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Abstract

Simulated models suffer intrinsically from validation and comparison problems. The choice

of a suitable indicator quantifying the distance between the model and the data is pivotal

to model selection. However, how to validate and discriminate between alternative models

is still an open problem calling for further investigation, especially in light of the increasing

use of simulations in social sciences. In this paper, we present an information theoretic cri-

terion to measure how close models’ synthetic output replicates the properties of observable

time series without the need to resort to any likelihood function or to impose stationarity

requirements. The indicator is sufficiently general to be applied to any kind of model able

to simulate or predict time series data, from simple univariate models such as Auto Re-

gressive Moving Average (ARMA) and Markov processes to more complex objects including

agent-based or dynamic stochastic general equilibrium models. More specifically, we use a

simple function of the L-divergence computed at different block lengths in order to select

the model that is better able to reproduce the distributions of time changes in the data. To

evaluate the L-divergence, probabilities are estimated across frequencies including a correc-

tion for the systematic bias. Finally, using a known data generating process, we show how

this indicator can be used to validate and discriminate between different models providing

a precise measure of the distance between each of them and the data.
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1 Introduction

In this paper we introduce a new information-theoretic criterion, called Generalized Subtracted

L-divergence (GSL-div), to measure the distance between the dynamics of time series produced

by a model and the empirically observable counterpart. The GSL-div can be used to quantita-

tively establish the empirical validity of a model and to discriminate between sets of competing

ones. Various properties well suited to the scope of model validation are introduced and dis-

cussed. Unlike many other indicators, the GSL-div relies only on the synthetic data generated

by simulations and does not impose any additional assumptions on the underlying stochastic

processes. Its flexibility allows applications to every model involving production of time series,

admitting also a direct comparison between classes (e.g. macro Agent Based Models, Dynami-

cal Stochastic General Equilibrium models and System Dynamics approaches). Interestingly, it

does not require knowledge of the probabilistic structure (or likelihood) of the series it uses. This

feature makes the GSL-div especially well suited for validating Agent Based Models (ABM),

where the statistical properties of aggregate variables are a priori unknown.

A common protocol for empirical validation is still an open problem for simulation studies

(see [63, 22] and more recently [44]). Finding tools that are appropriate to the scope is crucial

both for the scientific debate and for policy analysis; the academia needs to develop theories

whose implications fit with empirical evidences, and policy makers need information coming from

reliable models. Assessing the fit of different models with empirical data is exactly what we

are doing in this paper. Manson ([59]) distinguishes between output validation and structural

validation. The latter asks how well the simulation model represents the (prior) conceptual

model of the real-world system, while the former asks how successfully the simulations’ output

exhibits the historical behaviours of the real-world target system. Output validation can be

directly related to what Leombruni et al. ([53]) define as empirical validity of a model, i.e.

validity of the empirically occurring true value relative to its indicator. Leombruni et. al

introduce other four validity concepts that simulation studies must consider: theory (the validity

of the theory relative to the simuland), model (the validity of the model relative to the theory),

program (the validity of the simulating program relative to the model), operational (the validity

of the theoretical concept to its indicator or measurement). Any-time simulations exhibit lacks

with respect to one or more of these validities, empirical validity is in turn affected and thereby

reduced. Following [52], it is useful to think of two parallel unfolding: the evolution of the

system (an economy, a market or whatever) and the evolution of the model of the system.

If the model is properly specified and calibrated, the simulation should mirror the historical

evolution of the real-world system with respect to the variables of interest.

Empirical validation is crucial for all modelling efforts that attempts at providing support

to policy decisions, independently of their theoretical background1. In macroeconomics, for ex-

1With reference to the ABM community see the special issue on agent based models for economic policy edited
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ample, [28, 11, 49] provide details about how to estimate and validate DSGEs models. However,

their approach cannot be extended to different settings where agents’ heterogeneity or non-linear

relationships are part of the picture, which is the typical case in ABMs and Systems Dynamics

respectively. The community will certainly benefit from the construction of common grounds

where different models can be compared in terms of their empirical validity (see [48] and [34]).

Moreover, ABMs are sometimes considered as candidates to substitute or complement DSGEs

as the standard tool for macroeconomic analysis ([24]). One of the major critiques to these

approaches is a substantial lack of a sound empirical grounding ([26]). With respect to this is-

sue, one of the problems with ABM is that the statistical properties of policy-relevant variables

(e.g. inflation, GDP, employment, rate of adoption of a new technology) are a priori unknown,

even to the modeller. The reason is that they emerge indirectly from the repeated interactions

among ecologies of heterogeneous, boundedly rational and adapting agents. These interactions

give rise to the emergence of properties that cannot be simply deduced by aggregating those of

micro variables ([5],[61], [33], [27]). Therefore, the synthetic output generated by the simulation

constitutes the only available source of information about the aggregate behaviour of the model.

Our approach is tailored on this constriction: simulated and observed data are the only input

we require.

We tackle directly the fourth issue raised in [63], i.e. validating agent based models using

historical data. However, since the GSL-div can be applied to any kind of model producing

time series, it also provides a framework to compare models’ relative performances: going be-

yond validation we offer a tool for model selection. Therefore, we integrate both the literature

addressing empirical validity of simulation models, and ABMs in particular, (see [22] and ref-

erences therein, [45], [10], [12], [35], [34]2 and that on model selection3 ([1] and subsequent

developments, [62, 46, 14]). In particular, our criterion allows to quantify the distance between

the true probabilistic dynamics of models’ output and the data even when the former is un-

known a priori. This result is obtained via the simulation of an ensemble of independent runs

and the analytical correction of a systematic bias arising in the estimation process. In particu-

lar, we define and compute an information theoretic criterion based on a simple function of the

L-divergence ([43]). Validation is achieved capturing the ability of a given model to reproduce

the distributions of time changes (that is, changes in the process’ values from time to time)

in the real-world observed process, without the need to resort to any likelihood function or to

by Fagiolo and Dawid ([16]).
2See also the website maintained by Leigh Tesfatsion (http://www2.econ.iastate.edu/tesfatsi/empvalid.

htm for additional interesting material about empirical validation. More specifically, the majority of models in the
literature has undertaken either a simple output validation process based on stylized facts replication ([19, 17, 18])
or an input validation process based on parameters’ estimation ([29, 3, 4, 2, 9, 10]). Our criterion both provide
a more detailed measure for output validation and can be adapted as a distance to be minimized in the context
input validation, as briefly outlined below.

3The literature on model selection is incredibly vast. Here we refer to the case of establishing which model
produces time series that are closest to that it is intended to model.
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impose any stationarity requirements.

In a similar context, [34] studies the estimation of ergodic ABM by simulated minimum

distance (SMD). It is relevant to remark that in this paper we refer to models having already

undertaken a calibration procedure: parameters’ values have been already assigned an estimate.

However, our approach is complementary. First, it can be used to test how close models esti-

mated via SMD reproduce the behaviour of the data; secondly, it offers a nice object to compare

data and simulations in the time dimension. In many applications, SMD minimizes a quadratic

form specifying the distance between sample moments and predicted moments from simulations

of a given model ([41], [20], [36] and more recently [35] where the procedure is applied to a

simple ABM). When the distance is taken between coefficients of meta-parameters of a given

meta-model we get indirect inference ([30]). Relevant shortcomings of these techniques are the

usual requirement to deal with stationary and ergodic series4 and, to the purposes of validation,

that moments are poor representations of time series’ behaviour. Our approach allows to par-

tially overcome these limitations and offers a meaningful object to be used in SMD estimation

in the place of standard longitudinal moments. In addition, the small sample problem identified

in [34] can be solved or attenuated. Moreover, our exercise is similar to some of those carried

out in [10]: model’s output is directly compared with empirical data. What we add is something

that seems missing in this literature: a precise quantification of the distance between the model

and data with respect to their dynamics in the time domain. In this respect, our work builds on

[46] and extend it by capturing the dynamical nature of time series models. With an underlying

purpose similar to ours, [6] has recently developed an interesting generalization of the Akaike

Information Criterion ([1]) that can be used for model selection. It assumes each model to

produce an nth-order Markov process and computes the intrinsic complexity of each series on

the basis on the conditional probabilistic structure of the output, which has been previously

converted into binary strings. Our approach, which builds on frequencies, is less computational

intense and give more emphasis to similarities in the dynamical behaviour of the data, rather

then their complexity.

For illustrative purposes, we use the GSL-div to compare univariate time series mainly

produced by the simulation of different ARMA processes with very similar parametric represen-

tations. The choice of such stochastic processes is instrumental: knowing everything about their

stochastic behaviour we are able to test the ability of the GSL-div in distinguishing processes

we are sure to be different, but showing dynamics that are difficult (or even impossible) to be

discerned by inspection. We obtain that the GSL-div is very precise in discerning the dynamics

of such models and we show its robustness with respect to the only two free parameters of our

approach. As a remark, even if the we use univariate settings, the approach can be extended

straightforwardly to multivariate data structures.

4this is a strong limitation in ABM where for multiple regimes and tipping points might generate, by definition,
non-ergodic series.
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The paper is organized as follows. Section 2 introduces and defines the Generalized Sub-

tracted L-divergence between models and data; section 3 provides a set of properties charac-

terizing the GSL-div and emphasizes their role to the purposes of model validation. Section

4 presents a simple application to ad-hoc chosen time series. Section 5 provides the main ev-

idences of robustness for this new criterion, showing its ability to distinguish between very

similar stochastic processes. Finally, section 6 concludes the paper.

2 A novel approach to model validation: the GSL-div

In this section we present a novel approach to measure the distance between time series. It con-

sists on the development of a new information theoretic criterion, called Generalized Subtracted

L-divergence. This criterion is used to provide an answer to the problems of model selection

and model validation outlined in the previous section.

