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Abstract
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1 Introduction

The International Trade Network (ITN), aka World-Trade Web (WTW) or World Trade Network

(WTN), is defined as the graph representing in each year the web of bilateral-trade relationships

between countries in the World. The statistical properties of the ITN, and their evolution over

time, have been recently received a lot of attention in a number of contributions.1

Understanding the topology of the ITN is important for two related reasons. First, trade

is one of the most important channels of interaction among countries (Helliwell and Padmore,

1985; Krugman, 1995; Galvandatilde et al., 2007; Forbes, 2002). The knowledge of macroeconomic

phenomena such as economic globalization and internationalization, the spreading of international

crises, and the transmission of economic shocks, may be improved by looking at international-trade

patterns in a holistic framework, where indirect as well as direct linkages between countries are

explicitly taken into consideration (Fagiolo, 2010).2 Second, ITN topological properties can help

to statistically explain macroeconomics dynamics. For example, Kali et al. (2007) and Kali and

Reyes (2010) have shown that country position in the trade network has substantial implications for

economic growth and a good potential for predicting episodes of financial contagion. Furthermore,

Reyes et al. (2010) suggest that country centrality in the ITN may help to account for the evolution

of international economic integration better than what standard statistics, like openness to trade,

do.

The statistical properties of the ITN, in its undirected/directed or binary/weighted charac-

terizations, have been extensively studied and today we know a great deal about the topological

architecture of the web of international-trade flows. For example, Serrano and Boguñá (2003) and

Garlaschelli and Loffredo (2004) show that the binary-directed representation of the ITN exhibits

a disassortative pattern: countries with many trade partners (i.e., high node degree) are on average

connected with countries with few partners (i.e., low average nearest-neighbor degree). Further-

more, partners of well connected countries are less interconnected than those of poorly connected

ones, implying some hierarchical arrangements. Remarkably, Garlaschelli and Loffredo (2005)

show that this evidence is quite stable over time. This casts some doubts on whether economic

integration (globalization) has really increased in the last 30 years. Furthermore, node-degrees

appear to be very skewed, implying the coexistence of few countries with many partners and many

countries with only a few partners.

These issues are taken up in more detail in a few subsequent studies adopting a weighted-

1See for example Li et al. (2003); Serrano and Boguñá (2003); Garlaschelli and Loffredo (2004, 2005); Garlaschelli
et al. (2007); Serrano et al. (2007); Bhattacharya et al. (2007, 2008); Fagiolo et al. (2008, 2009); Reyes et al. (2008);
Fagiolo et al. (2010); Fagiolo (2010); Barigozzi, Fagiolo and Garlaschelli (2010); Barigozzi, Fagiolo and Mangioni
(2010); De Benedictis and Tajoli (2011).

2For example, Abeysinghe and Forbes (2005) show that bilateral trade can only explain a small fraction of the
impact that an economic shock originating in a given country can have on another one, which is not among its
direct-trade partners. Similarly, Dees and Saint-Guilhem (2011) report that countries that do not trade very much
with the U.S. are largely influenced by its dominance over other trade partners linked with the U.S..
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network approach to the study of the ITN. The motivation is that a binary approach, by treating all

relationship equally, might dramatically underestimate the impact of trade-linkage heterogeneity.

This seems indeed to be the case: Fagiolo et al. (2008, 2009, 2010) find that the statistical properties

of the ITN viewed as a weighted undirected network crucially differ from those exhibited by its

binary counterpart. For example, the strength distribution is highly right-skewed, indicating that

a few intense trade connections co-exist with a majority of low-intensity ones. This confirms the

results obtained by Bhattacharya et al. (2007) and Bhattacharya et al. (2008), who find that the

size of the group of countries controlling half of the world’s trade has decreased in the last decade.

Furthermore, weighted-network analyses show that the ITN architecture has been extremely stable

in the 1981-2000 period and highlights some interesting regularities (Fagiolo et al., 2009). For

example, countries holding many trade partners and/or very intense trade relationships are also

the richest and most globally central; they typically trade with many partners, but very intensively

with only a few of them, which turn out to be very connected themselves; and form few but

intensive-trade clusters (i.e., triangular trade patterns).

