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Abstract This paper develops a simple dynamic, non-symmetric game between two player populations that

can be generalised to a large variety of conflicts. One population attempts to re-write a current (social) contract

in its favour, whereas the other prefers to maintain the status quo. In the model’s initial set up, the free-rider

problem obstructs the occurrence of a conflict, leading to a low probability of a successful turn-over. The

normative and conventional framework, in which players interact, plays however a vital role in the evolution

of conflicts. By relating the individual pay-off perceptions for each strategy to the type and frequency of norm

violations, the free-rider effect can be considerably weakened, thus enabling the model to predict the existence

of two stable equilibria; one with a high rate of conflict, and another in which no conflict arises. This second

equilibrium is caused by a triggering event. The model provides an explanation of how and why these events

may occur and under which conditions they can be observed more frequently. In addition, it is also shown

which factors influence the equilibria’s basin of attraction, i.e. the likelihood of a transition and hence the

probability of a conflict.
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1 Introduction

On May 23rd, a group of protestant noblemen enters the Bohemian chancellery by force and defenestrates

three protestant senior officials. Yet, all three miraculously survive the seventeen meter fall. Although the three

imperial representatives of Bohemia are fortunate, “the Defenestration of Prague” in 1618 marks a fatal day in

the European history. This incident triggers a war between Catholics and Protestants that will last for 30 years.

It will have severe economic repercussions by drawing six countries into war; bearing the cost of four million

lives and depopulating entire areas in the Holy Roman Empire. Some regions will require more than a century

to recover economically. The thirty years war is only one of many historical examples that illustrate the impact

of conflicts both on the stability of institutions and on economic development, and stresses the importance to

understand the evolution of conflicts for the economic theory. The recent Arab Spring demonstrates once again

that the strong socio-economic implications of large scale conflicts are still valid nowadays.
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Game theory has already been used to explain social phenomena since the middle of the 1950s (for a

historical account refer to Swedberg 2001). At the beginning of the 1980’s analytical Marxists used Game

Theory as the mathematical means for a micro-founded explanation of social problems, structure and change,

especially with respect to conflict and cooperation (Elster 1982; Cohen 1982; Roemer 1982b), class struggle

(Przeworski and Wallerstein 1982; Holländer 1982; Roemer 1982a, 1985; Eswaran and Kotwal 1985; Mehrling

1986; Cole et al 1998), the stability of social contracts and classes(Starrett 1976; Roemer 1982c; Eswaran and

Kotwal 1989; Axtell et al 2000; Bowles 2006), and trade union behaviour, i.e. bargaining models (Ashenfelter

and Johnson 1969; Kennan and Wilson 1989; Kiander 1991; Clark 1996).

Yet, this “classical” literature has neglected the role of social conventions, norms and punishment, except

for less sophisticated conflict games including variants of Prisoner’s Dilemma, Battle of Sexes and Chicken

Game (for an overview, see Binmore 1994; Gintis 2000, 2009 and for versions to model the effects of potential

threats on cooperation, see Brams and Kilgour 1987a,b, 1988; Brams and Togman 1998). Of special interest in

this respect has been the literature on the evolution of conventions following the idea of stochastically stable

equilibria and conventional change by Young (Foster and Young 1990; Young 1993, 1998, 2005; Kandori et al

1993; Ellison 1993, 2000; Bergin and Lipman 1996; Morris 2000; Durlauf and Young 2001), and the literature

concentrating on strong reciprocity and altruist punishment (Binmore 1998; Bowles et al 2003; Boyd et al

2003; Gintis et al 2005; Brandt et al 2006; Choi and Bowles 2007).

This article bridges the “classical” and “behavioural” literature by illustrating the interdependency between

the strategic choice of players during conflicts and the perceived violations of social norms and conventions.

This simplified model of social conflict is able to provide analytical proof of some of the intuitions that are

observable in real-world conflicts. The first section starts with a game between two player sub-populations,

in which a conflict does not occur because of the free-rider effect, though a social conflict and the subsequent

change is mutually beneficial for one player sub-population and collective action should result in such a change.

The second section develops an analytical representation of the dynamics of emotional violence during a con-

flict situation that arises from norm violations. The third section then incorporates the “emotional component”

into the original model, making social conflict possible under certain conditions. The sixth section constitutes

the conclusion and an outlook for future research.

2 The Basic Model

Let there be a game Γ = (S1,S2, ..,Sm+n;π1,π2, ...,πn+m) played in a finite but large population N with players

i = 1,2, ...,n+m. Game Γ is thus defined by a set Si of pure strategies for each player i. Given player i’s

strategy si and for each pure strategy profile s = (s1,s2, ...,sn+m), in the set of pure strategy profiles S = ×iSi,

the associated individual pay-off to player i’s strategy choice is defined by πi(s) ∈ R, implying that πi : S → R

for each player i. Further assume that two distinct sub-populations CA and CB, with CA ∩CB = /0, CA ∪CB = N,

participate in Γ . In addition, suppose that there are n players in CA and m players in CB and n >> m >> 0.1

For simplicity denote each individual player in CA as A and in CB as B. Thus, assume that all players in the

same sub-population have an identical pure strategy set and pay-off function for each strategy. For an A ∈ CA

assume that SA = {R,C,S}, i.e. each player A has the choice between (R)evolting, (C)onforming to the current

system, or (S)upporting it. Revolting implies an active action to change the current (social) contract written

between CA and CB. Conforming denotes a strategy of “inaction”; a player waits for the other players to act.

Supporting is diametric to revolting; a player approves of and actively supports the current social contract.2

For B ∈CB assume that SB = {P,¬P}, i.e. the player can choose whether or not he provides a bonus payment

to the supporters in CA. (This payment does not necessarily define a direct monetary benefit, but can also be

considered as workplace or social amenities, an easier career in a firm controlled by a B, a better reputation or

higher social status among the Bs.)

