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Network topology plays a key role in many phenomena, from the spreading of diseases to that
of financial crises. Whenever the whole structure of a network is unknown, one must resort to
reconstruction methods that identify the least biased ensemble of networks consistent with the partial
information available. A challenging case is when there is only local (node-specific) information
available. For binary networks, the relevant ensemble is one where the degree (number of links)
of each node is constrained to its observed value. However, for weighted networks the problem is
much more complicated. While the naive approach prescribes to constrain the strengths (total link
weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees
are often more informative than the strengths, and as ‘fundamental’ as the latter. This implies
that the reconstruction of weighted networks would be significantly enhanced by the specification of
both quantities, a computationally hard and bias-prone procedure. Here we solve this problem by
introducing an analytical and unbiased maximum-entropy method that works in the shortest possible
time and does not require the explicit generation of reconstructed samples. We consider several
real-world applications and show that, while the strengths alone give poor results, the additional
knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria
rigorously confirm that the binary information is irreducible to the weighted one. Our results have
strong implications for the analysis of motifs and communities and whenever the reconstructed
ensemble is required as a null model to detect higher-order patterns.

A range of phenomena of critical importance, from the
spread of infectious diseases to the diffusion of opinions
and the propagation of financial crises, is highly sensitive
to the topology of the underlying network that mediates
the interactions [1]. This sensitivity implies that, when-
ever it is not possible to have a complete empirical knowl-
edge of the network, one should make an optimal use of
the partial information available and try to reconstruct
the most likely network, or rather an ensemble of likely
networks, in the least biased way. Formally, this task
can be regarded as a constrained entropy maximization
problem, where the constraints represent the available in-
formation and the maximization of the entropy ensures
that the reconstructed ensemble of networks is maximally
random, given the enforced constraints [2, 3].

Among the possible types of incomplete topological in-
formation (e.g. missing links, missing nodes, etc.), one
of the most frequently encountered situations is when
only a local knowledge of the network is available [4–9].
For instance, in binary networks knowing the number of
links (or ‘degree’) of each node is typically much easier
than knowing the identity of all neighbours (the nodes
at the other end of those links). Similarly, in weighted
networks knowing the total intensity of links connected
to each node (or ‘strength’) is much easier than know-
ing the identity of all neighbours and the intensity of all

links separately. A typical example is that of interbank
networks, where it is relatively easy to know the total ex-
posures of each bank, while privacy issues make it much
more difficult to know who is lending to whom, and how

much [5, 6, 8, 9]. When the available information is just
local, one only knows O(N) quantities (e.g. the degrees
of all nodes) instead of the total O(N2) ones (e.g. all
entries of the adjacency matrix) fully describing the net-
work. This makes the network reconstruction problem
very challenging, since the number of missing variables is
still O(N2), i.e. of the same order of the total number.
Even when the real network is entirely known, it is still

necessary to reconstruct the most likely network from
local properties in order to have a benchmark (i.e. a
null model) to assess the statistical significance of any
higher-order pattern, e.g. assortativity [10], rich-club ef-
fect [11], existence of network motifs [12, 13] and commu-

nities [14]. Null models correctly filter out the intrinsic
and unavoidable heterogeneity of nodes, e.g. the fact
that more popular people naturally have a larger degree
in social networks. The simplest and most extensively
used null model is the Configuration Model (CM), de-
fined as an ensemble of random graphs with given degree

sequence (the vector of degrees of all nodes) [2, 3]. It was
recently shown that, despite its conceptual simplicity, the
CM already poses significant problems of bias: it is very
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difficult to implement the model in such a way that each
network in the reconstructed ensemble is assigned the
correct probability, thus leading to unbiased ensemble-
averaged expectations [3, 15]. Once these solutions are
appropriately implemented, many binary networks turn
out to be reconstructed remarkably well from the knowl-
edge of their degree sequence alone [3, 16–18].