Most of existing network literature on the ITN, however, has been focusing on a purely empirical

quest for statistical properties, largely neglecting the issue of exploring whether theoretical models

are able to explain why the ITN is shaped the way it is.3

This paper is a preliminary attempt to fill this gap. We extend the work in Fagiolo (2010)

to ask whether the gravity model (GM) can provide a satisfactory theoretical benchmark able to

reproduce the observed architecture of the ITN across time. The GM (van Bergeijk and Brakman,

2010) aims at explaining international-trade bilateral flows using an equation obtained as the

equilibrium prediction of a large family of micro-founded models of trade (more on that in Section

2). The term “gravity” comes about because the predicted relation between trade flows and

explanatory variables is similar to Newton’s formula: the magnitude of aggregated trade flows

between a pair of countries is proportional to the product of country sizes (e.g. the masses, as

proxied by country GDPs) and inversely proportional to their geographic distance (interpreted

as proxies of trade-resistance factors, e.g. tariffs). From an econometric perspective, the original

model-driven prediction can be augmented with a set of country-specific explanatory variables

(e.g., population, area, land-locking effects, etc.), as well as with a set of bilateral variables (i.e.,

geographical contiguity, common language and religion, colony relation, bilateral trade agreements,

etc.). The GM can be fitted to the data using different econometric techniques, ranging from

simple ordinary least squares (OLS) applied to the log-linearized equation, to two-stage Poisson

estimations, employed to correctly deal with the large number of zero trade flows characterizing

the data. Overall, the GM is very successful: independent on the technique employed, it typically

achieves a very high goodness of fit, e.g. in terms of R-squared coefficients.

3See Bhattacharya et al. (2008) and Garlaschelli and Loffredo (2004) for exceptions. See also Squartini et al.
(2011a,b) for an alternative approach employing null random models that are able to predict whether observed
properties of the ITN are statistically meaningful or simply the result of “constrained” randomness.
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Motivated by the well-known empirical success of the GM, we fit data on bilateral trade flows

to build a GM-predicted weighted-directed representation of the ITN, which we then compare to

the observed one, constructed using original bilateral-flow data. We employ both a static and a

dynamic approach. In the static approach, we assume that a GM holds in each subsequent year

and we estimate a series of predicted ITN snapshots. In the dynamic approach, we control for

time dummies in the estimation to account for change over time and get a unique predicted ITN

from the unbalanced panel of predicted flows. In both cases, we end up with a prediction for

the expected bilateral-trade flow occurring between any two countries in a given year, and for the

probability that a binary link is in place. We complement this information with standard errors

of predicted values, so as to evaluate the precision of GM-based estimated quantities.

In a nutshell, our results suggest that the GM well predicts weighted ITN properties only

when the binary structure is kept fixed, equal to the observed one. Conversely, the performance

of the GM is very poor when asked to predict ITN weighted properties together with its binary

architecture, or when one employs a GM specification to estimate the presence of a link only.

The rest of the paper is organized as follows. Section 2 discusses the gravity model and presents

data and related methodologies. Our main results are reported in Section 3. Finally, Section 4

concludes and flags some of the challenges facing ITN modeling in the future.

2 Data and Methodology

2.1 Bilateral Trade-Flow Data

We use international-trade data taken from Subramanian and Wei (2003), which contains aggregate

bilateral imports reported by the IMF Direction of Trade Statistics, measured in U.S. dollars and

deflated by U.S. Consumer Price Index at 1982-83 prices. We focus on seven unbalanced cross-

sections for the years 1970 to 2000, with a five-year lag. Let wij(t) be exports from country i to

country j in year t and let N(t) the correspondent number of countries reporting at least a positive

flow.

Table 1 summarizes some descriptive statistics. The number of participating countries and

average per-country trade both increase over time. Entry of new countries in the database may

be possibly caused either by the availability of new data or by the actual entry of the country in

international-trade markets. New trade links, however, seem to increase more than quadratically

with the number of participating countries in the last part of the sample, as testified by the rising

density.4 Note also that the number and percentage of countries making up 50% of total trade

seem to remain stable across the years, hinting to a stable core of top traders. Conversely, the

4Defined as the ratio between L(t) (existing trade partnerships) and N(t) · [N(t) − 1] (all possible trade part-
nerships).
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percentage of countries controlling 90% of total world trade has substantially decreased. The

concentration process going on in the ITN, despite globalization and international integration, is

confirmed also by the decrease in both the number and percentage of flows making up a certain

share of total trade.

Given wij(t) and N(t), we build weight matrices for the correspondent observed trade networks.

