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Abstract

The recent crisis has highlighted the crucial role that existing linkages among
banks and financial institutions plays in channeling and amplifying shocks hit-
ting the system. The structure and evolution of such web of linkages can be
fruitfully characterized using concepts borrowed from the theory of (complex)
networks. This paper critically surveys recent theoretical work that exploits
this concept to explain the sources of contagion and systemic risk in finan-
cial markets. We taxonomize existing contributions according to the impact
of network connectivity, bank heterogeneity, existing uncertainty in financial
markets, portfolio composition of the banks. We end with a discussion of
the most important challenges faced by theoretical network-based models of
systemic risk. These include a better understanding of the causal links be-
tween network structure and the likelihood of systemic risk and increasingly
using the empirical knowledge about real-world financial-network structures
to calibrate theoretical models.
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1 Introduction

In the recent years, the issue of resilience of financial systems has occupied center
stage in both theoretical and applied research (Allen and Babus, 2009; Hasman,
2012). After the events that culminated with the bankruptcy of Lehman Brothers
on September 15, 2008, it has become increasingly clear that in order to explain
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phenomena such as contagion and systemic risk in financial markets, new method-
ologies able to address the deep causes of structural vulnerability of the financial
sector were needed (Haldane, 2009; Catanzaro and Buchanan, 2013).

One of the main ideas around which some consensus has been emerging concerns
the foremost importance of the interaction structure among banks and financial
institutions in channeling and amplifying shocks hitting any single agent in the
system (May et al., 2008). In other words, what happens at the aggregate level, i.e.
the extent and depth of contagion, may be strongly related to the topology of the
web of relationships linking banks and financial institutions in the system (Caldarelli
et al., 2013). A better understanding of such a structure should therefore help us in
evaluating systemic risk and predicting the aggregate impact of liquidity shocks.

To address these fundamental issues, network theory becomes central (Schweitzer
et al., 2009). Indeed, the web of relationships between the main actors of the finan-
cial sector (e.g., the interbank market) can be represented as a graph (i.e., a network)
where banks are the nodes and edges represent the existence of credit/lending rela-
tionships between any two parties. The weight of each edge might be proportional
to the magnitude of the exposure between two institutions, while edge directional-
ity may allow us to determine who is the creditor and who is the lender. Network
theory allows one to statistically characterize the structure of such graphs and tax-
onomize them according to their similarity or dissimilarity features (Caldarelli, 2007;
Newman, 2010; Jackson, 2010).

A sensible question therefore regards the way in which different classes of topo-
logical structures map into higher or lower systemic risk and resilience. This paper
surveys recent theoretical work that has been trying to recast this issue in terms
of network connectivity. In other words, we focus on a simple research question:
does a more connected banking network imply a more stable and resilient financial
sector? In particular, we examine simple models that have been trying to explain
the robust-yet-fragile property of the system: i.e. why connections can serve at
the same time as shock-absorbers and shock-amplifiers. One of the main result is
that, when the network is not too much connected, the higher the connectivity of
the system, the higher risk-sharing and diversification. However, above a certain
connectivity threshold, those connections that before served as a mutual insurance
against shocks, can now act as mutual incendiary devices (Haldane, 2009).

We discuss how the relevant literature has tried to explain the various ways in
which bank and market characteristics – such as bank heterogeneity, moral hazard,
imperfect information, changes in asset prices, and capital and liquidity requirements
– interact with network connectivity in determining the stability of the financial
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system. More specifically, we focus on theoretical models that aim to describe and
explain how contagion and default cascades might propagate when a financial system
is hit by a negative shock (e.g. high demand for liquidity or a sudden default of a
bank).1

The survey is structured as follows. In section 2, we introduce some very stylized
theoretical models that explain how, in a minimal setting, connectivity can deter-
mine stability or instability of the financial system. Section 3 focuses on more so-
phisticated and recent contributions that apply tools stemming from network theory
to explain how the robust-yet-fragile property of the system can emerge in interbank
networks. In section 4, we study the role played by heterogeneity in influencing sys-
temic resilience, while in section 5, we analyze what happens when we introduce
some more realistic assumptions regarding the structure of information available to
the agents and the incentives to misbehave that banks might have. We also discuss
how, by endogeneizing asset prices and adding capital and liquidity requirements,
one can affect the probability and extent of contagion (section 6). Finally, section
7 comparatively discusses pros and cons of the main classes of models analyzed in
the survey, and concludes with an appraisal of some of the most relevant research
challenges ahead.

2 Connectivity, Coordination and Network forma-

tion

For a bank, holding interconnections with other banks always implies dealing with
the trade-off between risk sharing and risk of contagion. Indeed, more interconnected
balance sheets imply that a negative shock, say a liquidity shocks, can be more
easily dissipated and absorbed when a bank has multiple counterparties to whom
discharge the negative hit. Additionally, connectivity may induce banks to bail out
each other in order to prevent contagion, therefore avoiding the intervention of a
central planner. However, on the flip side of the argument, a well connected bank
will also have a higher probability of being hit by a negative shock through one of
its neighbors. Therefore, studying the role of the level and form of connectivity in
the interbank credit market is crucial to understand how direct contagion works, i.e.
how an idiosyncratic shock may travel through the network of banks and affect the
balance sheets of multiple agents.

1We do not cover here the empirical studies done on this subject. We refer the interested reader
to the works of Upper (2011) and Hasman (2012) for more details on this stream of (applied)
literature.
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Figure 1: Directed complete graph: a network in which edges are directed and
all nodes are connected to each other.
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Figure 2: Directed cycle graph: a network where edges are directed and nodes
are connected in a way that they form a single cycle (i.e. vertices are connected in
a closed chain).

Early contributions have explored this issue employing three main types of net-
work structures: directed complete graphs, directed cycle graphs and partitioned
graphs. A directed complete graph is a network in which edges are directed and
all nodes are connected to each other (see Figure 1). A directed cycle graph, in-
stead, is a network where edges are directed and nodes are connected in a way that
they form a single cycle (see Figure 2). In other words, some number of vertices are
connected in a closed chain. A partitioned graph is a network where some nodes are
not connected (not even indirectly) with all the other nodes (see Figure 3).

Allen and Gale (2000) seminal work is probably the most well-known contribu-
tion on the analysis of contagion through direct interbank credit linkages. In their
minimal setting, only four banks are present. Each bank is located in a different
region and liquidity shocks are deemed to be negatively correlated across regions.
Different demands for liquidity are caused by the presence – in different fractions
– of different types of consumers. Following Diamond and Dybvig’s preferences
(Diamond and Dybvig, 1983), agents are of two types: early-consumers and late-
consumers. In particular, assuming that only three time periods t ∈ {0, 1, 2} exist,
early-consumers prefer to consume their good at t = 1 while late-consumers prefer
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Figure 3: Directed partitioned graph: a network where some nodes are not
connected (not even indirectly) with all the other nodes.

t = 2. However, at t = 0 their type is not known since the number of the two
types of customers fluctuates randomly across regions albeit the aggregate demand
for liquidity remains constant. In this context, banks cannot perfectly forecast the
total demand for liquidity they will observe at times t = 1 and t = 2. This gen-
erates an incentive for creating an interbank market to exchange deposits at time
t = 0, before banks observe the shocks. Regions with liquidity surpluses will pro-
vide resources to banks in regions with liquidity shortages provided that shocks
are negatively correlated across regions. To study contagion, the authors observe
what might happen in different network configurations when there exists an excess
demand for liquidity at the aggregate level. From a network theory perspective,
they consider directed weighted graphs where all edges have the same weights and
linkages represents cross-holdings of deposits in different regions.2 A non-monotonic
relationship between completeness and incompleteness of markets is found. In par-
ticular, in the case of the directed complete graph, contagion is restricted to only
one region, whereas in the case of the directed cycle graph the crisis extends to all
regions. Finally, in the case of the partitioned graph structure contagion affects only
two out of four regions.

An extension of Allen and Gale’s model is provided in Babus (2005). They study
what happens when banks endogenously decide the amount of deposits they are go-
ing to exchange in the interbank market. Also, liquidity shocks are not necessarily
negatively correlated across regions. They consider the case where there are six
regions (and hence banks) in total and

(
6
3

)
possible states of the world. In each state

of the world, three regions will suffer a high liquidity shock while the other regions
will face low liquidity demands. Additionally, banks are affected by an idiosyncratic
shock that with a small probability will cause them to default. In terms of network

2A weighted network is a graph where links are given positive weights that represent the
strength of bilateral interactions. In weighted directed network, the weight of the directed link
i→ j may be different from the weight of the link j → i.
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Figure 4: Undirected k-regular graph (example with k = 2): a network where
all nodes have the same degree k.

structures, they analyze what happens only in undirected k-regular weighted graphs,
that is in networks where all nodes have the same degree k (see Figure 4), a link
exists if two banks exchange deposits at time t = 0 and edge weights – represent-
ing the amount of deposits exchanged – are endogenously chosen.3 They assume
incomplete information regarding the network configuration. Therefore, when the
network is incomplete, there would be two sources of uncertainty. First, banks will
not know how many of their neighbors are affected by high liquidity demand shocks.
Second, they will not know how many links there exist connecting them with banks
of different types, that is with banks that face a liquidity shock different than the
one they observe. Instead, in a complete graph, the only uncertainty would regard
the types of one’s own neighbors. The main result is that banks will allocate their
deposits to minimize the loss of value they will incur when one of theirs neighbors is
liquidated assuming that the worst case scenario occurs. Additionally, in incomplete
networks, the allocation which is ex-ante optimal is found to be ex-post sub-optimal
for any realization of the state of the world with except to the worst case scenario.
On the contrary, in a complete network, ex-ante and ex-post optimality coincide
since the worst case scenario is realized for any distribution of the liquidity shocks.
As a consequence, an incomplete network is not only more risky in terms of systemic
risk – as already found in Allen and Gale (2000) – but decisions made by banks in
terms of their exposures are (ex-post) sub-optimal.

Another interesting extension of the basic framework of Allen and Gale (2000)
is instead explored in Babus (2007). In this model, the link formation process is
endogeneized and the network is an undirected binary graph where an edge exists
only when two banks decide to exchange deposits at time t = 0. The assumptions are
the same as in the previous model, with just a few differences: there are 2n regions

3In a directed network, the in-degree (respectively, out-degree) of a node is defined as the
number of incoming (respectively, outcoming) links of a given node. The degree of a node is
simply the sum of its in-degree and out-degree, i.e. the total number of links of a node.
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Figure 5: Complete bipartite graph: a network in which there are two types of
nodes and each node is connected to all node of type different than its own. Black
edges are given, red edges are determined endogenously

(and hence banks), instead of just six regions (and banks) and liquidity shocks are
negatively correlated between regions in a predetermined way. As a consequence,
there is no uncertainty caused by the absence of a precise correlation structure of
the shocks. In order to simplify the model, the author also assumes that the network
formation game is played only between banks of the same type. Instead, banks of
different types are assumed to be connected as a complete bipartite graph. That is,
each bank is connected to all banks of type different than its own (see Figure 5).
Given the information about the correlation structure of the shocks, banks can fully
insure against liquidity fluctuations and therefore they need only to prevent losses
through contagion. Each bank will choose a network structure where the loss of
value they will incur on their deposits when one of theirs neighbors is liquidated
is minimized and the loss should not be higher than the maximum amount of the
illiquid asset each bank can liquidate without going bankrupt. If that were not the
case, each bank would have been better off by staying out of the interbank market.
The limit loss is identical for each bank and it is independent of the number of links
a bank has. Instead, it depends on the average fraction of early consumers present
in the system, which in turn depends on the probabilities of observing early and
late consumers in the population. By using the notion of bilateral equilibrium (as
introduced in Goyal and Vega-Redondo, 2007), the author shows that the network
structures which emerge in equilibrium are very likely to support systemic stability,
with a probability of contagion that goes to zero as the number of banks increases.
Furthermore, the completeness of the graph is just a sufficient condition for stability,
not a necessary one. Indeed, most of the networks turn out to be incomplete.

In order to explore the role played by the type of uncertainty in driving the
main results, Freixas et al. (2000) use a similar setting as in Allen and Gale (2000)
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but assume that the source of uncertainty is not when agents consume but where
they are going to consume. Consumers have different preferences with respect to
where they are going to be when it is time to consume. There are two types of
risk-neutral consumers: travelers who consume in other locations and non-travelers
who consume only in their home location. Travelers, if an interbank market is
not in place, will withdraw their money at period t = 1 – when they discover
their type – and carry it to another region. In essence, in this setting, we have a
space-coordination problem, not a time-coordination problem as in Allen and Gale
(2000). In this case, banks can decide to create credit lines that give the right to
a travel customer coming from, for instance, region i to withdraw when she is in
another region j, the place where she is planning to consume. Once again, from
a network theory standpoint, we are dealing with directed weighted graphs where
linkages represent cross-holdings of deposits in different regions. Such credit lines are
the mechanism through which contagion can be transmitted in case a bank is not-
solvent. Insolvency is caused by the fact that banks also invest in risky projects that
may provide a cash flow which is not sufficient to repay the contractual obligation
they have with their customers. Therefore, a negative exogenous shock on the risky
investments may lead to insolvency and contagion. Three possible configurations of
the interbank market are studied: the credit chain interbank funding case (i.e. a
directed cycle graph), where consumers are located around a circle with travelers
moving to their clockwise adjacent location (as in Salop’s model, see Salop, 1979);
the diversified lending case (i.e. a directed complete graph), where travelers spread
uniformly in all locations and the autarkic case (i.e. all nodes are isolated vertices),
when banks do not have open credit lines with banks in other regions. Notice that
credit flows will be in the direction opposite to agents’ movements. Considering what
would happen under the different configurations it emerges that, in the diversified
case, an insolvent bank is able to share more of its losses with its neighbors. As a
consequence, interbank connections allow the system to be more resilient to defaults.
However, on the flip side, this also means that market discipline is weakened in
the diversified case compared to the credit chain network case since an insolent
bank might be able to survive. In the credit chain network, instead, a smaller loss
can trigger contagion with respect to what would happen in the diversified case.
Additionally, the diversified lending configuration is always stable when the number
of banks is large enough, while additional nodes have no impact on the stability
of the credit chain structure. Lastly, the autarkic configuration is proven to be
the safest option. However, in autarky, banks will invest fewer money on the risky
assets and efficiency would be lower compared to having open credit lines with banks.