In this paper we address the problem of the effective
reconstruction, from local properties alone, of weighted
networks. We first show that, in contrast with what is
generally believed, the reconstruction of weighted net-
works does not merely involve a one-to-one mapping of
the corresponding methodology that works well for bi-
nary networks. Specifically, inferring the structure of a
weighted network only from the knowledge of its strength
sequence (the vector of strengths of all nodes) can lead
to a very bad reconstruction, even for the networks that,
at a binary level, can be reproduced extremely well from
their degree sequence [3, 16, 18]. We then conjecture
that the reason is the fact that the knowledge of the
strengths does not merely include or improve that of the
degrees, since the binary information is completely lost
once purely weighted quantities are measured. This leads
us to the expectation that the reconstruction of weighted
networks would be significantly enhanced by the spec-
ification of both strengths and degrees. We therefore
introduce an analytical and unbiased maximum-entropy
technique to reconstruct unbiased ensembles of weighted
networks from the knowledge of both strengths and de-
grees.

In applying our enhanced method to several networks
of different nature, we show that it leads to a significantly
improved reconstruction, while remaining completely fea-
sible since the required information is still local and the
number of known variables is still O(N). We finally intro-
duce rigorous information-theoretic criteria confirming
that the joint binary and weighted local information can-
not be reduced to the weighted information alone. The
resulting self-consistent picture is that the reconstruction
of weighted networks is dramatically enhanced by the use
of the irreducible set of joint degrees and strengths.

Our results also have strong implications for the iden-
tification of higher-order patterns in real networks. In
particular, many of the observed properties that are un-
explained by local weighted information turn out to be
consistent with the enhanced, but still entirely local, in-
formation that includes both strenghts and degrees.

I. RESULTS

A. Naive reconstruction of weighted networks

Naively, the most natural generalization of the CM to
weighted networks is a reconstructed ensemble with given
strength sequence, and is sometimes referred to as the
Weighted Configuration Model (WCM) [3, 20, 21]. The
WCM is widely used both as a reconstruction method

and as the most important null model to detect commu-
nities. In both cases, if si denotes the strength of node
i and N is the number of nodes, the expected weight of
the link between nodes i and j predicted by the WCM is
routinely written in the form

〈wij〉 =
sisj

∑N
m=1 sm

(1)

or in a slightly different way if the network is directed (for
simplicity, in this paper we will only consider undirected
networks). For instance, the above expression represents
one of the standard procedures to infer interbank linkages
from the total exposures of individual banks [5], or the
fundamental null model used by most algorithms aimed
at detecting densely connected communities in weighted
networks [14].
Unfortunately, despite its widespread use, eq.(1) is

however incorrect, and differs from the unbiased ex-
pression derived within a rigorous maximum-entropy ap-
proach [3, 22, 23]. A simple signature of this inadequacy
is the fact that, although eq.(1) is treated as an expected
value, there is no indication of the probability distribu-
tion from which it is derived. Therefore, it is impos-
sible to derive the expected value of topological prop-
erties which are nonlinear functions of the weights (i.e.
the weighted clustering coefficient that we will introduce
later). This problem has been solved only recently with
the introduction of an analytical maximum-likelihood ap-
proach that leads to the correct expressions for the weight
probability and any function of the expected weights [3].
But a more profound limitation of the WCM persists

even when it is correctly implemented. It should be
noted that the motivation for using the WCM as the
natural generalization of the CM to weighted networks is
the implicit assumption that the strength is an improved
node-specific property, superior to the degree because
it encapsulates the extra information provided by link
weights. However, recent counter-intuitive results have
shown that, while the complete knowledge of a weighted
network conveys of course more information than the
complete knowledge of just its binary projection, the
strength sequence is often surprisingly less informative
than the degree sequence [3, 16–18]. In particular, several
purely topological properties of real weighted networks
turn out to be reproduced much better by applying the
CM to the binary projection of the graph, than by apply-
ing the WCM to the original weighted network [3, 16, 18].
The reason is that the strength sequence gives a very bad
prediction of purely topological properties, and particu-
larly the degrees: in fact, out of the many, possible ways
to redistribute each node’s strength among the remaining
vertices irrespectively of the number of new links created,
the WCM selects those predicting much denser networks
than the real ones [18].

As a preliminary step of our analysis, we now con-
firm and extend these non-obvious findings to various
networks of different nature. We consider the Italian In-
terbank network in year 1999 [24], three ‘classic’ social
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networks collected in [25], seven food webs from [26], and
finally the aggregated World Trade Web (WTW) in year
2002 [18]. The latter example, where nodes are world
countries and links are their trade relationships (amount
of imports and exports), is the system for which the role
of strengths and degrees, when considered separately, has
been studied in greatest detail [16–18].