More precisely:

Definition 1 (Observed Weighted ITN) The observed weighted International Trade Network

in a given year t is represented by a weighted-directed graph, where the nodes are the N(t) countries

and link weights are fully characterized by the N(t)×N(t) asymmetric matrix W (t), with entries

wij(t), i.e. exports from country i to country j.

Similarly, one can define the observed binary ITN, where links represent import-export part-

nerships, as:

Definition 2 (Observed Binary ITN) The observed binary International Trade Network in a

given year t is represented by a binary-directed graph, where the nodes are the N(t) countries and

binary links are fully characterized by the N(t) × N(t) asymmetric adjacency matrix A(t), with

entries aij(t) = 1 if and only if wij(t) > 0, i.e. exports from country i to country j are strictly

positive.

This database has been studied from a binary/weighted network perspective in De Benedictis

and Tajoli (2011). They show that international integration in trade has been increasing over time,

but it is still far from being fully accomplished. Indeed, a strong heterogeneity in the profiles of

across-country trade partnerships does emerge. This has important implications for both the role

of regional trade agreements (i.e., the WTO) and the interplay between extensive and intensive

margins of trade (Felbermayr and Kohler, 2006).

In this paper, we take an alternative approach. We characterize the topological properties of

the observed ITN and we compare them to the properties displayed by the gravity-based predicted

ITN, which we define in the next sub-sections.

2.2 Gravity-Model Specifications

The GM, independently proposed by Tinbergen (1962) and Pöyhönen (1963), is the workhorse

model to explain bilateral trade flows among countries as a function of import and export market

sizes (i.e., GDP) and trade-resistance factors, proxied by geographical distance. The GM derives

its name from the functional form linking trade to size and distance, which resembles the expression

for the attraction force between two bodies derived by Isaac Newton in classical mechanics. Thus,
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in analogy with the physics law, it is expected that trade flows increase with the product of some

power of country sizes and decrease with some power of geographical distance.

This empirically-inspired law has been found to be consistent with a number of theoretical

foundations (Anderson, 1979; Bergstrand, 1985; Deardorff, 1998; Anderson and van Wincoop,

2003). In other words, many possibly-conflicting micro-foundations can generate has their equilib-

rium outcome some gravity-like relation between trade, market sizes and trade-resistance terms.5

For example, a gravity-like equation can be derived in trade specialization models, monopolistic-

competition frameworks with intra-industry trade, or Hecksher-Ohlin models (see Fratianni, 2009;

De Benedictis and Taglioni, 2011, for comprehensive surveys).

Notwithstanding the preferred micro-founded explanation, modern empirical interpretations of

the gravity expression generalize the original idea including in the formulation a list of additional

explanatory variables, covering aspects related to geography, culture, bilateral trade agreements,

among others. In Table 2 we report the list of explanatory variables that, following existing

literature (see, e.g., Glick and Rose, 2001; Rose and Spiegel, 2002), we employ in our exercises. GM

explanatory variables can be typically grouped in country- or link-specific ones. The former include,

in addition to GDP, other country-size proxies like population and geographical area, as well as

geographically-related aspects controlling for land-locking effects and continent membership. The

latter instead include relational variables characterizing bilateral relationships, as geographical

contiguity, colonial ties, regional trade agreements, commonalities in language, colonial history,

religion, and currency. Together, these factors have been shown to successfully explain, in a way

or in the other, international-trade flows in gravity-equation econometric exercises (van Bergeijk

and Brakman, 2010).

The most general GM specification that we employ in what follows then reads:

wij(t) = α0Yi(t)
α1Yj(t)

α2dα3

ij

[
K∏

k=1

Xik(t)
β1kXjk(t)

β2k

]
× (1)

× exp

(
H∑

h=1

θhDijh(t) +
L∑

l=1

(δ1lZil + δ2lZjl)

)
ηij(t),

where t is the year (t = 1950, 1955, . . . , 2000); wij(t) are export flows from the observed weighted

ITN; i, j = 1, ..., N(t), i 6= j; Yh(t) is year-t GDP of country h = i, j (i=exporter; j=importer); dij

is geographical distance; Xh(t), h = i, j, are additional country-size effects (area and population);

Dij is a vector of bilateral-relationship variables (contiguity, common language, past and current

colonial ties, common religion, common currency, a dummy to control if both countries share a

generalized system of preferences, and a regional trade agreement flag); Zi and Zj are country-

5This has led Deardorff (1998) to argue that “just about any plausible model of trade would yield something
very like the gravity equation”. See also Evenett and Keller (2002).
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specific dummies (controlling for land-locking effects and continent membership); finally, ηij(t) are

the errors (whose mean conditional to explanatory variables obeys E[ηij(t)|·] = 1).