8



A

B

CD

E

Figure 6: Undirected complete graph: a fully linked network.

Therefore, there is a trade-off between having a risky interbank credit market and
a safe autarkic payment mechanism that foregoes investment opportunities.

Another possible source of uncertainty concerns the initial endowment of money
that each bank receives. In order to investigate whether this may have an effect
in the trade-off that exists between risk-sharing and risk of contagion in the design
of an optimal interbank network, Leitner (2005) assumes that at t = 0 each bank
needs to have an endowment of at least one unit of good in order to be able to
invest. Otherwise, it would be impossible to invest in the project. Therefore, in
this context, we have an undirected binary graph where a link exists between two
agents when they can transfer endowments among themselves and a negative liq-
uidity shock would mean observing an endowment smaller than one. Additionally,
the project itself will produce a cash flow only if the investing bank and all its
neighbors are investing one unit of good in the project. As a consequence, being
part of an interbank market has two effects: on one side, a bank hit by a negative
liquidity shock can use its connections to collect enough resources to allow itself to
invest in the project; on the other side, a negative shock affecting just one neigh-
bor, preventing it from investing in the project, will also cause all its neighbors to
default. It also means that when agents are not linked together, only the one who
realizes high endowments will invest and they will not have any incentive in helping
unfortunate banks. Instead, when a connection is indeed present, the same agent
will help their neighbors, otherwise all projects will fail by contagion. Therefore,
an incentive will exist for safe banks to bail out troubled banks, without any action
from the controlling authority. In order to make the constraints more binding, the
author also assumes that banks cannot commit ex-ante to: (i) pay out of their ini-
tial endowments; (ii) pay out of their projects’ cash flows; and (iii) invest in their
projects. That is, we are in the extreme situation where agents cannot commit to
pay anything and where they will invest on their projects only if they can succeed
(i.e. if their connected neighbors are investing too). The result is that even linkages
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that create the threat of contagion can be optimal. Coordination, in this case, will
be achieved through a central planner who proposes an optimal allocation of the
endowments and an optimal investments vector to the banks. Then, agents decide
whether to accept or reject the proposal which would be executed only if all agents
accept. Otherwise, if at least one of them refuses, no transfers are made and agents
remain in autarky. The results they obtain are that: ex-ante, a fully linked network
(i.e. undirected complete graph, see Figure 6) Pareto dominates an unlinked net-
work (i.e. all nodes are isolated) if the probability that – by pooling all available
resources together – all projects could be financed is higher than the probability that
a generic bank has to be able to finance a project on its own. However, ex-post, an
unlinked network is better than a fully linked network if and only if the realization
of the endowments is such that their sum is smaller than the number of banks but
there exists at least one agent with endowment higher than one. The reason being
that in a fully linked network no investments will take place, while in the unlinked
network at least the agent with endowment greater than one will invest. Moreover,
also intermediate network structures – i.e. partitioned graphs – are possible and
the probability of adding an additional bank to an existing group is found to de-
pend non-monotonically on the probability of observing negative liquidity shocks.
It is possible that when the probability of a shock increases, the disadvantage of
adding an agent actually decreases. Lastly, when endowments are identically and
independently distributed, it is always the case that for a sufficiently large number
of banks, the system converges to optimality with a fully linked network whenever
the expected individual amount available for investments is greater than one.

Glasserman and Young (2015) analyze contagion using a full-fledged shock dis-
tribution and they estimate how much of the losses are directly linked to network
connectivity by comparing two different scenarios: in one case the financial system
is a connected system; in the alternative scenario all connections among financial
institutions had been removed. The main result of this work is that the authors are
able to derive useful bounds on the financial systemâĂŹs susceptibility to contagion
without knowing the exact details of the system’s topology. The starting point con-
sists in taking the balance sheets of individual banks as a given and then estimate
how balance sheets’ characteristics contribute to exacerbate systemic risk after the
initial shocks to asset values. For example, by determining whether network shocks
are more important than (possibly external) shocks to asset values in increasing the
probability of default of a specific node. In Glasserman and Young (2015) model
the agents are: the investors (i.e. the financial institutions which are the nodes of
the network), households and non-financial firms. Financial institutions can lend
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and borrow to all the agents. Therefore, the connectivity exists within the inter-
bank market but also between investors and outside agents. Financial contagion is
then studied in two different configurations: one in which links can exists among all
agents, and another in which links exist only with agents outside the financial sector
(i.e. a bank can lend/borrow money only to/from households and/or non-financial
firms). The same shock distributions are then applied to both systems. As a result,
the authors can quantify the role of network connections in determining the num-
ber of defaults in the system by comparing the outcomes in the two configurations.
They measure what proportion of the losses observed after a systemic shock can
be attributed to connections between institutions as opposed to characteristics of
individual banks. The basic setup of the model is the same as in Eisenberg and
Noe (2001) and it comprises three main components: a set of N nodes (i.e. the
banks/investors), an N × N liabilities matrix P where pij represents the payment
due by node i to node j, and a vector c where ci represents the value of outside assets
held by node i in addition to its claims on other nodes in the network. System risk is
studied along two different dimensions: probability of contagion, i.e. the probability
that a given set of nodes D will default after some initial shocks; and amplification
of contagion, i.e. the value of the losses occurred conditional on having observed
D defaults. Glasserman and Young (2015) find that direct losses are not the main
source of contagion. Instead, in order to have systemic-wide default cascades, the
network structure is crucial in amplifying the effects of an initial counter-party loss.
That is, indirect contagion is frequently more important than direct contagion. Fur-
thermore, contagion is always weak, irrespective of the structure of the interbank
network, if heterogeneity is not present. In addition, the authors find that the total
expected losses in a financial system relative to the total expected losses in an other-
wise equivalent system of isolated nodes – regardless of the network structure – are
bounded by the maximum financial connectivity over all nodes in the network. The
authors are able to estimate what are the bounds of the amplification effects given
a measure of financial connectivity. Network topology becomes more important for
both contagion (direct losses) and amplification (indirect losses) once bankruptcy
costs and marked-to-market reductions in credit quality are introduced: bankruptcy
costs steepen the losses at defaulted nodes, therefore increasing the likelihood that
defaults will spread to other nodes; instead, a reduction in credit quality deteriorates
the asset values of a node in advance of a default event, with the consequence that
a system-wide default cascade can be triggered solely by a loss of confidence rather
than an actual default.
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3 Connectivity and Phase Transitions

In order to explain the robust-yet-fragile tendency that the financial systems ex-
hibit, a good starting point is to develop simple but formal (analytical) models that
can explain phase transitions in contagion occurring when connectivity and other
properties of the network vary.

A perfect example of such an approach is the model in Gai and Kapadia (2010).
The authors study how the probability and potential impact of contagion is influ-
enced by aggregate and idiosyncratic shocks, network topology and liquidity. The
framework employed adopts techniques and concepts coming from the literature of
complex networks (e.g. Callaway et al., 2000; Newman et al., 2001; Strogatz, 2001;
Watts, 2002; Newman, 2003) and uses numerical simulations to illustrate and clarify
the analytical results obtained. The authors find that the financial system exhibits
a robust-yet-fragile tendency. Even when the probability of contagion is very low, its
effects can have widespread consequences. Higher connectivity reduces the probabil-
ity of default when contagion has not started yet. However, when contagion begins,
higher connectivity increases the probability of having large default cascades.

The model portrays N financial intermediaries (i.e. banks), randomly linked
together in a directed weighted network where link weights represent interbank li-
abilities. Balance sheets of banks are formally modeled and they include, for a
generic bank i, interbank assets (denoted by AIBi ) and liabilities (LIBi ), illiquid
assets (AMi , e.g. mortgages) and deposits (Di, exogenously determined). As an
additional simplifying assumption, total interbank asset positions are assumed to
be evenly distributed among all incoming links (i.e. risk sharing is maximized). A
bank is solvent if and only if:

(1− φ)AIBi − qAMi − LIBi −Di > 0, (1)

where φ is the fraction of banks with obligations to i that have defaulted and q is
the resale price of the illiquid asset (with q ∈ (0, 1]). Furthermore, a zero recovery
assumption is made: when a bank fails, all its interbank assets are lost.

Contagion is modeled by randomly defaulting a node in the network and then
observing whether a chain reaction starts. Initially, all banks are solvent and de-
faults can spread only if the banks neighboring a defaulted node are vulnerable. By
definition, a bank is vulnerable whenever the default of one of its neighbors causes
a loss to its balance sheet such that the solvency condition is no more met. Vul-
nerability crucially depends on the capital buffer of the bank, which is defined as
Ki ≡ AIBi + AMi − LIBi −Di, and on the in-degree of the node.
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Define a vulnerable cluster as the set of banks reached following an outgoing link
from a vulnerable bank to its end and then to every other vulnerable bank reachable
from that end. Phase transitions occur when the average size of the vulnerable cluster
diverges. In particular, phase transitions happen only for intermediate values of
average degree and when the initial defaulting bank is within one degree of separation
of the vulnerable cluster. Let z̄ be the upper bound for the node-average degree
z when the phase transition still occurs and z be the lower bound. Then, the
probability of contagion (i.e. the probability of the average vulnerable cluster size
to diverge) is found to depend non-monotonically in z ∈ [z, z̄]: for low values of
connectivity, the higher z, the higher is the probability of contagion and larger the
size of the vulnerable component, i.e. risk-spreading effects prevail. For high values
of connectivity, instead, the risk-sharing effect prevails. Indeed, when z is too low
(i.e. z < z), the network is insufficiently connected to spread contagion. On the
contrary, when z is too high (i.e. z > z̄), the probability that a bank is vulnerable is
too small and contagion cannot spread since there are too many safe banks. When
z is very close to z̄, the system exhibits a robust-yet-fragile tendency, with contagion
occurring rarely but spreading very widely when it does take place. In addition,
once the assumption on the uniform distribution of incoming links is withdrawn,
the authors show that their main results still hold, with the only difference that
the window-of-contagion becomes wider since an uneven distribution of exposures
makes banks more vulnerable to the default of some of their counterparties for higher
values of z than it would have been otherwise. Finally, numerical simulations show
that lowering capital buffers both widens the contagion window and increases the
probability of contagion for fixed values of z. Also, when liquidity risk is added –
i.e. the price of the illiquid asset is allowed to vary – both contagion window [z, z̄]

and the extent of contagion widen.
In Gai and Kapadia (2010) model, shocks hitting the system were homogeneous

in size. However, intuition suggests that another possible source of phase transitions
in contagion models can come from the size of the shock. In order to address this
point, Acemoglu et al. (2013) use a model where the size of the shock is linked to
the total excess liquidity of the system. They employ a framework where there are
again three time periods and N financial institutions (i.e. banks). Banks observe an
initial random endowment e and they can invest in a project that requires e units
of capital. However, agents cannot use their own financial resources to invest but
they need to borrow them. Furthermore, lending and borrowing opportunities are
constrained in the sense that a generic bank i can borrow only a given maximum
amount of money from a bank j and this relationship does not need to be symmetric.
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The entire set of such constraints is described by a directed weighted graph where
each edge weight represents this opportunity constraint. Borrowing and lending
decisions are endogenously determined by the agents and a bank can also decide to
borrow from outside financiers. Therefore, the existence of a link does not imply
that a lending agreement is indeed active.

The project can be liquidated prematurely at a loss or kept until maturity to
t = 2. Once a bank invests in a project, it will also be accountable for an additional
external obligation that must be paid with priority over the other obligations. Sta-
bility and resilience of the financial system are defined respectively as the inverse of
the expected number of defaults and the inverse of the maximum number of possi-
ble defaults. In terms of network structures, they study what happens in regular a
directed weighted complete graph, in a regular directed weighted cycle graph and in
a γ-convex combination of the two. That is, a graph where the resulting weighted
adjacency matrix can be obtained as a linear combination of the complete and cycle
graphs. As far as the size of the shocks are concerned, they consider two cases. One
in which a small shock hits the system and one in which a large shock hits the sys-
tem. A shock is considered small if its size is smaller than the total excess liquidity
present in the system.4 When a small shock hits the system, the cycle graph turns
out to be the least resilient and least stable network, whereas the complete graph is
the most resilient and most stable. A convex combination of the two becomes less
stable and less resilient as γ increases (the higher the γ, the closer the graph is to the
cycle network configuration). Conversely, when the shock is large, the complete and
cycle graphs are the least stable and least resilient financial networks. The authors
also find that for small values of δ in any δ-connected financial network5 the system
is strictly more stable and resilient than the cycle and complete configurations.

Such a phase transition occurs because two different shock absorbers interplay
when negative liquidity shocks hit the system. The first shock absorber is excess
liquidity of non-distressed banks, i.e. a negative shock is attenuated once it reaches
banks with excess liquidity. The second absorber concerns the fact that, in weakly
connected graphs (as the ones implied by the δ-connected networks), senior creditors
can be forced to bear a greater proportion of losses, limiting the spread of contagion.
As a consequence, when a shock is large – i.e. the total excess liquidity is insufficient

4That is, smaller than the product of the number of banks present in the model times the
difference between the cash flows obtained from the investments and the amount of the obligations
that needed to be paid which are associated with the investment in the project. Instead, if the
opposite holds, the shock is considered to be large.

5A financial network is defined to be δ-connected if it contains a collection of banks M ⊂ N
for which the total obligations of banks outside M to any bank in M is at most δ ≥ 0 and the
total obligations of banks in M to any bank outside of M is no more than δ.
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to contain it – the second mechanism of absorption comes into play and creates the
phase transition.

Furthermore, the authors also consider what would happen if instead of having
a single shock, multiple (identical) shocks hit the network. In such a case, a shock is
defined to be small if its size is lower than total excess liquidity divided by the number
of shocks and it is considered large otherwise. With multiple shocks, equilibrium
regimes also depend on two threshold values for the total interbank liabilities and
claims: a lower bound ε > 0 and an upper bound ε̄ > ε. If shocks are small and
interbank liabilities and claims are above ε̄, the complete graph would be the most
stable and resilient while the cycle graph would be the least stable and resilient.
If shocks are large, when interbank liabilities and claims are above ε̄ complete and
cycle graphs would be the least stable and resilient, while the δ-connected system
would be strictly more stable than the complete and cycle cases when δ is small.
Conversely, when interbank liabilities and claims are above ε but below ε̄, the cycle
graph would be the most stable and resilient, while the complete one would be the
least stable and resilient. This last (new) result suggests that – in such specific
parameterization – claims of senior creditors will be used more effectively as a shock
absorption mechanism in the cycle graph than in the complete graph.