1 The last assumption is not strictly necessary, but simplifies the model. It could also be assumed that the winning probability is

influenced by the relative sub-population sizes. Yet, redefining the parameter values, should have a similar effect.
2 The Thirty Years’ War shall again serve as an example: In the events following the “the Defenestration of Prague” R-players

are comparable to the Hussites of Bohemia, S-players are mercenary soldiers supporting Ferdinand of Habsburg, and C-players are

mostly peasants.
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Suppose that in the current state and with respect to the currently prevalent social contract, there exists an

alternative allocation that constitutes a redistribution detrimental for CB, yet favourable for As playing strategy

R or C. This does not necessarily hold for As playing S, especially when paid by the Bs. Consequently, all

players in CB have an interest in maintaining the current (social) contract and in preventing the implementation

of the alternative allocation. Strategy R and C players in CA, on the contrary, benefit from a successful revolt

that leads to the realisation of the alternative allocation.

To derive the individual pay-off function πi(s) for each strategy and player type, first concentrate on the As

by labelling the frequency of revolutionaries in CA as x, the frequency of supporters as y, and the frequency of

conformists as z, for which it must hold 1 ≡ x+ y+ z (with each frequency lying within the unit interval). The

additional pay-off derived from the alternative allocation after a successful turn-over is defined by a positive

constant δ r. Assume further that if the attempt of revolution failed, revolutionaries face a negative pay-off

defined by a function decreasing in the share of supporters, as those will impose the punishment. For simplicity

assume that this is the linear function δ py, with δ p being a negative constant. This negative pay-off can be

through death, punishment, imprisonment, social shunning, discrimination, or mobbing etc. This cost is absent

if the player has chosen strategy C. (Thus, this model does not take account of collateral damage or second-

order punishment. This circumstance can be easily implemented into the model by adding an additional cost

to the conformist strategy. As long as it is smaller than δ py the general dynamics of the original model should

persist.) Hence, the expected pay-offs of revolutionaries and conformists are equal to

πi(si,s−i|si = R) = P(win|si = R)δ r +(1−P(win|si = R))δ py

πi(si,s−i|si =C) = P(win|si =C)δ r
(1)

where P(win|si) defines the probability of realising the alternative allocation, if player i chooses si, given the

strategies s−i of all players other than i.

To derive the functional form of probability P, suppose that in order to engage in a conflict, groups are

formed at random from players in CA, but that conformists never actively join a group. This reflects the general

situation prior to a conflict. People congregate to discuss new labour contracts, to meet at a summit, to protest

on the streets, to rally forces for battle or covert assaults etc., without exact prior knowledge of who will

participate. Supporters, on the contrary, join the group to “sabotage a revolutionary attempt”, e.g. in the form

of police forces, the opposing battalion, the members supporting the counter-faction in the summit.

Since groups are formed at random, a player cannot tell the exact group’s composition prior to his choice

to participate. He does not know how many players actively engage in the conflict and how many of these will

choose strategy R or S. His expected pay-off, however, depends on the frequency, with which each strategy is

played in sub-population CA, since groups are assumed to be defined by an unbiased sample.3 Consequently,

expected group size is determined by the expected number of individuals that join the group, i.e. that are not

conformists. In this case, the probability of being in a group of size s ≤ n is simply the probability of finding

s−1 other individuals playing a strategy different from conforming. Since population size n is expected to be

large, the hypergeometric distribution is approximated by the easier binomial distribution in order to keep the

system tractable. We obtain that the probability of being in a group of size s is:

(
n−1

s−1

)
(1− z)s−1zn−s (2)

for both strategies S and R. Group size is thus determined by the frequency of conformists, whereas the com-

position of a group of size s is only defined by the frequencies of revolutionaries and supporters. Suppose that

3 Notice that the replicator dynamic, which will be applied later on, does not require a player to know or form expectations about

the frequencies, with which each strategy is played, since strategy choice is defined by imitation. Furthermore, the assumption of

an unbiased sample excludes that assortment takes place according to a player’s strategy, e.g. revolutionaries are not more likely to

meet other revolutionaries than supporters or conformists.
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each revolutionary adds a marginal unit to the probability that the group revolts successfully, but that this mar-

ginal additional unit of probability diminishes in the number of supporters. Assume that this marginal unit is

simply 1/n minus a constant weighted by the share of supporters.

If a player chooses strategy R, a group of size s can include 1 (only himself) to s (all) revolutionaries.

Let τ be the number of revolutionaries in a group. The probability of drawing τ − 1 other revolutionaries is

(x/(x+ y))τ−1
and the probability of drawing the remaining s− τ supporters is (y/(x+ y))s−τ

. Furthermore,

the share of supporters in a group of size s with τ revolutionaries is equal to (s− τ)/s. If we assume that the

marginal negative effect of a supporter in such a group is a, we obtain

GR(s) =
1

n

s

∑
τ=1

(
s−1

τ −1

)(
x

x+ y

)τ−1(
y

x+ y

)s−τ

τ

(
1−a

(
s− τ

s

))
(3)

The first part defines the expected composition of a group of size s, the second the marginal effect of the

revolutionaries minus the marginal effect of supporters on the winning probability of a group of size s. Thus,

GR(s) denotes the probability, with which a group of size s can impose the alternative allocation. It must hold

a ∈ (0,1) for the probability to be restricted to the unit interval. If a = 0 supporters have no additional negative

effect on the winning probability, except for their inaction (i.e. they do not contribute to the revolutionary

attempt). Given a = 1, we observe that the marginal effect of a revolutionary is negligible, if the group is

composed by a high number of supporters.The former equation 3 can then be placed into equation 2 for the

expected group size and determines the probability of imposing the alternative allocation:

P(win|si = R) =
n

∑
s=1

(
n−1

s−1

)
(1− z)s−1(z)n−s (GR(s)) (4)

Since such conflicts oftentimes imply large populations, equation 4 is thus approximated by

lim
n→+∞

P(win|si = R) = x−
axy

x+ y
(5)

Consequently, for a = 0 the probability is simply P = x. If a = 1 then P = x2/(x+ y), implying increasing

returns to scale, i.e. the winning probability increases quadratically in the share of revolutionaries for a given

share of conformists.