In our context, a model is broadly defined as a representations of a system which is able to

produce some synthetic output tracking the evolution of the system. For example, both macro

ABMs and DSGEs are models of the economic system or parts of it5. In addition, we define

real world data as the empirically observable elements of the system. Establishing the empirical

validity of a model concerns the evaluation of the relationship of similarity between models’

output and the real world data. To be concrete, consider for example Figure 1. It shows a plot

of the rate of growth of quarterly GDP during the period 2001-2011 for the US. Suppose we

have a properly calibrated model trying to explain its behaviour. How can one claim that the

output of the model is empirically valid? As our argument goes, it has to show a reasonable

degree of similarity with the empirically observable counterpart. In particular, we want the

model to reproduce similar trends (if any), similar patterns of concave and convex behaviour

(with respect to time), similar persistence over some interval (for instance, from Figure 1 we see

that the rate of growth of the US GDP falls between 0 and 4% most of the times) and similar

sequences of time to time changes in the series.

Conversely, there are features of the real world series we do not strictly require models to

capture. This is due both to the fact that models are, by definition, only stylized representations

of a system, and to the intrinsic complexity of establishing an exact mapping between periods in

a simulation and time in the observed world. The last point is touched in [63] with reference to

the difficulty of selecting the starting and ending point of a simulation run. We argue that this

problem is even deeper and affects each period of a simulation. In particular, if the series display

multiple regimes, it might not only be that mis-specifying the initial point of the simulation we

compare different regimes even though the model perfectly reflects the data, but it could happen

that the length of regimes differs from real data and simulations. This introduces a sequence

5For a comprehensive treatment of similarities and differences between macro ABM and DSGE models see
[24]
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Figure 1: US quarterly GDP growth rate. Source: U.S. Bureau of Economic Analysis.

of mis-matches between contemporaneous time changes in the two series (simulated and real)

even though the qualitative nature of regimes and their order of appearance is the same. The

question concerns how relevant this issue could be for empirical validity. Our answer is that

it depends. Having an exact time correspondence should be rewarded, but validating models

on this ground (for example, using some quadratic error measure) could lead to misleading

conclusions.

For instance, we can consider the Great Moderation and the Great Recession as two different

regimes for the US’ quarterly GDP growth rate. There is little concern in saying that the Great

Moderation started around mid-80s ([60]) and concluded with the last quarter of 2007: this

implies a total length of around 88 quarters. Assume we have two models (A and B) and

both are calibrated with quarterly data. Model A simulates a time span where the economy

experiences a reduction in volatilities, but it takes around 100 periods to show a pattern similar

to the Great Recession. Each time we compare a model’s run with the real series we find that

the starting point of the Great Recession is not matched. Assume instead that B identifies the

regime shift perfectly but thereafter exhibit an expansionary regime. If the latter is is smooth

enough and the two series are compared using some distance function between contemporaneous

observations of the two series, it might result that model A deviates from real data more than

model B does, regardless of the fact that the latter never produces the Great Recession regime.

In addition, it is worth to note that our criterion is designed to capture similarities in the

behaviour of the time series, and not in their levels. This reflects the opinion that is not

relevant for a simulation to mirror the same values of the real data but to display the same

shape in terms of trends, variabilities and trajectories. Furthermore, given two series sharing

the same dynamics but different levels, it is sufficient to change initial conditions to notice they

are in effect identical. A simple addition or subtraction of a constant to each variable in one of

the two processes could serve the scope. Finally, levels largely depend on the unit of measure

used by different models, while series’ behaviour does not.
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To sum up in few words, we argue that empirical validity should be assessed on the ground

of similarity between the dynamic behaviour of a system and that of the model of the system.

What matters are patterns, not absolute errors.

2.1 The Theoretical Background

As well explained in [46], using the glasses of information theory rather than statistics, the

observed data contain information, and the (descriptive) models we develop (from our theoretical

understanding of the underlying processes generating the observed data) can be seen of as

attempts to reproduce the highest possible fraction of these information, in the most compact

way. When several models referring to the same phenomenon are available, empirical validation

should be able to point out the “best” model, that is the model whose output lose the least

amount of information with respect to the real-world data.

Distance or divergence measures are widely used in a number of theoretical and applied

statistical inference and data processing problems, including estimation, detection, compression

and model selection ([8]). Most of them rely largely on the concept of Shannon’s entropy ([58]),

which expresses the amount of uncertainty associated with a random variable. Among these

measures, one of the best known is the Kullback-Leibner divergenge (KL-div) between two

distributions, D(p||q), or relative entropy ([40]). It is a measure of the inefficiency of assuming

that the distribution is q when the true one is p. The following discussion will be limited to

discrete probability distributions, but results can be generalized to probability density functions.

Consider a discrete random variable with support indicated by S and probability mass function

p(s), s ∈ S. If q(s) is another probability mass function defined on the same support S, the

KL-div is defined as

DKL(p||q) =
∑

s∈S

p(s) log

(

p(s)

q(s)

)

, (1)

where the logarithm is, usually, in base 2. Throughout the paper the following conventions will

be used: 0 log(0/0) = 0 and, on the basis of continuity arguments, 0 log(0/q) = 0, independently

of the logarithm’s base. It is immediate to see that if there exist any symbol s ∈ S such that

p(s) > 0 and q(s) = 0 then, DKL(p||q) is undefined. This means that distribution p has to

be absolutely continuous with respect to q for the KL-div to be defined [39]. In addition, the

DKL(p||q) is non-negative, additive but not symmetric. In order to overcome these problems

Lin ([41]) defined a new symmetric measure, called L-divergenge, shortly L-div :

DL(p||q) = DKL(p||m) +DKL(q||m), (2)

where m = (p + q)/2 is the mean probability mass function. As the names suggest the L-div

is the basic building block we will use to construct the GSL-div. It is immediate to see that
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DL(p||q) vanishes only if p = q and that the L-divergence is bounded above by two. This is

more evident when expressing the L-divergence in terms of the Shannon entropy, that is

DL(p||q) = 2H

(

p+ q

2

)

−H(p)−H(q), (3)

i.e. the difference between twice the mean distribution and the sum of the entropies of p and

q. The generalization of the L-div is the Jensen-Shannon divergence (see [43]), defined as

DivJS(p,q) = H(π1p+ π2q)− π1H(p)− π2H(q), (4)

where the weights π1 and π2 must satisfy π1, π2 ≥ 0 and π1 + π2 = 1. It is straightforward

that DL(p||q) = 2DivJS(p,q) for π1 = π2 = 1/2. It is to be noticed that the KL-div, and

consequently the L-div, does not satisfy the triangle inequality, and hence cannot be considered

a proper metric6. With reference to the use of these measures as tools for model validation and

selection Marks ([46]) outlines their inadequacy due to the previous problem. However, if

models’ data-distributions (say q) are always compared directly with the real data-distribution

(say p), and not among themselves, model selection does not need a metric satisfying triangle

inequality. Moreover, Endres et al. ([21]) found that the square root of the L-div is a metric

and they called it the Jensen-Shannon distance.

We use the L-div as a measure that captures the distance between the distributions of time-

changes in the real-world process and those generated by the synthetic output of simulated,

competing models. Time-windows of different lengths are taken into consideration for the

generation of the state space, which is represented by the set of values the series might take at

each instant of time. The L-div is estimated for all available lengths of the time-window and

results are finally aggregated into a single information criterion, the Generalized Subtracted L-

divergence (shortly GSL-div). Our approach can be seen as an extension of the work provided in

[15], where the Jensen-Shannon divergence is used to measure the distance between distributions

of single observations at different aggregation scales, and [42], where time series are symbolized

in a similar way.

2.2 The GSL-divergence

Before introducing the functional form of the GSL-div it is necessary to describe the preliminary

procedures time series undergo before being analysed. In order to be manageable for similar-

ity assessment, they are symbolized and sub-divided in successive blocks. Hence, frequency

distributions over alphabets of symbols are estimated and used to fed the GSL-div.

The procedure starts with the symbolization of the series, which is carried out to constrain

series to take only a finite set of values. In particular, consider a time series {x(t)}Tt=1, where each

6A metric is a distance function which must satisfy non-negativity, symmetry, coincidence and triangle in-
equality (see Chapter 2 in [55]).
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x(t) is a real number. To symbolize it, we firstly take the real interval [xmin;xmax] and partition

it in b ∈ N0 subintervals, each of equal length. These intervals are numbered increasingly from

1 to b, with 1 assigned to [xmin;xmin+
(xmax−xmin)

b
). The parameter b controls for the precision

of the symbolization: for b = 1 the symbolized series takes one and only one value (namely

1) while for b → ∞ we are back to the (scaled) real-valued process. The symbolization is

simple and works as follows: each {x(t)}Tt=1 is mapped into the natural number corresponding

to the partition interval where it falls. For example, consider the following realization of the

stochastic process x(t) with t = 3: {0; 0.65; 1}. Choosing b = 2, the symbolized series will be

xs(t) = {1, 2, 2}, while choosing b = 10 the symbolized series becomes xs(t) = {1, 7, 10}. It is

immediate to see that increasing b the information loss about the behaviour of the stochastic

process due to the symbolization becomes smaller and smaller. However, as it typically happens,

increasing the precision of the symbolization has a cost: higher b translates also in higher size of

the alphabet, that is the total number of words that could be created using symbols {1, ..., b}.

The size of the alphabet corresponds to the cardinality of the state space, and increasing it might

require larger time series to conveniently estimate frequency distributions over the alphabet.