Finally, the model allows for an investigation of the consequences of endogeneiz-
ing lending decisions. This is done by permitting agents to determine the structure
and terms of their bilateral interbank agreements. As far as efficiency is concerned,
results suggest that banks are not able to internalize the effects that their lending
decisions have on agents different than their immediate creditors. Therefore, since
such financial network externality cannot be internalized by banks, optimal graphs
are either too sparsely or too densely connected as compared to what would have
been socially efficient. In addition, a second form of phase transition takes place.
When long-term returns from the investment project are made partially pledgeable
above a given threshold, there are no network effects on contagion since the excess
liquidity within the system can be efficiently reallocated to distressed banks. There-
fore, regardless of the network structure of the financial system, no defaults will
occur.

In a following contribution, Gai et al. (2011) show how tipping points (i.e. phase
transitions) can exist also in a model that studies the resilience of the financial
system to liquidity shocks. In particular, the model used still portrays N banks
randomly linked together in a directed weighted network. However, the composition
of the balance sheets is now different. The assets side still includes illiquid assets
(now called fixed assets), (unsecured) interbank assets, and fully liquid assets (ALi )
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but – in addition – it also comprises assets that can be used as collateral in sale-and-
repurchase-agreement (i.e. a repo) transactions (ACi ) and reverse repo assets (i.e.
collateralized lending, ARRi ). On the liability side, along with deposits, interbank
liabilities and capital we also have repo liabilities (i.e. borrowing secured with
collateral, LRi ).

Repo financing can be obtained either using fully liquid assets as collateral (with
no haircut) or by using collateral assets (with haircut). In particular, the maximum
amount that can be borrowed when using only collateral assets is equal to (1− h−
hi)A

C
i where h is an aggregate haircut, while hi is a bank-specific haircut that might

reflect the idiosyncratic probability of default of bank i. Lastly, illiquid assets and
interbank assets cannot be used as collateral. The maximum amount that can be
borrowed when using rehypothecated reverse repo assets is equal to [(1−h−hi)/(1−
h)]ARRi since reverse repo assets can be used in another repo transaction.

Contagion is triggered exogenously either via bank-specific liquidity shocks, or
via a shock to the aggregate (i.e. h) or the idiosyncratic (i.e. hi) haircut.The overall
liquidity condition implied by this model writes as:

ALi + (1− h− hi)ACi +
(1− h− hi)

(1− h)
ARRi + LNi − LRi − λµiLIBi − εi > 0, (2)

where εi is the liquidity shock suffered by the bank, LNi is the amount of new
interbank borrowing bank i can raise when a liquidity shock occurs, and µi is the
share of bank i’s neighbors that decide to withdrawn a fraction λ of liquidity.

After making some simplifying assumption on the specification of some parame-
ters of the model, the authors show how a tipping point condition can be analytically
derived. In particular, by assuming that each bank is connected to exactly z neigh-
bors (both as lender and as borrower), idiosyncratic haircut shocks are set to zero
(i.e. hi = εi = 0), banks have all the same balance sheet, full withdrawn is assumed
in case of liquidity hoarding (λ = 1), and any unsecured interbank lending can be
raised (i.e. LNi ), then contagion will propagate if and only if:

z <
AIB

AL + (1− h)AC + ARR − LR
. (3)

Put it differently, provided that there is enough connectivity to transmit the shock
(i.e. z ≥ 1), the validity of the previous condition means that just one initial case
of liquidity hoarding is sufficient to let the contagion process cascade to the entire
financial system and hence cause a liquidity crises.

Using numerical simulations, Gai et al. (2011) also show how different network

16



configurations, types of shocks and policy experiments can alter the probability
of observing systemic liquidity crises. First, they consider a scenario where the
interbank network is generated using an Erdős-Rényi model (Erdős and Rényi, 1960)
and the liquidity shock originates by assuming that a single bank receives such a large
adverse idiosyncratic haircut shock (i.e. hi = εi >> 0) that forces the bank to start
hoarding liquidity. In such scenario, the results are in good accordance with the ones
predicted by the analytical (simplified version) of the model: probability of contagion
first increases and than decreases, is a non-monotonic way, when connectivity is
varied and – whenever contagion breaks out – it spreads throughout the entire
system. Second, they test what would happen when the aggregate haircut is raised
(i.e. h = h + ε). In this case, the tipping-point threshold increases: i.e. a much
greater level of connectivity (aka level diversification of funding) will be needed
to avoid contagion. Therefore, bank runs become more probable than in the first
scenario. Third, the authors alter the topology of the interbank market, using a
network model that generates a fat-tailed distribution of degrees to represent a
more concentrated interbank market than the one analyzed in the previous two
scenarios. The results are that: contagion becomes less probable and less severe
when levels of connectivity are low but it can still occur at much higher levels of
connectivity (although chances are rare). Fourth, when shocks are targeted to the
most-connected bank, contagion is shown to realize more frequently, especially when
the network is scale-free. In such cases, systemic liquidity risk is almost always a
certain event. Lastly, the authors show that whenever market activity increases
(i.e. the share of the interbank lending increases), also the likelihood of contagion
increases. Furthermore, when the aggregate haircut is allowed to follow a cyclic
behavior as it would happen during the evolution of a crisis, the system can suddenly
become more vulnerable and more prone to collapse.

From a policy perspective, Gai et al. (2011) demonstrate how imposing targeted
liquidity requirements is more effective than increasing them for the same amount
for all the agents; despite the fact that tougher liquidity requirements make the
system more stable all the same. Furthermore, they also show that setting time-
varying requirements (i.e. counter-cyclical liquidity requirements) can offset the
effects of having cyclic changes in aggregate haircuts. Lastly, they argue that a policy
promoting transparency could help reduce systemic risk by reducing the strength of
the withdraw that each bank execute when it is in need of liquidity (i.e. a policy
that reduces the value of parameter λ, as defined before).

So far, we have considered only models that specifically include interbank lending
as the main mechanism of contagion.Instead, Caccioli et al. (2014) show how phase
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transitions can appear also when only an indirect channel of contagion is present:
i.e. price changes on common assets. In other words, the authors show how overlap-
ping portfolios can be a main cause of financial contagion and systemic risk. They
explain how leverage, market crowding, level of diversification, and market impact
determines the stability (or lack of thereof) of the financial system.

In this case, the financial system is represented as a bipartite graph where there
are N nodes of type one, representing the banks; and M nodes of type two, rep-
resenting the investment assets. An investment from bank i to asset j is denoted
with a link connecting node i of the nodes of type one with node aj of the nodes
of type two. The degree of bank i can be interpreted as the level of diversification
of the bank (µu). Instead, the degree of an asset j corresponds to the number of
banks that hold that asset in their portfolios. A crowding parameter n is introduced
to measure the level of portfolio overlapping and it is defined as the ratio of the
number of banks over the number of assets present in the market. The larger the
value of n, higher the level of portfolio overlapping between banks.

The assets side of the balance sheet of a bank comprises: fully liquid assets (i.e.
cash, Ci) and the value of the assets portfolio Ati:

Ati =
M∑
j=1

Qijp
t
j,

where t denotes the time period, Qij is the amount of shares of asset j held by bank
i (and this quantity does not vary over time) and ptj is the price of asset j at time t.
Then, if we denote with Li the amount of total liabilities held by bank i and with
E0
i its capital, then a generic bank i remains solvent if and only if:

M∑
j=1

Qijp
t
j + Ci ≥ Li,

or

A0
i −

M∑
j=1

Qijp
t
j + Ci ≤ E0

i .

We can also rewrite the solvency condition in terms of the initial leverage of bank
i, where leverage is defined by λi = A0

i /E
0
i :

λi ≤
∑M

j=1Qijp
t
j

E0
i

+ 1.
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In addition, the authors also assume that whenever a bank becomes insolvent, it
liquidates all its portfolio. As a consequence, prices of the fire sold assets will drop.
As a result, contagion will spread to all the banks that have investment strategies
similar to the one of the failing bank. This occurs because portfolios are assumed
to be marked-to-market.

In this model, probability of contagion is defined as the probability that a global
cascade of failures occurs after an initial negative shock. A global cascade is defined
as a cascade that affects a finite fraction of the banks present in the system once
the system is large. That is, once we let N,M → ∞ while keeping µu and n =

N/M finite. From another point of view, this also means that the authors want to
understand how likely it is to observe a large cascade of defaults in cases when the
initial shock had an infinitesimal initial impact on the state of the system. Extent
of contagion, instead, is defined as the average size of the cascade once one has
occurred.

Using a generalization of the Galton-Watson process (Watson and Galton, 1875;
Mode, 1971), Caccioli et al. (2014) provide an analytical framework that can be
used to compute the size of the default cascade after the bankruptcy of a bank.
The failing bank is treated as the progenitor of the branching process, while the
banks that fail at the next time period are the offsprings. Furthermore, as far
as the paralellism with the generalized Galton-Walton process is concerned, banks
with different properties are considered as individuals of different types. Using this
analytical framework, the authors are able to provide a sufficient but not necessary
condition for global cascades to occur. In particular, assuming that banks’ portfolios
and market impact function are known, a so-called stability matrix can be computed
which can then be used to check whether or not – after an initial shock – contagion
propagates.

In the following, we summarize their main conclusions. As far as phase transi-
tions are concerned, similar to what was observed in Gai and Kapadia (2010); Gai
et al. (2011), a contagion window exists. In particular, two different phase transi-
tions – µu and µu – exist with respect to the level of connectivity in the bipartite
graph (i.e. µu, the level of portfolio diversification). Whenever the initial shock is a
devaluation of one particular asset6 and µu is lower than µu or greater than µu, no
global cascades can occur because for sufficiently low levels of µu, there is not enough
connectivity in the market to allow for the negative shock to propagate. On the con-
trary, for sufficiently high levels of µu, the level of diversification is so high that the

6This type of shock mimics a situation in which the event that triggers contagion is the presence
of a so-called toxic asset, i.e. an asset whose value is strongly devalued at time t = 0.
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strength of the initial shock quickly dies out, without causing a systemic collapse. A
robust-yet-fragile behavior is found for values of diversification very close (but lower)
than µu: i.e. global cascades are rare but when they do happen, their extent is as
large as (almost) the entire financial system. In addition, the authors show that the
position of the contagion window shits to the left whenever the crowding parameter
n is increase. As a consequence, contagion probability is a non-monotonic function
of n since – depending on the level of diversification of the system – a variation of
n can lead to either an increase or a decrease in the likelihood of a systemic crisis.

In terms of types of shocks, the authors also show that when a random default
of a bank is imposed upon the system, instead of the devaluation of an asset, the
underlying dynamics of contagion are not altered. That is, all the previous findings
remain unchanged. The only observed difference is a change in the value of the
probability of contagion. They also demonstrate that in financial systems where the
leverage is kept low, systemic stability is guaranteed. Put it differently, there exists
a critical value of λ below which global cascades cannot occur and higher is the
level of diversification of the system, higher this critical value would be. Lastly, in a
simple extension of the model, Caccioli et al. (2014) also argue that allowing banks
to liquidate assets before being found insolvent – for example by allowing them to
keep their leverage constant after some assets have been devalued – only worsen the
resilience of the financial system since it creates a positive feedback mechanism that
exacerbate contagion.

So far, we have learnt that phase transitions may be strictly linked, in non
trivial ways, to average properties of the whole network, i.e. average degree. This
seems also to imply that understanding contagion effects on networks should require
monitoring the detailed structure of the entire network and its evolution over time.
Amini et al. (2012) challenge this idea. In particular, they observe how a phase
transition occurs whenever the magnitude of the shock is above a certain threshold
which is in turn determined by the connectivity structure of the financial system.

As in the other cases, the interbank market is modeled as a weighted directed
graph where each node represents a bank and link weights are interbank assets
and liabilities. Banks have stylized balance sheets that include interbank assets,
interbank liabilities and other forms of assets and liabilities (e.g. deposits). The
net worth of a bank, as given by its capital, represents the capacity of each bank
to withstand a loss before becoming insolvent. The capital ratio is defined as the
ratio between capital and interbank assets (not total assets). In this framework, the
in-degree of a bank would correspond to the number of creditors and the out-degree
to the number of debtors. Every directed link represents an exposure between two
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institutions. Furthermore, a link is called contagious if it represents an exposure
that is larger than the capital of the lending bank.

They also introduce a resilience measure that is a function of the distributions
of in- and out-degrees and on the proportion of contagious links in the network.
When the resilience measure is positive, as long as the initial fraction of defaults is
below a certain threshold, no cascades will occur. Instead, when such measure is
negative, with high probability any node belonging to a connected set that repre-
sents a positive fraction of the financial system can trigger the collapse of the whole
system. These results hold without assuming a specific probabilistic model for the
degree sequence of the nodes or the balance sheet data of banks as long as some
mild assumptions are satisfied. Put it differently, they show that positivity of the
resilience measure is a necessary condition for avoiding the collapse of the entire
financial system. Shocks are applied to banks’ balance sheets by exogenously reduc-
ing their external assets by a certain fraction. Then, they study how the default of
a given share of nodes affects the resilience and stability of the financial network.
They show that there exists a threshold about the size of the negative shock above
which the network becomes unstable and vulnerable to contagion. That is, there
is a phase transition that indicates the maximal tolerance for stress of a network.
Put it differently, if the resilience measure is positive, then as the initial fraction of
defaults converges to zero, also the probability of having contagion does. However, if
the resilience measure is positive, contagious links percolate and we can have global
cascades for any arbitrarily small fraction of initial defaults. As a consequence, from
a policy point of view, the resilience measure suggests that it is important to monitor
only the subgraph of the contagious links. Therefore, it is crucial to monitor capital
adequacy of institutions with respect to their largest exposures, i.e. the ones that
can cause a bank to fail entirely. This also implies that there is no need to monitor
the entire network.