The probability for a conformist can be derived in the same way by adapting the possible compositions and

group sizes to his strategic choice. Since a conformist does not join a group, a group of size s can be composed

of 0 to s revolutionaries. For τ revolutionaries in a group of size s, we need to draw τ times a revolutionary,

each with probability x/(x+ y) and s− τ supporters, each with probability y/(x+ y). This gives

GC(s) =
1

n

s

∑
τ=0

(
s

τ

)(
x

x+ y

)τ (
y

x+ y

)s−τ

τ

(
1−a

(
s− τ

s

))
(6)

In the presence of a conformist, group size ranges from 0 to n− 1, and a conformist draws s revolutionaries

or supporters with probability (1− z)s, and n− 1− s other conformists. Consequently, placing the results of

equation 6 into the adapted equation 2 gives

P(win|si =C) =
n−1

∑
s=0

(
n−1

s

)
(1− z)s(z)n−1−s (GC(s)) (7)

and for large n

lim
n→+∞

P(win|si =C) = x−
axy

x+ y
(8)

Comparing equation 5 and 8 shows that for large populations individual strategy choice is irrelevant.

Further let πi(si,s−i|si = R) = πR and πi(si,s−i|si =C) = πC for notational simplicity. Putting in the previ-

ous results into equation 1 on page 3 yields the expected pay-off function for both strategies:
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πR =
x(x+ y−ay)

x+ y
δ r +

(
1−

x(x+ y−ay)

x+ y

)
δ py

and

πC =
x(x+ y−ay)

x+ y
δ r

(9)

Since δ p is a negative constant, strategy C weakly dominates strategy R for sufficiently large player populations

(n >> 0) and strictly dominates in the presence of at least one supporter.

Assume that all those players, who choose strategy S are subsidised by a bonus payment from sub-

population CB. They are paid d by the share w of Bs, who are playing strategy P. Since the bonus is assumed to

be be shared by the supporters of the group, d increases with the share of revolutionaries in the group. Strategy

S, however, incurs an additional cost. Defending the current contract against revolutionaries can be risky and

we may assume that this cost is highest if the struggle against revolutionaries is the hardest. This is the case

if supporters and revolutionaries meet with equal strength. In addition, we might assume that the conflict es-

calation is stronger the larger a group. Furthermore, the individual benefit from choosing this strategy can take

the form of general acknowledgement, promotions, social honours etc. Hence a supporter has an interest that

the population does not consist of too many supporters. It should be hence assumed that expected pay-off is

decreasing in the population share of supporters and that the cost function is highest if the group is equally split

between revolutionaries and supporters.

The share of revolutionaries for a group of size s is given by τ/s, and the share of supporters in the entire

sub-population CA is (s− τ)/n. Given the former assumptions, assume that expected pay-off of a supporter is

given by

GS(s) =
s−1

∑
τ=0

(
s−1

τ

)(
x

x+ y

)τ (
y

x+ y

)s−1−τ (
wd

τ

s
− c

(
τ

s

s− τ

n

))
(10)

The value in equation 10 is only indirectly related to the expected probability of a successful revolt, and defines

the expected pay-off of an S-player in a group of size s. Setting in into the equation 2, and defining πi(si,s−i|si =
S) = πS gives

πS =
n

∑
s=1

(
n−1

s−1

)
(1− z)s−1(z)n−s (GC(s)) (11)

For n → ∞ the expected pay-off of an individual choosing strategy S is

πS =
x(dw− cy)

x+ y
(12)

Given that there exists at least one supporter, it must hold that x = 0, since strategy C strictly dominates

R, and πC = πS = 0 in this case. Hence, all points in y+ z = 1 are Lyapunov stable equilibria that cannot

be invaded by revolutionaries, but perturbations, i.e. random drift, are not self-correcting. Any point at y = 0

(no supporters) provides equal pay-off to revolutionaries and conformists, yet in the presence of at least one

supporter the pay-off of the former is strictly smaller than the one of the latter.

To define under which conditions a B will decide to provide the bonus payment to the supporting As, let

again w be the share of players in CB choosing strategy p and, hence 1−w be the share of those not paying

supporters. Assume that the benefit of paying supporters increases with the share of revolutionaries. We might

consider for example a small number of security men that protect a factory owner against his revolting labourers

protesting for higher loans. Yet, the higher the numbers of protesters the higher the need for protection. In

addition, the conflict between revolutionaries and supporters creates collateral damage to the detriment of the

Bs, meaning that if revolutionaries are present in great numbers, it is best to be amongst those that less strongly

resisted the attempt. Assume that benefits from protection increase linearly in x, but fall quadratic in x. Hence,
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let benefits be described by bx − bx2, with b > 0. Let there also be a spillover effect on those not paying

the supporters that increases linearly in the share of payers w. Protests are not localised and a probability of

spreading violence to other groups exists. Hence, Bs, who choose to pay, have also an incentive to “suppress”

revolutionaries, when they are only indirectly concerned.