However, as will be shown, the GSL-div does not suffer from the use of low values of b. High

precisions of the symbolization procedure can be used with no worries when large amounts

of data are available, for example in high frequency models of financial markets (see, among

others, these recent contributions [14] and [23], where our methodology is directly applicable to

the time series of stock prices). A more detailed discussion about the partitioning of the state

space when dealing with information theoretic functional is provided in [50]. To the purposes

of our analysis we recall that it is important to use symbolized time series obtained applying

the same precision (b).

Once the time series are properly symbolized a second procedure applies. They are sub-

divided in blocks of equal length l, each block corresponding to a symbol of the available

alphabet. This operation is recursive for l = 1, ..., L, where L is the maximum block’s length

(time-window) considered. The alphabet is composed by all possible combinations of the first

b natural numbers taken l at the time.

Definition 2.1 (Alphabet)

Let b ∈ N0 be the precision of the symbolization process and L ∈ N0 the maximum block length.

Then, for each l < L, we define the corresponding alphabet as

Sl,b =

(

Ab

l

)

(5)

where Ab = {1, 2, ..., b}. That is, Sl,b is the set of all the l-combinations of Ab.

The cardinality of the alphabet is defined as

al,b = 2Si = bl, ∀l = 1, ..., L (6)
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and corresponds to the number of different symbols the series’ blocks of length l might be

associated to once b is chosen. It is relevant to see that, once l is fixed, blocks might overlap.

For instance, consider xs(t) = {1, 2, 2}. For l = 2, it is possible to identify two blocks: {1, 2} and

{2, 2}, which correspond to symbols (12) and (22) respectively. Since there are T observations for

each series, T−l+1 blocks will be obtained for each value of l. L represents the maximum length

of the windows which are used to compare the behaviour of the real data with the synthetic

ones. It has to be chosen considering both (i) the nature of the phenomenon of interest and

(ii) the size of the available real-world time series which can be used to validate the models.

The first criterion reflects the time-horizon one considers when analysing a given phenomenon.

For example, when the focus is on business cycles, data will be typically quarterly, series will

cover around 200 periods and time-window of interests will lasts around eight or twelve periods;

conversely, in case one considers economic growth in the long run, data will be annual and the

window considerably enlarged. The second criterion puts a constraint on the comparability of

real and simulated data: when a real-world time series of length T is the only available source

of information about the phenomenon under study, it makes a non-sense to compare it with a

double-length simulated series. On the other hand it could be perfectly reasonable to take an

ensemble of replicated series each of length T , both to wash away across-simulation variability

and to solve the small sample problem ([38]).

Now, frequency of symbols in each series are estimated. Let xs(t) and ys(t) be two symbol-

ized time series. Sb,l is the alphabet and f, f′ are vectors collecting the occurrence frequencies

of all available symbols. Even though f and f′ are very rough estimates of the probability the

two original processes (xs(t) and ys(t)) assign to symbols, particularly when processes are not

stationary and ergodic, it will be showed that taking an ensemble of independent runs of the

same processes7, frequency vectors converges to a particular probability distribution, which is

well suited to compare behaviours of simulated data.

Once frequency vectors are estimated, obtaining the GSL-div is straightforward. For each

value of l, a subtracted version of the L-div is estimated from the data. It provides a measure

of how close the behaviour of synthetic data replicates the real one when the series are studied

along windows of length l. The GSL-div aggregates subtracted L-div values using weights

increasing in l. In general, the choice of weights is up to the modeller. In the next subsection

we introduce three different set of weights and discuss in more details the rationale of assigning

greater importance to GSL-divs obtained comparing longer time-windows. With these premises,

the GSL-div between two distributions can be defined as follows.

Definition 2.2 (GSL-div between distributions)

Assume that b and L have been fixed. Let xs(t) and ys(t) be two symbolized time series exhibiting

respectively frequencies f and f′ over the alphabet Sl. We define the Generalized Subtracted L-

7This is possible since we are using simulated models.
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divergence between the two distributions as

DGSL(f ||f
′) =

L
∑

i=1

wi



−2
∑

s∈Si

mi(s) logal mi(s) +
∑

s∈Si

f ′

i(s) logal f
′

i(s)





=

L
∑

i=1

wi

(

2HSi(mi)−HSi(f′i)
)

, (7)

where the symbol HSi(·) indicates the Shannon entropy of a distribution over the state space Si.

On the right hand side of the first line of (7) the big square brackets contain the subtracted

L-divergence computed at different block lengths l. In particular we take the L-div ([43]) and

subtract the entropy for the frequency vector corresponding to xs(t). This can be justified in

two ways. On the one hand it is due to the fact that xs(t) is always taken to be the real-world

time series and it can be observed only once. This means it is not possible to replicate this

series and create an ensemble, as it will be done for the time series produced by models. As

a consequence, it cannot be corrected for the systematic bias stemming from the fact that its

entropy is computed using an estimator (the frequency over the state space) and not the true

probabilistic structure (see [7] and [38]). On the other hand, being the GSL-div always applied

to real data against models’ output, when one compares the distance between simulated output

from different models and the real counterpart, the entropy of the latter is always washed away.

The logarithm is always in base al with i = 1, ..., L, which corresponds to the cardinality of

the alphabet available at length l = i. It is worth recalling that, in equation (7), mi indicates

the mean distribution between fi and f′i:

mi(s) =
fi(s) + f ′

i(s)

2
, ∀ s ∈ Sl (8)

where fi(s) is the frequency such that symbol s appears in the first series, xs(t), while f ′

i is the

counterpart for the second series, ys(t).

2.3 Ensembles of Runs, GSL-div and Probabilities

Previous section discussed the GSL-div between distributions obtained from two series. Now,

we extend it to accomplish our main task: assess the similarity in the dynamics expressed by

a model (and not a single run) and that of real data. In principle one might want to estimate

the distance between the data and her own model relying on the probabilistic structure of the

latter. For example, using the GSL-div, one would like to fed it with the true probability that

the model assign to each sequence of symbols rather than its frequency. However, in many cases

this is difficult or even not possible. Using micro-founded models like ABM, for instance, the

statistical structure of the aggregate variables is not known in advance and emerge from the
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interactions of an ecology of heterogeneous agents ([5, 61]). The only information about the

stochastic processes underlying the aggregate behaviour of these models is available through the

synthetic series they produce. Along this argument, [33] agues that investigating the properties

of these processes is essential in order to adequately understand both the model and the real

system it is intended to represent8. Moreover, it underlines that quantitative analysis of the

artificial data helps to acquire such knowledge.

In this section we show that averaging the GSL-div over an ensemble of independent runs of

the same calibrated model and correcting for a systematic bias stemming from Jensen inequality,

we are able to infer the distance between the distribution of time changes observed in the data

and the true distribution generated by the probabilistic structure of the model, which is unknown

a priori. To do this we introduce a specific probability function. Its main feature is that it

avoids the problem of exact time correspondence between the simulation and the data: these

probabilities are called time-average probabilities. Let M be the set of all models that simulate

the (real valued) time series x(t).

Definition 2.3 (Time-average probability) Consider a model µ ∈ M and the symbolized time

series {xst}
T
t=1 taking values in the alphabet Sl,b. Assume that according to model µ the uncon-

ditional probability of each symbol s ∈ Sl is allowed to vary over time: pµ(x
s
t = s | t = 1) 6=

pµ(x
s
t = s | t = 2) 6= ... 6= pµ(x

s
t = s | t = T ). The time-average probability assigned by µ to each

s ∈ Sl is defined as

pµ(s) =
1

T

T
∑

t=1

pµ(x
s
t = s). (9)

Remark 1 Let x(t) be the output of model µ and assume it is (strongly) stationary, then

pµ(s) = p(xs = s).

It is easy to see that remark 1 follows immediately from the definition of (strong) stationarity.

Time-average probabilities are particularly well suited for our purposes. They express the

average probability of observing a given symbol in the time interval [1;T ]. This implies that

comparing time-average probabilities with the distribution of symbols observed in real data, by

means of the GSL-div, we are measuring the similarity of the behaviours predicted by the model

and observed in the data, without taking into account whether they are synchronous or not.

Indeed, this is exactly what we would request to assess the empirical validity of a set models.

8In particular [33] focuses on the analysis of stationarity and ergodicity of simulated data and offers an
algorithm to test these properties.
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Now let us introduce a proposition showing that frequencies of symbols observed in a time

series are good estimates of time average probabilities of a model µ when a sufficiently large

ensemble is considered. Let fµ(s) be the frequency of symbol s observed in a given run of µ.

Proposition 2.4 Consider an ensemble of R independent runs of µ, then 1
R

∑

r fµ,r(s) is an

unbiased and consistent estimator of pµ(s) for all s ∈ Sl,b.

Proof of proposition (2.4) can be found in Appendix A.

Despite our estimator is a reasonable one, if we were to use it to compute the GSL-div we would

underestimate the distance between model µ and the data. This is due to the systematic bias

in the computation of information theoretic quantities that stems from Jensen inequality (see

next subsection for a complete discussion). As showed in [54], this bias is relatively large when

time series are short, which might well be the case in many practical applications9. However,

thanks to the possibility of correcting for the bias, we can obtain a nice estimate of the GSL-div

between the unknown probabilistic structure of the model and the distribution of observed time

changes. In particular, let x(t) be the real world time series and p(s) be frequency of symbol s

observed in x(t). Moreover, consider an ensemble of independent runs of size R and let f(s)r

be the frequency of s in the rth run. Finally assume that each series have been symbolized with

equal precision b.