4 Homogeneity vs Heterogeneity

In the foregoing sections, we have discussed a number of models that are mainly con-
cerned with the structure of the financial network, but that make fairly simplifying
assumptions on the characteristics of banks. However, intuition suggests that bank
intrinsic characteristics may play a key role in determining the stability of the in-
terbank market. In this section, we shall therefore analyze how bank heterogeneity,
along different dimensions, influences the resilience and the stability of the financial
system.
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A first dimension along which bank heterogeneity determines the level of sys-
temic risk concerns their size. This issue is studied in Iori et al. (2006), who build
a model where bank’s primary purpose is to invest consumers’ deposits. Resources
invested will remain illiquid until the investments reach maturity and investment
opportunities are stochastic and bank-specific. In the system there are Nt banks
at each time-step t. Each bank observes stochastic liquidity shocks that can cause
them to be short in liquidity and for this reason banks form an interbank lending
market. The linkages between banks are described by the binary undirected graph
randomly generated from an Erdős-Rényi model (Erdős and Rényi, 1960) with pa-
rameters (p,Nt) (p is the probability that a link exists). As a result of the random
shocks to liquidity, at any t, each bank would be either in a borrowing state, i.e. it
has a liquidity deficit, or in a lending state, i.e. it has a surplus of liquidity. Then,
during the simulation, each borrowing bank will contact, at random, different neigh-
boring lending banks in order to receive enough credit that will allow the bank to
pay off its obligations, either towards other banks (i.e. interest rates from previous
loans) or towards its depositors (i.e. interests on deposits). For each transaction,
the amount exchanged between banks is equal to the minimum between demand
and supply. Also, a borrowing bank does not receive the liquidity requested until it
has lined up enough credit – possibly from many counter-parties – to ensure that
it will not fail during the current period. The matching procedure iterates until no
further trades are available. Then, banks left with negative holdings of liquidity or
that fall short of their remaining debt obligations default. Defaulted institutions are
removed from the system and their assets are distributed to depositors and creditors.
As mentioned, banks can be either homogeneous or heterogeneous in their size. In
the former case, they all have the same amount of deposits at the beginning of the
simulations; while in the latter initial deposits are normally distributed. Fluctua-
tions of deposits during the simulations are modeled in three different ways. In the
first case, deposits vary proportionally to the square root of each bank’s size (model
A); in the second case, deposits vary proportionally to banks mean size (model B);
and in the third case, banks face identical deposits distributions but differ by a scale
factor in their investment opportunities distributions (model C).

Simulations show that, in the homogeneous case, model A and model B give
qualitatively similar results: increasing connectivity increase stability since more
banks – ceteris paribus – survive when the density of the network is higher. Higher
reserve requirements, instead, interact non-linearly with the risk of bank failures.
Increasing reserves requirements, initially increase the number of failures but after
a certain point the effects are reversed. That is, increasing reserves stabilizes banks
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at the individual level but also reduces the insurance that each institution provide
to each other and the amount of resources shared will be reduced. However, when
the threshold is set high enough, the individual stability effect completely dominates
the second one and the interbank market freezes due to lack of disposable liquidity.
At lower values of reserves, instead, the opposite holds. In terms of contagion, two
properties are consistently observed (for a wide range of parameterizations): higher
connectivity leads to a slowing down of the rate at which banks fail, i.e. “knock-out”
effects from the failure of individual banks are not significant. In the heterogeneous
case, increasing connectivity improves the stability of the system, while increasing
heterogeneity makes the system more stable in model A but not in model B and C,
where heterogeneity makes it more unstable. Once contagion occurs, an increase in
connectivity leads to less failures at low levels but to more failures after a certain
threshold. Therefore, connectivity stabilizes the system up to a certain point but –
whenever defaults start – higher interconnectedness may lead to default avalanches.

Amini et al. (2013) analyze instead the role of heterogeneity due to connectivity
in the network. In other words, instead of looking at banks heterogeneity in terms
of their sheer size, they focus on the number and size of the connections that banks
have (i.e. node degree and exposure sequences are heterogeneous across nodes). As
in the previous works, the model portrays N banks and a directed weighted graph
representing the financial system. Nodes represent banks, whereas edge weights de-
scribe exposures. Node in-degree denotes the number of debt obligations of that
bank and node out-degree represents the number of credit obligations. Banks bal-
ance sheets are composed by interbank assets and liabilities, deposits, capital and
other assets. Finally, capital ratio is defined as the ratio of bank’s capital over
interbank assets.

In their numerical simulations, Amini et al. (2013) analyze three cases: in model
A, the network is scale free with heterogeneous weights (i.e. exposures).7 In model
B, the network is still scale free but link weights are homogenous. In model C an
Erdős-Rényi graph (Erdős and Rényi, 1960) with homogeneous weights is employed.
Across the three models, nodes have the same average degree. That is, the total
number of links in the three networks is the same. This allows the authors to assess
how results change when average connectivity is kept constant but the actual network
topology changes along other dimensions. Scale-free networks are obtained using the
random graph model introduced by Blanchard et al. (2003). In this model, for a
given out-degree sequence, an arbitrary out-going edge is assigned to an end-node
i with probability proportional to [ndout(i)]

α, where ndout(i) denotes the out-degree

7More precisely, the distribution of link weights follows a Pareto distribution.
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for node i and α > 0 is a constant parameter. As a consequence, there is a positive
correlation between in- and out-degrees with out-degrees being Pareto distributed,
and in-degrees being Poisson distributed.

The main result is that the most heterogeneity is introduced, the least the re-
silience of the network. Indeed, model C is found to be the most resilient. Also,
average connectivity turns out to be a too-simple statistics to explain network re-
silience. Knowing more detailed information regarding the topology of the network,
e.g. the degree distribution or the distribution of link-weights, is essential to under-
stand how contagion may evolve. Furthermore, when the network is scale free, there
exists a minimal capital ratio such that, below a certain threshold, the number of
defaults diverges. Additionally, given the initial default of a single node, the size of
the default cascade increases with the in-degree of the initial defaulting node.

Banks heterogeneity in terms of degrees and assets is instead studied by Caccioli
et al. (2012), who extend the Gai and Kapadia (2010) model. To explore the role
of degree heterogeneity, they replace the usual Erdős-Rényi random graph (Erdős
and Rényi, 1960) with a scale-free one wherein node in- and out-degrees are power-
law distributed. The network is a directed weighted graph where, once again, edge
weights represent exposures (i.e. interbank liabilities and assets). Simulations show
that a scale-free topology reduces probability of contagion but does not impact its
extent when the defaulting bank is chosen at random. However, scale-free networks
are more fragile when a high-degree node is the target of an attack. Hence, prob-
ability of contagion is higher in the case of a targeted attack, even though extent
of contagion remains unaffected. The robust-yet-fragile property of the financial
system is therefore preserved.

As far as assets heterogeneity is concerned, Caccioli et al. (2012) study how
contagion evolves when bank balance sheets are highly non-uniform, that is when
the distribution of assets is power-law. The ratio of the total amount of interbank
assets over total interbank liabilities is kept constant across nodes. As a consequence
of this new configuration, banks are no longer uniformly exposed to the failure of
one of their neighbors. Instead, diversification will be less effective in this scenario.
When the network is modeled according to an Erdős-Rényi random graph (Erdős
and Rényi, 1960) and assets are distributed according to a power-law distribution,
the authors observe that the window of contagion gets wider as compared to the
case when assets were uniformly distributed.

Combining the two forms of heterogeneity (over both degrees and assets), it is
possible to investigate whether the systemic importance of an institution depends
on whether it is too-big-to-fail or rather because it is too-connected-to-fail. Results
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indicate that two different regimes co-exist. When average connectivity is low, the
probability of contagion due to the failure of the most connected bank is higher than
that due to the failure of the biggest node. However, when connectivity is high, the
opposite holds. Since real networks appear to be closer to the second scenario, it
seems that having banks that are too-big-to-fail is indeed the issue. Additionally,
as in the previous cases, the extent of contagion is not altered by assuming het-
erogeneous assets distributions instead of an uniform assets distribution. In terms
of capital requirements, the authors also find that targeted policies that increase
capital buffers for few, well-connected nodes are not an effective measure to reduce
the probability of contagion when heterogeneity is only on the degree distribution
of nodes. However, in presence of heterogeneity on balance-sheet sizes, a targeted
policy that increases the capital buffers of biggest banks when average connectivity
is high leads to a reduction of the contagion probability.

Caccioli et al. (2012) also analyze what happens when disassortative mixing is in-
troduced. That is, when well connected banks tend to connect with nodes that have
few connections, and viceversa. They found that – when an Erdős-Rényi random
graph (Erdős and Rényi, 1960) is used – disassortativity reduces the probability of
contagion. Instead, assortativity in node mixing increases the instability of the sys-
tem. The underlying intuition is that, in a disassortative network, highly connected
nodes act as a screen reducing the probability of failure of less-connected nodes,
with whom they are linked. Instead, in an assortative network, poorly connected
nodes would have been linked only among themselves and that would make them
more prone to failure in case of the default of a neighbor.

A last source of heterogeneity that has been analyzed in the literature regards
default probabilities. To explore this issue, Lenzu and Tedeschi (2012) analyze a
case where link formation is endogenous and agents differ in their threshold prob-
ability of default : the higher the threshold probability, the higher bank expected
profits. The model depicts a discrete-time system where there are N banks that
are interconnected through credit relationships. A bank balance sheet is composed
of long term assets, short term debt and equity. Since no liquidity is immediately
available in the market it must be exogenously generated. Therefore, liquidity sur-
pluses are generated as positive shocks affecting individual banks, while liquidity
needs are modeled as negative liquidity shocks. As a consequence, contagion may
arise when a bank is hit by an exogenous negative shock to liquidity.

The authors study systemic risk when two random banks are shocked indepen-
dently, one with a positive shock on liquidity and the other with a negative shock
of the same magnitude. The banking network is analyzed as a flow network, where
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credit lines are seen as a way to let the liquidity flow from the node with a liquidity
surplus to the one that has a shortage. Furthermore, specific constraints on the
lending capacities between each pair of nodes are established. These constraints
define the maximum liquidity flow allowed through existing links. Therefore, the
flow network is a directed weighted graph where the weight of each edge specifies
the liquidity capacity of the link. Transfers of liquidity happen through bilateral
lending agreements entered by banks, where the probability that a lender borrows
money to another bank depends on the creditworthiness of the borrower – as deter-
mined by its expected future profits. Therefore, link formation behaves according
to a preferential attachment mechanism where safest and most profitable agents are
able to secure more credit lines than weaker banks. Lending capacity, in this case, is
defined as being the maximum amount of liquidity that a generic lender i is willing
to provide to a generic borrower j. The strength with which preferential attachment
works depends on a herding parameter that determines the signal credibility of the
agent: the higher the parameter, the higher the trust on the expectation about
others’ profits. For low values of the credibility parameter, the graph generated
corresponds to a random graph with a Binomial (or Poisson) in-degree distribution,
where the number of in-neighbors is the number of potential lenders a bank can rely
on when additional liquidity is needed. As credibility increases, the graph evolves
from an exponential graph, to a scale-free and finally, for high values of credibility,
to a pseudo-star. In other words, when credibility is high, herding behavior emerges.

In terms of failures that occur because banks cannot raise any money, the authors
find that even though random networks are characterized by a low credibility signal,
they are more efficient in re-allocating liquidity – after the double liquidity shock –
from banks that have a surplus to the banks that have a shortage. Instead, as the
network becomes scale-free with the increase in the credibility signal, banks become
more prone to failure due to illiquidity. In particular, there would be just a small
number of highly trusted agents, leaving all others with very few credit lines and
hence being more exposed in case of negative liquidity shocks.

As far as defaults caused by contagion are concerned, instead, the authors observe
that betweenness centrality8 and graph diameter9 describe pretty well the frequency
of default for different levels of credibility. Betweenness decreases linearly with
credibility and therefore also re-allocation efficiency decreases, since having more

8Betweenness centrality measures node centrality in a network. It is equal to the number of
shortest paths from all nodes to all others, which pass through that node.

9The diameter of a graph is the longest shortest path (i.e., the longest graph geodesic) between
any two nodes of the graph, where a geodesic between any two nodes is defined as the shortest
path (i.e. the shortest number of edges) that must be traversed to go from a node to the other
one.
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paths passing through the nodes means also that defaults of illiquid banks are less
frequent. Defaults for insufficient flow, instead, depend mainly on the diameter
of the network. The lower the diameter, the easier it is to transfer liquidity from
nodes with surpluses to nodes with shortages. When credibility levels increase,
the network becomes more fragmented and therefore the diameter increases making
default cascades more likely. In terms of node median capacity, the authors observe
that a sharp decrease in median capacity leads to higher instability. In a random
network, different banks have roughly the same capacity, whereas when the in-degree
distribution becomes power law, capacity is concentrated in fewer nodes. That is,
there will be few very large nodes and many smaller nodes. This also means that
only few nodes will be able to transfer liquidity. Hence, most of the nodes do not
have access to many lenders and thus will fail for lack of liquidity. The average
capacity, however, increases with credibility, suggesting a strong heterogeneity in
participants’ size. This heterogeneity leads the system to be more fragile since there
exists a positive correlation between heterogeneity and the number of bankruptcies.

Lastly, Loepfe et al. (2013) show how heterogeneity in the size of the shocks,
in the size of agents and in the level of connectivity can affect the stability of the
financial system and how a macro-prudential approach to regulation can be used to
control systemic risk. The model is described as follows: there exist N risk-neutral
financial firms (i.e. banks) and each agent invests a given amount of money on
a risky project which gives a random return at the end of the time period. The
financing of the project is obtained by issuing liabilities in the form of deposits or
bonds that carry a deterministic interest rate. Then, a random shock determines
the level of returns of the investments and therefore the ability of the banks to repay
their debts. Diversification is made possible by allowing banks to enter risk-sharing
agreements (i.e. cross-holding of assets). As a consequence, contagion is generated
by the exposure to common assets: i.e. the failure of a given investment projects
will produce losses not only on the investing agent but also on the agents that hold
a share of the assets of the initial investor. The results of the model are following.
From an analytical standpoint, the authors find that when the shocks are relatively
small (i.e. the distribution of the shocks has thin tails), the optimal configuration
favors the creation of a single connected component where the level of diversification
is the highest; instead, when the distribution of shocks is fat tailed, the optimal con-
figuration is one in which the level of segmentation (i.e. modularity) is the highest.
In terms of degree heterogeneity, assortative mixing is preferred to disassortative
mixing. In their numerical simulations, the authors use a modified version of the
preferential attachment model to generate networks with given characteristics in
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terms of the level of modularity and degree heterogeneity. From a numerical stand-
point, Loepfe et al. (2013) show that: the level of capital is the most important
parameter in determining the stability of the financial system; when attacks are
targeted to the too-big-to-fail banks, having high size heterogeneity is detrimental
to the stability of the system; the same principle applies when the attacks target
the too-connected-to-fail nodes and the heterogeneity regards the level of connec-
tivity of the banks. Non-linearities exist in the way in which different parameters
of the models interact. For example, the level of modularity is not important to
determine the level of stability of the financial system when density is very high (all
nodes are effectively connected together) or very low. Instead, when modularity is
low (i.e. the system is not strongly divided into communities of highly connected
banks ), the number of defaults increases more steeply when the level of connectiv-
ity of the network increases. The authors also explain how the transition from safe
regimes to risky regimes can be very sharp in two specific cases. Whenever shocks
are drawn from a fat tailed distribution, the optimal network configuration moves
from a connected system to an isolated system to prevent the diffusion of contagion.
Furthermore, whenever link density is low and modularity and size heterogeneity
are high, a critical range exists where very small variations in the structure of the
network (i.e. the addition or rewiring of few links) can have disproportionate effects
in terms of systemic risk.