Furthermore, let there be a cost k that also increases with the share of non-payers in a group, since some

economies to scale arise, e.g. two factory owners share security personnel, they also share costs. Assume, how-

ever, that costs also increase in the number of payers. The underlying idea is that as the number of payers

increases, the complexity to set up a security system that satisfy all payers at the same time becomes more

complex and thus costly. For example, if a larger number of factory owners invests in security personnel, some

amateur security men, who are only recruited in the case of incidents, are substituted by well-trained profes-

sional security personnel. It is necessary to set up an infrastructure sufficient to guarantee quick information

exchange and access to the various factory sites. Hence, the cost reduction from economies of scale are initially

offset by these set-up costs. Non-payers do not bear such costs, but suffer a negative pay-off e by those who

chose to pay. e signifies the negative effect of social shunning that increases in the number of payers. The more

player choose to pay, the more social pressure is exercised on non-payers. For a player population of size m

and ρ being the number of payers, the expected pay-off functions for each strategy are then determined by

πP =
m

∑
ρ=1

(
m−1

ρ −1

)
(w)ρ−1(1−w)m−ρ

(
(1− x)xb− k

(
m−ρ

m

ρ

m

))

π¬P =
m−1

∑
ρ=0

(
m−1

ρ

)
(w)ρ(1−w)m−1−ρ

(
(1− x)xb

ρ

m
− e

ρ

m

) (13)

where the first part of both equations defines the expected composition, and the second part (in brackets) the

net pay-off of each strategy. Again for m >> 0, approximating by m → ∞, gives

πP = bx(1− x)− k(1−w)w

π¬P = w(bx(1− x)− e)
(14)

Solving 14 shows that the set of equilibria consists of four components; two interior and two pure equilibria.

The interior equilibria are given by the two roots, at which both strategies have equal pay-off, namely

w∗1 =
1

2k
(k+bx− e−bx2 −

√
(e− k−b(1− x)x)2 −4bk(1− x)x) (15)

and

w∗2 =
1

2k
(k+bx− e−bx2 +

√
(e− k−b(1− x)x)2 −4bk(1− x)x) (16)

under the constraint that w∗1,w∗2 ∈ (0,1); the former defines the stable interior equilibrium (henceforth called

the low w-equilibrium), the latter provides the unstable equilibrium and frontier between the basin of attraction

of the stable pure equilibrium defined by w∗3 = 1,∀x ∈ (0,1) (henceforth called the high w-equilibrium) and

the low w-equilibrium.

The lower set of equilibria illustrates that below a certain threshold of w, in the absence of any revolution-

aries, no B has an incentive to pay, since the only motivation is provided by the social shunning of payers.

Similarly if all As choose to revolt, a single B faces a situation, in which he only pays his marginal costs

without any benefit, but can evade the costs from social shunning if he did not pay. Hence, also no incentive

to pay arises. For an intermediate share of revolutionaries an incentive exists tor protecting his property. If

a sufficient number, however, pays supporters the spill over is adequate, i.e. it compensates for the lack of a

direct net benefit from paying supporters and the cost of social shunning, and B will have no motivation to play

strategy P. On the contrary, in the high w-equilibrium at which all Bs play P, it is also always best response

given any x to pay because of cost e.
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If the conflict described by the current model is not considered to be defined by a single event but a sequence

of repeated events, individuals are able to dynamically re-evaluate their strategy choice between events (as for

example, during the Monday demonstrations in the GDR in 1989 or the skirmishes during the Thirty Years’

War). Since players meet at random in a group, they might feel unsatisfied with their current strategy and

re-assess. In this case, a player compares his strategy choice to a random “model” player. The player adopts

the strategy of his “model” with a probability proportional to the positive difference between their model’s

and their own pay-off, which have been generated in the course of this event (if the difference is negative,

i.e. if a player has chosen a better strategy than his model, the player will not switch). Hence, if a player

observes another player faring much better with another strategy, he changes strategies less likely. If the model

player only received a marginally higher pay-off, the player will less likely to switch. Notice that if an S-player

observes an R-player, who obtains higher pay-off, he will adopt this strategy with a positive probability, though

strategy R is strictly dominated by C. Nevertheless, more S-players will switch to strategy C than to strategy R,

since the pay-off difference between players choosing C and S is greater than between those choosing R and S.

The dynamics based on this type of assumption are best described by the replicator dynamics (see also

Bowles 2006). The replicator dynamics are generally defined by σ̇i = ∑ j σiσ j(πi − π j), where σi denotes

the frequency of strategy/trait i (i.e. in this case x, y or z) in the population, see Taylor and Jonker (1978);

Taylor (1979); Schuster and Sigmund (1983), and especially Hofbauer and Sigmund (1988); Weibull (1995);

Nowak (2006)). Hence, σiσ j defines the probability, with which a player of trait σi (i.e. a player choosing the

strategy associated to σi) meets another player of trait σ j. The switching probability is a multiple of the pay-off

difference πi −π j. For the limited strategy set, the replicator dynamics can be simplified to

ẋ = x(πR −φ)

ẏ = y(πS −φ) and

ẇ = w(1−w)(πP −πNP)

(17)

where φ denotes the average pay-off of the players in CA being defined by φ = x πR +y πS + z πC. The pay-offs

are determined by equations 9, 12, and 14. The dynamics with respect to any distribution of the players in CA

are illustrated in figure 1 on page 7, where ∆σi ≡ πi − φ . Consequently, strategy σi is stationary at ∆σi = 0.

Solving gives 2 roots for each variable x, y and z, yet the figure only show those within the unit interval,

i.e. x + y ∈ (0,1). The vectors thus indicate the direction of movement relative to these loci. A stationary

(equilibrium) state is then defined by those states in which each strategies is either stationary or absent.