Proposition 2.5 The GSL-div between pµ and p(s) is given by

GSL(p(s) || pµ(s)) =
L
∑

i=1

wiE



−2
∑

s∈Si

mi(s) logai mi(s) +
∑

s∈Si

f(s) logai f(s)





+
L
∑

i=1

wi

(

Bm
i − Cm

4Ti
−

B
pµ
i − Cpµ

2Ti

)

+O(T−2). (10)

where E(·) is the expectation over the ensemble, wi are arbitrary positive weights such that
∑

iwi = 1, Bj is the cardinality of the support of j = {m, pµ} and Bj ≥ Cj ≥ 1 .

The proof of proposition (2.5) follows straightforwardly from what is contained in next

subsection and Appendix B. Some attention is deserved by the term Cj ; in Appendix B. a

direct computation and a more detailed discussion is offered; here we recall that for practical

applications we set Cj = 1 (see also next subsection). Proposition (2.5) constitutes one of the

main results of the paper: it shows that simulating an ensemble of independent runs of model

µ and correcting for the systematic bias up to the second order, it is possible to obtain the

9In general, in economics or econometric studies it is difficult to deal with series lasting more than 500 periods,
which is the threshold below which [54] claims biases are not negligible. For instance, think about macroeconomic
issues or technology diffusion problems.
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GSL-div between the unknown true distribution of time changes produced by a model and that

observed in the real world series.

There is also an additional reason that makes this approach particularly well suited for

validation. In particular, the use of a sufficiently large ensemble of runs to validate each model

allow to capture the overall degree of similarity between data and the model, washing away

run-specific effects. This is true in particular dealing with agent based and complex systems

approaches: they deal with chaotic dynamics, abrupt changes and tipping points. The system

they model is often out of equilibrium and governed by stochastic shocks and feedbacks loops.

The consequence is that one run of the model might be completely different from the others10.

Therefore, to adequately explore its behaviour, a relatively large number of runs have to be

considered and, when it comes to validate the model 11, different runs should ideally exhibit

relatively similar dynamics.

2.3.1 The systematic bias and its correction

When an information theoretic function is computed without knowing the exact probability

of each symbol, a systematic error might arise. In particular this the case when the true

probabilistic structure of a process has to be estimated from a finite sequence of observations

(see [7, 38, 31, 32, 57]). Even knowing the true distribution p of a time series x(t) over some

state space S and knowing it is strongly stationary, when one computes any of the KL-div,

JS-div, L-div or GSL-div between p and f estimated from {x(t)}Tt=1 with T < ∞, the result

would be larger than zero. Obviously, the bias is also present when computing the distance

between two frequency vectors that are estimated from two realizations of the same stochastic

process.

The concept of systematic bias for the numerical values of information theoretic functional is

well known in the literature and follows directly from Jensen inequality (see [13]). In particular,

if g is a concave function, the bias is identified with the expectation value E[g(f)] being lower

than g(p), where f is an estimator of the true probability distribution p. Applying this result

to the Shannon entropy one obtains

H(p) = H(E(f)) ≥ E[H(f)], (11)

where the expectation is defined over an ensemble of independent finite-length sequences gen-

erated by the probability distribution p.

Following [54] it can be shown that the expected value of the observed entropy is systematically

10See the discussion in section 3.3 of [51].
11After having conveniently calibrated and/or estimated it.
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biased downwards from the true entropy and that a correction term can be found:

E[H(f)] = H(p)−
B − 1

2T
+O(T−2), (12)

where T is the length of each time series and B is the number of states s ∈ S such that p(s) > 0.

This result was originally obtained by Basharin ([7]) and Herzel ([38]) who also found also that,

up to the first order O(T−1), the bias is independent of the actual distribution p. However, as

showed in appendix B, this result does not hold when probabilities are allowed to vary over time

and we are interested in their average: in this case the correction term will be lower than with

time invariant processes. The term O(T−2) contains unknown probabilities p and cannot be

estimated in general (see [31, 32, 54]). It is to be noticed that the estimation of B is, in general,

non-trivial [50]. In [32, 54, 15] the number of states in the support of p are approximated by

the number of states occurring with non-zero frequency. However this approach could be totally

misleading, in particular if the series are non-stationary. [64] shows how to compute any function

of the true probability distribution starting with a limited number of samples relying on Bayes

rule. In our case the problem could be solved more easily: as shown by proposition 2.4, we are

able to obtain nice estimates of the underlying time average probabilities; therefore, we can use

the cardinality of the support of our estimates as a reasonable value for B. A more detailed

discussion and the analytical computation of the correction term is contained in Appendix B12.

In what remains we discuss aggregation weights, some interesting property of the GSL-div and

provide some examples of its ability to detect similarities in time series dynamics.

2.4 Aggregation weights

As introduced above, each of the subtracted L-divergences entering the GSL-div is assigned an

increasing weight. This reflects the grater importance assigned to the ability of the simulated

data to match the behaviour of the real process over a longer time-window and, additionally,

it compensates for the increasing value of the logarithms’ base al. Since the only condition

we require is that weights normalize to 1, an infinite number of increasing weights could be

chosen a priori for the aggregation of single L-divergences. In this paper we consider and

discuss three different sets of weights: additively progressive weights, such that the difference

between successive weights is positive and constant, geometrically progressive weights, such that

the ratio between successive weights is positive and constant and uniform weights, which assign

each L-divergence the same weight.

In particular, additively progressive weights are chosen to guarantee that their first differences

are constant; that is, the weight assigned at a given length of the time window is equal to the

one assigned at the previous length plus a constant term. More formally, they satisfy:

12One can notice that there is an alternative way to compute the correction term ([[31]); however the leading
O(1/N) term is exactly the same as in equation 12
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a)
∑L

l=1wl = 1

b) w0 = 0

c) wl+1 − wl = k, k ∈ R+.

The following proposition provides the unique formulation of additively progressive weights.

Proposition 2.6 The only set of weights {wl}
L
l=1 satisfying a), b) and c) is given by

wl+1 = wl +
2

L(L− 1)
. (13)

The proof is included in Appendix C. An alternative specification is provided by geometrically

progressive weights. They are defined by the same set of properties as additively progressive

ones but for c), which is substituted by

d)
wl+1

wl
= c, ∀ l ≥ 1 with c > 1.

Geometrically progressive weights are not unique, in the sense that they depend on the choice

of c. However they allow for an interesting property of the GSL-div that will be characterized

in the next section. The idea behind the use of this set of aggregation weight is that there is

a constant rate of growth in the importance assigned to differences in the distributions of time

changes when the length of blocks increases.

Finally, a benchmark choice is considered: uniform weights assign the same importance to

each L-div in the aggregation process, independently of the length of blocks. It is immediate to

see that they satisfy a), b) and

e) wi+1 = wi, ∀ l ≥ 1.

The choice of the set of weights to use relies upon the researcher. However, our results will show

that the GSL-div is robust to this choice: when more than one model for the same phenomenon

is available, models’ ordering is largely independent from aggregation weights. However some

remarks applies. On one side, the ability to reproduce time changes over longer windows should

be rewarded. Consider for example a set of models addressing some macroeconomic issues;

when l = 1 the GSL-div captures the difference in models’ ability to reproduce the persistence

of observable data on single states (e.g. low, moderate or high inflation). Passing to l = 2, the

GSL-div aggregates the outcome of models’ evaluation at l = 1 and their ability to reproduce

the distribution of shifts from one regime of inflation to the other (e.g from low to moderate

inflation). When l = 3 it extends the aggregation to longer patterns (e.g. from low inflation

to moderate and back to low). Having the goal of validating models against observable data it

seems natural to give more importance to the ability of reproducing larger portions of series’
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dynamics: trends and trajectories are more relevant than persistence. There is an additional

reason progressive (i.e. increasing) weights should be preferred. It is simple but more technical.

In order to aggregate single L-divergences into the GSL-div we use logarithms’ bases in (7) that

depends on the length, l, of the blocks. Having l growing, it also increases the cardinality of the

state space, which corresponds exactly to the base of the logarithm we use. Being the logarithm

decreasing in its base, this implies that the L-div between two distributions decreases with l as

well (see property 6. in next section). The use of progressive weights compensate for this effect.

3 Properties of the GSL-div

The GSL-div exhibits a set of interesting properties that make it particularly well suited to

compare empirical validity of a set M of models. For illustrative purposes, let us simplify

our notation by removing some dependences: pµ indicates time average probabilities for model

µ ∈ M and p indicates frequencies observed in the real data. As usual, b is the precision of the

symbolization and l the length of time-windows or, equivalently, the length of symbols. Proofs

of all properties is contained in Appendix D.

1. The GSL-div is well defined for all p and pµ.

This property guarantees that for all probability vectors the GSL-div between pairs of them

exists and can be computed independently of their support, which might be the same or not.

This is a direct advantage with respect to the KL-div and comes from the definition of the

L-div.

2. 0 < GSL(p || pµ) < 2

The GSL-div is bounded both from above and below. This is relevant to the purposes of

model selection and validation since makes it possible to compare the estimated value with

bounds. However, to have a meaningful comparison, bounds have to be explored. The lower

one is only theoretical: since we consider a subtracted version of the L-div the effective lower

bound corresponds to the entropy of the data generating process, but this will be more evident

discussing next property. The upper bound, instead, is reached when the model and the real

series are persistently stacked in two different states (corresponding to different symbols). For

example, from a practical point of view, a model producing only hyperinflation is maximally

distant from an observed time series of persistent deflation.

3. GSL(p || pµ) = H(p) ⇐⇒ p = pµ ∀ l = 1, ..., L and s ∈ Sl,b

This property indicates the effective lower bound for the GSL-div : it is equal to the entropy of

the real time series if and only if for every block length model µ assigns each symbol the same
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probability the observed time series does. This would be the case of perfect matching between

the dynamics of the simulated series and the data, whose patterns are mirrored exactly in all

model’s runs13.