5 Imperfect Information, Moral Hazard, Portfolio

Optimization and Bank Runs

As we have seen so far, network topology and node characteristics may interact in
non-trivial ways to determine the stability and resilience of the financial system.
However, the foregoing results strongly depend on two related assumptions. First,
financial markets are characterized by perfect information. Second, no misbehavior
on the side of banks is considered. Starting from this observation, a number of
contributions have explored setups in which either information about the financial
robustness of agents is imperfect or banks have an incentive to misbehave. Further-
more, a different stream of works also address how banks can internalize market
uncertainty and counter-party risk and endogenously determine network topology
by bilaterally bargaining lending conditions (volumes and prices), monitoring peers
creditworthiness, and – more in general – by adopting portfolio optimization tech-
niques to allocate their exposures.

As far as imperfect information is concerned Battiston et al. (2012a) develop a
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model where banks balance sheets are interlinked through an exposure matrix and
imperfect information regards agents’ financial robustness. Therefore, the financial
system is represented as a directed weighted graph where edge weights represent
interbank assets and liabilities which can be either short-term or long-term and
N nodes represent the financial institutions (i.e. banks). This determines two
possible externality mechanisms occurring when a bank defaults. First, a default of
a neighbor implies a reduction of the lender’s equity. Second, since agents borrow
also short-term and information is imperfect, bank runs may lead to fire-selling
that will cause a further loss for the agent. The first mechanism is called external
effect of the first type, while the second is dubbed external effect of the second
type. On the asset side, banks have short-term (liquid) assets, long-term (illiquid)
assets, interbank liabilities, bank reserves, and long-term assets such as mortgages or
bonds which are not traded within the interbank network. On the liability side, we
have short-term debts, long-term debts, interbank liabilities, deposits, and long-term
bonds held by the households. The equity base (or net worth) will be determined as
a difference between total assets and total liabilities, while the equity ratio of each
bank is defined as the ratio of equity over long-term (network) assets and it is used
as an indicator of financial robustness.

Imperfect information is caused by the fact that agents know which banks have
defaulted but they do not know the exposures towards their counterparties and –
therefore – they cannot compute their level of robustness. In terms of external
effects of the first type, the law of motion that models the equity ratio implies that
financial robustness worsens when the number of defaulting counterparties of the
bank increases. Additionally, banks are assumed to evenly share their exposures with
their neighbors. Given this formulation, the main determinant of default cascades
will be the fraction of defaulting counterparties, which will in turn depend on the
probability of having kfi defaults among ki partners. If defaults are not correlated
and the portfolio is large, having several simultaneous defaults among counterparties
will be quite rare. Default cascades are studied in a case where the graph is regular
with degree k and the initial distribution of robustness is assumed to be Gaussian.

Four possible scenarios might emerge. First, a fragile system might be prone to
systemic default even if there are no exogenous shocks. That is, cascade size tends
to one as the mean of the distribution of the equity ratios of banks (i.e. the aver-
age robustness of the financial system) decreases. Conversely, cascade size remains
constant with degree k when average robustness is low enough. Put it differently,
the structure of the network and the level of diversification do not matter. Second,
diversification does prevent systemic defaults, but only when the overall financial
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conditions are not “too bad”. That is, when financial robustness is not very different
across agents and the exogenous shocks are not large, increasing connectivity makes
the system more resilient. Third, diversification may lead to an increased systemic
risk for a specific range of values. That is, when initial robustness is heterogeneous
and many agents are fragile, an increase in connectivity means that the momentum
caused by an initial set of defaults will not be dampened and it will indeed trigger
a systemic default when diversification is high. Fourth, when the system is already
fragile, diversification has no effect relatively to the exogenous shocks. That is, sys-
temic default will occur regardless of the level of connectivity whenever agents are
fairly homogeneous and average robustness is low.

In terms of external effects of the second type, the authors analyze the case when
imperfect information leads to bank runs, i.e. short-term investors do not roll over
their debt causing a liquidity problem to the banks. Bank i may be illiquid even
if it is still solvent, i.e. even if net worth remains positive. Then, i will need to
sell part of its long-term assets, such as securitized mortgages, to cover the value
of liabilities to be repaid. Given imperfect information, the authors assume that
there is a bank run of all creditors whenever the number of defaults is larger than a
certain threshold that increases with the financial robustness of agent i. Therefore,
by adding the external effects of the second type, a new law of motion for financial
robustness will be obtained, where also the role played by fire-sells caused by bank
runs is taken into account. When also the external effects of the second type are
added, default cascades scenarios change as follows. First, diversification prevents
systemic defaults whenever bank runs and large exogenous shocks are absent. In
particular, as long as average robustness is positive and that the number of agents
is large, there always exists a level of diversification that makes systemic defaults to
disappear. Second, when bank runs are present, diversification has an ambiguous
effect on systemic risk. The cascade size is first decreasing in k but – after a certain
threshold – it increases with diversification. Third, as found also before, when the
system is already fragile, diversification has no effect relatively to the exogenous
shocks. Additionally, when partial asset recovery is admitted, the system becomes
more robust when diversification is small. However, when diversification is large,
then there are no differences with respect to the case when there is no asset recovery.

We now turn to analyze models where banks have an incentive to misbehave.
Brusco and Castiglionesi (2007) study how the structure of the interbank market
influences financial contagion in the presence of both liquidity shocks and moral
hazard. In particular, they show that contagion is a rare event since it is optimal to
create financial linkages across regions and invest in the long-term asset only if the
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probability of bankruptcy is very low. The authors analyze first a model where only
two banks and two regions are present and then a model with multiple regions (i.e.
banks), studying what happens in network structures à la Allen and Gale (2000).
That is, the networks are directed weighted graphs where all edges have the same
weights and links represent cross-holdings of deposits between different regions.

In the basic model, there are three dates (t ∈ {0, 1, 2}), one divisible good (i.e.
money), two banks, two regions and three types of assets: (i) a illiquid safe asset; (ii)
a gambling illiquid asset; and (iii) a liquid shortasset. The latter takes one unit of the
good at date t and stores it until t+1, keeping the same value. The safe and gambling
assets, instead, generate a profit at period t+1. The gambling asset produces higher
returns (but only in probability), whereas the returns from the safe asset are certain.
Furthermore, the opportunity to invest in the gambling asset is a random variable
and – when the returns are positive – a fraction of the profits is not observable by
the depositors and it is appropriated entirely by the banks owners. This last feature
of the model is what creates the moral hazard problem. Each region contains a
continuum of ex-ante identical consumers (depositors) which are — once again –
characterized by Diamond-Dybvig’s preferences (Diamond and Dybvig, 1983). This
generates liquidity shocks in the regions. Additionally, there is a second class of
agents, called investors, which are risk-neutral and are endowed with some units of
good at date t = 0. Investors can either consume their endowment or buy shares of
banks which entitle them to receive dividends. In terms of contracts offered, banks
can make contingent contracts, specifying the fraction of each dollar of deposit to
be invested in the liquid short-term asset and illiquid long-term asset. However,
no control can be enforced on whether the bank is investing in the safe or in the
gambling asset. Also, banks respond just with limited liability. The authors show
that, given bank’s capital and given a contractual obligation of a certain amount
of units of good to be invested in the long-term asset, the bank will invest in the
safe asset only if the capital of the bank exceeds a given threshold. Therefore,
depositors will invest in the long-term asset knowing which is the minimum level of
bank capitalization necessary to avoid the moral hazard problem.

As far as liquidity shocks are concerned, we have that the two regions are neg-
atively correlated in terms of liquidity needs. Therefore, banks find it useful to ex-
change deposits as a coinsurance instrument against regional liquidity shocks since
the exchange eliminates aggregate uncertainty and allows the financial system to
achieve the first-best equilibrium even when moral hazard behaviors are possible,
provided that there is a sufficient amount of capital available. Instead, when the
capital available is scarce, there are still parameters configurations where the opti-
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mal contracts for depositors will prevent moral hazard only in autarky, but not when
financial markets are opened. The reason being that the possibility of coinsurance
makes the investment in the long-term asset very attractive, making the depositors
willing to accept the risk of their investments being misused by diverting money
from the safe long-term asset to the gambling long-term asset. Also, the expected
utility generated by the optimal contract will be a decreasing function of the prob-
ability of observing the gambling asset and it will converge to the first-best solution
when such probability goes to zero (i.e. when there is no opportunity to invest in
the gambling asset). Thus, if financial instability is accepted as a consequence of
the opening of the interbank market, it must be the case that instability is a rare
event.

The authors consider also scenarios where there are multiple regions and still
one representative bank per region. They observe that the results obtained by Allen
and Gale (2000) are reversed. That is, a more connected interbank deposit market
increases the number of regions hit by bankruptcies as compared to the case where
an incompletely connected market is considered. Contrary to Allen and Gale, here
bankruptcies are caused by the moral hazard problem – i.e. banks investing in the
gambling asset – not by an aggregate liquidity shock that is higher than what the
aggregate resources of the financial system could bear. Furthermore, in such a case,
no contagion would actually occur given the premises of Brusco and Castiglionesi’s
model, since contracts can be made contingent on aggregate liquidity shocks. The
only non-contractable variable is the return on the gambling asset, which is the only
source of contagion and financial instability.

The role of bank misbehavior is also analyzed in Castiglionesi and Navarro
(2008), where now returns from investments – unlike in Brusco and Castiglionesi
(2007) – also depend on the network structure of the interbank market, which is
represented as an undirected binary graph. The setup still envisages three agents:
consumers, banks and investors (i.e. banks’ shareholders). There are three dates
(t ∈ {0, 1, 2}), one divisible good (i.e. money) and N regions. As usual, each region
hosts one representative bank and a continuum of risk-averse consumers, which are
endowed with one unit of good at t = 0. Consumers, however, will consume only at
t = 2 and they have to deposit their endowment in the representative bank of their
region until that date. Each bank receives a random endowment of dollars, which
represents the bank’s capital and it is owned by the investors. An interbank market
exists and therefore banks can make transfers across regions. As a consequence, the
total amount of capital for bank i would be the sum of the endowment and of the
interbank transfers. The sequence of events is the following: at t = 0 banks receive
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their capital and choose the financial network; at t = 1 banks’ transfers are made
and investments are chosen; and at t = 2 cash flows are realized and depositors are
paid. In terms of investments, banks can choose between two different long-term
assets: a safe asset and a gambling asset.

As mentioned, unlike in Brusco and Castiglionesi (2007), here returns from in-
vestments depend on the network structure of the interbank market. More precisely,
return to bank i for each unit invested (regardless of the asset chose) is equal to
f(ki)R, where ki is the number of neighbors of i and f(.) is function such that
f ′ > 0, f ′′ < 0, f(0) = 1 and f(N − 1) = ρ > 1. Therefore, the same amount
invested in autarky (i.e. ki = 0) will yield lower returns with respect to the same
investment made in an open interbank market (when ki > 0).

However, a trade-off exists. Connectivity is beneficial in terms of returns from
investments, but has a negative effect on the actual probability that the project
chosen by a given bank succeeds: whenever a bank fails, also all its neighbors will fail.
For example, if we have a fully connected network with N −1 banks investing in the
safe project and only one bank investing in the gambling project, the probability of
success for each bank will be only equal to the probability of observing returns from
the gambling asset. Instead, if autarky would have been chosen, N − 1 banks would
have been successful with probability one, while only one bank – the one investing
in the gambling project – would have been successful with a probability equal to the
likelihood of realizing returns from the gambling asset. This implies that the authors
assume a very strong form of fragility within the system. Similarly to Brusco and
Castiglionesi (2007), the authors show that banks have an incentive to invest in the
gambling asset whenever they are under-capitalized. In particular, banks will invest
in the safe asset only if bank capital is greater than a given threshold. This cut-off
value is decreasing in the number of neighbors of a generic bank i, increasing in
the number of gambling neighbors and increasing in the probability of success of
the gambling asset. In this setting, the authors show that the decision of joining
a (possibly) fragile financial networks can be justified (i.e. optimizing) even when
the decision is made after that the endowments are realized, not only when there
is still uncertainty about them. Therefore, uncertainty on endowments is not a
necessary condition to form a fragile financial network, unlike what happened in
Leitner (2005).

The model allows one to draw sharp conclusions in terms of optimal network
configurations. For example, in the social planner case, a core-periphery structure
emerges as the constrained first-best (CFB) solution to the problem. In particular,
we have that the core is composed by the banks that are investing in the safe asset
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which will be all connected to one another. Instead, in the periphery, we will have
“gambling” banks that can eventually be connected to some core banks and some
peripheral banks, depending on the value of the parameters. That is, the higher
the probability of success of the gambling asset, the more connected the periphery
will be, since the risk of bankruptcy will be sufficiently low that the advantages
coming from portfolio diversification (i.e. f(k)) will outweigh the risk of collapse.
When, instead, the decision process is decentralized, we observe that core-periphery
structures are still achieved (when no bank transfers are assumed), even though
they may not be exactly equal to the optimal configurations and – in general – the
investment profile will not be efficient. However, when the probability of success of
the gambling asset is high enough, the decentralized solutions are very close to the
social planner solutions. Instead, when the probability of success if low, inefficient
structures arise in the decentralized case.