Two remarks are in order. First, note that standard GM specifications assume that any pair

of countries trade. In other words, zero trade flows, which are quite frequent in trade data either

because of missing values or because the two countries are not trade partners (see Table 1), are

ruled out from the analysis by the non-linear functional form employed. Therefore, one either log-

linearizes Eq. (1) (and excludes observed zero-trade flows) or explicitly deals with over-estimation

errors coming from positive GDPs and other country and bilateral variables. In other words, the

standard GM specification is not suited to address the issue why any pair of countries that were

previously not trading start to trade at some point, or why existing trade relationships terminate.

We shall get back to this point in Section 3.2.

Second, and more importantly, we employ a GM specification that slightly differ from An-

derson and van Wincoop (2003) one, which is one of the most commonly used in GM exercises.

Anderson and van Wincoop (2003) introduce multilateral resistance terms and importer-exporter

fixed effects. Formally, that approach considers that the constant term of the equation (1) must be

generalized to a set of importer and exporter dummies. One important implication is that country-

size effects are captured by country dummies. This means that characteristics of exporters and

importers cannot be generalized (Santos Silva and Tenreyro, 2006). In any case, all our results

are robust to Anderson and van Wincoop’s specification. We have therefore chosen to retain the

traditional specification because of its more immediate empirical interpretation.

2.3 Estimation

Estimation of Eq. (1) is not easy. A straightforward approach consists in log-linearizing the GM

specification and apply standard OLS techniques to estimate parameters and obtain predicted

values. The existing empirical literature on GM has largely employed this approach (Cf. for

example Glick and Rose, 2001; Rose and Spiegel, 2002).

However, a series of more recent contributions highlighted the risk of biases in estimation

induced by OLS applied to log-linear specifications. The main sources of bias come from the treat-

ment of zero-valued flows (Santos Silva and Tenreyro, 2006; Linders and de Groot, 2006; Burger

et al., 2009), non-linearity and heteroscedasticity (Santos Silva and Tenreyro, 2006), endogeneity

and omitted-term (Baldwin and Taglioni, 2006). In particular, the issue of zero-flow treatment is

particularly relevant to our analysis. Indeed, log-linearizing the GM equation and applying OLS

estimation implies using non-zero trade flows only in the estimation. In network terms, this means

that we are keeping the observed binary structure constant (i.e. we are conditioning on adjacency

matrices A(t)). This is a serious issue if one wants to estimate the presence of a link together with

its weight.

To properly account for all these potential difficulties, we can resort to count-data analysis
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(Long, 1997) and fit to the data Poisson pseudo-maximum likelihood models (PMML), either

in their standard formulation (Santos Silva and Tenreyro, 2006) or in zero-inflated specifications

(Linders and de Groot, 2006). In a nutshell, PPML models allow to estimate Eq. (1) in its original

non-linear form, thus avoiding possible correlation between errors and regressors. PPML models

use a Poisson distribution to model simultaneously the probability of a zero flow and of a positive

(integer) flow. However, it has been noticed that, in the case of international trade, zero flows occur

much more frequently than a plain Poisson model would predict (Burger et al., 2009), cf. also Table

1. This has led to the family of zero-inflated (ZI) models (Winkelmann, 2008). The underlying idea

is to model the presence of zeros and positive values as a two-stage process. In this way one treats

differently the process of presence-absence of trade partnerships from link-weight determination.

In the first stage, one estimates zero-flow probabilities using a standard logit model, and employing

a series of regressors that often coincide with those used in the standard GM formulation. In the

second stage, conditionally to having non-zero flows, one estimates the magnitude of trade-flow

values using either a Poisson (ZIP) or a negative-binomial (ZINB) distribution. Notice that in

the second stage there is a non-zero probability of having a zero flow, as the process governing

link-weight value determination may attach a zero flow independently on what the first process

has done.