4. The non-subtracted version of GSL-div is symmetric:

GL(p || pµ) = GL(pµ || p). (14)

This property stems directly from the fact that the L-div is symmetric. It refers to a version

of the GSL-div where we do not subtract the entropy of the real series. In practice one could

use this measure as well; implicitly, it would amount to assume that, with reference to the real

data, the ensemble is composed by identical series corresponding exactly to the observed one.

This assumption might be justified by acknowledging that when it comes to observe the world,

it can observed only once. As a matter of fact, the real series is the only source of information

we can compare models with.

5. For all {pµ,i}
N
i=1 and {πi}

N
i=1 such that

∑

i πi = 1,

GSL(pi ||
∑

i

πipµ,i) ≥
∑

i

πiGSL(p || pµ,i). (15)

In words, given a set of N+1 probability vectors, the GSL-div between the first and any convex

combination of the remainingN is greater than the convex combination of the GSL-divs between

the first and each of the others. This property is relevant when the modeller is uncertain about

the parametrization of the model. It could be the case, for example, when experts are asked

to express their preferences and views about a relevant parameter14 Let {πi}
N
i=1 be the belief

vector assigning probabilities to each of the N possible parametrizations of the model. From the

point of view of the modeller, the expected probabilistic structure should be
∑N

i=1 πipµ,i where

pµ,i corresponds to the set of parameters i ∈ {1, .., N}. Property 4. states that the average

distance between data and the each configuration of the parameters of the model constitutes

a lower bound for the distance between the expected probabilistic structure and the observed

data.

6. Consider two distributions which are unaffected by a marginal change in b or l, then the

GSL-div between the two is decreasing both in the precision of the symbolization (b) and

the length of blocks (l).

This is a direct consequence of the particular basis of the logarithm we use in definition 2.2. This

choice is necessary to aggregate comparable quantities: it guarantees that estimated entropies

13Accounting for the fact the movements might not be synchronous up to a delay of L.
14Think about climate sensitivity in climate change models.
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fall within the [0; 1] interval independently from symbolization precision and block length. More-

over, property 6. helps justify the use of aggregation weights, wi, that are increasing in l.

7. If x(t) and y(t) are strongly stationary and the GSL-div is evaluated with geometrically

progressive weights such that c = f(L) with f ′(L) > 0 and logarithms are in base 2, then

the quantity 1
T
GSL-div converges to a subtracted version of the asymptotic L-div.

When two series are strongly stationary, the GSL-div between the two computed with a par-

ticular class of geometrically progressive weights (for instance with c = L) converges to the

asymptotic value of the L-div when both T and L approaches infinity. It is relevant to recall

that, as almost each information theoretic quantity (see [13]), even the L-div has been defined

using logarithms in base 2. Given a series, the asymptotic entropy is defined as the limit of the

ratio between the entropy of the sample and the length of the series15: it expresses the average

information contained in a single random variable of the process x(t). Property 6. highlights

the bridge linking the GSL-div between distributions (definition 2.2) and the famous Akaike In-

formation Theoretic Criterion (Akaike, [1]). The AIC is derived as an asymptotically unbiased

estimator of a function used to rank candidate models that is a variant of the Kullback-Leibler

divergence between the true model and the approximating candidate model. When stationarity

requirements are met, the GSL is an asymptotically consistent estimator of a symmetric version

of the KL-div between the symbolized series.

4 A simple example

In this section we show the performance and the precision of the GSL-div criterion in distin-

guishing between three ad hoc created time series. x(t) is chosen to be the observed series while

xA(t) and xB(t) are to be intended as the output of two models (A and B respectively) trying

to simulate x(t). These series are consciously chosen to have xA(t) much more close to the

behaviour of x(t) with respect to xB(t). Their plot is reported in Figure 2.

Clearly, we expect the GSL-div criterion to show a lower distance between the observed

time series coming from the unknown data generating process and model A’s output. Before

showing the results we present the symbolization process. The three series take values in the

real interval [0, 1] and a very small sample consisting of six observations is chosen:

x(t) = {0.2; 0.3; 0.8; 0.4; 0.45; 0.15},

xA(t) = {0.1; 0.25; 0.72; 0.45; 0.5; 0.35},

xB(t) = {0.05; 0.15; 0.65; 0.9; 0.4; 0, 25}.

15More precisely, H∞ = limT→∞ H[(xT , xT−1, ..., x1)]/T , with logarithms in base 2
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Figure 2: Behaviour of three selected time series

The precision of the symbolization is set to b = 3; this choice leads to the following partition

of the original state space: [0; 0.33); [0.33; 0.66); [0.66; 1]. Despite the choice of b is arbitrary

results are robust to changes in the value of this parameter (see next section for a complete

robustness exercise). The use of a low value of b can be justified here by the fact that the time

series are very short, which implies there are few observations to estimate frequency vectors; in

addition, representing it the the precision of the symbolization process, the use of a low value

for b makes it more difficult to distinguish between the series. The ability of the GSL-div to

recognize the most similar even when the symbolization is relatively imprecise would confirm

the power of this new criterion.

According to the chosen parametrization, the three symbolized time series are:

x(t) = {1, 1, 3, 2, 2, 1},

xA(t) = {1, 1, 3, 2, 2, 2},

xB(t) = {1, 1, 2, 3, 2, 1}.

By inspection it is possible to notice that xA is much more closer to x than xB: while the

former exhibits the same behaviour of the real data apart form the very last period, the latter

displays twice the opposite one (it increases from t = 3 to t = 4 when x(t) is decreasing and

vice-versa in the following period).

Given the use of short time series, the maximum value of the time-window’s length along

which the three processes are compared cannot be set above L = 5; otherwise one and only one

block would be available, the probability distribution over the alphabet would appear constant

and its entropy pushed to zero. We set L = 3; this is, again, a conservative choice: direct

inspection reveals that when l = 4 is chosen only xA(t) exhibits sequences of symbols retrievable

in x(t) and when l = 5 both xA(t) and xB(t). Hence the choice of L ≤ 3 would further increase
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the discrepancy between model A and B. Therefore, blocks and corresponding alphabets for

l = 1, 2, 3 are analysed.. Respectively, six, five and four observations are obtained and used to

estimate the frequencies. As it is obvious, these are very rough estimates of the probabilities

the three process assign to symbols x ∈ Sl,b.

Notwithstanding this limitation, the performance of the GSL-div in selecting model A and

validating its output against real data is excellent. Table 1 (with additively progressive weights)

and Table 2 (with uniform weights) provide evidence of this result. Two observations deserve

Subtracted L-div

block length weights model A model B
1 0.17 0.951167 0.920620
2 0.33 0.894378 1.151525
3 0.50 0.609108 1.174573

GSL-div 0.761397 1.123795

Table 1: GSL-div for x(t) and both xA(t) and xB(t) with progressive weights

Subtracted L-div

block length weights model A model B
1 0.33 0.951167 0.920620
2 0.33 0.894378 1.151525
3 0.33 0.609108 1.174573

GSL-div 0.818218 1.082239

Table 2: GSL-div for x(t) and both xA(t) and xB(t) with uniform weights

attention. First, the subtracted L-divergence at blocks’ length equal to one is lower for model

B’s than for model A’s series. This is driven by the fact that xB(t) and x(t) have been chosen

to exhibit the same frequency distribution over the alphabet available for l = 1, S1 = {1, 2, 3},

while xA(t) has not. This means that it becomes relatively more difficult to recognise xA(t) as

the series most similar to x(t). However, the distribution of time-changes is completely different

between x(t) and xB(t). The result is that when one move to l = 2, 3, corresponding to capture

longer trends and trajectories, xA(t) equals and overcome xB(t)’s performance in simulating

the behaviour of x(t). In addition, this justifies the choice of using progressive weights in the

definition of the GSL-div : a model matching the distribution of changes for a longer time

window should always be preferred and selected.

Secondly, the three time series have been selected ad hoc to show the performance of the GSL-

div. Not having a proper model it is not possible to replicate simulations and correct for the

systematic bias16. This implies the use of definition 2.2.

In the next section we move away from this example and we show the precision of the GSL-

16The only meaningless solution would be assuming deterministic models producing always the same realization.
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div in validating and selecting the most appropriate among 9 univariate stochastic models; the

correction term for the systematic bias is added to the estimation of the criterion.

5 Selecting and Validating ARMA models

This section presents the application of the GSL-div and shows its power. The GSL-div is used

to compare a set of models with the data. The choice of which models to consider is of primary

importance here. We wanted to show the ability of our criterion to discriminate between models

exhibiting very similar behaviours, but having a different underlying stochastic structure. In

addition, we looked for something simple, easily tractable and not computational intensive.

These requirements prevented the use of ABMs, even of simple ones.17 and pushed us to

the choice of Auto Regressive Moving Average (ARMA) models with Gaussian innovations18.

Despite being extremely simple, this class of models can generate a variety of very different

behaviours, ranging from random walks to stationary patterns to “explosive” dynamics. In

addition, their response to small changes in the parametrization could be deduced in advance.

The Data Generating Process (DGP) is selected to be a Gaussian AR(1) process with

autoregressive order-one parameter φ1 = 0.1. A realization of length T = 1000 is taken to be

the real-world data. Figure 3 provides a plot of this time series. Trying to produce a similar

behaviour, a set of nine ARMA models with a parametric structure very similar to the DGP

has been chosen. The GSL-div is then used to select the model which minimizes the distance

with respect to the distribution of time changes in the real data.

Figure 3: The real-world time series

Table 3 summarizes the main features of the models which are considered for replicating the

17Even in simple ABMs it is relatively easy to have bifurcations and chaotic behaviours (see for example some
models in this review [56]). In addition, the stochastic processes generating aggregate outcomes are not known
in general.