In the last three contributions of this section, we study how banks can inter-
nalize market uncertainty and counter-party risk and endogenously determine net-
work topology by bilaterally bargaining lending conditions (volumes and prices),
monitoring peers creditworthiness, and – more in general – by adopting portfolio
optimization techniques to allocate their exposures.

Bluhm et al. (2014) develop a dynamic network model where N heterogeneous
banks endogenously determine their interbank lending/borrowing relationships. The
balance sheet of each bank consists of: on the asset side, liquid assets (i.e. cash),
interbank lending, and illiquid assets (e.g. bonds or collateralized debt obligations);
while, on the liability side, we have deposits, interbank borrowing, and equity. Banks
are heterogeneous in terms of initial equity endowments and returns on illiquid asset
investments and it is this heterogeneity that determines their different portfolio
allocations and their lending/borrowing behavior.

Each agent maximizes its expected profits and determines its optimal level of
investments, lending, and borrowing while taking into account the level of prices for
illiquid assets, the risk-free interest rate on the interbank market, and its own bank-
specific returns on illiquid assets. Such maximization process is subject to a set of
regulatory constraints on liquidity and capital. In particular, a given percentage of
the bank’s deposits has to be held in the form of liquid assets (i.e. cash) and the
level of equity must be high enough that the risk-weighted capital ratio of the bank
is equal or higher than a minimum value set by the policy maker plus a bank-specific
level of capital buffer. As a consequence, banks will adjust their interbank exposures
and/or their level of investment on illiquid assets to comply with market regulations
during contagion events. The higher the risk-weights on interbank lending and
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illiquid assets are, the larger the re-adjustments after a negative shock (e.g. the
failure of a counter-party).

In this contribution, two processes are pivotal in influencing the topology of the
interbank market and the allocation of investments of banks: the equilibrium dynam-
ics in the interbank market and in the market of illiquid assets. In the former, equi-
librium interest rates are determined via a discrete tâtonnment process which finds
the market-clearing rates that match the aggregate supply and demand of funds.
In the latter, the equilibrium is found via a continuous tâtonnment process which
finds the market-clearing price of illiquid assets such that total excess demand equal
supply. In the interbank market, an efficient allocation of funds is found by deter-
mining not only equilibrium interest rates, but also bank-specific lending/borrowing
amounts, risk-premia and equilibrium probabilities of default given the topological
structure of the interbank market which is identified by using a closest-matching-
partner criteria. That is, a pair of banks will form a lending-borrowing relationship
provided that the difference between their respective supply and demand for funds
is minimal compared to the other possible pair candidates.

Contagion can be transmitted via a direct channel (i.e. a bank suffer a counter-
party loss) or via an indirect channel (i.e. fall in market prices). Furthermore,
banks can be forced to fire-sale parts of their illiquid assets and/or to re-adjust their
exposures on the interbank market to meet the regulatory requirements. Bluhm et al.
(2014) suggest the to use the so-called Shapley value (Shapley, 1952) to measure how
much – on average – each bank (marginally) contributes to systemic risk, where the
latter is computed as the ratio of the assets held by all defaulting banks over the
total of the initial assets present in the financial system.

The initial negative shock to the system takes the form of a loss in banks’ illiquid
asset holdings. The analysis carried out by the authors evaluate the impact on
systemic risk of changes to the capital and liquidity requirements imposed to the
banking system, and to assets’ risk-weights used in the computation of the risk-
weighted capital ratio. Furthermore, they also study the impact of policies that
introduce taxes on interbank lending/borrowing and on investments on illiquid assets
(i.e. the so-called risk charges). Lastly, they test what happens with the introduction
of a central bank that intervenes in the interbank market to stabilize the equilibrium
interest rates by dynamically adjusting the aggregate level of supply or demand of
liquidity in the system. In this context, the central bank is assumed to have access
to unlimited funds and it cannot default. In the numerical simulations, the number
of banks is fixed to N = 15.

In the following, we report the main results obtained. In equilibrium, banks
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with relatively higher returns on illiquid assets are also the ones which will have the
highest level of leverage in the interbank market. Indeed, banks with low returns
to illiquid assets will prefer to lend more funds and hence substitute investments on
illiquid assets with interest rates from lent funds. Furthermore, the most leveraged
banks are also the ones that are found to contribute the most to systemic risk in
cases when an attack is targeted to them.

The effects of an increase in the liquidity ratio constraint are: the interbank
market becomes more concentrated; banks are less leveraged; and the investments
on illiquid assets are reduced. Overall, this leads to a reduction in the extent and
probability of contagion since having less leveraged banks reduces systemic risk and
less investments on illiquid assets reduce the strength of contagion via changes in
asset prices. Despite the fact that we still observe a reduction on leverage, when the
minimum required capital ratio is increased the market becomes less concentrated.
This happen because the incentive to reduce interbank transactions will also reduce
the distance between the optimal level of investments chosen by the different insti-
tutions. Therefore, the heterogeneity that exists at the level of returns on illiquid
assets will play less of a role in determining the relative size of lending of the different
agents.

In this model, raising the minimum requirement on capital will make the inter-
bank market more sparse and reduce systemic risk. Instead, when connectivity is
increased, the authors find that the contribution to systemic risk always increases.
The introduction of taxes reduces both the incentives to borrow and invest. As a
result also systemic risk decreases since the interbank market dries out and banks’
balance sheets are less vulnerable to changes to asset prices. The presence of a cen-
tral bank reduces the strength of the interbank linkages and therefore the (marginal)
contribution to systemic risk of each bank becomes much smaller.

In a similar fashion to what has been proposed in Bluhm et al. (2014), Halaj and
Kok Sorensen (2014) develop a model where the topology of the interbank market
is determined by banks optimizing behavior. In particular, financial institutions
optimize their asset and funding structure while taking into account – among other
things – their expected income, interest rates volatility, counter-parties’ probabil-
ity of default and regulatory constraints. In this framework, banks are once again
heterogeneous in terms of their balance sheet size, initial capital endowment, prof-
itability of illiquid assets, and probability of default. However, banks engage in a
bargaining game to determine the final matching of supply and demand of funds in
the interbank market.

In this framework, three main assumptions are deemed to hold: each bank knows
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its own aggregate level of lending and borrowing and the ones of the other agents;
banks optimize also the structure of their interbank lending agreements; and diver-
sify funding sources to minimize refinancing (rollover) risk. Contrary to the previous
work, the authors assume that banks are risk-averse, not risk-neutral. Indeed, dur-
ing their optimization process, they have to obey to internal risk limits based on
the so-called Credit Valuation Adjustment (CVA) concept which takes into account
of the market perception of the credit risk associated to interbank exposures (see
Deloitte and Partners (2013)).

Formally, the model is defined as follows. There exists N banks. Each bank i
aims to invest a given amount of interbank assets and to collect a given amount units
of interbank liabilities. Interest rates paid on interbank deposits are endogenous and
depend on some reference interest rate, on the credit risk of the counter-party, on
market’s liquidity, on bank’s i access to the market, and on the value of the loss
given default (exogenously fixed). From a network formation standpoint, banks are
assumed to trade more likely with trade partners they have already met in the past.
This also serves to proxy the effects of geographical proximity : i.e. banks in the same
market trade more frequently among themselves with respect to what they do with
foreign partners.

Links creation develops using a sequential algorithm consisting of four different
steps that are repeated until full allocation of interbank assets is achieved. First,
banks determine the optimal level and structure of interbank assets maximizing their
risk-adjusted returns subject to regulatory large-exposure-limits (i.e. each individual
exposure should not exceed a given fraction of the total regulatory capital of the
bank). Second, funding banks either accept or decline the allocation proposed at
step one by borrowing banks. Then, after minimizing their own funding risk (i.e.
the risk that bank j will not roll-over credit), each bank i determines whether or
not to accept the funding offer made by bank j. Third, the bargaining game occurs:
i.e. agents engage in pair-wise bargaining sessions in which they settle on acceptable
deviations from their desired interbank allocations. In the fourth step, to overcome
the fact that the individual optimizations and the bargaining game might not lead
to a full allocation of the interbank assets, banks suffering from funding deficiency
adjust their offered interest rates.

Halaj and Kok Sorensen (2014) calibrate their model on a sample of eighty Eu-
ropean banks for which the authors have information regarding their balance sheet
structures. The results they obtain are the following. The endogenous network gen-
erated by the model does not show a clear core-periphery structure. As the authors
point out, this is probably due to the fact that only global, internationally active
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banks are included in the sample. From a policy standpoint, the authors show how
different regulations may alter the structure and the stability of the endogenously
generated interbank market. They demonstrate that adding a CVA-based capital
surcharge does not substantially change the topology of the network, other than for
the weaker banks that are now less diversified. Similarly, raising the large exposure
limits does not cause any major change in the dynamics of the model. However,
once the limits are lowered (and hence the constraint is made more binding), banks
are shown to reduce the size of their individual interbank exposures and to increase
the number of counter-parties they deal with.

Lastly, they show that when an adverse economic scenario is imposed upon the
system, the model will endogenously lead to a change in the characteristics of the
interbank networks: when compared to a baseline model, some nodes become more
interconnected even though overall connectivity was higher in the former case. In
addition, under the adverse scenario, enforcing more stringent large exposure limits
tend to lower the risk of contagion, especially for the banks that the market perceives
as being particularly healthy. Instead, raising CVA-based charges will still benefit
more the soundest banks, even though the effects on systemic risk are not as clear-cut
as they were in the previous case.

In a more recent contribution, Blasques et al. (2015) develop a structural model
of network formation where banks can engage in costly peer monitoring to deal
with the presence of asymmetric information about the level of risk associated with
their counter-parties. Within this framework, the topology of the interbank network
dynamically adjust to the liquidity conditions of the interbank market.

The model is defined as follows. The interbank market consists of N banks with
a time-varying number of weighted directed links between them where each directed
edge represents a loan granted from a bank to another bank and its weight represent
the amount of the loan and the applied interest rate. In each time period, banks
are subject to exogenous liquidity shocks (i.e. liquidity demands from depositors).
Banks’ objective is to maximize their profits while selecting their counter-parties
and deciding how many resources to invest in peer-monitoring efforts. Liquidity
shocks are modeled as independently and normally distributed random variables
with a bank-specific mean and variance. Furthermore, positive correlation exists
and larger banks are assumed to have a distribution of liquidity shocks with a
larger variance. Instead, in distribution, there is no true heterogeneity in banks’
probabilities of default.

Asymmetric information causes banks to judge their peers by their perceived
probability of default. The evolution of the perception error crucially depends on
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two different sources of knowledge: past trading history and (costly) peer-monitoring
efforts. In the interbank market, agents negotiate interest rates – bilaterally – ac-
cording to a generalized Nash bargaining process (see Afonso and Lagos (2014) for
details). The bilateral equilibrium interest rate is a function of the true default
thresholds of the counter-parties and of their true and perceived financial distress
variances. Therefore, banks will pay a risk-premium based not only on their true
probability of default but rather on their perceived probability of default.

To mitigate the effects of asymmetric information, banks can engage in costly
peer-monitoring to reduce the variance of the perception error at future time periods.
The probability of an encounter between two financial institutions depends on the
level of search efforts put up by the bank. The optimal level of peer-monitoring
and search efforts each bank decides to undertake towards a specific bank depends
on the surplus bank i expects to obtain from bank j. Put it differently, adaptive
expectations of bank i about the bilateral credit availability and conditions provided
by bank j determine the optimal level of monitoring and search efforts.

The time structure of the model is defined as follows. First, at the beginning
of each time step t, banks set their optimal level of monitoring and search efforts,
and they observe a realization of the liquidity shocks. Then, links between banks
are created, bargaining occurs and the variance of the perception error is updated.
Lastly, at the end of each period, banks revise their expectations.

To analyze the insights obtained using this framework, Blasques et al. (2015) cal-
ibrate their model using the indirect inference approach (as explained in Gourieroux
et al. (1993)) to loan level data from the Dutch overnight interbank lending mar-
ket. The main findings of the model are the following. First, peer-monitoring,
search frictions and asymmetric information on counter-party risk turn all out to
be significant variables that are necessary to match certain characteristics of the
interbank market such as high sparsity, low reciprocity, skewed degree distribution,
and the core-periphery structure of the network. Indeed, the model is able to repro-
duce the tiered network structure that is present in the data where core banks tend
to show a structural liquidity deficit and high variance in their observed liquidity
shocks; while, peripheral banks show funding surpluses and low variance. Second,
the core-periphery structure appears to be stable across time since banks tend to
form long lasting lending-borrowing relationships. As a consequence, counter-party
uncertainty tends to be reduced in those linkages which are also characterized by
lower interest rates.

This feature of the model is found to be directly linked to the presence of the
so-called multiplier effect from peer-monitoring. That is, after observing an initial
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liquidity shocks that increases the expected profitability of a loan, banks will respond
increasing their monitoring and search efforts. As a consequence, more loans will
be granted and at a lower interest rate. This will boost the incentive that banks
have in further increasing monitoring and search efforts, creating a positive feedback
which will generate the multiplier effect. Third, when – in the middle of a simulation
– a large shock to the perception error variance is imposed, the sudden change in
counter-party uncertainty can dry up the interbank lending activity for a prolonged
period of time.

This happens because – suddenly – active trade partners observe a deterioration
of the risk assessments they made on their usual counter-parties. This drives interest
rates spreads to explode and also increases the incentive for banks to resort to the
outside option, i.e. lending from/to the central bank. Furthermore, the worsening of
banks’ expectations also decreases investments in peer-monitoring and search efforts,
therefore preventing a fast recovery of interbank lending. The lending network not
only becomes less connected but also more concentrated after the shock.

Lastly, the authors show that when the central bank increases the width of the
so-called discount window (i.e. the difference between the borrowing rate and the
lending rate), the positive effects on interbank lending are indirectly multiplied by
the fact that an intensified interbank trading pushes up also banksâĂŹ monitoring
and search efforts, which – as we observed earlier – further improves the conditions of
credit and the availability of market lending. However, the topology of the network
becomes less stable since there is an higher probability of observing a match between
two previously unknown partners. This also means that higher level of bank-to-bank
uncertainty are going to be observed and – as a consequence – both the interest
spread and the cross-sectional variation of spreads increases.