From the above discussion, it is clear that in order
to assess the performance of the network reconstruction
method one should monitor not only the reconstructed
properties that depend entirely on link weights, but also
those that depend on the binary topology. For this rea-
son, in fig.1 we compare, for all networks in the sam-
ple, the empirical and reconstructed values of various
structural properties, including both purely topological
properties and their weighted counterparts. If the full
weighted matrix is denoted by W (where wij is the
weight of the link between node i and node j), the purely
topological quantities are calculated on the binary pro-
jection A (adjacency matrix) of W, with entries aij = 1
if wij > 0 and aij = 0 if wij = 0 (compactly, we can
write aij ≡ w0

ij with the convention 00 = 0).
The binary quantities we choose are the simplest non-

local ones, i.e. those involving paths going two and three
steps away from a node. The average nearest neighbor de-
gree (ANND), which is a measure of correlation between
the degrees of adjacent nodes, is defined as

knni (W) ≡

∑

j 6=i aijkj

ki
=

∑

j 6=i

∑

k 6=j w
0
ijw

0
jk

∑

j 6=i w
0
ij

(2)

(where ki =
∑

j 6=i aij =
∑

j 6=i w
0
ij) and the clustering co-

efficient, which measures the fraction of triangles aroung
node i, is defined as

ci(W) =

∑

j 6=i

∑

k 6=i,j w
0
ijw

0
jkw

0
ki

∑

j 6=i

∑

k 6=i,j w
0
ijw

0
ki

(3)

The corresponding weighted quantities are the average

nearest neighbor strength (ANNS) [18] defined as

snni (W) ≡

∑

j 6=i aijsj

ki
=

∑

j 6=i

∑

k 6=j w
0
ijwjk

∑

j 6=i w
0
ij

(4)

(where si =
∑

j 6=i wij) and the weighted clustering coef-

ficient [18, 19] defined as

cwi (W) =

∑

j 6=i

∑

k 6=i,j(wijwjkwki)
1/3

∑

j 6=i

∑

k 6=i,j w
0
ijw

0
ki

(5)

In each panel of fig. 1, we show the measured value of
one of the quantity defined above, for all nodes and for
all networks, and we compare it with the corresponding
reconstructed value predicted by the WCM[30]. In this
type of plot, every point is a node. Therefore the target
of a good reconstruction method is that of placing all the
points along the identity. By constrast, in most cases we
find that the reconstructed values for all nodes of a given
network lie along horizontal lines, i.e. they are nearly
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FIG. 1. Naive network reconstruction from node strengths
(WCM), showing that purely weighted local properties are
poorly informative. In each panel we compare the recon-
structed (y axis) and real (x axis) value of a node-specific
network property, for all nodes of the following 12 networks:
Office social network (•), Research group social network (•),
Fraternity social network (•), Maspalomas Lagoon food web
(•), Chesapeake Bay food web (•), Crystal River (control)
food web (•), Crystal River food web (•), Michigan Lake food
web (•), Mondego Estuary food web (•), Everglades Marshes
food web (•), Italian Interbank network in year 1999 (•), ag-
gregated World Trade Web in year 2002 (•). Top left: average
nearest neighbour degree (knn

i ). Top right: binary cluster-
ing coefficient (ci). Bottom left: average nearest neighbour
strength (snn

i ). Bottom right: weighted clustering coefficient
(cwi ).

equal to each other and totally unrelated to the ‘target’
real values. It could also be noted the better performance
achieved by the WCM in reproducing the weighted clus-
tering coefficient of the WTW than the other networks’
one: however, as already pointed out in [18], this result
is not robust to disaggregation (the sparser the commod-
ity the worse the agreement), proving that the WCM is,
generally speaking, a very bad reconstruction method.