18See [37] for details.
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behaviour of the real data. All of them are ARMAs with Gaussian N(0, 1) innovations and are

used to produce an ensemble of M = 1000 Monte Carlo replications, each of length T = 1000.

These series are symbolized using precision b = 5.

parameters properties

model φ θ stationary invertible
1 AR(1) 0.1 0 yes yes
2 AR(1) 0.2 0 yes yes
3 AR(1) 0.5 0 yes yes
4 AR(1) 0.01 0 yes yes
5 AR(1) 0.9 0 yes yes
6 ARMA(1,1) 0.2 0.9 yes yes
7 ARMA(1,1) 0.5 2 yes no
8 AR(1) 1 0 no yes
9 AR(1) 2 0 no yes

Table 3: Main features of the nine models considered

The majority of the models we consider are stationary and, even if not reported directly, they

are also causal. In addition, most of them are invertible. Together with the use of Gaussian

random errors, this allows to conclude that six out of nine are unique, meaning that there

is a one-to-one correspondence between the family of the finite dimensional distributions of

the process and its finite parametric representation (see [37]19). The same applies also to the

DGP. A direct consequence is that, playing with values assigned to parameters, we obtain very

similar patterns of behaviour (it can be seen by inspection, see top and middle panels in Figure

4) coming from surely different stochastic processes.

The GSL-div is expected to recognize the model which is most similar to the DGP : model 1

exhibits exactly the same parametric representation of the data generating process from which

x(t) is taken. In addition one should ask the GSL-div to identify models producing series

completely inconsistent with the real world data x(t): model 9 is strongly non-stationary and

exhibits an explosive behaviour. Therefore, within the class of models considered here, we

expect the GSL-div to reach a minimum when model 1 is evaluated and a maximum when

model 9 is compared to observed data. Figures 4 provides a plot of a realization of model 1

(top) and 9 (bottom).

Results of the estimation of the distance between data and models are collected in Tables 4

and 5, which show the performance of the GSL-div after correcting for the systematic bias. The

maximum length of the time-window (or block-length), L, is chosen to be six. Both additively

progressive and uniform weights are considered20

19Here you find both definitions of causal processes, invertible processes and conditions for the one-to-one
correspondence between a finite dimensional distributions of the process and the finite parametric representation.

20We omit geometrically progressive weights since they are not unique: they depend on an additional free
parameter that has to be chosen by the modeller.
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Figure 4: A realization of model 1 (top), model 2 (middle), model 9 (bottom).
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Subtracted L-div times the corresponding weight

block length weights AR1 - 0.1 AR1 - 0.2 AR1 - 0.01 AR1 - 0.5 ARMA11 - 0.2&0.9 ARMA11 - 0.5&2 AR1 - 0.9 AR1 - 1 AR1 - 2

1 0.05 0.739961 0.740193 0.739479 0.740022 0.740705 0.741579 0.746528 0.847038 1.519963
2 0.10 0.737830 0.737918 0.738141 0.746422 0.753683 0.766014 0.802260 0.912441 1.156505
3 0.14 0.736086 0.736167 0.736762 0.745997 0.759310 0.770605 0.811238 0.915131 1.033641
4 0.19 0.732324 0.732547 0.733376 0.740736 0.758631 0.770255 0.813153 0.924642 1.005211
5 0.24 0.721106 0.721464 0.722128 0.726598 0.752120 0.763155 0.813535 0.943901 1.013572
6 0.29 0.702880 0.703000 0.703406 0.718427 0.774408 0.782027 0.875425 0.988041 1.054068

GSL-div 0.722666 0.722859 0.723363 0.732255 0.760361 0.770209 0.826552 0.941125 1.064143

Table 4: GSL-div for x(t) and nine ARMA models with progressive weights

Subtracted L-div times the correspondig weight

block length weights AR1 - 0.1 AR1 - 0.2 AR1 - 0.01 AR1 - 0.5 ARMA11 - 0.2&0.9 ARMA11 - 0.5&2 AR1 - 0.9 AR1 - 1 AR1 - 2

1 0.17 0.739961 0.740193 0.739479 0.740022 0.740705 0.741579 0.746528 0.847038 1.519963
2 0.17 0.737830 0.737918 0.738141 0.746422 0.753683 0.766014 0.802260 0.912441 1.156505
3 0.17 0.736086 0.736167 0.736762 0.745997 0.759310 0.770605 0.811238 0.915131 1.033641
4 0.17 0.732324 0.732547 0.733376 0.740736 0.758631 0.770255 0.813153 0.924642 1.005211
5 0.17 0.721106 0.721464 0.722128 0.726598 0.752120 0.763155 0.813535 0.943901 1.013572
6 0.17 0.702880 0.703000 0.703406 0.718427 0.774408 0.782027 0.875425 0.988041 1.054068

GSL-div 0.742932 0.743119 0.743460 0.751094 0.771606 0.780918 0.826564 0.940303 1.153103

Table 5: GSL-div for x(t) and nine ARMA models with uniform weights
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Expectations are perfectly confirmed: model 1 turns out be the closest to the real data while

model 9 the most distant. In particular, the chain of models’ proximity to the data identified

by the GSL-div reveals:

AR(0.1) ≻ AR(0.2) ≻ AR(0.01) ≻ AR(0.5) ≻ ARMA(0.2, 0.9) ≻ ARMA(0.5, 2) ≻

≻ AR(0.9) ≻ AR(1) ≻ AR(2)

where numbers in parenthesis indicate parameters’ values and the expression x ≻ y means that

model x is preferred to y given its closeness to the data. In general, the GSL-div is shown

to distinguish clearly among models: non-stationary processes are the most distant from the

real data and when a MA component is added to the process the distance from the real data

increases. This is true especially when the MA part is non-invertible (model 7). Moreover,

among the same class of processes (AR(1)) the criterion is able to recognize those having a

parametric representation which is closer to the DGP.

It is worth noticing that such results are robust to the choice of the weights in the functional

representation of the GSL-div. Finally, the correction term for the systematic bias is, in absolute

value, considerably low with respect to the estimated value of the GSL-div criterion, and it

becomes even smaller the longer the time series. In particular, the correction never affects

results and the ranking of models’ distance from the real world data. (see appendix B).

5.1 Robustness Checks

In this subsection we briefly present a robustness analysis for the previous exercise. It shows

that models’ ranking is largely independent from the choice of the free parameters in the GSL-

div estimation. Precisely, there are only two free parameters to be set by the modeller: b, the

precision of the symbolization process and L, the maximum length of time windows used to

compare the series.

We performed the same exercise as the one above by changing the values of both b and L.

In particular, we test how many of the binary relations identified by the estimated GSL-div

between models and data are robust to changes in the two parameters. Let M be a set of J

competing models. Then, each total order (that is, the ranking of models with respect to the

data) established by the GSL-div on M entails
(

J
2

)

relations. Since we have 9 ARMA models

there are 36 binary relations. Table 6. reports the total number of changes in the set of relations

between models due to a change in the value assigned to free parameters. Results are the same

both with additively progressive and uniform weights.

Whatever the chosen couple (b, L), the overall number of changes is extremely low compared

to the total number of unaltered relations and, in general, it never exceeds three. It also appears

clear that, increasing either the precision of the symbolization, the maximum length of time-

windows or both, the number of changes in the orderings is almost always decreasing and reaches
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Table 6: Overall number of changed binary relations

b\L 3 4 5 6 7

3 2 2 2 1∗ 2
4 3 2 2 0∗ 0∗

5 0∗ 0∗ 0∗ - 0∗

6 0∗ 0∗ 0∗ 0∗ 0∗

zero even for low parameters values. Symbol ∗ indicates that using the corresponding values of b

and Lmodel 1 is the closest to the data, models 8 and 9 are the most distant and adding a Moving

Average component to the process always increases the estimate of the GSL-div. Furthermore,

it is worth reporting that models 5,8 and 9 are the most distant from the real series (specifically,

this is the right tail of the chain: mod5 ≻ mod8 ≻ mod9) in each of the 20 experiments we

carried out using different values of the two free parameters. The robustness of our criterion and

its ability to provide good results even with relatively low precisions is remarkable. Increasing

b and L leads to an explosion of the cardinality of the potential alphabet of symbols which, in

turns, requires much more computational time to machines to estimate frequencies, especially

in presence large ensembles, which, to the contrary, are needed for guaranteeing consistency of

probability estimates. Noteworthy, our GSL-div indicator is very precise even with relatively

low values of both b and L and, in addition, the informational gains obtained increasing these

values saturates quickly. This means that the user can save a great amount of computational

time by specifying low b and L and, at the same time, be confident in the results delivered by

the GSL-div.

6 Conclusions and Further Research

Validation of simulated models is still an open issue. One way of tackling this problem is via

the identification of a measure of the distance between simulated and real-world data. This

paper provides an information theoretic criterion, the GSL-div, which captures this distance

without any requirement of stationarity nor the need to resort to any likelihood function. This

constitutes a direct advantage with respect to other approaches aimed at characterizing times

series and their behaviour. Our criterion applies to any model able to produce time series

as output. In particular, simulation models and ABM especially, are likely to produce series

whose statistical properties cannot be derived directly from models’ assumptions. That is, the

probabilistic behaviour of aggregated variables is unknown to the modeller. Using reasonably

large ensembles and correcting for a classic systematic bias, the GSL-div allows to infer the

distance between the unknown probabilistic dynamics of the model and observed data.