To double check our results, we have applied a full range of models to estimate Eq. (1). In

particular, we have employed standard OLS, PPML, ZIP and ZINB approaches. Furthermore, in

order to control for dynamic effects, we have estimated Eq. 1 using both a cross-section perspective

(i.e., fitting a separate model for each of the 7 waves we end up with in our database) and an

unbalanced panel-data approach (i.e., adding time dummies and estimating once and for all the

entire data set). We have also controlled for country fixed effects as suggested in Baldwin and

Taglioni (2006). Our results turn out to be very robust to all these alternatives. Therefore in this

paper, to avoid redundancy, we report only results from three sets of models (OLS, PPML and

ZIP), where a sequence of independent cross sections is estimated without country fixed effects.6

By doing so, we are able to compare a setup where the binary structure of the ITN is kept fixed

(OLS) with two alternative setups (PPML and ZIP) where instead one estimates the probability

that a link is in place or not, correcting or not for the zero-inflation effect, i.e. when adjacency

matrices are endogenous.

Table 3 presents estimation results for year 2000 (similar results hold also for the remaining

years) for OLS, PPML and ZIP. Note that, by and large, both signs and orders of magnitude of

estimated coefficients do not change with the estimation technique employed. All coefficients have

6Indeed, ZINB estimates turn out to be very similar to ZIP ones. No dramatic differences are detected between
cross-section and panel-data analyses. Similarly, the introduction of country fixed effects do not alter our results
below in any crucial ways. Note also that we employ the same set of regressors in both stages of ZIP and ZINB
estimates, as listed in Table 2. Reducing the set of regressors in the first stage does not dramatically change our
main results. The whole set of estimation results is available from the authors upon request.
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the expected signs, although there are some relevant differences in estimated-coefficient values

across methods. For example, OLS estimates for GDP and distance coefficients are quite different

from PPML and ZIP ones. The geographical distance coefficient in OLS is negative and stronger

than in PPML/ZIP. This may depend on the fact that OLS estimates are computed on a smaller

sample (the number of positive observations is almost one half of the whole sample size). OLS

differ from PPML/ZIP ones also as far as the importer/exporter GDP elasticity is concerned. In

general, GDP elasticities tend to be larger than in other studies as we explicitly consider population

and area as additional size effects (entering with a negative sign). This hints to a relevant effect

played by per-capita GDP. Furthermore, variables as contiguity, common language, and regional

trade agreements enhance trade. In contrast, all variables related to colony relations, common

religion and common currency are statistically significant under the OLS models but not so much

for PPML.7

Note also that in (first-stage) logit estimation of the ZIP method, GDP (resp. distance) nega-

tively (resp. positively) affect the probability of having unlinked countries, as expected. Conversely,

distance or land-locking effects enhance the probability of missing links. Contiguity coefficient is

instead positive: after controlling for geographical distance, sharing a border does not influence

the emergence of bilateral trade. This is however a result that does not hold robustly over all

cross-sections, where contiguity does not affect significantly the estimated probability.

Finally, all diagnostic statistics indicate that the estimated models are well-specified (Wooldridge,

2001) and achieve a quite good (pseudo) R2.

2.4 The Predicted Weighted ITN

As long as Yi(t), dij and Xik(t) are strictly positive for all (i, j) and t, one can rewrite Eq. (1)8 as:

wij = exp{xij · γ
M}ηij, (2)

where xij are logged country-specific and bilateral explanatory variables, and γ is the vector of all

parameters to estimate. Let γ̂M be estimated parameters with model M ∈ {OLS, PPML,ZIP}.

In the OLS case, therefore, one can straightforwardly define a linear prediction for the log of

non-zero flows as:

ω̂OLS
ij = log[ŵOLS

ij ] = xij · γ̂
OLS, (3)

Note that we prefer to use logs of non-zero trade-flows to avoid over-dispersion issues. This means

that when comparing observed and OLS-predicted ITN properties we will always refer to logs of

7Whenever a variable resulted not significant we decided to keep it among the regressors anyway to preserve
comparison between estimation techniques.

8From now on, we suppress time labels for the sake of notational convenience and we refer to a cross-section
sequence of estimations.
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non-zero flows to define link-weights. The variance of the prediction (σ̂2
OLS) equals the variance of

the model (i.e., the sum of squared residuals) divided by the degrees of freedom.

As far as PPML specification is concerned, the probability of observing a certain trade flow

is estimated using a Poisson model with expected value equal to the exponential of the linear

prediction. Therefore, predicted flows (in levels) read:

ŵPPML
ij = exp{xij · γ̂

PPML}. (4)

Being a Poisson model, the variance of predictions equals their expected value.

