.855 0.837 0.678 0.873 0.864 0.822 0.854 0.797 0.648 0.833 0.750 0.619
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Table 3: Rejection Rates for Separability Test using FDH, Asymptotic Normality (r = 1)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

100 0.00 0.062 0.034 0.009 0.075 0.050 0.024 0.077 0.045 0.011 0.085 0.064 0.041 0.086 0.064 0.035
0.10 0.077 0.057 0.021 0.056 0.040 0.019 0.068 0.047 0.022 0.080 0.058 0.031 0.104 0.075 0.034
0.20 0.158 0.118 0.048 0.090 0.066 0.034 0.080 0.054 0.019 0.083 0.061 0.030 0.121 0.083 0.047
0.30 0.246 0.185 0.092 0.114 0.085 0.033 0.090 0.061 0.028 0.102 0.068 0.037 0.109 0.075 0.046
0.40 0.318 0.253 0.132 0.133 0.105 0.058 0.102 0.066 0.030 0.093 0.060 0.031 0.116 0.085 0.047
0.50 0.435 0.346 0.197 0.200 0.165 0.090 0.097 0.073 0.037 0.079 0.060 0.024 0.097 0.064 0.040
0.60 0.485 0.389 0.213 0.231 0.174 0.098 0.120 0.082 0.042 0.091 0.071 0.052 0.089 0.065 0.039
0.70 0.538 0.427 0.255 0.255 0.204 0.126 0.125 0.082 0.045 0.094 0.075 0.039 0.086 0.052 0.028
0.80 0.576 0.462 0.268 0.259 0.211 0.131 0.140 0.092 0.050 0.080 0.056 0.035 0.085 0.061 0.036
0.90 0.579 0.470 0.274 0.279 0.230 0.141 0.137 0.100 0.061 0.096 0.068 0.036 0.093 0.058 0.035
1.00 0.596 0.494 0.280 0.291 0.245 0.147 0.138 0.098 0.066 0.089 0.054 0.032 0.105 0.072 0.039
1.50 0.620 0.510 0.275 0.361 0.317 0.221 0.142 0.113 0.078 0.117 0.081 0.061 0.078 0.043 0.026
2.00 0.611 0.517 0.243 0.396 0.363 0.240 0.140 0.098 0.077 0.093 0.056 0.038 0.081 0.048 0.040

200 0.00 0.047 0.029 0.011 0.031 0.024 0.013 0.032 0.019 0.008 0.052 0.032 0.011 0.078 0.053 0.029
0.10 0.074 0.037 0.019 0.043 0.030 0.013 0.057 0.027 0.007 0.051 0.029 0.008 0.064 0.043 0.015
0.20 0.209 0.153 0.082 0.070 0.052 0.023 0.064 0.041 0.016 0.058 0.032 0.014 0.072 0.042 0.026
0.30 0.412 0.327 0.166 0.149 0.106 0.046 0.094 0.059 0.024 0.062 0.040 0.024 0.071 0.050 0.021
0.40 0.568 0.464 0.281 0.188 0.149 0.077 0.111 0.072 0.033 0.061 0.045 0.022 0.045 0.029 0.017
0.50 0.681 0.587 0.389 0.264 0.206 0.110 0.127 0.081 0.043 0.059 0.037 0.017 0.063 0.044 0.021
0.60 0.712 0.610 0.432 0.359 0.294 0.175 0.153 0.110 0.066 0.072 0.058 0.023 0.061 0.044 0.023
0.70 0.728 0.634 0.409 0.387 0.317 0.202 0.163 0.118 0.067 0.074 0.058 0.032 0.053 0.039 0.021
0.80 0.747 0.645 0.428 0.393 0.341 0.207 0.170 0.111 0.064 0.069 0.046 0.030 0.060 0.045 0.028
0.90 0.724 0.641 0.408 0.430 0.355 0.215 0.156 0.119 0.064 0.074 0.050 0.033 0.056 0.037 0.028
1.00 0.720 0.631 0.406 0.456 0.382 0.243 0.139 0.104 0.061 0.071 0.056 0.037 0.058 0.038 0.021
1.50 0.683 0.569 0.328 0.423 0.377 0.250 0.130 0.104 0.070 0.062 0.044 0.032 0.058 0.039 0.032
2.00 0.701 0.562 0.270 0.493 0.456 0.290 0.124 0.102 0.080 0.057 0.044 0.038 0.066 0.048 0.036
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Table 3: Rejection Rates for Separability Test using FDH, Asymptotic Normality (r = 1, continued)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