6 Financial robustness, asset price contagion, and

market regulations

In addition to the determinants of systemic risk discussed so far, financial-system
stability may be also influenced by the actual portfolio composition of banks. Indeed,
the amount of capital and liquidity held by the banks, as well as the effects that
endogenous changes in asset prices have on stability, all contribute to determine how
negative shocks propagate through the interbank network. This issue is take up in
a series of articles, which we briefly review in this section.

A first set of papers (e.g. Cifuentes et al., 2005; Nier et al., 2007; May and
Arinaminpathy, 2010; Arinaminpathy et al., 2012) show how asset price changes,
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liquidity and capital requirements interact with connectivity in determining the
resilience of the financial system.

For example, Cifuentes et al. (2005) study how capital requirements on banks
can cause perverse effects when portfolios valuations are marked-to-market, mainly
because financial institutions do not internalize the externalities entailed in their
network relationships. In this setting, they demonstrate that systemic resilience
and connectivity are non-linearly related, as it was shown by Allen and Gale (2000).
However, more interconnected systems may be riskier than less connected ones under
particular circumstances.

The authors consider N interlinked financial institutions (i.e. banks) which are
connected through an exposure matrix. Hence, we deal here with a directed weighted
graph where linkages represent interbank assets and liabilities. Bank liabilities are
marked-to-market and banks are assumed to have limited liability (equity cannot be
negative). Also, there is the priority of debt over equity, implying that equity value is
positive only if the notional obligations and payments of a bank coincide. Banks are
required to have a minimum level of capital ratio, i.e. the ratio of bank’s equity value
to the marked-to-market value of its assets must be above a pre-specified threshold
ratio r∗. When banks do not satisfy this requirement, they can sell assets for cash
to reduce the size of their balance sheet and hence reduce the denominator, making
the capital-asset ratio larger. In addition, it is assumed that banks cannot short sell
the assets and that they can sell their illiquid assets only when all their liquid assets
have already been sold. Demand for the illiquid assets is downward sloping. In order
to compute the equilibrium, the authors use an iterative algorithm that determines
at each round the set of banks that are oversized or insolvent and then computes
the quantity of the illiquid asset that needs to be sold. Given this quantity, the
equilibrium price is computed. Then, all banks re-evaluate their portfolios according
to the marked-to-market requirements and the algorithm checks whether all banks
are solvent under the new price. If that is the case, the process stops. Otherwise,
the procedure is re-iterated until an equilibrium is found where all banks are solvent.

Notice that the actual portfolio composition of banks has a direct effect on banks’
intrinsic creditworthiness, resilience to shocks and susceptibility to contagion. This
implies that banks with significant holdings of liquid assets are less exposed to
fluctuations of the price of the illiquid asset, face lower credit risk and create less
externalities on the system when they need to settle their liabilities through selling.
This happens because they will be selling more of the liquid asset, which has a fixed
price, than of the illiquid asset. This generates less price fluctuations. However,
banks do not internalize the positive externalities they have on the system when
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they hold more liquidity, therefore privately determined liquidity is sub-optimal.
Liquidity and capital requirements have several effects on systemic resilience. In
particular, liquidity requirements may be more effective than capital buffers in fore-
stalling systemic effects, with liquidity and system connectivity that are substitutes
for systemic stability for a wide range of parameter values. Furthermore, high liq-
uidity requirements reduce the impact of contagion via the asset-price channel.

Mixed results are obtained as far as system connectivity is concerned. In par-
ticular, more connected systems may lead to higher resilience or higher systemic
risk depending on the strength of contagion that occurs through the asset prices
channel. That is, without this additional channel, increased connectivity is always
beneficial, since it reduces the impact of a single default. When prices are endoge-
nously changed, more connections may imply having more actors selling units of the
illiquid asset to recover from their losses – especially when liquidity requirements
are low – and therefore this may lead to an increased price impact. However, the
asset price channel of contagion may disappear entirely when the number of inter-
linkages is high enough to allow banks to stand the losses only by selling liquid
assets. Therefore, the effects of connectivity on systemic risk are non-linear.

The impact of portfolio composition on systemic risk is further analyzed by Nier
et al. (2007), who employ a simulation model to analyze how the ability of the
interbank network to absorb negative shocks is related to: (i) banks’ capitalization;
(ii) size of exposures; (iii) degree of connectivity; and (iiii) degree of concentration
in the banking sector.

In Nier et al. (2007) the interbank system is modeled as a network where the N
nodes are banks and links represent directional lending relationships between two
nodes (i.e. a directed weighted graph). The network structure is randomized using
an Erdős-Rényi random graph (Erdős and Rényi, 1960). For any realization of the
network, individual balance sheets for each bank i are randomly populated with
external assets, interbank assets, bank equity, consumers deposits and interbank
borrowings. To study systemic risk, the external assets of a given bank are hit by a
negative idiosyncratic shock with size si, which wipes out a certain percentage of the
external assets’ value. The authors assume priority of (insured) customer deposits
over banks deposits, which in turn have a priority over equity. A bank defaults
whenever the size of the shock is greater than bank’s equity. Losses are evenly
distributed among creditors and depositors (provided the priority rules outlined
before). Therefore, contagion may occur when the shock is not fully absorbed by
the first bank being hit, and it transmits through the interbank network to bank i’s
creditors. In addition to this basic setting, two extensions of the initial model are
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analyzed. In the first one, liquidity risk is incorporated in the analysis. An inverse
demand function for banking assets is assumed such that when a shock hits a bank,
the price of external assets will decline with fire-sales and the total loss suffered
will be magnified. In the second extension, a tiered network structure is assumed.
In other words, the N banks are split in two groups. First-tier banks are tightly
connected nodes, which have a high probability of being connected among them,
and a smaller likelihood of being connected with banks in the second group. The
latter banks, which form the periphery, are mainly connected to first-tier nodes.

One of the main results of the model is that lower levels of equity increase in a
non-linear way the number of contagious defaults, i.e. for high levels of equity the
system is immune to contagion, while when the equity falls below a given threshold
there is a sharp increase in the risk of a systemic breakdown. Furthermore, one
can show that the bigger the size of interbank liabilities, the higher is the risk of
“knock-out” defaults. As it happens in other models of systemic risk, contagion
is a non-monotonic function of the degree of connectivity. Indeed, for low levels
of connectivity, its increase enhances the chances of contagious defaults, while for
high levels of connectivity, a further increase reduces the probability of a systemic
breakdown. However, connectedness and the level of capitalization interact, i.e.
for less-capitalized systems higher connectivity leads to higher contagion, while for
well-capitalized systems the opposite holds. Moreover, higher concentration of the
banking system tends to make the interbank network more vulnerable. Liquidity
has a similar effect: when liquidity effects are introduced, systemic risk increases.
Finally, as far as network structure is concerned, tiered-structures are not necessarily
more prone to systemic risk than non-tiered banking systems.

May and Arinaminpathy (2010) develop a simple model which derives from the
ones commonly used to study ecology that also includes – as a propagation mech-
anism – changes in asset prices. The model comprises N banks which are char-
acterized by a simplified balance sheet structure, as it was previously described in
Nier et al. (2007) and in Gai and Kapadia (2010). Interbank linkages are randomly
generated from an Erdős-Rényi model (Erdős and Rényi, 1960) and a mean-field
approximation is used to study the possible knock-out effects of an initial failure.
The system is treated as if it was completely homogeneous: i.e. banks have all the
same size, the same level of connectivity and the same balance sheet structure. This
simplification allows the authors to fully characterize the system from an analytical
standpoint, using few parameters. The main findings of this work are the following.
First, the negative shocks caused by a bank defaulting on its interbank loans tend
to dissipate as the contagion unfolds. In other words, diversification dampens the
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effects of an initial default and higher the level of connectivity, more rapidly the
shock attenuates. However, the opposite finding emerges when looking at liquidity
shocks. That is, when asset prices (of possibly different types of assets) adjust as a
result of fire-sales, the negative effects are amplified as more financial institutions
fail since a positive feedback effect kicks in. Furthermore, the shocks to asset prices
are felt by the whole financial system. Second, systemic risk is maximized whenever
the level of interbank activity and external assets roughly balance. This also means
that when banks operate both as investment banks and as retail banks the risk of
a systemic collapse is the highest. Third, robustness is the highest when the level
of capital is high. Lastly, the more homogeneous is the system – in particular when
considering the proportion of different asset categories held by banks – the more
fragile it is.

In a second contribution, May and Arinaminpathy add to their study the analysis
of the role played by bank sizes in determining the stability of the financial system.
In particular, in Arinaminpathy et al. (2012), the authors introduce a model where
banks can be of two types, large and small, and interbank liabilities have two matu-
rities, short-term and long-term loans. Short-term loans are the only ones that can
be withdrawn by a bank within the same time interval; however, long-term loans
can be transformed in short-term loans in one unit of time. Banks are not only
interconnected by direct exposures, but – as in the previous contribution – they can
have a shared exposure to the same category of external assets. Lastly, large banks
are allowed to be both more diversified and more connected. Short-term loans can
be recalled by banks because of the deterioration of the health of the lending bank
(i.e. precautionary motive) or of its counterparties (i.e. counterparty concerns),
because the market confidence is low, or because the liquidity is needed to meet
financial obligations. Therefore, liquidity hoarding is endogenous and varies during
each market simulation. Default cascades are simulated by failing a large bank, wip-
ing out one of its external assets categories (chosen at random). What emerges from
this work is that liquidity hoarding has a clear negative externality on the system.
Therefore, despite being a defensive measure adopted by banks in times of crises, it
ends up weakening the stability of the interbank market. When specifically looking
at the role played by the size of the banks, it emerges that the impact of the de-
fault of a large bank scales more than proportionally with size. And, as a flip side,
contagion improves more when large banks are well-funded than when small banks
are the ones with high capital ratios. Put it differently, large banks can perform a
stabilizing function as long as they remain healthy.

Along the same lines, Elliott et al. (2014) study how different levels of integration
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and diversification of financial organizations can affect the stability of a financial
system. In this model, the initial negative shock to the system takes the form
of a (discontinuous) drop in the value of a financial institution and organizations
are interdependent because each institution holds shares of other financial entities.
Therefore, the market value of one player also depends on the value of the other
(interconnected) players. In this context, the level of integration of the financial
system is defined as the level of exposure of organizations towards each other; the
level of diversification, instead, describes how distributed is the co-ownership across
different players. To put it differently, the level of integration describes the depth or
extent of organizations’ cross-holdings. Instead, the level of diversification expresses
the number of organizations directly interacting with one another. The results they
obtain are in line with what has been shown in the other contributions: i.e. there
exists a contagion window – for both level of diversification and level of integration
– where the system is susceptible to contagion. Furthermore, the highest level of
instability occurs when both the level of integration and the level of diversification
are intermediate. This implies that there needs to be enough (but not too much)
integration for a negative shock to the value of one institution to be able to spark the
beginning of a defaults cascade. The system must also be diversified enough so that
many agents are affected by the losses but not so much that the negative shock is
dumped by the system. Elliott et al. (2014) also test how their findings vary when the
topology of the (co-ownership) network changes from being an Erdős-Rényi model
(Erdős and Rényi, 1960) to following different network models. The alternative
models the authors used are: a core-periphery network structure, a model where
nodes are segregated into different communities, scale-free networks, and networks
in which asset values are correlated and portfolio of institutions are overlapping.
The results reported by the authors are in line with the ones provided in the other
contributions already reviewed in this paper.

The work by Arinaminpathy et al. (2012) can already be included as being part
of a series of contributions that explore the role played by the evolution of the
financial robustness of each bank in determining how fragile the interbank market
is when feedback effects are present. Indeed, in Arinaminpathy et al. (2012), banks’
health determined the behavior of the agents in the short-term market. With the
same aim in mind, Battiston et al. (2012b) develop a dynamic model of financial
robustness where banks are connected in a network of credit relationships. That is,
we have a directed weighted graph where edge weights represent interbank assets and
liabilities. Financial robustness is defined as the ratio of equity to total assets. This
ratio is also used as a proxy for the financial creditworthiness of an agent i and its
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evolution over time is described using a system of stochastic differential equations
(SDEs). The goal is to build a model that can capture two different features of
the financial network: financial acceleration (i.e., current variations in equity that
depend on past variations in equity itself) and interdependence (financial robustness
of an agent depends on variations in the robustness of his neighbors).

Financial robustness is modeled as a jump-diffusion process and it is assumed
that neighbors of i react whenever they perceive it went through an atypical de-
crease. Therefore, the external finance premium charged by i’s counterparties does
not depend on the absolute value of agent i’s financial robustness but on its (relative)
variations when perceived as atypical. Furthermore, the sensitivity of counterparties’
reaction and the amplitude of the effect of such reaction are parameters of the model.
Sensitivity, amplitude and the size of the variations of the idiosyncratic shocks, all
determine the strength of the trend enforcement effect. The higher the ratio of the
amplitude over the sensitivity and size of the variations, the more frequently a nega-
tive variation in robustness will be followed by another negative variation, implying
that the expected time of default of the agent will be shorter. Additionally, in the
presence of financial acceleration, the probability of default increases monotonically
with the amplitude of neighbors’ reactions. Interdependence, instead, is modeled
by considering a set of N agents connected through a network of obligations which
is described by an exposure matrix which is also the weighted adjacency matrix of
the interbank network.10 Out-degree of agent i is going to represent the number
of counterparties or neighbors that one bank has and it is a rough measure of the
degree of diversification of the agent. The authors also assume that the graph is
always regular, i.e. all agents have the same out-degree k. To take into account
the fact that i’s assets include j’s liabilities and that the value of a bank’s portfolio
will depend on the value of the assets of its neighbors, a first order linear degree of
dependence between the robustness of the agents is assumed. As a consequence, the
average effect of the trend reinforcement depends also on the average level of con-
nectivity as determined by k. When connectivity is not high (small k), it is unlikely
that a bank hit by a negative shock will be further penalized; but, when connectivity
increases, the fluctuation magnitude gets dominated by the magnitude of the effect
of the penalty (i.e. the external finance premium that has to be paid). Put it differ-
ently, an increasing level of diversification k in the network is beneficial at first, since
it will imply smaller fluctuations to the portfolio and hence longer time to default;
however, beyond a certain threshold of k, whenever a bank suffers a relatively large

10I.e. the square matrix W whose generic entry wij represents the weight of the link from i to
j, and is 0 if banks i and j are not linked in the network.
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negative shock, the effect of trend reinforcement will kick in. In terms of probability
of default, when financial acceleration is absent, such probability is decreasing with
k; however, once financial acceleration is introduced, diversification is at some point
counterproductive and it increases the probability of default. In terms of systemic
risk, higher connectivity implies an increase in the correlation of banks trajectories
of robustness. As a result, the probability that several banks fail, conditional to the
default of at least one of them, is increasing with k. Moreover, when the default of
an agent has external effects on its neighbors, the probability of multiple defaults
is also growing with k. In order to study bankruptcy cascades, the authors assume
that when bank i defaults, its neighbors’ robustness will be decreased by an amount
which is proportional to their relative exposure. This implies that only small- or
large-sized cascades will appear in the system. In particular, systemic risk is not –
in general – monotonically decreasing with risk diversification. The financial system
is more likely to be trapped near the threshold at which large cascades occur when
the diversification is large, and there exists an optimal level of risk diversification
that does not coincide with full diversification.