At this point, the typical interpretation of a result like
the above one is that the reconstruction of networks from
local node-specific information is intrinsically problem-
atic, presumably because of higher-order mechanisms in-
volved in the formation of real networks, thus taking a
difference between real data and the WCM as an im-
portant signature of non-local patterns [3, 20, 21]. Most
community detection methods are indeed entirely based
on this difference, and use it to define the so-called mod-

ularity guiding the detection algorithm [14]. However, as
we show in the following, all the above results and the
corresponding interpretations are completely reversed if
we consider an enhanced reconstruction method.
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B. The irreducibility conjecture

In what follows, we propose a different interpretation
of the above findings. We conjecture (and rigorously
prove later) that, in general, the poor reconstruction
achieved by the WCM might be largely due to fact that
the strength sequence discards purely topological infor-
mation, and in particular the degrees. This hypothesis is
consistent with previous results on the role of strengths
and degrees in the WTW [16–18]. While, at a binary
level, the assortativity and clustering properties of the
WTW can be excellently reproduced by the CM [17], the
corresponding weighted quantities turn out to be very
different from the ones predited by the WCM on the ba-
sis of the strength sequence alone [18]. These results
are very robust and hold true over time, on different
datasets, and for various resolutions of the WTW (i.e.
for different levels of aggregation of traded commodities)
[16–18]. They perfectly illustrate that the naive expecta-
tion that weighted quantities are per se more informative
than the corresponding binary ones is fundamentally in-
correct. According to our conjecture, the degrees are to
be considered a ‘fundamental’ local structural property
of weighted networks, irreducible to the knowledge of the
strengths and thus at least as important as the latter.

We should at this point clarify that by ‘irreducible’ we
do not refer to the numerical values of strengths and de-
grees, but to the different functional roles that the two
quantities play in determining or constraining the net-
work’s structure. In fact, strengths and degrees are typi-
cally highly correlated in real networks [10], which means
that we can reasonably infer the values of one quantity
from those of the other (in this sense, strengths and de-
grees are ‘reducible’ to each other). However, this is,
generally speaking, only true from an empirical point of
view. What is of interest to us is a deeper form of ir-
reducibility, encountered when the joint specification of
strengths and degrees constrains the network in a fun-

damentally different way than the specification of only
one of the two. As an example, nothing guarantees that
their observed correlation is preserved by the random-
ization procedure in the latter case (i.e. that si ∝ f(ki)
implies 〈si〉 ∝ f(〈ki〉)), as proved by the bad performance
of the WCM in reproducing the degree sequence of the
WTW [16, 18].

So, our conjecture leads us to the expectation that
an enhanced reconstruction method (or null model) of
weighted networks from purely local information should
build on the simultaneous specification of strengths and
degrees. Unfortunately, no satisfactory way to imple-
ment such method has been proposed so far. Moreover,
no rigorous criterion has been defined to assess whether
the introduction of the degree sequence as an additional
constraint in the WCM is indeed non-redundant (i.e. not
over-fitting the network).

In what follows, we fill both gaps by first defining
a fast and unbiased approach to realize the enhanced
network reconstruction method, and then introducing

an information-theoretic criterion to check a posteriori

whether the addition of degrees is non-redundant, con-
firming the irreducibility conjecture.

C. Unbiased ensembles with given strengths and

degrees

For simplicity, we will refer to the ensemble of networks
with given strenghts and degrees as the ‘Mixed Config-
uration Model’ (MCM). Early attempts to generate the
MCM were either based on computational randomiza-
tions [27] or on theoretical arguments [21]. However, an-
alytical calculations later showed that these approaches
are statistically biased [23]. We now develop a maximum-
entropy formalism, starting with the exact analytical re-
sults available for the MCM [23] (we only consider the
case of undirected networks, although the generalization
to the directed case is straightforward). Formally, an en-
semble of weighted networks with N nodes can be char-
acterized by a collection {W} of N ×N matrices and by
an appropriate probability P (W) [23]. On each network
W, the strength is defined as si(W) ≡

∑

j 6=i wij and the

degree is defined as ki(W) ≡
∑

j 6=i w
0
ij . We assume that

each wij is a non-negative integer number (again, with
the convention 00 = 0).
We look for a probability that, besides being normal-

ized (
∑

W
P (W) = 1), ensures that the (expected) de-

gree and strength of each node can be set equal to their
known observed values, while leaving the ensemble max-
imally random otherwise (thus not biasing the probabil-
ity). This is achieved by requiring that P (W) maximizes
Shannon’s entropy S ≡ −

