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Abstract

Evolutionary theories of economic change identify the processes of idiosyncratic learning
by individual firms and of market selection as the two main drivers of the dynamics of
industries. Are such processes able to robustly account for the statistical regularities which
industrial structures and dynamics display? In this work we address this question by means
of a simple agent-based model formalizing the mechanisms of learning and selection. The
interplay between these two engines shapes the dynamics of entry-exit and market shares and,
collectively, the productivity and the size distributions and their patterns of growth. As such,
and despite its simplicity, the model is able to robustly reproduce an ensemble of empirical
stylised facts, including ample heterogeneity in productivity distributions, persistent market
turbulence and fat-tailed distribution of growth rates.
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1 Introduction

Evolutionary theories of economic change identify the processes of idiosyncratic learning by in-
dividual firms and of market selection as the two main drivers of the dynamics of industries.
The interplay between these two engines shapes the dynamics of entry-exit and market shares
and, collectively, the productivity and the size distributions and their patterns of growth. Learn-
ing (what in the empirical literature is sometimes broadly called the within effect) stands for
various processes of idiosyncratic innovation, imitation, and changes in techniques of produc-
tion. Selection (what is usually denominated the between effect) is the outcome of processes
of market interaction where more competitive firms gain market share at the expense of less
competitive ones, some firms die, and others enter. The ensuing industrial dynamics presents
some remarkable and quite robust statistical properties — “stylized facts” — which tend to hold
across industries and countries, levels of aggregation and time periods (for a critical survey, see
Dosi et al., 1995).
In particular, the stylized facts include:

e persistent heterogeneity in productivity and all other performance variables;

e persistent market turbulence, due to change in market shares and entry-exit phenomena;
e skewed size distributions;

o fat-tailed distribution of growth rates.

Different theoretical perspectives address the interpretation of one or more of such empirical
regularities. One stream of analysis, which could go under the heading of equilibrium evolution,
try to interpret size dynamics in term of passive (Jovanovic (1982)) or active learning (Ericson
and Pakes (1995)).

Another stream — from the pioneering work by Ijiri and Simon (1977) all the way to Bottazzi
and Secchi (2006a) — studies the result of both mechanisms in terms of the ensuing exploitation
of new business opportunities, captured by the joint operation of learning and selection.

A third stream, including several contributions by Metcalfe (see among others Metcalfe (1998)),
focuses on the processes of competition/selection often represented by means of a replicator
dynamics where market shares vary as a function of the relative competitiveness or “fitness”.
Finally, many evolutionary models unpack the two drivers of evolution distinguishing between
some idiosyncratic processes of change in the techniques of production, on the one hand, and
the dynamics of differential growth driven by differential profitabilities and the ensuing rates of
investment, on the other hand (such as in Nelson and Winter (1982)). Yet, in other evolutionary
models selection is represented by means of an explicit replicator dynamics, (such in Silverberg
et al. (1988) and in Dosi et al. (1995)).

In the following contribution we shall present a simple agent-based model, formalizing the mech-
anisms of learning and selection, able to robustly reproduce an ensemble of empirical stylised
facts, including ample heterogeneity in productivity distributions, persistent market turbulence
and fat-tailed distribution of growth rates. In particular, Section 2 briefly summarizes the em-
pirical stylized facts and Section 3 discusses the main theoretical models aimed at explaining
some of them. Section 4 presents the model and Section 5 analyses the simulation results.



2 Empirical stylised facts: productivity, size and growth

During the last few decades, enabled by the availability of longitudinal micro data, an increasing
number of studies have identified a rich ensemble of stylised facts related to productivity, size
and firm growth rate distributions. Let us consider some of them, germane to the model which
follows.

2.1 Productivity distribution and growth

As extensively discussed in Doms and Bartelsman (2000), Syverson (2011), Dosi (2007) and
Foster et al. (2008), among many others, productivity dispersion, at all levels of disaggregation, is
a striking and very robust phenomenon. Moreover, such heterogeneity across firms is persistent
over time, (cf. Bartelsman and Dhrymes (1998), Dosi and Grazzi (2006) and Bottazzi et al.
(2008)), with autocorrelation coefficients in the range 0.8—1. An illustration is provided in Figure
1 for one 2-digit Italian sector and two 3-digit thereof: notice the wide support of the distribution
that goes from 1 to 5 in log terms. The distribution and its support are quite stable over time
and so is the “pecking order” across firms, as suggested by the high autocorrelation coefficients:
see Figure 2. These findings, robust to the use of parametric and non-parametric analysis,
empirically discard any idea of firms’ revealed production process as the outcome of an exercise
of optimization over a commonly shared production possibility set — which, under common
relative prices, ought to yield quite similar input/output combinations. Rather asymmetries are
impressive, which tells of a history of both firm-specific learning patterns and of co-existence
in the market of low and high productivity firms, with no trace of convergence (see Dosi et al.
(2012)). Even more so, asymmetries are pronounced in emerging economies (with some reduction
along the process of development): see on China, Yu et al. (2015). In that, the survival of
dramatically less efficient firms hint at a structurally imperfect mechanism of market selection,
which demand a theoretical interpretation.