Finally, in the ZIP case, one first estimates the probability ψij that a link (i, j) is zero. This

is done by fitting a Logit model taking as dependent variable the elements aij of the adjacency

matrices, and as explanatory variables those usually employed to fit a GM equation. Next, for all

and only active trade links, one fits wij with the PPML model above.9 The overall probability of

observing a given trade-flow level is described by combination of the PPML and the logit processes.

As a result, the predicted bilateral flow (in levels) is defined as:

ŵZIP
ij = (1− ψ̂ij) exp{xij · γ̂

ZIP} = (1− ψ̂ij)µ̂ij, (5)

whereas the variance of the prediction is given by:

V ar(ŵZIP
ij |xij) = ψ̂ij(1− ψ̂ij)[1 + ψ̂ij · µ̂ij]. (6)

As a by-product, one can also estimate the overall probability of a zero flow (i.e. of an absent

link), which reads ψ̂ij + (1− ψ̂ij)µ̂ij.

Given any of the foregoing predictions for bilateral-trade flows, we then define:

Definition 3 (Predicted Weighted ITN) The predicted weighted International Trade Network,

for each given cross-section t, is represented by a weighted-directed graph, where the nodes are coun-

tries and link weights are fully characterized by the asymmetric matrix ŴM , with entries ŵM
ij and

M ∈ {OLS, PPML,ZIP}.10

As far as the binary predicted ITN is concerned, two remarks are in order. First, since in the

OLS case, as already mentioned, the predicted binary ITN coincides with the observed one, there

is no need to address any binary analysis at all. Second, note that by construction estimated trade

flows from both PPML and ZIP models are always strictly positive (although in some cases very

small). This means that one always ends up with an estimated full binary ITN, which impairs any

9Therefore, the second stage of a ZIP model takes as given the underlying binary structure as in OLS estimation.
10As mentioned, in the OLS case we shall compute weighted network statistics on the logged predicted matrix,

whose generic element is ω̂OLS
ij .
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statistical comparison with the observed binary ITN. Section 3.2 discusses these points in more

detail.

2.5 Network Statistics and Confidence Intervals

We study the extent to which the architecture of the observed ITN over time can be explained by

the GM employing a set of standard topological properties (i.e., network statistics), see Fagiolo

et al. (2009) for a discussion. As Table 4 shows, we focus on three families of properties. First, total

node-degree and total node-strength, measure, for binary and weighted networks respectively, the

number of node partners and total trade intensity. In a directed network, one can also distinguish

between node in-degree/in-strength (i.e., number of markets a country imports from, and total

imports) and node out-degree/out-strength (i.e., number of markets a country exports to, and

total exports).

Second, total average nearest-neighbor degree (ANND) and strength (ANNS) compute, respec-

tively, the average number of trade partners and total trade value of trade partners of a given node.

This gives us an idea of how much a country is connected with other very well-connected coun-

tries. ANND and ANNS statistics can be disaggregated so as to account for both import/export

partnerships of a country, and import/export partnerships of its partners. More precisely, one can

compute four different measures of average nearest-neighbor degree/strength, obtained by cou-

pling the two ways in which a node A can be a partner of a given target country B (importer

or exporter) and the two ways in which the partners of A may be related to it (as exporters or

importers). Finally, we consider clustering coefficients (CCs), see Fagiolo (2007) for a discussion.

In the binary case, a node overall CC returns the likelihood that any two trade partners of that

node are themselves partners. In the weighted case, these likelihoods are computed taking into

account link weights to proxy how strong are the edges of the triangles that are formed in the

neighborhood of a node. Again, in the directed case one can disaggregate total node CC according

to the four different shapes that directed triangular motifs can exhibit.11

We are interested not only in node average and standard deviation of such statistics over time,

but also in the way node statistics correlate, and how such correlation patterns evolve across the

years. In particular, we focus on correlation between node degrees (resp., strengths) and ANND

(resp., ANNS). This gives us information on the assortativity/disassortativity nature of the ITN.

We are also interested in correlation between ND/NS and clustering, to understand the extent to

which more and better connected countries trade with partners that trade a lot between them.