∑

W
P (W) lnP (W) with a

constraint on the expected degree and strength sequences

〈~k〉, 〈~s〉 [23]. The fundamental result [23] of this con-
strained maximization is the probability

P (W|~x, ~y) =
∏

i<j

qij(wij |~x, ~y) (6)

where ~x and ~y are two N -dimensional Lagrange multi-
pliers controlling for the expected degrees and strengths
respectively (with xi ≥ 0 and 0 ≤ yi < 1 ∀i), and

qij(w|~x, ~y) =
(xixj)

Θ(w)(yiyj)
w(1− yiyj)

1− yiyj + xixjyiyj
(7)

is the probability that a link of weight w exists between
nodes i and j. In the above expression, Θ(x) = 1 if x > 0

and Θ(x) = 0 otherwise. Note that
∑+∞

w=0 qij(w|~x, ~y) = 1
∀i, j.
Equation (7) defines the ‘mixed’ Bose-Fermi distribu-

tion [23] where, due to the presence of Θ(w), the es-
tablishment of a link of unit weight between two nodes
requires a different (higher if xixj > 0) ‘cost’ than the
reinforcement (by a unit of weight) of an already exist-
ing link. This feature is due to the mixed binary and
weighted constraints and makes the MCM potentially
very appropriate to model real networks.
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To achieve this, we now apply the maximum-likelihood
approach [3, 28] to the model. We consider a par-
ticular real weighted network W

∗, whose only degrees
k∗i ≡ ki(W

∗) and strengths s∗i ≡ si(W
∗) are known.

The log-likelihood of the MCM defined by eqs.(6) and
(7) reads

L(~x, ~y) ≡ lnP (W∗|~x, ~y) =
∑

i<j ln qij(w
∗
ij |~x, ~y) =

∑N
i=1 (k

∗
i lnxi + s∗i ln yi) +

∑

i<j ln
(

1−yiyj

1−yiyj+xixjyiyj

)

.(8)

We now look for the specific parameter values ~x∗, ~y∗ that
maximize L(~x, ~y). A direct calculation, analogous to the
simpler ones encountered in other null models [3, 28],
shows that ~x∗, ~y∗ can be obtained as the real solution to
the following system of 2N equations:

〈ki〉 =
∑

j 6=i

xixjyiyj
1− yiyj + xixjyiyj

= k∗i ∀i (9)

〈si〉 =
∑

j 6=i

xixjyiyj
(1− yiyj)(1− yiyj + xixjyiyj)

= s∗i ∀i (10)

Therefore, we find that the likelihood-maximizing values
~x∗, ~y∗ are precisely those ensuring that the expected de-
gree and strength sequences coincide with the observed

sequences ~k∗ and ~s∗, thus solving our initial problem.

As we show below, the values ~x∗, ~y∗ contain all the
information necessary to reconstruct the network. Thus
the maximum-likelihood approach translates the time-
consuming and bias-prone problem of the computational
generation of several reconstructed networks into the
much simpler problem of solving the 2N equations (9-
10), or equivalently maximizing the function L(~x, ~y) of
2N variables[31]. Consistently with our problem, in ei-
ther case finding ~x∗ and ~y∗ only requires the knowledge
of the observed strengths and degrees, and not that of
the entire network W

∗.

D. Reconstructed properties

Once the solutions ~x∗ and ~y∗ are found, they can
be used to obtain the reconstructed (ensemble-averaged)
network properties analytically, with no need to actu-
ally measure such properties on any sampled network.
Specifically, given a topological property X(W) whose
‘true’ (but in general unknown) value is X∗ ≡ X(W∗),
the reconstructed value can be calculated analytically
as 〈X〉 ≡

∑

W
X(W)P (W|~x∗, ~y∗). For most topolog-

ical properties of interest, this involves calculating the
expected product of (powers of) distinct matrix entries,
which simply reads

〈

∑

i 6=j 6=k,...

wα
ij · w

β
jk · . . .

〉

=
∑

i 6=j 6=k,...