A less explored phenomenon related to the dynamic of productivity is the double exponential
nature of its growth rate distributions. Extensive evidence is provided in Bottazzi et al. (2005)
and Dosi et al. (2012): see Figure 3 for an illustration. The double exponential nature of growth
rate in productivity does not only reveals an underlining multiplicative process that determines
efficiency changes, but also suggests processes of idiosyncratic learning characterized by discrete,
relatively frequent “big” events (see also below, on the size growth rates).

2.2 Size distribution

Firm size distributions are skewed. And this is an extremely robust property which, again, holds
across sectors, countries and levels of aggregation. But, how skewed is “skewed”?

The power-law nature (Pareto or Zipf law, according to the slope of the straight line, in a log-log
plot)! of the firm size distribution, has been investigated by many authors? since the pioneering
work by Simon and Bonini (1958). This is not the place to discuss the possible generating
mechanism of such distribution (an insightful discussion is in Brock (1999)). Here, just notice
that, being the Pareto a scale free distribution, in principle it should be scale invariant, or
equivalently, it should be detectable irrespectively of the considered level of aggregation. However

1See Newman, 2005 for a succinct overview.
2See Stanley et al., 1995 and Axtell, 2001 for US manufacturing data.
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Figure 1: Empirical distribution of labour productivity. Source: Dosi et al. (2013).
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Production & processing of meat 151 10021 0.0016 -0.3446  0.0915
Knitted & crocheted articles 177 1.0056  0.0023 -0.2877  0.1005
Wearing appard & acc. 182 10035 0.0012 -0.3090 0.0871
Footware 193 10029 0.0019 -0.3903  0.0793
Articles of paper and paperboard 212 10053  0.0008 -0.3027  0.0603
Printing and services related to printing 222 0992 0.0011 -0.4753 01103
Plastic products 252 1.0030 0.0010 -0.3150  0.0557
Articles of concrete, plaster & cement 266 0.9985  0.0016 -0.4572  0.0979
Metal products 281 1.0034 0.0012 -0.4125  0.0715
Treatment, coating of metal & mech. engin. 285 1.0051 0.0013 -0.1846  0.0679
Spexial purpose machinery 295 1.0011  0.0011 -0.3040  0.0495
Furniture 361 0.9994  0.0001 -0.4472  0.0808

Figure 2: AR(1) coefficients for Labour Productivity in levels and first differences, Italy, Istat
Micro.1 Dataset. Source: Dosi and Grazzi (2006).
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Figure 3: Tent shaped productivity growth rate. Italy, Istat Micro.3 Dataset. Source: Dosi
et al. (2012).
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Figure 4: Skewness in the size distribution. Elaboration on Fortune 500. Source: Dosi et al.
(2008).

Bottazzi et al. (2007) and Dosi et al. (2008) find that the size distributions fairly differ across
sectors in terms of shape, fatness of the tails and even modality. Plausibly, technological factors,
the different degree of cumulativeness in the process of innovation, and the predominance of
process vs. product innovation might strongly affect sector-specific size distributions (Marsili,
2005). Also, it might well be that the empirical findings on the Zipf (Pareto) law distribution
are a mere effect of aggregation as already discussed in Dosi et al. (1995). Hence, what should
be retained here is the skewness of the distribution (see Figure 4).

2.3 Market turbulence

Underneath the foregoing invariances, however, there is a remarkable turbulence involving
changes in market shares, entry and exit (cf. the discussion in Baldwin and Rafiquzzaman
(1995) and Doms and Bartelsman (2000)). A good deal of such turbulence is due to “churning”
of going firms, with 20% — 40% of entrants die in the first two years and only 40% — 50% survive
beyond the seventh year in a given cohort.

1 Sales  Value Added
mean 0.130 0.161
stdev  0.048 0.045
min 0.0544 0.082
max 0.559 0.601

Table 1: Turbulence Index. Italy, Istat Micro.3 Dataset. Source: Grazzi et al. (2013)

An index that synthesizes the market turbulence is shown in Table 1 presenting some synthetic
statistics on Italian micro data, both in terms of sales and value added market shares. The [
index reads as the sum of the absolute value of market share variations

I=> si(t) —si(t—1)] O<TI<2 (1)

%
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Figure 5: Tent shaped size growth rate, Italy, Istat Micro.1 Dataset. Source: Bottazzi and
Secchi (2006a).