We also derive the variance of predicted network statistics, so as to build their confidence inter-

vals and evaluate the precision of GM estimates. The variance of population averages of a few pre-

11These are labelled cycle (if i exports to j, who exports to h, who exports to i), in (if both j and h, who are
trade partners, exports to i), out (if both j and h, who are trade partners, imports from i) and mid (if i imports
from h and exports to j, and j and h are trade partners).
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dicted network statistics can be computed analytically. For instance, givenM ∈ {OLS, PPML,ZIP},

the predicted population-average of node out-strength (NSOUT ) reads:

N̂S
M

out =
1

N

∑

i

∑

j∈Îi

ŵM
ij , (7)

where Îi are the predicted export partners of country i. The variance of N̂S
M

out equals the sum

of variances of the elements ŵM
ij divided by N2, as by construction the predictions ŵM

ij have zero

covariance. Then, for the PPML model we get:

V ar(N̂S
PPML

out ) =
1

N2

∑

i

∑

j∈Îi

ŵPPML
ij =

1

N
N̂S

PPML

out , (8)

as it is expected from the Poisson nature of the model. In the case of a ZIP estimation, using Eq.

(6), one instead gets:

V ar(N̂S
ZIP

out ) =
1

N2

∑

i

∑

j∈Îi

µ̂ij(1− ψ̂ij)(1 + µ̂ijψ̂ij). (9)

In the OLS case the variance of ŵij equals σ̂
2
OLS for each observation. Hence:

V ar(N̂S
OLS

out ) =
σ̂2
OLS

N2

∑

ij

aij =
ρσ̂2

ols(N − 1)

N
, (10)

where ρ is the observed density of the network.

More generally, whenever an analytical expression cannot be obtained, we perform simu-

lations to estimate the variance of predicted network-statistics. To that end, for each model

M ∈ {OLS, PPML,ZIP}, we generate 10,000 replications of the ITN using the data-generation

process implied by the model M to proxy the second moment of the distribution of predicted

statistics. For example, in the OLS model the generic entry of the sampled ITN weight matri-

ces in each run can be simply drawn from a normal distribution with mean ω̂OLS
ij and variance

σ̂2
OLS, see Eq. (3). In a PPML model, instead, w̃ij are drawn from their corresponding Pois-

son distribution: Prob{w̃ij} = µ̂
w̃ij

ij e
−µ̂ij/w̃ij!, where µ̂ij = exp(xij γ̂

PPML). Finally, simulation of

ZIP-generated trade flows proceeds in two stages. First, we simulate the binary structure using a

Bernoulli process, where each link is in place with probability (1−ψ̂ij). Second, we superimpose on

this simulated binary structure a weight matrix whose generic entries are sampled from a Poisson

distribution with parameter µ̂ij = exp{(xij γ̂
PPML)}.12

12This simulation technique allows the Bernoulli-generated binary structure to converge to the correspondent
logit predictions from the first stage of the ZIP. In small samples, however, a bias is introduced. This in general
implies an overestimation of the performance of the model. Notice also that in each simulated instance the adjacency

12



3 Results

This Section explores the question whether the statistical properties of the predicted ITN are

similar to those observed in the real-world ITN. We start with basic (non-directed) weighted

statistics (total NS, ANNS and clustering). Next, we discuss results related to directed weighted

measures (e.g., in and out strength, etc.). Finally, we focus on the binary ITN.

3.1 Weighted Statistics

We begin to study population averages of total node strength:

N̂S
M

tot =
1

N

∑

i

N̂S
M

i,tot =
1

N

∑

i

∑

j

ŵM
ij , (11)

where N is the number of countries in the target cross section. Note that NStot
i measures total

country trade. Therefore its population average equals total world trade divided by the number

of countries. Figure 1 reports predicted values with confidence bands against observed ones across

years. It is easy to see that all three methods perfectly match observed values, with very narrow

prediction errors. This is not surprising, as the very purpose of the GM is to predict bilateral

trade flows, and NS are just linear combinations of them. Therefore one expects the GM to be

well equipped to predict linear transformations of total world trade.

The picture substantially changes when we turn to higher-order statistics like ANNS and WCC,

which involve link weights that are two steps away from the origin node. As Figures 2 and

3 indicate, OLS predictions are quite successful in replicating average total ANNS and, to a

lesser extent, average total clustering.13 More precisely, the OLS-predicted ITN tends to slightly

overestimate observed average total ANNS and to underestimate observed average total WCC.