Fig. 1 Projection of the unit simplex and the dynamics for given w: A.) w = w∗1, B.) w = 1, Parameters: a = 1, δ r = 4, δ p =−3,

d = 5, c = 25, b = 2, k = 5, e = 0.5
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In case a.) any state on the x-axis with y = 0 is stationary and cannot be invaded by supporters. Notice,

however, that C weakly dominates R. If non-best replies occur infrequently, evolutionary drift will push any

population towards the left along the simplex axis, and the number of revolutionaries will converge to zero. Any

point on the y-axis with x = 0 is also stationary and invasion by revolutionaries is impossible. Small perturba-

tions of non-best response play will, however, push a population back to the equilibrium z = 1.4 The unstable

equilibrium for z = 0 is defined by point (0.12,0.88); the former value denotes the share of revolutionaries, the

latter the share of supporters.5

In case b.) the situation is somewhat different. Any perturbation a point on the x-axis in the direction of

y will push the population out of region V into region IV, in which the population converges to the y-axis but

remains in this region. In addition to the higher mixed equilibrium at (0.12,0.88) a second mixed equilibrium

exists at z = 0 and point (0.95,0.05). This is also unstable as z-perturbations will again push it into region

IV. (This implies that the equilibrium can be destabilised by random mutation, but not by imitation.)6 In the

case of infrequent non-best response play the long term equilibria will be defined by the line segment on the

y-axis of region IV. The model is therefore inadequate to efficiently model conflicts. Conflicts would occur

with quasi null probability, even if there is little incentive to support the current (social) contract and if a

favourable alternative allocation exists. A conflict would require a large number of non-best responses that

push the population from the y-axis into region II. Further, we observe that all equilibria are only defined by

two strategies. A population in a completely mixed equilibrium is unobservable, as the model neglects specific

characteristics innate to conflicts. One important aspect is the emotional reaction to the violation of social

norms.

3 The Effect of Social Norms

The literature on behavioural and neuro-economics (see for example Frohlich et al 1987b,a; Cooper et al 1992;

Rabin 1993, 1998, 2002; Smith 1994; Fehr and Gächter 2000; Camerer and Loewenstein 2002; Camerer et al

2005) has shown that fairness is a complex concept. In general a fair share is determined by a reference point.

An individual’s evaluation of whether an interaction is fair or not is determined by past-interactions, status,

expectations etc.. These elements define a reference framework that can be collapsed into a set of social norms

and conventions, which govern everyday interactions. Whenever a social norm is violated, individuals feel

unjustly treated. Hence, a simple individual pay-off comparison as in Fehr and Schmidt (1999) is only part of

the story.7 Fair does not necessarily mean equal. As Binmore writes: “A person’s social standing, as measured

by the role assigned to him in the social contract currently serving a society’s status quo, is therefore highly

relevant to how his worthiness is assessed by those around him”. (Binmore 1998, p. 459; see also variants of

the Ultimatum Game, in which contest winners successfully offer lower shares than in traditional version of

the game, such as Hoffman and Spitzer 1985; Frey and Bohnet 1995.)

The way in which social norms, and culture in general, are determined is as vague as the concept of fairness.

Attempts have been made in the past to model the evolution of social and cultural norms, yet, not only each

social/human science has its own definitions of culture, but these definitions are dependent on the current

Zeitgeist (Geertz 1987). Therefore no unique normative basis exists. This renders a precise description of a

social norm on an analytical basis very difficult and only few papers incorporate norms into their mathematical

4 Notice that evolutionary drift might push the population to both extremes on the y-axis, namely y= 1 or z= 1, depending on the

parameter values. The dynamics of the low w-equilibrium are determined by ∂πS/∂x|x=0 − ∂πC/∂x|x=0 = −(d (e− k+ |e− k|)+
2(c− (a−1)δ r)ky)/(2ky), which is, given the parameters, strictly negative, but the inverse may occur for low values of c, and high

values of a and δ r . For w = 1 the dynamics are determined by ∂πS/∂x|x=0 −∂πC/∂x|x=0 = d/y−c+(a−1)δ r , hence the relative

marginal effect of a mutant revolutionary on a supporter decreases with respect to the marginal effect on a conformist as y increase,

leading to the stability in region IV.
5 In addition to the graphical solution using the zero loci, the eigenvalues of the system’s Jacobian define the stability of the point

in the simplex. Both eigenvalues at this equilibrium are positive, defining thus an unstable fixed point.
6 We observe that the eigenvalues of the system’s Jacobian are positive for the former equilibrium and have alternate signs for

the second.
7 Along with the classic solutions provided by Nash (1950) and Raiffa (1953).
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models (see e.g. Bernheim 1994; Lindbeck et al 1999, 2002; Huck et al 2001, 2003). It is even unclear whether

our actions are determined by global norms or rather by highly local norms (Patterson 2004).

To circumvent this issue, it is sufficient to notice that it is indeed not strictly necessary to explicitly model

social norms, since revolutionary behaviour is defined by an aggressive reaction to the violation of social

norms. Hence, assume that a certain set of social norms, not closer specified, exists and that whenever a norm

is violated, it gives rise to an aggressive feeling. This assumption keeps the model general enough, so that it

is applicable to a large variety of conflicts, and norms and conventions. There are two aspects that the model

should take into account:

Lorenz (1974) has illustrated that, though aggression is immanent to every species and to most interactions,

it is nevertheless defined by a high level of ritualisation that minimises the frequency of direct hostile conflicts,

and the potential cost they would incur. Furthermore, humans illustrate a general tendency to avoid hostility

even in extreme situations. To include this into the model, assume that a general “non-aggression norm” exists

that dampens violent responses for all kinds of arising conflicts. On the one hand, the stronger the norm, the less

likely an individual will choose a violent response. On the other hand, the more violence an individual observes,

the more likely he will also respond aggressively, and the lower the dampening effect of the non-aggression

norm.

The formerly mentioned example of the Defenestration of Prague illustrates the second important aspect

of conflicts. A single event suddenly triggers a conflict, though the actual reasons are much more complex

and occur over a longer period of time. In 1555, the Peace of Ausgburg warranted the peaceful coexistence of

both confessions. The existential fear created by the small ice age and catholic aggressiveness led to a seething

conflict for more than 60 years that intensified from 1600 and suddenly erupted in 1618. Such trigger events

can be frequently observed in history: Luther’s Ninety-Five Theses on the Power and Efficacy of Indulgences,

the storming of the Bastille, the Assassination of Archduke Franz Ferdinand of Austria, the Montgomery Bus

Boycott, or the self-immolation of Mohamed Bouazizi. All these events triggered conflicts that had a wide

range of economical, political and social reasons. The underlying conflict smouldered for several years, but an

open clash was triggered by a single event that taken on its own, was insignificant.