2.4 Fat-tailed distributions of growth rates

A huge empirical literature testifies the emergence of the Laplace distribution in growth rates.
A typical empirical finding is illustrated in 5. This applies across different levels of sectoral
disaggregation, across countries, over different historical periods for which there are available
data. This stylised fact is robust to different measures of growth, e.g., in terms of sales, value
added or employment (for more details see Bottazzi et al. (2002), Bottazzi and Secchi (2006a),
Bottazzi et al. (2008) and Dosi (2007)).

Firms grow and decline by relatively lumpy jumps which cannot be accounted by the cumulation
of small, “atom-less”, independent shocks. Rather “big” episodes of expansion and contraction
are relatively frequent. More technically, this is revealed by fat-tailed distributions (in log terms)
of growth rates. What determines such property?

In general, such fat-tailed distributions are powerful evidence of some underlying correlation
mechanism. Intuitively, new plants arrive or disappear in their entirety, and, somewhat similarly,
novel technological and competitive opportunities tend to arrive in “packages” of different “sizes”
(i.e., economic importance). This is what Bottazzi (2014) calls the bosonic nature of firm growth,

in analogy with the correlating property of a family of elementary particles — indeed the bosons.

2.5 Scaling growth-size relationship

The multiplicative process of firm growth is (roughly) uncorrelated with size, at least for not
too small firms. This is what goes under the heading of the Gibrat law.

However, the variance of growth rates falls with size. How the level and growth rate of size are
related to each other? Since Stanley et al. (1996), an extensive literature of empirical papers
found a negative correlation between the variance of growth rates and size (see Sutton (2002),
Lee et al. (1998)). An illustration of the phenomenon is provided in Figure 6. The underlying
idea is that firms can be described as a collection of independent units, each of them charac-
terised by an independent growth process. The bigger the firm, the higher the number of its
components (“lines of business”). Hence, under an assumption of independent growth processes
for each unit, the variance of the growth rate decreases proportionally to the inverse square root
of size. Bottazzi and Secchi (2006b) envisage the cause of this negative correlation in product

differentiation. They argue that bigger firms tend to operate in more sub-markets. As a direct
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Figure 6: Variance-size relation. Elaboration on PHID, Pharmaceutical Industry Dataset.
Source: Bottazzi and Secchi (2006b).

consequence, the variance of the growth rate reduces as the size of firms increases.

To summarize, the challenge for the theory is to account for: [i] persistent heterogeneity in pro-
ductivities, [ii] skewness in size distributions, [iii] market turbulence, [iv] fat-tailed distribution
of growth rates, [v] negative variance-size correlations. How do incumbent theories fare in this
respect?

3 Theoretical interpretations

Let us start from that family of models which we call in Dosi et al. (1995) of “ evolutionary equi-
libria”, including Jovanovic (1982), Ericson and Pakes (1995), Hopenhayn (1992a), Hopenhayn
(1992b) and Pakes and Ericson (1998), where there is the explicit attempt to link heterogeneity
among firms, their growth and possibly survival. The evolutionary aspect lies in the idiosyncratic
productivity enhancing process that leads more productive firms to expand their own capacity,
or equivalently, their market shares and less productive firms to shrink their weight in the market
up their death. Implicitly, there is some process of selection that reward the more productive
and penalize the less efficient at work. However, competitive selection never appears because
rational agents “learn” their equilibrium size. These models, at a first glance distinguishable
in passive (as Jovanovic (1982)) and in active (as Ericson and Pakes (1995)) learning models,
address issues as growth/death rates conditional on age, the dependence or not of the current
size on the initial one, and the entry-exit rate in equilibrium. The “rational” attributes stem
from the fact that they are characterized by profit-seeking maximizing agents over an infinite
time horizon. In each period they decide the equilibrium size and whether to stay or not in the
market according to their technological rational expectations. Thus, selection is never at work
because it is, so to speak, “anticipated in the heads of the agents” and, as a consequence, every
observed variable is an equilibrium one: hard to believe indeed! Moreover, this class of models
seems unable to offer any guidance on the interpretation of productivity and size distributions
(except the rationalization of whatever observation as an equilibrium one) and of the ubiquitous
fat-tailedness of growth rates.

The abandonment of strong rationality and equilibrium assumptions bears abundant fruits. Sim-



ple characterization of firm growth as a multiplicative process, such as in the seminal Ijiri and
Simon (1977) work, yields insight into the explanation of observed size distributions. Ijiri and
Simon (1967) decompose the total growth rate as the sum of an idiosyncratic and an industry
time-variant component. The growth rate at the industry level is assumed to be constant, as the
initial size of the firms. Finally, idiosyncratic shocks are modelled as an AR(1) process capturing
[i] the independence of growth rates from size (Gibrat Law); [ii] one-period autocorrelation of
growth rates (or single period Markow process); and [iii] a reversion to the mean behaviour. The
growth rates are described as the sum of the independent micro-shocks. The size trajectories
turn out to be random walks with drift yielding lognormal distributions.

However, the interactiveness intrinsic to the dynamics of firm growth is still missing. And this
is what different families of evolutionary and Simonesque models are meant to capture.