The GSL-div leaves two free parameters: the precision of the symbolization process, namely

b, and the maximum length of the time-window used to identify blocks of the time series, namely

27



L. Both can be increased when the size of real time series against which models are evaluated

becomes larger and larger; however, we showed that using relatively low parameters’ values

(b = 5, l = 6) the GSL-div is extremely precise in selecting and ordering the models which are

better able to reproduce the distributions of time-changes observed in real data.

Different developments and applications of the GSL-div are possible. First of all, it repre-

sents an innovative tool to study the similarity of time series dynamics in general, and can be

applied to single series, without generating ensembles and correcting for the systematic bias.

For example, it could be employed to assess interdependences and contagion phenomena in

financial markets (see [25]). In addition, extensions to multivariate settings are possible. In

such a context applications are numberless, going from empirical validation of complex macro

ABMs, to horse races among different models trying to reproduce the same observed patterns

(e.g. housing market bubbles or crashes). Finally, it can be used for the comparison of model

projections under policy interventions with baseline scenarios. A notable application within

this domain refers to climate policy evaluation. Therein, the estimation of the GSL-div allows

to answer the question of how far models’ predictions about the evolution of climate variables

move away from the baselines cases, under different policy interventions.
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Appendix

A. Proof: Consistency and unbiasedness of frequency estimator

Recall that pµ(s) =
1
T

∑T
t=1 pµ(x

s
t = s).

Assume that the ensemble we consider is composed by R independent runs of a given model,

each of length T . Since we keep the model fixed, to ease notation we suppress the dependences

from µ. Let xsr(t) the symbolized version of the rth run. For all r = 1, ..., R the observed

frequency of symbol s is

fµ,r(s) =
1

T

T
∑

t=1

#[xsr(t) = s], (16)

where #(·) is the Dirac measure. Hence

1

R

∑

r

fµ, r =
1

R

∑

r

1

T

T
∑

t=1

#[xsr(t) = s] (17)

=
1

T

T
∑

t=1

(

1

R

∑

r

#[xsr(t) = s]

)

. (18)

Let us fix t and concentrate on the term 1
R

∑

r #[xsr(t) = s]. It is the frequency symbol s

appears with across the ensemble in period t. First we observe that, by the weak law of large

numbers, frequencies converges almost surely to probabilities

1

R

∑

r

#[xsr(t) = s]
a.s.
−−→ p[xs(t) = s]. (19)

Since equation 19 holds for each t = 1, ..., T , we see that our estimator 1
R

∑

r fµ,r(s) is consistent.

To better see this and its unbiasedness let up proceed as follows.

Keep fixed t and consider the random variable nr =
∑

r #[xsr(t) = s]. It is distributed as a

Binomial(p[xs(t) = s], R). Its expected value corresponds to Rp[xs(t) = s] which implies that

nr/R is an unbiased estimator of the true probability. Hence 1
R

∑

r fµ,r(s) is unbiased as well.

Finally

lim
R→∞

V ar(nr/R) = lim
R→∞

p[xs(t) = s](1− p[xs(t) = s])

R
= 0 (20)
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confirms our estimator is consistent. Being 1
R

∑

r fµ,r(s) a linear combination of nr/R for all

available periods, it is consistent as well.

B. A direct computation of the systematic bias

In many cases a closed form computation of the systematic bias is possible, but it typically

requires some assumption about the stochastic structure of the processes generating the time

series. Here show how to compute it analytically under a quite general setup: we assume

that the unconditional probabilities of observing a given symbol might vary over time and that

realizations of the stochastic processes are time independent in the sense that

p(yst = si | t
′ < t) = p(yst = si) = pt(si), (21)

where yst is the observed symbol at time step t in the symbolized time series. Throughout

this section the independence assumption is relevant since allows to treat frequency counts as

random variables with well known distributions and well defined moments.

Consider two symbolized time series xst and yst both of total length T and a given length of

the blocks l. Within our framework xst can be thought as the real world time series and yst as

one of the M runs of a given model of y(t). For simplicity assume l = 1 so that the number

of time windows coincides with the length of the series, that is Nl = T . Under a precision of

the symbolization of b we recall that there are bl symbols. The unconditional probability of

observing a symbol si ∈ S is allowed to vary over time. Hence

p(yst = si | t = 1) 6= p(yst = si | t = 2) 6= ... 6= p(yst = si | t = T ) (22)

and the same holds for xst .

Let ni be the number of times the symbolized stochastic process yst takes value si:

ni =
T
∑

t=1

I(yst = si), (23)

where I is an indicator function taking value 1 when yst = si and 0 otherwise, and let n′

i

be the same quantity for the process xst . If the realizations of each of the two processes are

independent21, ni and n′

i are distributed as Poisson Binomial random variables with mean and

variance respectively given by

21Realizations of xs
t are independent from xs

t′ for all t′ < t and the same holds for ys
t .
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E(ni) =
T
∑

t=1

pt(si)

(24)

V (ni) =
T
∑

t=1

(1− pt(si))pt(si).

and

E(n′

i) =
T
∑

t=1

p′t(si)

(25)

V (n′

i) =
T
∑

t=1

(1− p′t(si))p
′

t(si).

Not to abuse notation let pt(si) = pit and p′t(si) = p′it . Now introduce vi = (ni + n′

i)/2; it

satisfies

E(vi) =

∑T
t=1 pit +

∑T
t=1 p

′

it

2
(26)

and

V (vi) =

∑T
t=1 pit(1− pit) +

∑T
t=1 p

′

it(1− p′it)

4
(27)

under the assumption that ni and n′

i are independent. Note that this assumption is extremely

reasonable in our context: models’ output at time t is independent from the real world’s corre-

sponding observation at the same time.

Let f = {f1, ..., fS} = {n1/Nl, ..., nS/Nl} be a vector expressing the occurrence frequency of

any symbol si according to the process yst , and let f′ be the counterpart for xst . Then we define

mi = vi/Nl and we note that mi = (fi + f ′

i)/2. Recall that the true unconditional probability

assigned by a given model to symbol si in the time span [t0;T ] is defined by (2.2) and that

for R going to infinity the time frequency estimator converges almost-surely. Following [54], to

compute the systematic bias let us introduce two new variables ǫi and ǫ′i defined as

ǫi =
fi − pi

pi
, (28)
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and

ǫ′i =
mi − p′′i

p′′i
(29)

where p and p′′ are defined according to (2.2) 22. Using equation (7), it is possible to express

the observed GSL-div23 between xst and yst as

GSL(x(t) | y(t))obs =
L
∑

l=1

wi(−2
∑

si∈S

mi(1 + ǫ′i) logal mi(1 + ǫ′i) (30)

+
∑

si∈S

fi(1 + ǫi) logal fi(1 + ǫi)).

We separate the computation of the systemic bias for the two entropic functional in (30).

Let us start with the observed entropy of m:

Hobs(m) = −
∑

si∈S

mi(1 + ǫ′i) logal mi(1 + ǫ′i)

= −
∑

si∈S

mi(1 + ǫ′i)[logal mi + logal(1 + ǫ′i)]. (31)

If Tp′′i is large then ǫ′i is small and the logarithm in (31) can be approximated in a Taylor

series to give

Hobs(m) = −
∑

si∈S

p′′i logal p
′′

i + ǫ′ip
′′

i (1 + logal p
′′

i ) +
(ǫ′i)

2p′′i
2

+O[(ǫ′i)
3]

= H∞(m)−
∑

si∈S

ǫ′ip
′′

i (1 + logal p
′′

i ) +
(ǫ′i)

2p′′i
2

+O[(ǫ′i)
3],

where the true entropy is indicated as H∞(m) = −
∑

p′′i logal p
′′. Since the expectation of

the error term ǫ′i is zero, the ensemble average of the observed entropy up to the second order

can be expressed as

〈Hobs(m)〉 ≈ H∞(m) +
∑

si∈S

〈(ǫ′i)
2〉p′′i
2

,

where the second term corrects for the systematic bias. In order to evaluate the correction

one needs to compute the expectation of (ǫ′i)
2. Recalling that, being X a random variable,

22In particular notice that p′′ = (pi + p′i)/2, where pi and p′i are time average probabilities in the sense of (2.2)
23Recall that the observed GSL is the GSL computed using frequencies instead of probabilities
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E[X2] = V (X) + E2[X] and that E(ǫ′i) = 0, one obtains

〈(ǫ′i)
2〉 =

V (vi)

4T 2
·
1

p′′i
(32)

=

∑T
t=1 pit − pit

2 + p′it − p′it
2

(
∑T

t=1 pit + p′it)
2

(33)

=

∑T
t=1 pit + p′it −

∑T
t=1 pit

2 + p′it
2

(
∑T

t=1 pit + p′it)
2

(34)

if pi 6= 0 or p′i 6= 0. This leads to the following expression for the correction term

∑

si∈S

〈(ǫ′i)
2〉p′′i
2

=
1

4T

∑

si∈S

[

1−

∑T
t=1 pit

2 + p′it
2

∑T
t=1 pit + p′it

]

(35)

=
Bm −

∑

si∈S

∑T
t=1

pit
2+p′it

2

∑T
t=1

pit+p′it

4T
≤

Bm − 1

4T
(36)

where Bm is the number of symbols si ∈ S such that p′′(si) 6= 024. We notice that the correction

term is increasing in Bm. The use of large alphabets of symbols entails the risk of increasing

the correction term in a way that it becomes too large relative to estimated entropies, therefore

loosing its rationale. Equation (36) represents the correction term for the observed entropy

of the mean frequency distribution between the two processes. Two important remarks apply.