Let there be l different existing social norms and define the violence level, which arises from a violation of

norm j, as v j, with j = 1, ..., l. Define the total violence level summed over all violations as v = ∑ j v j. Suppose

further that for every such norm violation a specific measure is taken that decreases violence. It is assumed

for simplicity that those measures appear exogenously and are not subject to strategic choice.8 Examples of

such measures are wage increases, a favourable change in the social security system, work amenities, a greater

right of co-determination, but it can also include propaganda that is used to misinform and to shroud the norm

violation.9 Call this measure α j. In addition, the non-aggression norm being defined by β , reduces the violent

reactions to all violations. Assume that its effect is identical for all v j, thus β does not require an index. Consider

the following system of differential equations (heavily inspired by Nowak and May (2000)):

v̇ j = v j (r(1− y(1− y))− sα j −qβ − vε)

α̇ j = hv j −uα j(1+ v)

β̇ = (1− x)κ −uβ

(18)

where all those variables not previously defined are assumed to be constant. The first equation defines the

dynamics of the violence levels. Violence exponentially increases in r(1− y(1− y)), where the net growth

rate is equal to r in the absence of any supporters. The idea behind the non-monotonic growth of violence

is that medium levels of supporters will suppress violent behaviour. Beyond a certain threshold, however, the

increasing number of supporters does not scare off revolutionaries, but has the opposite effect, as it ignites

violence. Violence also decreases exponentially in sα jv j and qβv j. Since more violent reactions have the

tendency to wear off more quickly, when dampened, the effect of α j and β increases in v j. Furthermore,

8 An additional strategy for players in CB could be included in the model. Yet, I do not believe that this increases the clarity of

the model, since the underlying argument should be similar to the decision of whether or not to pay supporters. It might be still

interesting for future research to create a trade-off between paying supporters and paying for anti-aggression measures.
9 In that sense we might more suitably speak of perceived norm violations.
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assume that violence naturally “cools down” at the rate vε , with ε relatively small. The violence level thus has

a saturation point in the absence of a non-aggression norm and further counter-measures, due to its decrease in

v jvε . The last term in v̇ j binds the total value to v = r(1−y(1−y))
ε , since violence levels cannot be infinite.

Assume that a higher level of violence requires a stronger counter-measure, i.e. α j is increasing in v j.

A high α j is, however, costly and difficult to maintain and the positive effect of a larger measure wears off

more quickly. Furthermore, it is expected that counter-measures absorb resources, and also that their efficiency

depends on the acceptance by the individuals concerned. The total violent response v thus decreases α j. The

counter-measure therefore wears off more quickly if it is more efficient and if the total violence level is high.10

Finally, the social norm of non-aggression is only an indirect function of the total violence v, since its size is

affected by the share of revolutionaries. As discussed above, if a player more frequently meets a revolutionary,

who shows a high level of aggression, the player becomes accustomed to this and also shows a higher propensity

for violence. If the population consist mostly of revolutionaries, the non-aggression norm can be expected

to be much lower than in a population with only few revolutionaries. First consider the equilibrium values,

determined by setting the last two equations in 18 to zero.

α∗
j =

hv j

u+ vu

β ∗ =
κ(1− x)

u

(19)

Setting those into the first equation of 18 defines the equilibrium dynamics of an individual violence level

v̇ j = v j

(
r(1+ x)− s

hv j

u(1+ v)
−q

κ(1− x)

u
− εv

)
(20)

We are, however, interested in the aggregate value v. Hence, this can be expressed as

v̇ =

(

∑
j

v j

u(1+ v)

(
(r(1− y(1− y))− εv)u(1+ v) −q(1− x)κ(1+ v)

))
−

v

u(1+ v)
vsh∑

j

(v j

v

)2

(21)

Define D = ∑ j (v j/v)2
, with D ∈ ( 1

n
;1). If only one violation of a social norm currently occurs, D = 1, whereas

in the case of n different violations and for identical levels of violent reactions, D = 1/n. Substituting and

rearranging equation 21 gives

v̇ =
v

u(1+ v)

(
u(r(1− y(1− y))− vε)−q(1− x)κ + v

{
u(r(1−y(1−y))−vε)−q(1−x)κ − shD

})
(22)

Remember that ε is generally expected to be very small and that vε is of the same order as the other variables.

It must hold by definition that r(1− y(1− y)) ≥ εv, where equality only holds at the maximum level of v.

Consequently, as total violence increases, the dynamics of the system are determined by the second term (in

bold) in equation 22, which is multiplied by v. Notice that r̂ = r(1− y(1− y))− εv equals the net growth rate

of violence. Three cases may occur:

1. Immediate high level of violence: r̂u > q(1− x)κ + shD.

In this case, the combined effect of the non-aggression norm and the counter-measures, q(1− x)κ + shD

is too weak to counter-act the net growth of violence, augmented by the adverse effect of violence on

the counter-measures. It describes a society with a general tendency towards violence, little capacity to

counter-act violence or with limited resources for programmes that increase social equity.

10 It might be more intuitive to write α̇ j = hv j −uα j(1+ v+∑ j α). Notice, however, that α is approximately proportional to v,

thus the addition of another variable should maintain the general dynamics.
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2. No violence: r̂u ≤ q(1− x)κ .

In this case, the non-aggression norm alone is strong enough to stabilise the population. Violence levels

exhibit non-positive growth. This is described by a society that has a high degree of democracy and a sense

for non-violent conflict solutions (high non-aggression norm) or a pacifist mentality (low net growth rate

of violence). We observe that this requires a low population share of revolutionaries. Yet, if a population is

defined by a high share of revolutionaries, this inequality is very unlikely to hold.