In such a perspective, the micro patterns of the industrial dynamics are the outcome of twin
processes of learning and selection among boundedly rational, interacting agents. The aggregate
regularities emerge as the result of the continuum coupling of change and coordination. Models
like the ones proposed in Nelson and Winter (1982), Silverberg and Lehnert (1993), Dosi et al.
(1995), Dosi et al. (2000a), Bottazzi et al. (2001) and Winter et al. (2003) are somewhat differ-
ent and complementary examples of the evolutionary-modelling approach. Evolutionary models
that address the pattern of industry evolution, with particular reference to the learning and
selection process, can be subdivided into three different categories: [i] the group of models that
focus on the selection process (see Metcalfe (1998) for an extensive discussion); [ii] models that
mainly investigate the pattern of firm growth as a process of cumulation of learning opportu-
nities folding together the two different processes (from Ijiri and Simon (1977) to Bottazzi and
Secchi (2006a)); and [iii] models that unpack and treat separately the two processes (Silverberg
et al. (1988) and Dosi et al. (1995)).

Of particular interest for our purpose here, are those Simonesque models which parsimoniously
but powerfully account for correlating mechanisms both on learning and competition, such as
Bottazzi and Secchi (2006a), nesting such correlations into firm specific increasing returns in
(correlated) business opportunities. Building upon the “island” model by Ijiri and Simon (1977),
they introduce the hypothesis of exploitation of business opportunity via a Polya Urn scheme,
wherein in each period “success breeds success”. It is a two-step model, where in the first step an
assignment procedure of the fized number of business opportunities M is realised. In the second
step, these business opportunities act as source of growth.? The dynamics of firms growth rate is
still of Gibrat type but with the significant difference that the number of opportunities M are not
assigned with a constant probability 1/, being N the number of firms, but proportionally to the
number of opportunities that in each period the firm already has access to, which is correlated
to the opportunities of all other firms. At each time step a micro-shock of type i € {1,..., N} is
extracted from an urn. Once it is extracted, the ball is replaced and, additionally, a new ball
of the same colour is introduced. This implies that, once one type ¢ has been extracted, the
probability of that type being re-extracted increases. This procedure is repeated M times, the
number of the total business opportunities. Indeed this cumulative process is at the core of the
emergence of fat-tailed distributions. Bottazzi and Secchi (2006a) demonstrated that when N
and the ratio M/N increase, the limit distribution of this scheme is Laplace distributed and
this occurs independently from the distribution function of the shocks. This explanation, which

3A further development along similar lines with a birth process of new types of opportunities (i.e., balls of
different colors) is in Marengo and Zeppini (2014).



we share indeed, of the “tent shape” relies on the idea that a big chunk of the micro-shocks M
are concentrated in few firms. However, a significant drawback of this representation is that
the assignment procedure occurs once each period: dynamic increasing returns displace in space
(that is, cross-sectionally), as a cumulation of many shocks in few firms, but never in time. It
turns out to be rather difficult imagine that firms update their expertise every period — say, a
year — when the urn is open.

Nevertheless, our conjecture, is that synchronous cumulative processes are only one of the drivers
of the apparent correlations underlying the “tents” in growth rates. Indeed, we suggest that a
rather large ensemble of evolutionary processes, characterized by different forms of idiosyncratic
(i.e., firm-specific) learning and competitive interactions yields the observed distributions of
growth rates. This is the hypothesis we are going to explore in this work. Also, we shall pro-
vide an explicit account of learning and selection dynamics that is able to robustly explain the
stylised facts flagged earlier.

4 The model

The model is an evolutionary agent-based model microfounded upon simple behavioural rules
and heuristics. The absence of any rational expectations (technological or otherwise) is inten-
tionally pursued. Most of individual (and more so organizational) decisions and behaviours take
place under conditions of environmental complexity, radical uncertainty and massively imper-
fect information. The microeconomics of our model fully acknowledges all that and is inscribed
within the perspective of “bounded rationality”, written large (let us just mention the classic
March and Simon (1958), Nelson and Winter (1982), and Gigerenzer and Selten (2002)).

The three processes that takes place in the simulated industry are learning, selection and entry-

exit.

4.1 Idiosyncratic learning processes

We build upon a simplified version of Dosi et al. (1995) whereby learning is represented by
some multiplicative stochastic process upon firms productivities — or more generically “levels of
competitiveness” — a; of the form

ai(t) = ai(t — 1)(1 + 6i(t)) (2)

where the 6;(t) are realizations of a sequence of random variables {©;}X (¢), and N(¢t) is the
number of firms. Such dynamics is meant to capture the idiosyncratic accumulation of capa-
bilities within each firm (see Teece et al. (1994) and Dosi et al. (2000b)). This entails various
types of process innovation — yielding higher production efficiency and plausibly lower output
prices — and new and improved products. This latter dynamics is not explicitly formalized in
our utterly simple model but one may think of new products as higher value added ones, thus
implicitly proxied by higher value of a;.