〈wα
ij〉 · 〈w

β
jk〉 · 〈. . . 〉

(11)

with the generic term given by

〈wγ
ij〉 =

+∞
∑

w=0

wγqij(w|~x
∗, ~y∗) =

x∗
i x

∗
j (1− y∗i y

∗
j )Li−γ(y

∗
i y

∗
j )

1− y∗i y
∗
j + x∗

i x
∗
jy

∗
i y

∗
j

(12)

where Lin(z) ≡
∑+∞

l=1 zl/ln is the nth polylogarithm of z.
The simplest and most useful cases γ = 1 and γ = 0 yield
the expected weight 〈wij〉 and the connection probabil-
ity pij = 〈Θ(wij)〉 = 〈w0

ij〉, respectively. Therefore the
reconstructed value 〈X〉 can be calculated in the same
time as that required to calculate the real (if known)
value X(W∗) (i.e. the shortest possible time), by simply
replacing wγ

ij with 〈wγ
ij〉 in the definition of X(W).

E. Enhanced reconstruction of real weighted

networks

We can now apply our general methodology to the re-
construction of real-world networks. We consider again
the assortativity and clustering properties defined in
eqs.(2)-(5). The result is illustrated in fig. 2 for all the
networks shown previously in fig. 1. We clearly see that
our enhanced method achieves a dramatic improvement
over the standard approach. Now most points lie in the
vicinity of the identity, meaning that our method is able
to successfully reconstruct, for each vertex, the struc-
ture of the network two and three steps away from it.
Note that the noisiest property is the binary clustering
coefficient; however if we compare our results with the
naive ones we find that the improvement achieved for
this quantity is perhaps the most significant one.
The above findings completely reverse the conclusions

one would draw from the previous interpretation of the
naive results. First, network reconstruction from purely
local properties is now shown to be possible to a highly
satisfactory level, at least for the networks considered
here. Second, the assortativity and clustering properties
of these networks turn out to be well explained by purely
local, even if augmented, properties. So, there is no need
to invoke non-local mechanisms in order to explain such
properties in these networks. We similarly expect that,
if one considers the MCM as an improved null model to
detect communities or other higher-order patterns, the
result will be dramatically different from what is obtained
by using the WCM prediction in the definition of the
modularity [14].

F. Information-theoretic tests of irreducibility

We now confirm the superiority of our method using
a rigorous goodness-of-fit approach that compares the
performance of the WCM and MCM in reproducing the
whole network. At the same time, this approach will
automatically allow us to test our initial conjecture that
the degrees are irreducible to the strengths. Indeed, both
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FIG. 2. Enhanced network reconstruction from strengths
and degrees (MCM), showing dramatic improvements over
the standard approach. In each panel we compare the recon-
structed (y axis) and real (x axis) value of a node-specific
network property, for all nodes of the following 12 networks:
Office social network (•), Research group social network (•),
Fraternity social network (•), Maspalomas Lagoon food web
(•), Chesapeake Bay food web (•), Crystal River (control)
food web (•), Crystal River food web (•), Michigan Lake food
web (•), Mondego Estuary food web (•), Everglades Marshes
food web (•), Italian Interbank network in year 1999 (•), ag-
gregated World Trade Web in year 2002 (•). Top left: average
nearest neighbour degree (knn

i ). Top right: binary cluster-
ing coefficient (ci). Bottom left: average nearest neighbour
strength (snn

i ). Bottom right: weighted clustering coefficient
(cwi ).

problems can be equivalently stated within a model se-
lection framework, where one is interested in determining
not only which of the two models achieves the best fit to
the data, but also whether the introduction of the degrees
as extra parameters in the MCM is really non-redundant.

To start with, we need to compare the likelihood of
the ordinary WCM with that of MCM. Note that the
WCM can be obtained as a particular case of the MCM
by setting ~x = ~1. The log-likelihood of the WCM is
therefore the reduced function L(~1, ~y) of N variables, and
is maximized by a new vector ~y∗∗ 6= ~y∗ which is also
the solution of eq.(10) with ~x = ~1. The predictions of
the WCM are still obtained as in eqs.(11) and (12), by
replacing x∗

i with 1 and y∗i with y∗∗i in the latter. This is
how the reconstructed properties in Fig.1 were computed.