First, we notice that Bm ≥
∑

si∈S

∑T
t=1

pit
2+p′it

2

∑T
t=1

pit+p′it
≥ 1, meaning that when we use the correction

term in equation (10) we might overestimate the bias. The choice of using Bm
−1

4T as correction

term is due to the fact that the true bias depends on the unknown probabilistic structure of

the real series. However, this choice provides additional robustness to our results: even using

larger correction terms than we should, results are good and the estimated downward bias is

very small with respect to the observed entropies even for relatively large alphabets (see Table 7

and 8 below). Moreover, using a larger first order correction term might compensate for higher

order ones. Second, if we simplify our setting by considering i.i.d processes with time invariant

probabilities (pt(si) = p(si) ∀t), we end up with the same estimate of the systematic bias as in

[7], [38] and [54].

Applying the same procedure to the observed entropy of model’s output, Hobs(f), it is

immediate to obtain the following correction term

∑

si∈S

〈ǫ2i 〉p
′

i

2
≤

Bf − 1

2T
(37)

24Recall that p′′(si) can be reasonably estimated through independent Montecarlo runs.
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where Bf is the number of states such that p′(si) is different from zero. Combining (36) and (37)

with the functional form the GSL-div, (7), one obtains exactly the estimate of the systematic

bias in (10).

Finally it is important to recall that the time independence assumption is useful to derive

analytical estimates of the systematic bias; however, since the correction term is not affected

by the assumption and B is obtained through ensemble averages of frequencies, which converge

towards unconditional probabilities by the law of large numbers, the conditional structure of

the processes does not affect the bias’ estimate.
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block length alphabet size weights AR1 - 0.1 AR1 - 0.2 AR1 - 0.01 AR1 - 0.5 ARMA11 - 0.2&0.9 ARMA11 - 0.5&2 AR1 - 0.9 AR1 - 1 AR1 - 2

1 5 0.05 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 25 0.10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000714
3 125 0.14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000214 0.000929 0.003500 0.004786
4 625 0.19 0.000000 0.000000 0.000000 0.000000 0.000762 0.001333 0.004381 0.013619 0.017524
5 3125 0.24 0.000000 0.000000 0.000000 0.000119 0.003690 0.005119 0.012738 0.033333 0.041429
6 15625 0.29 0.000857 0.000714 0.000286 0.004857 0.019000 0.020571 0.044000 0.068000 0.080714

Table 7: Correction terms for each ARMA model studied in section 5. for each block length, under additively progressive weights.

block length alphabet size weights AR1 - 0.1 AR1 - 0.2 AR1 - 0.01 AR1 - 0.5 ARMA11 - 0.2&0.9 ARMA11 - 0.5&2 AR1 - 0.9 AR1 - 1 AR1 - 2

1 5 0.17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 25 0.17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001250
3 125 0.17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000250 0.001083 0.004083 0.005583
4 625 0.17 0.000000 0.000000 0.000000 0.000000 0.000667 0.001167 0.003833 0.011917 0.015333
5 3125 0.17 0.000000 0.000000 0.000000 0.000083 0.002583 0.003583 0.008917 0.023333 0.029000
6 15625 0.17 0.000500 0.000417 0.000167 0.002833 0.011083 0.012000 0.025667 0.039667 0.047083

Table 8: Correction terms for each ARMA model studied in section 5. for each block length, under uniform weights.
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C. Proof: Uniqueness of additively progressive weights

In this section we show that additively progressive weights are unique in the sense that (13) is

the only formulation satisfying

a)
∑L

l=1wl = 1

b) w0 = 0

c) wl+1 − wl = k, k ∈ R+.

To see this we start by writing weights recursively:

w0 = 0

w1 = w0 + k = k

w2 = w1 + k = 2k

...

wL = wL−1 + k = Lk.

Using a) and b) we obtain

L
∑

l=1

wl = k(1 + 2 + ...+ L) = 1

whose unique solution is k = 2
L(L+1) . Direct substitution in c) gives (13).

D. Proofs: Properties of the GSL-div

In this section we offer a proof or a sketch of it for each property outlined in section 3. As

a starting point we recall that, for many of them, it is useful to rewrite the GSL-div as the

following difference

GSL(p || pµ) =
∑

i

wi

[

2Hi(m)−Hi(pµ)
]

, (38)

where m =
p+pµ
2 . This, together with the convention 0 log(00) = 0, is sufficient to guarantee

that property 1. holds everywhere.

Then, given the bases of logarithms we use, it always holds 0 ≤ H(·) ≤ 1. Since H(m) 6= 0

if H(pµ) = 1 property 2. follows immediately.

The proof of the third property is as simple as the second. Let us consider the ⇒ direction.

If p = pµ for all j = 1, ..., L and s ∈ Sj,b, then m = p = pµ and hence GSL(p || pµ) = H(p) =
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H(pµ). Now let us move to the ⇐ part. Assume

GSL(p || pµ) =
∑

j

wj

(

2Hj(m)−Hj(pµ)
)

= H(p).

Then we can write H(p) =
∑

j wjHj(p) =
∑

j wjH(p). Substituting in the expression above

and rearranging one obtains

∑

j

wj

(

2Hj(m)−Hj(pµ)−Hj(p)
)

= 0.

Each term in the sum is non-negative by property 2. To have the equality holding each term

has to be equal to zero:

2Hj(m)−Hj(pµ)−Hj(p) = 0 ∀ j.

By the concavity of Shannon entropy and Jensen inequality it implies that m has to be constant

and hence p = pµ for all j = 1, ..., L.

Property 4. and 5. follow immediately from the definition of L-div and the observation

that the Generalized Jensen Shannon divergence (Lin 1991, [43]) is larger or equal to zero, with

equality satisfied either if all the distributions analysed are equal one to other everywhere or

they are independent. In particular, to see property 5. consider

GSL(p ||
∑

i

πipµ,i) =
∑

j

wj [2H(
p+

∑

i πpµ,i
2

)−H(
∑

i

πipµ,i)] (39)

and

∑

i

πiGSL(p || pµ,i) =
∑

i

πi





∑

j

wj [2H(
p+ pµ,i

2
−H(pµ,i)]



 (40)

=
∑

j

wj

[

∑

i

πi[2H(
p+ pµ,i

2
)−H(pµ,i)]

]

(41)

where the dependence of H(·) on j is omitted not to abuse notation. Now take the difference

between 39 and 41 and forget about the summation over j for a while. Let us observe that

H(
p+

∑

i πipµ,i
2

)−
∑

i

πiH(
p+ pµ,i

2
) ≥ 0

by Jensen inequality and the concavity of entropy. The same holds for the difference between

H(
∑

i πipµ,i and
∑

i πiH(pµ,i). Since this is true for all j = 1, ..., L proposition 5. follows

immediately. As a remark one can notice that equality holds in two cases: the trivial case
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where all probability vectors are equal (and hence the GSL-div is zero) and where pµ,is and p

are mutually independent. In the latter case, property 5. follows from the additive property of

Shannon entropy (see [13]).

Let us move to property 6. To prove it we start observing that the base of logarithms we use,

al,b = bl, is increasing both in l and b. Thus, it suffices to prove that the GSL-div is decreasing

in al,b to obtain property 6. immediately. Let us avoid to report dependences from l and b to

ease notation

GSL(p || pµ) =
∑

w
[

2H(m)−H(pµ)
]

(42)

=
∑

w
[

−2
∑

m logam+
∑

pµ loga pµ

]

(43)

=
∑

w

[

1

log a
(−2

∑

m logm+
∑

pµ log pµ)

]

(44)

where the logarithm in last line is in base e. Let D(·) indicate the derivative operator. Since

a > 0,

D

(

1

log a

)

= (−1) ·
1

(log a)2
·
1

a
< 0.

Finally we offer a proof of property 7. Let us start by focusing on weights we use, that is,

geometrically progressive ones (see section 2.4). Let L be the maximum blocks’ length we

consider. Since
∑

iwi = 1,

w1 =
1

1 + c+ c2 + ...,+cL−1

w2 =
c

1 + c+ c2 + ...+ cL−1

...

wL =
cL−1

1 + c+ c2 + ...+ cL−1
.

Collecting cL−1 in each denominator, they can be rewritten as
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w1 =
1

cL−1
[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

] =
(1
c
)L−1

[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

]

w2 =
c

cL−1
[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

] =
(1
c
)L−2

[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

]

...

wL =
cL−1

cL−1
[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

] =
1

[

(1
c
)L−1 + (1

c
)L−2 + ...+ (1

c
) + 1

]

It is relevant to observe that if c = f(L) with f increasing in L, when L → ∞ all weights but

the last one converges to zero and wL → 1. Now, let us study the limit

lim
T→∞

lim
L→∞

1

T
GSL(p || pµ) = lim

T→∞

lim
L→∞

1

T







L
∑

j=1

wj [2Hj(m)−Hj(pµ)]







, (45)

where logarithms in entropies are in base 2. Previous result about weights ensures that

limL→∞

{

∑L
j=1wj [2Hj(m)−Hj(pµ)]

}

behave asymptotically as the last term of the sum over

j. Recalling that entropies of distributions are bounded from above for any finite support, the

limit in 45 can be re written as

lim
T→∞

lim
L→∞

1

T
[2HL(m)−HL(pµ)] (46)

which is equivalent as

lim
T→∞

1

T
[2HT (m)−HT (pµ)] (47)

if x(t) and y(t) are strongly stationary. Moreover, when series are stationary, the limit exists

finite (see pp. 255 of [47]) and

lim
T→∞

1

T
[2HT (m)−HT (pµ)] = 2H∞(m)−H∞(pµ). (48)

where H∞(·) is the asymptotic entropy ([13, 47]). Therefore, we have obtained the convergence

of a particular specification of the GSL-div to a subtracted version of the asymptotic GSL-div,

which can interpreted as a symmetric and well defined version of the asymptotic KL-div and,

therefore, of the AIC ([1]).
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