The process is a multiplicative random walk with drift: the multiplicative nature is well in tune
with the evidence on productivity dynamics under the further assumption that if a firm draws
a negative 6;, it will stick to its previous technique (negative shocks are quite unreasonable!).
We experiment with different learning processes, whereby 6;(t) is drawn from a set of possible
alternative distributions, namely Normal, Lognormal, Poisson, Laplace and Beta. Consider the



foregoing model as our Baseline Regime. Further, we experiment, as one already did in Dosi
et al. (1995), with two other more extreme regimes, named Schumpeter Mark I and Schumpeter
Mark II, somewhat dramatizing the role attributed to entrants vs. incumbents by the “young
Schumpeter” (Schumpeter, 1912) and the “old Schumpeter” (Schumpeter, 1947).
Under Schumpeter Mark I
0i(t) =0 3)

for all incumbents. Conversely, under Schumpeter Mark I1

B ai(t —1) !
0;(t) = mi(t) <Zi ai(t — 1)s;(t — 1>> "’

where 7;(¢) is the same draw process as under the Baseline Regime. At one extreme, in the first

case, incumbents do not learn after birth. Advances are only carried by new entrants. At the
opposite extreme, in the latter case, incumbents do not only learn, but do it in a cumulative
way so that a draw by any firm is scaled by its extant relative competitiveness. This captures
what Paul David, quoting Robert Merton, called the “Matthew effect”. 4

4.2 Market selection and birth-death processes

Competitive interactions are captured by a “quasi replicator dynamics”

Asi(t,t —1) = As;(t — 1) (CZ((:)) - 1) (5)

where

a(t) = Zai(t)si(t - 1) (6)

where s;(t) is the market share of firm ¢ which changes as a function of the ratio of the firm’s pro-
ductivity (or “competitiveness”) to the weighted average of the industry. It is a “quasi-replicator”
since a genuine replicator lives on the unit simplex. The “quasi” one may well yield negative
shares, under certain parametrizations, in which case the firm is declared dead and market shares
are accordingly recomputed. Being A an elasticity parameter that captures the intensity of the
selection exerted by the market, in terms of market share dynamics and, indirectly, of mortality
of low competitiveness firms. Below, we shall study the effect of different degrees of market
selectiveness upon industry structures and dynamics. In that, the competitive process as such
induces ex post correlation in growth rates: the growth of the share of any one firm induces the
fall of the total share of its competitors.
Finally, we assume that entry of new firms occurs proportionally to the number of incumbents
present in the market

E(t)=w()N(t—-1) (7)

where E(t) is the number of entrants at time ¢, N (¢t — 1) is the number of incumbents in the
previous period and w(t) is a random variable uniformly distributed on a finite support (which
in the following, for simplicity,we assume drawn from a uniform distribution). The idea that
the number of entrants is proportional to the number of incumbents is strongly corroborated

Y4For unto every one that hath shall be given, and he shall have abundance: but from him that hath not shall be
taken even that which he hath” (Matthew 25:29, King James Version). For more details see Dosi and Sylos Labini
(2007).
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empirically: (see e.g., Geroski (1991) and Geroski (1995). However, the evidence supports also
a rough proportionality between entry and exit: thus, in the simplest version of the model, we
assume a constant number of firms with the number of dying firms offset by a equal number of
entrants.

The productivity of entrants follows a process similar to Eq. 2 but applied to the average
productivity of the industry, whose stochastic component 6;(t) is again a random extraction
from alternative distributions (Normal, Lognormal, Poisson, Laplace and Beta)

aj(t) = (1+6;(t) ) ai(t)si(t = 1) (8)

i
Of course, here 6;(t) can get negative values. Indeed, the location of the mass of the dis-
tribution — over negative or positive shocks — captures barriers to learning by the entrant or,

conversely, the advantage of “newness”.

4.3 Timeline of events

e There are N initial incumbent firms. They have at time 0 equal productivities and equal

market shares.

e At the beginning of each period, except under Mark I Regime, firms learn according to

the process specific to each regime.
e Firms acquire or lose market share, according to the replicator.
e Firms exit the market according to the rule: s;(t) < Spmin.

e The number, the competitiveness and the size of entrants are determined and market

shares of incumbents are adjusted accordingly.

Value
Number of firms (V) 150
Initial productivity 1
Initial market share (1/N)  0.006667
Smin 0.001
A 1
¥ 1
Beta(p1, 52) (1,5)
Normal(u, o) (0.05,0.8)
Lognormal(uy,01) (=3.5,1)
Laplace(aq, ag) (0.01,0.015)
Number of time steps 200
Number of MC runs 50

Table 2: Parameters and simulation setup.
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Figure 7: Log normalized productivity distribution across regimes.