1000 0.00 0.035 0.014 0.003 0.006 0.003 0.001 0.017 0.008 0.000 0.024 0.013 0.001 0.033 0.012 0.003
0.10 0.133 0.090 0.029 0.022 0.019 0.006 0.020 0.010 0.002 0.022 0.012 0.003 0.037 0.023 0.004
0.20 0.544 0.488 0.350 0.215 0.162 0.105 0.085 0.058 0.020 0.041 0.026 0.008 0.046 0.031 0.006
0.30 0.756 0.730 0.634 0.488 0.429 0.318 0.174 0.122 0.050 0.059 0.028 0.012 0.055 0.032 0.019
0.40 0.802 0.792 0.745 0.679 0.623 0.496 0.226 0.153 0.074 0.076 0.054 0.022 0.066 0.046 0.026
0.50 0.838 0.827 0.789 0.761 0.710 0.608 0.271 0.172 0.077 0.083 0.055 0.028 0.072 0.044 0.012
0.60 0.829 0.817 0.767 0.792 0.751 0.660 0.297 0.201 0.098 0.098 0.066 0.031 0.074 0.054 0.033
0.70 0.863 0.834 0.748 0.766 0.730 0.627 0.227 0.158 0.083 0.099 0.064 0.032 0.037 0.028 0.017
0.80 0.830 0.794 0.709 0.753 0.724 0.597 0.223 0.151 0.087 0.084 0.061 0.034 0.053 0.035 0.018
0.90 0.806 0.763 0.646 0.732 0.686 0.576 0.213 0.140 0.070 0.069 0.051 0.031 0.046 0.036 0.023
1.00 0.807 0.757 0.609 0.754 0.708 0.568 0.179 0.127 0.070 0.065 0.051 0.023 0.051 0.036 0.017
1.50 0.717 0.608 0.393 0.632 0.568 0.384 0.108 0.080 0.056 0.035 0.026 0.016 0.035 0.030 0.025
2.00 0.649 0.514 0.243 0.575 0.500 0.304 0.068 0.058 0.046 0.041 0.031 0.024 0.019 0.016 0.013
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Table 4: Rejection Rates for Separability Test using FDH, Bootstrap (r = 1)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

100 0.00 0.056 0.024 0.006 0.069 0.048 0.020 0.072 0.035 0.018 0.182 0.142 0.103 0.210 0.195 0.139
0.10 0.073 0.040 0.011 0.056 0.039 0.020 0.063 0.041 0.024 0.173 0.141 0.102 0.204 0.184 0.135
0.20 0.143 0.089 0.034 0.087 0.065 0.033 0.094 0.063 0.032 0.176 0.143 0.105 0.207 0.192 0.133
0.30 0.232 0.162 0.070 0.117 0.084 0.033 0.110 0.075 0.046 0.182 0.136 0.106 0.208 0.190 0.124
0.40 0.296 0.226 0.107 0.132 0.110 0.071 0.150 0.102 0.061 0.172 0.135 0.102 0.201 0.178 0.123
0.50 0.406 0.319 0.181 0.201 0.169 0.106 0.158 0.108 0.081 0.184 0.146 0.099 0.194 0.171 0.117
0.60 0.464 0.362 0.195 0.229 0.185 0.123 0.178 0.113 0.076 0.201 0.156 0.109 0.204 0.181 0.131
0.70 0.522 0.407 0.244 0.258 0.218 0.149 0.210 0.165 0.107 0.199 0.159 0.113 0.226 0.197 0.147
0.80 0.562 0.460 0.270 0.264 0.226 0.152 0.253 0.190 0.125 0.202 0.152 0.111 0.230 0.201 0.146
0.90 0.566 0.458 0.276 0.284 0.247 0.165 0.277 0.214 0.156 0.228 0.192 0.140 0.236 0.218 0.161
1.00 0.587 0.475 0.285 0.295 0.258 0.181 0.292 0.223 0.160 0.197 0.169 0.127 0.238 0.221 0.155
1.50 0.618 0.512 0.299 0.361 0.328 0.263 0.371 0.310 0.268 0.293 0.252 0.212 0.248 0.239 0.196
2.00 0.612 0.524 0.291 0.398 0.376 0.305 0.408 0.367 0.335 0.295 0.268 0.241 0.318 0.305 0.239