Now, if we simply compare the maximized likelihoods
of the two reconstruction methods, we trivially obtain
L(~x∗, ~y∗) ≥ L(~1, ~y∗∗) since the MCM includes the WCM
as a particular case. However, information-theoretic cri-
teria exist [29] to assess whether the increased accuracy of
a model with more parameters is a result of over-fitting,
in which case a more parsimonious model should be pre-
ferred. The most popular choices are the Likelihood-ratio

TABLE I. AIC weights and BIC weights for the considered
null models.

Network wAIC

WCM wAIC

MCM

• Office social network [25] 1 0
• Research group social network[25] 1 0
• Fraternity social network [25] 0 1
• Maspalomas Lagoon food web [26] 0 1
• Chesapeake Bay food web [26] 0 1
• Crystal River (control) food web [26] 0 1
• Crystal River food web [26] 0 1
• Michigan Lake food web [26] 0 1
• Mondego Estuary food web [26] 0 1
• Everglades Marshes food web [26] 0 1
• Italian interbank network (1999) [24] 0 1
• World Trade Web (2000)[18] 0 1

test (LRT) and Akaike’s Information Criterion (AIC),
showing that the optimal trade-off between accuracy and
parsimony is achieved by discounting the number of free
parameters from the maximized likelihood [29]. For our
two competing null models,

AICMCM ≡ −2L(~x∗, ~y∗) + 4N (13)

AICWCM ≡ −2L(~1, ~y∗∗) + 2N (14)

and the optimal model is the one minimizing AIC. How-
ever, if the AIC difference is small, the two models will
still be comparable. A correct quantitative criterion is
given by the so-called AIC Weights [29], which in our
case read

wAIC
MCM ≡

e−AICMCM/2

e−AICMCM/2 + e−AICWCM/2
(15)

wAIC
WCM ≡ 1− wAIC

MCM (16)

and quantify the weight of evidence in favour of a model,
i.e. the probability that the model is the best one among
the two.
The AIC weights of the two reconstruction methods

are shown in table I for all networks [32]. Moreover, the
LRT response is the same of AIC, at both 5% and 1%
significance levels. We see that, apart from two social
networks, the enhanced method is always superior to the
naive one, and achieves unit probabilty (within machine
precision) of being the best among the two models. A
closer inspection of the two networks for which the op-
posite result holds reveals that they are (almost) fully
connected. This explains why the specification of the de-
gree sequence, which in this case is close to the almost
fully connected prediction of the WCM, is redundant for
these networks. In such cases, the relevant local con-
straints effectively reduce to the strength sequence, so
the ‘standard’ WCM is preferable. Our method correctly
indentifies this situation. However, whenever the topol-
ogy is nontrivial (as in most real-world networks), the
local constraints are irreducible to the strength sequence
alone and the degrees must be separately specified. We
should therefore expect that, for the vast majority of real-
world networks, the degree sequence is irreducible to the
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strength sequence. In such cases, the inclusion of degrees
is non-redundant, explaining why our method retrieves
significantly more information.

II. CONCLUSIONS

Motivated by recent findings showing that the local
binary properties of weighted networks can be surpris-
ingly more informative than their weighted counterparts,
in this work we have introduced an improved, fast and
unbiased method to reconstruct weighted networks from
the joint set of strengths and degrees. We compared
our enhanced method (MCM) with the simpler one that
naively uses only the strength sequence to reconstruct the
network (WCM). We confirmed an extremely bad agree-
ment between real network properties and their WCM-
reconstructed counterparts, implying that the strength
sequence is in general uninformative about the higher-
order properties of the network. The typical interpreta-
tion of this result is the conclusion that the network is
shaped by non-local mechanisms, irreducible to local for-
mation rules. By contrast, we showed that the MCM pro-
vides accurate reconstructed properties, indicating that
the combination of strengths and degrees is extremely
informative. In other words, the real networks in our
analysis turned out to be typical members of the MCM
ensemble and not of the WCM ensemble. This has im-
portant consequences for critical problems like the recon-

struction of interbank linkages from bank-specific infor-
mation: the analysis of the interbank network shows that
the standard approach is systematically uninformative.