5 Model properties and simulation results

Let us consider the model properties together with the simulation results which we shall present
according to the empirical “stylised facts” the model is able to replicate. The model is parametrized
according to Table 2 and the benchmark distribution for the extraction of the micro-shocks is
Beta distribution if not otherwise specified.

5.1 Productivity distribution

The productivity distributions obtained from the three regimes are presented in Figure 7.
The normalized productivity distributions are calculated as

n;(t) = loga;(t) — log Z a;(t)si(t — 1) (9)

As already mentioned, n;(t) turns out to be rather disperse on its support with a persistency of
such asymmetries over time. It is interesting to notice how the support of the distribution (in
logs) spans between (—1,0.5) in the Baseline Regime, shrinks in the Mark I Regime (—0.5,0.2),
and expands in the Schumpeter Mark II (—1.4,0.8). If innovation is endogenous the support is
wider and even more so if it is cumulative as under the Schumpeter Mark II engine.

The autocorrelation structure of productivities is reported in Table 3. The] parameters are in

tune with empirical evidence.

Autocorrelation AR(1)

Baseline Regime 0.970
Schumpeter Mark I Regime 0.986
Schumpeter Mark II Regime  0.987

Table 3: Autocorrelation coefficients across regimes.
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5.2 Market turbulence and concentration

The dynamic of entry and exit is a key aspect of our model: in each scenario a churning market
is a major aspect of competition whereby new firms enter and others die. The dynamics are
illustrated in Table 4 which lists a series of descriptive statistics about the number of entrants,
the average age, the average productivity growth, the average size growth, the entry-exit turbu-
lence, and the market concentration.

Interestingly, and somewhat counter-intuitively, firms’ life expectation is the highest under the
non-endogenous learning (Schumpeter Mark I) regime (21 periods) and the lowest in the cu-
mulative regime (4 periods). This is a robust sign of the effects of “creative destruction” when
innovation is endogenous.

As expected, and in agreement with Table 4, the three regimes show increasing degrees of
turbulence, from Mark I to Mark II (see Figure 8). The average reported values are strikingly
close to the empirical data shown in Table 8. Finally, the market concentration, measured by
the Herfindahl-Hirschman Index® in typical simulation runs, is presented in Figure 9.

The Mark I Regime concentration is relatively low and stable over time; conversely, in the
Baseline and in the Mark II regimes, phases of high and low concentration alternate, signalling
the presence of endogenous cycles which are not related to “market power” but, rather, to the
path-dependent dynamics of innovative success.

5.3 Size distribution

Regarding firm size distribution, proxied by the market shares s;, Figure 10 shows the rank-size
plot (in logs) fitted against a Lognormal distribution. If the size distribution follows a power
law, being r; the rank of firm 4, then

sirj =C (10)

linearising we have

logr; = a+7logs; (11)

so 7 is the slope parameter: under the Zipf law (which is a restriction of the Pareto scaling ) 7
is equal to one. Recall from Section 2 above that the empirical size distributions, at relatively

PH(t)=Y,si(t) 0<H<1
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Baseline Regime Average Min Max S.E.
Number of entrants 12.14 0 15.64 2.974
(0.792)  (0.000)  (1.198) (0.479)
Average age 8.376 1 11.02 1.067
(0.286)  (0.000)  (0.383) (0.171)
Average productivity growth 0.046 0.045 0.051 0.001
(0.0005) (0.0004) (0.0008) (0.0002)
Average shares growth -0.091 -0.138 -0.001 0.019
(0.0065)  (0.000)  (0,0096) (0,0039)
Turbulence Index 0.137 0.032 0.170 0.017
(0,006)  (0.0002) (0.070) (0,01)
Herfindahl-Hirschman Index 0.175 0.007 0.229 0.052
(0,014)  (0.000) (0.0175) (0.0086)
Schumpeter Mark I Regime  Average Min Max S.E.
Number of entrants 3.799 0 13 1.334
(0.243)  (0.000)  (0.355)  (0.1629)
Average age 20.66 1 24.23 4.746
(0.239)  (0.000)  (0.353) (0.178)
Average productivity growth 0.002 0 0.372 0.026
(0.000)  (0.000)  (0.000) (0.000)
Average shares growth -0.027 -0.115 -0.013 0.012
(0.0005)  (0.000)  (0.0008) (0.0004)
Turbulence Index 0.058 0.042 0.137 0.014
(0.001)  (0.000)  (0.001)  (0.0007)
Herfindahl-Hirschman Index 0.029 0.007 0.040 0.008
(0.001)  (0.000)  (0.002) (0.001)
Schumpeter Mark II Regime Average Min Max S.E.
Number of entrants 17.16 0 22.74 4.111
(1.249)  (0.000)  (1.849) (0.750)
Average age 5.306 1 9.571 0.8396
(0.2305)  (0.000)  (0.290)  (0.1319)
Average productivity growth 0.175 0.160 0.200 0.006281
(0.0005)  (0.000)  (0.0007)  (0.002)
Average shares growth -0.137 -0.226 -0.001 0.030
(0.011)  (0.000)  (0.015) (0.007)
Turbulence Index 0.174 0.032 0.252 0.026
(0.011)  (0.0002) (0.017) (0.007)
Herfindahl-Hirschman Index 0.240 0.007 0.302 0.062
(0.014)  (0.000)  (0.002) (0.001)