3. Low levels of violence, followed by a sudden upsurge:

q(1− x)κ < r̂u < q(1− x)κ + shD.

This is the most interesting case. If the violence can be counter-balanced only by the joint effect of counter-

measures and the non-aggression norm, but not by the norm alone, the stability depends on the frequency

of norm violations. An increase in the number of simultaneous or contemporary violations of social norms

decreases D. This is, for example, illustrated by a society that suffered over a longer period from a deterior-

ation of working conditions in several sectors, unemployment, corruption and poverty, which only concern

specific social strata or classes (again, the Arab Spring might serve as an example). Since the share of re-

volutionaries x decreases the right-hand side of the inequality, the right part of the condition becomes less

likely to be fulfilled, implying that population will observe new and longer conflicts with high probability,

once being in a state of conflict.

As a consequence, the threshold, which defines the minimum share of revolutionaries necessary for violence

levels to increase, is given by

x∗ = 1+
Dhs−ur̂

κq
, for x∗ ∈ (0,1) (23)

If violations occur more frequently (i.e. D decreases) or if norm violations affect aggression more strongly (i.e.

r increases), fewer revolutionaries are required to trigger the upsurge. If it is assumed that v = lv j the dynamics

are defined by

v̇ j = v j

(
r(1− y(1− y))− s

hv j

u(1+ lv j)
−q

κ(1− x)

u
− εlv j

)
(24)

Solving for v̇i = 0 defines the aggregate equilibrium value for the deterministic approximation

v̂ =
−hs− εlu−κ∗l +(lr∗u)+

√
−4εl2u(κ∗− r∗u)+(−hs−κ∗l + lu(−ε + r∗))2

2εlu
(25)

with r∗ ≡ r̂+εv= r(1−y(1−y)) and κ∗ ≡ κq(1−x). For very small ε , the total violence level is approximated

by ṽ = l (r∗u−κ∗)/(hs− l(r∗u−κ∗)) and thus expected to explode after

l∗ = ⌈
hs

r∗u−κ∗
⌉ (26)

violations, with ⌈ξ⌉ denoting the smallest integer not less than ξ . Hence, the number of required violations

increases in the effectiveness of the counter-measures, but decreases in the in the joint effect of individual and

total violence levels on violence reduced by the impact of the non-aggression norm. Notice that total violence

level is bound to v = r∗/ε , and attains its highest level for x = 1 and v = lv j. Simplifying equation 25 gives

vmax = lim
l→∞

v̂ =
r∗u− εu−κq(1− x)

√
(u(ε + r∗)−κq(1− x))2

2εu

=
r∗u−κq(1− x)

εu
≤

r∗

e

(27)
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4 The Emotional Conflict Model

Obviously, emotions are difficult to quantify. Well-defined and established approaches of how emotions analyt-

ically affect best-response play are thus lacking (for a general discussion of the relationship between emotions

and rationality, see Kirman et al 2010). If an emotional reaction is considered to “blur” the salience of certain

pay-off values (or more general utility values), emotions can be directly incorporated into the pay-off functions.

This might take the form of a threshold value, imposed by an emotion, below which an individual is no longer

concerned with the potential loss he faces, when playing this strategy. Hence, only if the pay-off difference

between best and non-best response is higher than this threshold value, will a player choose his rational best

response. Alternatively, giving in to an emotion might directly provide an additional utility, thus influencing

the pay-off associated to a certain strategy that channels this emotion.

Assume that in this context, the violence level dampens the salience of the potential punishment that a

revolutionary faces in the case, where the conflict does not end in his favour. In general this would change the

pay-off of strategy R given by equation 9 to

π̃R =
x(x+ y−ay)

x+ y
δ r +

(
1−

x(x+ y−ay)

x+ y

)
(δ py+ν(v)) (28)

where ν(v) transforms the value of the aggregate violence level into a pay-off or utility measure. In this config-

uration, the aggregate violence level directly affects the absolute value of the punishment δ p and is unaffected

by the loss probability. In the given context, assume that a player under-evaluates the negative effect, if he

observes uncontested revolutionaries, who do not inter-act with supporters, more frequently. If he perceives,

however, too many uncontested rioting revolutionaries on the street, his affinity to them decreases or as Gran-

ovetter and Soong explained: “Individuals who would not speak out until some minimum proportion of those

expressing opinions were in their camp might no longer feel the need to speak once a more substantial propor-

tion agreed with them and the situation seemed more securely in hand. This seems even more likely when the

action in question is more costly than just expressing an opinion.”(Granovetter and Soong 1988, p. 86). To take

account of this group effect with decision reversals assume that the transformation function ν(.) has the form

ν(v) = σ v (xz)2, where σ is a constant that scales the violence level appropriately into a utility measure. Thus,

the compensating effect of v increases in the absence of supporters and has its highest level at the intermediate

level of x.

Though the system of equations governing the violence levels is stochastic, equations 25 and 27 provide ap-

proximate values for v if the individual v j’s have similar scales. The system’s dynamics can thus be adequately

modelled, if v is substituted by v̂ or vmax. Since the former generates values similar to the latter already for

relatively few violations, and situations with a high conflict potential – case 1. and especially case 3. – are

of greater interest, the analysis can be reduced to the latter value without much loss of generality. Define the

probability of winning as P = x(x+ y−ay)/(x+ y), the dynamics are thus sufficiently approximated by

ẋ = x

(
Pδ r +(1−P)

(
δ py+σ

r∗u−κq(1− x)

εu
(xz)2

)
−φ

)

ẏ = y

(
dw∗x− cxy

x+ y
−φ

)

ż = (1− x− y)(Pδ r −φ)

(29)

where φ is defined as the average pay-off as before and w∗3 = 1 or w∗1 = 1
2k
(k+bx− e−bx2 −√

(e− k−b(1− x)x)2 −4bk(1− x)x), depending on the equilibrium, to which sub-population CB is associated.