Moreover, information-theoretic criteria confirmed
that the inclusion of the degrees as additional constraints
is non-redundant. An important consequence is that
our MCM should be regarded as a more appropriate,
and still sufficiently parsimonious, null model of weighted
networks with local constraints. The agreement of this
stricter null model with the networks in our sample im-
plies that the higher-order properties considered here are
well explained by local constraints, thus completely in-
verting the conclusions following from the use of the naive
approach.

ACKNOWLEDGMENTS

D.G. acknowledges support from the Dutch Econo-
physics Foundation (Stichting Econophysics, Leiden, the
Netherlands) with funds from beneficiaries of Duyfken
Trading Knowledge BV, Amsterdam, the Netherlands.

G.F. gratefully acknowledges financial support received
by the research project “The international trade net-
work: empirical analyses and theoretical models” funded
by the Italian Ministry of Education, University and Re-
search (Scientific Research Programs of National Rele-
vance 2009).

[1] Barrat, A., Barthlemy, M., & Vespignani, A. (2008). Dy-
namical processes on complex networks. Cambridge Uni-
versity Press.

[2] Park, J., & Newman, M. E. (2004). Statistical mechanics
of networks. Physical Review E, 70(6), 066117.

[3] Squartini, T., & Garlaschelli, D. (2011). Analytical
maximum-likelihood method to detect patterns in real
networks. New Journal of Physics, 13(8), 083001.

[4] Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-
dependent topological properties of the world trade web.
Physical review letters, 93(18), 188701.

[5] Wells, S. (2004). Financial interlinkages in the United
Kingdom’s interbank market and the risk of contagion,
Bank of England Working Paper, No. 230/2004.

[6] Bargigli, L., & Gallegati, M. (2011). Random digraphs
with given expected degree sequences: A model for eco-
nomic networks. Journal of Economic Behavior & Orga-
nization, 78(3), 396-411.

[7] Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M.,
& Gabrielli, A. (2012). Bootstrapping topology and sys-
temic risk of complex network using the fitness model.
arXiv preprint arXiv:1209.6459.

[8] Caldarelli, G., Chessa, A., Pammolli, F., Gabrielli, A.,
& Puliga, M. (2013). Reconstructing a credit network.
Nature Physics, 9(3), 125-126.

[9] Mastromatteo, I., Zarinelli, E., & Marsili, M. (2012). Re-
construction of financial networks for robust estimation
of systemic risk. Journal of Statistical Mechanics: Theory

and Experiment, 2012(03), P03011.
[10] Barrat, A., Barthelemy, M., Pastor-Satorras, R., &

Vespignani, A. (2004). The architecture of complex
weighted networks. Proceedings of the National Academy
of Sciences of the United States of America, 101(11),
3747-3752.

[11] Zlatic, V., Bianconi, G., Dı́az-Guilera, A., Garlaschelli,
D., Rao, F., & Caldarelli, G. (2009). On the rich-club
effect in dense and weighted networks. The European
Physical Journal B, 67(3), 271-275.

[12] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,
Chklovskii, D., & Alon, U. (2002). Network motifs: sim-
ple building blocks of complex networks. Science Signal-
ing, 298(5594), 824.

[13] Squartini, T., & Garlaschelli, D. (2012). Triadic motifs
and dyadic self-organization in the World Trade Network.
In Self-Organizing Systems (pp. 24-35). Springer Berlin
Heidelberg.

[14] Fortunato, S. (2010). Community detection in graphs.
Physics Reports, 486(3), 75-174.

[15] Roberts, E. S., & Coolen, A. C. C. (2012). Unbiased
degree-preserving randomization of directed binary net-
works. Physical Review E, 85(4), 046103.

[16] Fagiolo, G., Squartini, T., & Garlaschelli, D. (2011). Null
models of economic networks: the case of the world trade
web. Journal of Economic Interaction and Coordination,
1-33.

[17] Squartini, T., Fagiolo, G., & Garlaschelli, D. (2011). Ran-



8

domizing world trade. I. A binary network analysis. Phys-
ical Review E, 84(4), 046117.

[18] Squartini, T., Fagiolo, G., & Garlaschelli, D. (2011). Ran-
domizing world trade. II. A weighted network analysis.
Physical Review E, 84(4), 046118.

[19] Fagiolo, G. (2007). Clustering in complex directed net-
works. Physical Review E, 76(2), 026107.
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