Table 4: Descriptive Statistics across regimes (50 Monte Carlo runs).
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Figure 10: Log rank-size distribution across regimes.

disaggregated levels, are far from any power law. And so are generally our results, with a slope
clearly different from one. However, note that beyond some cut-off point the Lognormal is no
longer a good approximation of the size distribution. In fact, sizes appear to be rather skewed
across all the three regimes. In case of the Schumpeter Mark I, the cut-off point is higher than
in the other two cases. A bigger fraction of firms seems to be characterised by a Lognormal size
distribution with respect to the Baseline and the Mark II regimes. Again, these results seem in

line with the empirical evidence discussed in Section 2.2.

5.4 Firm growth

The growth rate of firm sizes is defined as
gi(t) =log s;(t) — log s;(t — 1) (12)

where market shares are our proxy for size. In Figure 11 the growth rate distributions across the
three regimes are presented. Notice the strong fat-tailed departure from a Normal distribution

in all the three regimes.
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Figure 11: Growth rate distribution across regimes.

In order to test for the robustness of these results, we experimented with four alternative dis-
tributions for the innovation shocks, namely Laplace, Lognormal, Normal, and Poisson. Figure
12 shows the results for the four distributions across the three regimes. It is rather striking the
departure from normality and the emergence of fat tails, independently from the shape of the
micro-shocks.
To understand how “fat” the tails are, we estimated the parameters of a symmetric Subbotin
distribution, defined by the parameters m, a and b. m is a location measure, a is the scale
parameter and b informs the fatness of the tails. The Subbotin distribution
1 1|z—p|b
s = snmransnt | |

according to the value of the parameter b, can yield [i] a Normal distribution, if b = 2, or

(13)

[ii] a Laplace distribution, if b = 1. The estimation of the Subbotin distribution parameters is
presented in Table 5. Across the three regimes, the value of the b parameter is always significantly
smaller than 2 (the normal case).

What is the source of the tent-shaped distribution of growth rates? Our intuition is that the
replicator dynamics yields a mechanism of correlation equivalent to a Polya urn mechanism.
As demonstrated by Schreiber (2001) and discussed in Pemantle (2007), the stochastic replicator
1s a generalized Polya urn scheme. As discussed in the latter, suppose that, at each time
t > 0, there is a population of firms N(¢) whose only attribute is the relative productivity
m;(t) = a;(t)/a(t), i € {1,..., N}. These firms can be represented by an urn with balls of colors
m, being m;(t) the relative “fitness” of firm ¢ and the market share s;(¢) its outcome. At each
time step t a ball (firm) of color (relative productivity) m is extracted from the urn and then
returned to the urn plus (with some probability) a new ball of the same color of color m. Being
m;(t) a measure of the fitness of firm 7 in the population, its representation s;(t) (market share)
change by an amount proportional to its fitness against the others N(¢) — 1 balls. Repeating
this mechanism allows for the growth of firm ¢ to be proportional to its own success against all
the other firms, weighted by their own representation in the population. Clearly

Asi(t,t —1) = a;(t)s;(t — 1)/2%(1&)31-(75 -1) (14)
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Baseline Regime Schumpeter Mark I Regime Schumpeter Mark II Regime

b b b
Beta shocks 1.539 1.397 1.367
(0.006) (0.003) (0.006)
Gaussian shocks 1.637 1.426 1.402
(0.005) (0.003) (0.007)
Laplace shocks 1.489 1.360 1.284
(0.007) (0.003) (0.007)
Lognormal shocks 1.467 1.329 1.327
(0.006) (0.003) (0.006)
Poisson shocks 1.327 0.900 1.231
(0.007) (0.001) (0.007)

Table 5: Estimation of the b parameters across regimes under different innovation shocks

The finite number of opportunities in the Bottazzi and Secchi (2006a) model reads, in our case,
as the finite dimension of the market, given that it lies in the unit simplex: ). s;(t) = 1,Vt > 0.
We explored such intuition throughout our simulations under the three alternative regimes.
Indeed, the model is able to robustly reproduce the fat-tailed distribution of growth rates under
the three learning regimes, and, in the Schumpeter Mark II case, a strict Laplace distribution
emerges. In our replicator process, the correlation at the origin of the fat tails occurs both in

“space” (that is, within each period) as in Bottazzi and Secchi (2006a) and over time.