In contrast to the approach that neglects the emotional component of conflicts, interior equilibria can evolve.

These are unlikely to be observed in the low w-equilibrium, since as x approaches 1 and thus w tends to zero,

unrealistically high values of d, and low values of c were necessary. In the high w-equilibrium (i.e. w = 1), the

solution to ∆σi ≡ πi −φ = 0 gives 5 roots, each for ∆x, ∆y and ∆z. Some of the roots have values outside the

unit interval of x+ y ∈ (0,1). Excluding these, we are left with two roots for both ∆x and ∆y and one root for

∆z.
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Fig. 2 Projection of the unit simplex and dynamics if norm violations are taken into account, for w = 1 and v = vmax: Parameters:

a = 1, δ p =−3, r = 2, u = 2, κ = 0.2, q = 1, ε = 0.05; A.) δ r = 4, d = 5, c = 25,σ = 5; B.) δ r = 3, d = 9, c = 20, σ = 6

Figure 2 a.) shows a simulation, which uses parameter values identical with those in figure 1 on page 7 for

the high w-equilibrium case. As before, equilibria on the y-axis are Lyapunov stable equilibria that cannot be

invaded by revolutionaries. Since small perturbations through non-best response play are not self-correcting,

evolutionary drift will push the population into region IV, representing roughly 20% supporters and 80% con-

formists (note that in region III: πS < πC). The x-axis, on the contrary, does not define any weak equilibrium

points, since regions I and II do not touch the x-axis, at which ∆y = 0. As in the simulation shown in figure 1

two unstable equilibria exist at which conformists are entirely absent, given by (0.15,0.85) and (0.95,0.05).
In contrast to the previous simulation, two additional and completely mixed (interior) equilibria occur,

denoted by 1 and 2. The former equilibrium (situated at (0.08,0.19)) is unstable since the pay-off of revolu-

tionaries increases (decreases) with an additional (absent) revolutionary. Thus, to the right of the equilibrium

point, a revolutionary benefits from more players choosing strategy R and the equilibrium is not self-correcting

for small perturbations to the right or left. The second completely mixed equilibrium (situated at (0.91,0.05))
is stable, since at this point the pay-off of revolutionaries is decreasing in x.11 The choice of an additional

player to play strategy R is therefore detrimental to the pay-off of other revolutionaries at this point and the

equilibrium is self-correcting. For the given case, a population converges either to the y-axis in region IV or

to equilibrium 2 in the case, if at least a critical mass of revolutionaries (defined by the blue line, at which

∆x = 0) exists. Intuitively the critical mass increases in the number of supporters. Figure 2 The equilibrium

structure of the game is relatively robust to parameter changes. b.) illustrates a simulation with parameter val-

ues δ r = 3, d = 9, c = 20, σ = 6, all others being identical with a.). We observe that both equilibria are

maintained, but are moving towards the simplex centre as expected.

The model can hence show a further characteristic of conflicts: It is often observed that beneath a threshold

people remain bystanders in a conflict situation, although they feel a desire to revolt, but are afraid of being

the only one to participate. Only if a sufficient number of other individuals, joining the conflict, is perceived,

individuals choose sides and enter the conflict. “The power of the mighty hath no foundation but in the opinion

and belief of the people.” (Hobbes 1668)

5 Conclusion and Outlook

In this article, an intuitive approach has been derived to model the general dynamics of conflicts. Though the

assumptions highly abstract from the richness of real world conflicts, the model re-creates specific properties

that are inherent in conflicts. It can explain why some societies are more prone to conflicts than others caused

11 Both eigenvalues of the system’s Jacobian have alternate sign at the former equilibrium and are negative at the latter, thus

defining it as a stable node.
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by the currently prevalent social norms but also the past history and frequency of conflicts and norm violations.

The model also illustrates why an open conflict may only be perceived after some triggering event, although

reasons for this conflict are to be found in a longer period pre-dating the event. It provides conditions under

which these trigger events occur more frequently. In addition, the existence of two stable equilibria, one with

high and another with no conflict, provides an explanation for pluralistic ignorance.12 Though the conflict

potential in a population may be high, it is still necessary that a certain number of players chooses what is

perceived as a non-best response in order to trigger a transition out of the basin of attraction of the no conflict

equilibrium into the basin of attraction of the high conflict equilibrium. That may, however, be a large number

of individuals, depending on the absolute group size.

The article thus leaves room for further extensions, since it disregards the issue of how transition between

both equilibria takes place. The given model generates a set of equilibria defined by simplex edge in region IV,

in which revolutionaries are absent, and a second interior stable equilibrium. Both are separated by the (∆x =
0)-locus that indicates the critical mass of players necessary to induce the population to switch to the completely

mixed equilibrium. It is often argued that a transition from one equilibrium into the basin of attraction of another

can be explained by random idiosyncratic choice (see for example Young 1993; Kandori et al 1993). Yet, a

revolution is not caused by a sufficiently large number of players, who idiosyncratically choose a non-best

response strategy. Revolutionary behaviour is an active choice.

Abandoning the simplifying assumption that players of identical type also have identical pay-off functions

provides an approach that can explain the transition behaviour. One option is to integrate the threshold approach

of Granovetter and Soong (1988) into the replicator dynamics. First attempts show a number of intuitive results:

It explains the bystander effect by showing that it is more likely that a small group is incited than a larger. Yet, if

group size is large, a certain number of revolutionaries will be observable with high probability. This approach

can be extended into several directions (e.g. networks of groups, in which we observe a domino effect from

smaller to larger groups). This is, however, beyond the scope of this article and will be left for future research.
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