200 0.00 0.049 0.030 0.010 0.033 0.022 0.012 0.023 0.010 0.003 0.076 0.054 0.034 0.096 0.066 0.039
0.10 0.067 0.034 0.010 0.042 0.030 0.011 0.022 0.007 0.002 0.056 0.038 0.024 0.100 0.082 0.052
0.20 0.189 0.133 0.060 0.064 0.047 0.025 0.039 0.017 0.007 0.061 0.045 0.029 0.096 0.065 0.049
0.30 0.385 0.287 0.139 0.140 0.106 0.052 0.077 0.044 0.017 0.088 0.063 0.035 0.097 0.070 0.044
0.40 0.536 0.425 0.266 0.189 0.149 0.087 0.141 0.081 0.039 0.108 0.075 0.047 0.109 0.083 0.059
0.50 0.650 0.549 0.370 0.263 0.202 0.136 0.165 0.110 0.053 0.121 0.098 0.063 0.132 0.108 0.069
0.60 0.688 0.600 0.405 0.365 0.300 0.205 0.237 0.169 0.091 0.142 0.105 0.078 0.165 0.135 0.093
0.70 0.714 0.621 0.412 0.384 0.328 0.238 0.293 0.222 0.126 0.177 0.135 0.095 0.165 0.127 0.099
0.80 0.728 0.635 0.450 0.398 0.350 0.251 0.301 0.236 0.157 0.203 0.157 0.118 0.190 0.161 0.114
0.90 0.708 0.622 0.431 0.432 0.374 0.263 0.343 0.285 0.190 0.216 0.166 0.129 0.198 0.165 0.135
1.00 0.707 0.618 0.444 0.448 0.407 0.297 0.341 0.286 0.217 0.252 0.210 0.158 0.232 0.191 0.139
1.50 0.691 0.591 0.394 0.432 0.390 0.323 0.446 0.403 0.336 0.291 0.257 0.227 0.308 0.282 0.249
2.00 0.708 0.594 0.355 0.498 0.471 0.382 0.499 0.458 0.404 0.336 0.311 0.285 0.339 0.321 0.290
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Table 4: Rejection Rates for Separability Test using FDH, Bootstrap (r = 1, continued)

T1,n T2,n

n λ2 p = 1, q = 1 p = 2, q = 1 p = 2, q = 2 p = 3, q = 2 p = 3, q = 3
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

1000 0.00 0.035 0.014 0.002 0.006 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.000
0.10 0.115 0.071 0.022 0.022 0.017 0.006 0.001 0.000 0.000 0.002 0.000 0.000 0.011 0.004 0.002
0.20 0.495 0.410 0.286 0.193 0.147 0.096 0.034 0.016 0.004 0.011 0.005 0.001 0.018 0.007 0.003
0.30 0.735 0.685 0.589 0.462 0.417 0.304 0.118 0.075 0.030 0.036 0.022 0.010 0.045 0.025 0.013
0.40 0.791 0.774 0.726 0.650 0.600 0.493 0.266 0.166 0.068 0.102 0.062 0.022 0.081 0.055 0.031
0.50 0.830 0.820 0.786 0.746 0.696 0.613 0.392 0.242 0.109 0.162 0.105 0.046 0.107 0.070 0.037
0.60 0.825 0.811 0.774 0.774 0.739 0.663 0.431 0.315 0.149 0.214 0.157 0.076 0.166 0.114 0.070
0.70 0.852 0.827 0.773 0.751 0.717 0.653 0.449 0.343 0.190 0.281 0.189 0.129 0.215 0.160 0.096
0.80 0.820 0.789 0.727 0.740 0.713 0.640 0.498 0.411 0.263 0.293 0.217 0.137 0.244 0.179 0.118
0.90 0.805 0.760 0.683 0.725 0.690 0.616 0.516 0.427 0.273 0.301 0.243 0.163 0.288 0.228 0.151
1.00 0.802 0.761 0.656 0.745 0.715 0.618 0.543 0.455 0.345 0.336 0.270 0.203 0.277 0.229 0.159
1.50 0.732 0.636 0.471 0.631 0.599 0.485 0.532 0.476 0.413 0.391 0.359 0.312 0.373 0.337 0.276
2.00 0.681 0.555 0.339 0.578 0.543 0.423 0.568 0.529 0.481 0.442 0.411 0.364 0.423 0.393 0.348
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Table 5: p-values for Tests of Separability on Banking Data

Input Output
Asy. Normal Bootstrap Asy. Normal Bootstrap

n = 303
SIZE 0.0013 0.0135 0.0495 0.1085
DIVERSE 0.8869 0.7910 0.8294 0.7295
joint test 0.1043 0.1760 0.0874 0.1180

n = 6, 607
SIZE 0.0000 0.0000 0.0000 0.0000
DIVERSE 0.9999 0.9980 0.9998 0.9925
joint test 0.0000 0.0000 0.0000 0.0000
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