5.5 Scaling growth-variance relationship

Figure 13 shows the negative correlation between the variance of growth rate and size, together
with an OLS fit for the data

o(gi) = o+ Psi (15)

The slope coefficient 3 is presented in Table 6 (here the independent variable is market share
rather than sheer size, but the two, in finite markets, easily map). Across the three regimes,
the negative linear correlation is always present. What is the source of this persistent rela-
tionship? One interpretation of variance scaling has been extensively discussed in Bottazzi and
Secchi (2006b), as already mentioned above. In our model there is no possibility of a process
of differentiation, but nonetheless the negative scaling holds. Why? Recalling equation 5, it is
straightforward how the size growth rate depends on the firm relative productivity m; = a;/a.
The higher the size (share) of firm i, other things being equal, the nearer the firm is to the
market weighted average, since it disproportionally contributes the average itself. It is as if size
as such “bends” the selection landscape. In order to visualize this, think of the extreme of a
monopolist: in this case, its own competitiveness is also the market average and, of course, the
replicator dynamics impact upon growth variance is nil. At the opposite extreme, smaller firms
might be by far more or less competitive than the mean but, because of their size, they have
a negligible effect upon the “selection” process. Hence, their growth rates are more prone to
fluctuate. This induce the emergence of a core-periphery structure where bigger firms tend to
have a lower variation in their growth rate while the smaller ones fuel the turbulence of market
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Figure 12: Firm growth rates under different distributions of innovation shocks.
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Scaling variance-growth 15}

Baseline Regime -0.2562
(0.006)
Schumpeter Mark I Regime  -0.190
(0.01)
Schumpeter Mark II Regime -0.4121
(0.008)

Table 6: Estimation of the slope coefficient of scaling variance-growth correlation across regimes.

shares. Needless to say, this interpretation of the variance scaling relation does not contradict
the diversification hypothesis. It just adds to it a scale dependence of the very yardstick of

competitive selection.

5.6 Cumulativeness and selection

We have argued above that the very competition process robustly induces fat-tailed distributed
growth rates, even in absence of learning. But of course, cumulative learning is also plausibly
enhancing such fat-tailedness, and so does the increase in the “fierceness” of competition. Let us
explore this conjecture in the case of the Schumpeter Mark II regime. To do this, we study the
effects on the distribution of firms growth rate of the « parameter, which captures the degree of
cumulativeness in the learning process, and the A parameter, which embodies the selectivity of
the market mechanism.

We start by analysing the effect of cumulativeness. As expected, the increase in the v parameter,
as shown in Figure 14, induces a more tent-shaped distribution of the growth rates, up to the
point of becoming “super Laplacian”, with the estimate of b — the tail estimate of the distribu-
tion — falling below one. Notice that the estimates under such regime are those which look closer
to the empirical ones, circumstantial evidence that Matthews effects are quite widespread. It is
worth underlining that the causality here goes from the cumulative learning process to the selec-
tion mechanism and, then, to the dynamics of firm growth, in absence of any contemporaneous
correlation among the productivity shocks themselves.

Regarding the effect of parameter A, Figure 15 illustrates the asymmetric effects of different de-
grees of market selectiveness. On the one side, A influences the support of the tail of surviving,
negative-growth firms and, on the other, the growth of successful ones, that is, the conditions
of the coexistence of both high growth firms: the “gazzellas” at the upper-right tail and the
“laggards” at the lower-left tail. This hints that the selection parameter is positively correlated
to the asymmetry of the distribution.

6 Conclusions

There is an ensemble of “stylised facts” on industrial dynamics which ubiquitously emerges across
industries, levels of aggregation, times and countries. They include: wide and persistent asym-
metries in degrees of relative efficiency, however measured; skewed size distributions; negative
scaling relations between firm sizes and variance in firm growth rates; and, last but not least,
fat-tailed distributions of growth rates themselves.
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Figure 14: Schumpeter Mark IT Regime. Firm growth rate distributions under different degrees
of cumulativeness.

Schumpeter Mark 11

Cumulativeness b
vy=1.5 1.293
(0.008)
v=2 1.176
(0.011)
v=3 0.811
(0.014)
Schumpeter Mark II
Selection b
A=0.2 1.423
(0.01)
A=05 1.355
(0.007)
A=15 1.419
(0.007)
A=2 1.458
(0.004)

Table 7: The effect of cumulativeness and selection pressure.
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Figure 15: Firm growth rates under different selection pressure.

We show that all these regularities can be accounted for by a very simple agent-based evolution-
ary model whereby the dynamics is driven by some learning process by incumbents and entrants
(or at least by entrants alone) together with some process of competitive selection. They corre-
late the growth (and survival) fates across firms, even in absence of correlations in the original
“technological shocks” themselves. We also show that this interpretation is robust to different
learning and competition regimes, including the extreme archetypes wherein incumbents do not

learn at all or, other, with incumbents building success upon success.
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