In a more recent contribution, Roukny et al. (2013) analyze how different factors
interplay in determining the stability of the financial system. That is, network
topology, banks’ characteristics (including financial robustness), capital and liquidity
requirements, and types of shocks all contribute in determining the resilience of the
interbank market. The model is characterized as follows. A network of N banks is
created where links represent lending-borrowing relationships between agents. Two
different contagion mechanism are allowed: losses from direct counter-party losses
and liquidity shocks due to the adjustment of asset prices after fire-sales. Banks are
heterogeneous in their level of robustness – i.e. the ratio of the bank’s net worth over
the value of its interbank assets – since their initial values are assigned at random and
different market structures are tested in the numerical simulations: regular graphs,
random graphs, and scale-free graphs. Furthermore, the initial negative shocks can
also be of different types: completely random shocks (i.e. a bank is defaulted at
random) and targeted defaults, where the hubs are forced into bankruptcy. The
main finding of this contribution is that it does not exist an optimal one-fits-all
market architecture; instead, the optimal configuration depends crucially on the
underlying market conditions. For example, when market liquidity is high, the three
different network topologies show a very similar performance in terms in systemic
risk; instead, when markets are illiquid, scale-free networks are the most fragile.
Furthermore, scale-free graphs can be the most fragile or the most robust market
architecture depending on the initial allocation of capital across agents and on the
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correlation between the number of lenders and the number of borrowers each bank
has (i.e. the correlation between in- and out-degree). Furthermore, as it has been
found in previous studies, when the most connected nodes are also the most robust
ones, the market is less fragile. Instead, when attacks are targeted and/or the hubs
are not financially robust, the reverse holds.

As far as market stability is concerned, Georg (2013) provides a dynamic model
of the interbank market where a central bank is explicitly modeled and its role in
improving the stability of the financial system is studied. In this framework, banks
can optimize their portfolios of risky investments and adjust their demand/supply
of liquidity depending on the stochastic returns their observe on their investments;
while the central bank can provide additional liquidity to the system in a setting
that is similar to the ones considered in Bluhm et al. (2014); Blasques et al. (2015).
Each bank’s balance sheet is composed - on the assets side - by risky investments,
interbank credits, and excess reserves held before the central bank. On the liabilities
side, each bank has deposits, interbank loans, central bank loans, and capital. Banks
dynamically determine their portfolio composition and interests are paid/gained on
all the lending/borrowing agreements. Liquidity demand and supply are endoge-
nously determined during the evolution of the system since the stochasticity of the
returns on the investments and of the level of deposits determine the level of liq-
uidity available/needed by each bank. Banks with excess of liquidity provide credit
on the interbank market; while banks with shortage of liquidity request loans either
through the interbank market or to the central bank. The central bank provides the
additional credit provided that banks have a sufficient collateral. Three different
topologies of the interbank market are tested: random graphs (i.e. Erdős-Rényi null
model), scale-free graphs (Barabási and Albert, 1999), and small-world networks
(Watts and Strogatz, 1998). Furthermore, the simulations are parametrized as to
model two different economic scenarios : a normal time scenario, where most credit
is repaid and returns on investments are higher; and a crisis time scenario, where
banks suffer larger losses on their investments. The author finds that - in normal
times - different network topologies have a similar performance in terms of systemic
risk (a result that was also found in Roukny et al. (2013)). However, in times of
crisis, network topology do matters. The level of connectivity affect in a non-linear
ways the probability of contagion (a result we are familiar with): if the level of
connectivity is too low, banks cannot attract enough funding and become illiquid;
however, if the level of connectivity is too high the system enters in a contagious
regime in which an initial default of a bank can easily cascade to affect the entire
financial system. Contagion effects seems to be the largest in random graphs; while
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scale-free graphs are found to be the most resilient. The central bank can have a
stabilizing role for the financial system. However, its efficacy depends on the precise
network configuration and on the level of collateral requested to obtain liquidity
from the central bank. Therefore, even marginal changes in the required levels of
collateral can provide strong stabilizing effects on the interbank market. Lastly, the
author argues that interbank contagion due to the default of an initial bank has a
larger effect on interbank liquidity than an initial common shock that affects more
banks at once.

The last contribution we want to focus our attention on, it is the one provided
by Montagna and Kok (2013). In this work, the authors develop a multi-agent
and multi-layered simulation model where the interbank market is represented as a
multi-graph. In particular, three different network layers exist: a network of short-
term interbank loans, a network of long-term interbank loans, and a network that
represents the common exposures to financial assets (i.e. the network of overlapping
portfolios). Therefore, the combine most of the features we have already observed
in other modeling frameworks such as Arinaminpathy et al. (2012); Loepfe et al.
(2013); Georg (2013); Bluhm et al. (2014); Blasques et al. (2015). The first two
layers are represented as directed weighted graphs; while the latter is represented
as a undirected weighted graph. Furthermore, banks’ behavior is explicitly modeled
and financial institutions can adjust their balance sheets in response to endogenous
and/or exogenous liquidity/capital shocks. For example, banks can adapt their
exposures so to be able to meet the capital ratio minimum requirements imposed
by the policy maker. In particular, banks have to maintain both their risk-weighted
capital ratio and their liquidity above two different thresholds. The price of the
financial assets is endogenously determined by the model and it depends on the
amount of assets – for each given asset category – that are sold during the unfolding
of the simulation. Indeed, in order to adjust their capital or liquidity ratios, banks
can either reduce their short-term exposures or sell securities, therefore changing
the overall market prices and (possibly) causing losses to other agents (financial
securities are marked-to-market). Therefore, in this model, authors are able to
simulate three kinds of risks: counter-party risk, funding risk and liquidity risk.
The model is calibrated using a dataset consisting of a sample of 50 large European
Banks for which the following information are known: level of capital, short-term and
long-term interbank borrowing, deposits, short-term and long-term interbank loans,
aggregate securities holdings, liquidity and the reconstructed risk-weighted-capital-
ratio. However, bilateral exposures and the amount of individual securities held by
each bank are not available in the data. As a consequence, the topologies of the three
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network layers are randomly generated. The main findings of the paper are: first,
the contagion effects of an initial shock to one layer can be significantly amplified
when all network layers are active, that is, there exist important non-linearities
in the way in which bank-specific shocks are propagated throughout the financial
system; second, the topology of the networks and the underlying balance sheet
positions of the banks matter significantly affect the level of resilience of the financial
system; lastly, the presence of common exposures via overlapping portfolios allows
the authors to demonstrate the trade-off that exists between risk diversification and
financial stability since a decision to diversify that may be optimal at the individual
level can end up increasing systemic risk.

7 Discussion

This paper has surveyed recent research trying to explain the ways in which bank
and market characteristics – such as bank heterogeneity, moral hazard, imperfect
information, portfolio optimization, changes in asset prices, and capital and liquidity
requirements – interact with network connectivity in determining the stability of the
financial system.

We have seen that the level of connectivity influences the probability of the sys-
tem to remain stable. However, the role played by connectivity depends also on how
the structure of the network interacts with additional factors which are specific to
the interbank market. Heterogeneity of banks, liquidity and capital requirements,
incentives to misbehave and indirect contagion via price changes on common as-
sets are all phenomena that can modify the role played by connectivity within the
financial system.

Stylized models, as the ones introduced by Allen and Gale (2000), Babus (2005,
2007), Freixas et al. (2000) and Leitner (2005) all agree that graph incomplete-
ness increases systemic risk and they also stress that having an incomplete network
structure is ex-post sub-optimal (Babus, 2005), unless the resources present in the
financial system are so scarce that every agent would be better off on its own (Leit-
ner, 2005). May and Arinaminpathy (2010) also find that increasing the level of
connectivity is beneficial only when the initial shock has been caused by a default
on interbank loans. Instead, the opposite result is found in case of liquidity shocks
since a positive feedback effect is going to be generated by the adjustment of asset
prices, making the system more fragile when connectivity is increased. However,
Babus (2007) also stresses how completeness is just a sufficient condition for stabil-
ity, not a necessary one. Indeed, most networks can still be incomplete but have
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a low probability of contagion. In addition, Glasserman and Young (2015) show
how bounds on the financial systems susceptibility to contagion can be derived even
when the exact details of the system’s topology are not known.

More complex analytical and numerical models show how the financial system
exhibits a robust-yet-fragile property, specifying in a more precise way how connec-
tivity influences stability. In particular, connectivity and size of shocks interacts in
determining how a financial system may move from a state of stability to a state of
instability in an abrupt way (Gai and Kapadia, 2010; Gai et al., 2011; Amini et al.,
2012; Acemoglu et al., 2013; Caccioli et al., 2014) and complete graphs could even be
detrimental when the total values of interbank liabilities and claims traded within
the network are large (Acemoglu et al., 2013). Furthermore, financial institutions
are shown to be interconnected not only via direct lending/borrowing agreements,
but also via overlapping portfolios and changes in asset prices (Caccioli et al., 2014;
Elliott et al., 2014). Therefore, their financial robustness have to be studied taken
also that into account.

Banks diversity is proven to be another source of fragility for the financial system
(Iori et al., 2006; Amini et al., 2013; Caccioli et al., 2012; Lenzu and Tedeschi, 2012;
Arinaminpathy et al., 2012; Battiston et al., 2012a; Loepfe et al., 2013). As show
Iori et al. (2006), increasing connectivity is beneficial only when banks have the same
size. Instead, when banks are heterogeneous in size, an increase in connectivity may
still lead to less failures but only when interconnectedness is at low levels. Above a
given threshold, initial defaults lead to avalanches. A similar conclusion is reached
in Loepfe et al. (2013). When shocks are drawn from a fat tailed distribution, an
isolated system is better than a connected system. However, whenever link density
is low and modularity and size heterogeneity are high, a critical range exists where
very small variations in the structure of the network (i.e. the addition or rewiring
of few links) can have disproportionate effects in terms of systemic risk.

Banks can also be allowed to vary in terms of individual connectivity, with degree
and exposure sequences distributed according to scale-free power law distributions
(Amini et al., 2013; Lenzu and Tedeschi, 2012). However, also this type of het-
erogeneity can come to be detrimental for stability. Networks where banks can be
heterogeneous in connectivity or size will particularly suffer in case of shocks that
directly attack too-big-to-fail or too-connected-to-fail nodes (Caccioli et al., 2012;
Loepfe et al., 2013; Georg, 2013; Roukny et al., 2013; Montagna and Kok, 2013).
Initial financial robustness can also be heterogeneous across banks. As Battiston
et al. (2012a) show, increased connectivity may lead to an increase in systemic risk
whenever initial robustness is heterogeneous and many banks are fragile since an
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initial set of defaults will indeed trigger a systemic default.
Furthermore, when shocks are caused by the misbehavior of the agents, the role

of connectivity structurally changes. As shown by Brusco and Castiglionesi (2007),
when a moral hazard problem is present and banks can invest in a gambling asset,
having a more interconnected interbank market increases the extent of contagion in
case of bankruptcies. Moreover, when returns from investments are a function of
connectivity – the higher the connectivity of the node, the higher the potential gains
– and banks can gamble, Castiglionesi and Navarro (2008) show that core-periphery
structures emerges.

Imperfect information may also exacerbate contagion by inducing bank runs and
fire-sells that also change the effects of connectivity on contagion. For example,
Battiston et al. (2012a) demonstrate how imperfect information on the exposures of
defaulting banks can lead to bank runs and the role played by connectivity is uncer-
tain in such cases. Indeed, the size of the cascade of defaults is initially decreasing
with higher diversification but, after a certain threshold, the dynamics are reversed.

Different tools are available to banks for dealing with uncertainty and imperfect
information. For example, peer-monitoring can be used to increase transparency
(Blasques et al., 2015) and explicit actions can be taken so that how much each bank
is lending/borrowing and to whom it is dealing with is the result of an optimization
process where profits are maximized taking into account also for risk and uncertainty
(Bluhm et al., 2014; Halaj and Kok Sorensen, 2014).

Prudential regulation has also an impact on the stability of the financial sys-
tem. Liquidity and capital requirements, by altering the behavior of banks, have
several effects on systemic resilience. Cifuentes et al. (2005) show that when con-
tagion spreads also through the asset prices channel, liquidity can be a substitute
for connectivity to increase systemic stability. Also, liquidity requirements are more
effective than the ones on capital. As far as connectivity is concerned, we have that
higher connectivity may lead to an increase of systemic fragility especially when
liquidity requirements are low (as also shown in May and Arinaminpathy (2010)).
However, for high enough level of interconnectedness, the price contagion chan-
nel does entirely disappear. The same result about the non-monotonic effects of
connectivity is also obtained by Nier et al. (2007), when we consider the level of
capitalization of the system instead of the level of the liquidity requirements.

Additionally, when financial acceleration is introduced (Battiston et al., 2012b),
it appears that systemic risk is not – in general – monotonically decreasing with risk
diversification. Instead, the optimal level of connectivity does not coincide with full
diversification since – at some point – increasing a further increase in connectivity
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raises also the probability of contagion. Furthermore, conditional to the default of
at least one bank, the probability of observing a cascade of defaults is increasing
with the level of connectivity.

The main conclusion that can be drawn from the papers covered in this survey
is that, depending on the assumptions made, average graph connectivity is found
to have a strong impact on systemic resilience. Furthermore, such relationship is
almost always non-linear, which implies that policy measures have to be carefully
implemented in order to be able to decrease the strength and extent of systemic
risk.
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