Nevertheless, predicted values are very close to (and in many cases within) error bands. Note also

that the precision of GM estimates is very high, as the narrow 95% error bars suggest. Conversely,

both PPML and ZIP largely underestimate both ANNS and WCC, although they are able to

correctly get the time trend. In addition, PPML predictions are more precise than ZIP ones.

The reason for this mismatch lies in the way the three estimation techniques work in reproducing

the binary structure. Recall from Table 4 that weighted-network statistics as ANNS and WCC

are in fact a mix of link weights and node degrees. To correctly reproduce such network properties

any predictor of link weights must also correctly reproduce the underlying binary topology. Using

OLS means fitting the GM over positive link weights only, i.e. the observed binary topology is

preserved. PPML and ZIP employ instead all possible country pairs in the regression. As a result,

matrix changes and so do binary topological properties.
13Clustering coefficients are computed without rescaling link weights in the unit interval in order not to bias the

analysis with network-dependent rescaling factors (Fagiolo, 2007; Saramäki et al., 2007). Therefore, the range of
WCC is not within [0, 1].
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they both completely destroy the underlying binary structure and obtain a full predicted binary

network, where all links are in place. This is because all predicted bilateral flows and positive-link

probabilities are strictly positive (although sometimes very small).14 Note that density in ITN

ranges from 0.40 to 0.50 (see Table 1), meaning that slightly less than a half of possible trade

relationships are present. In fact, both PPML and ZIP predict very small link-probabilities for

unconnected countries, and consequently very weak link weights. This implies that predicted total

country trade (i.e., total node strength) is not dramatically far from the observed one, although in

principle it may be slightly overestimated. Conversely, badly predicting the binary structure results

in remarkably-smaller predictions for average ANNS and WCC (as compared to observed ones),

because one highly overestimates node degrees, appearing at the denominator of both statistics.

To further explore this issue, we perform two-sample Kolmogorov-Smirnov (K-S) tests to com-

pare predicted vs. observed node-statistic distributions. More precisely, given any of the three

statistics of interest (total node strength, average nearest-neighbor strength and weighted clus-

tering), we test the null hypothesis that predicted and observed statistics come from the same

distribution. The results in Table 5 confirm the message coming from population averages. Con-

sistently over the years, OLS predictions are able to generate network-statistic distributions very

similar to those observed in the observed ITN. In contrast, PPML and ZIP can reproduce total

strength, but they hardly replicate second-order topology measures like ANNS and WCC.

Another fundamental set of stylized facts characterizing the evolution of the ITN concerns the

way in which different network statistics correlate. Figures 4 and 5 show observed vs. predicted

correlation patterns between, respectively, total ANNS and NS, and total WCC and NS. Note that

OLS are able to correctly predict the existing disassortativity emerging between total country trade

and average trade of the partners of a node. Conversely, both PPML and ZIP strongly overestimate

the magnitude of such negative correlation.15 OLS estimates are also able to match strength-

clustering correlation, even if with less precision than before, as confidence intervals suggest. Again,

neither PPML nor ZIP can reproduce the positive strength-clustering correlation characterizing

the original weight matrices (in levels), as the underestimation bias appears to be persistently

high.

Correlation results are in line with recent findings by Squartini et al. (2011a,b), who show that

higher-order weighted properties in the ITN cannot be reproduced by any random model that

takes as given the observed strength sequence (but does not control for the underlying binary

structure). Here we show that a satisfactory replication of ITN properties can be achieved only

if one fixes the binary structure and attributes link weights using a GM. As soon as the binary

14This interpretation is confirmed by an additional fitting exercise where we employ a PPML estimation technique
performed on positive link weights only. In this case, binary-restricted PPML fits are able to reproduce quite
successfully all statistics, in line with what happens for OLS. In fact, restricted PPML predictions do not add much
more precision in the estimates compared to OLS.

15The difference between observed correlations in the OLS vs PPML/ZIP cases must be attributed to the fact
that in OLS we compute all network statistics on logged weight matrices.
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structure is badly reproduced, one also looses the possibility to correctly recover weighted-network

patterns, primarily because most of weighted-network statistics are inherently dependent on the

binary representation.

So far, we have been studying the performance of GM predictions for weighted undirected

statistics. In fact, total strength, ANNS and clustering all neglect the directed nature of trade

flows and ensuing asymmetries, as they do not discriminate between in and out links (i.e., import

and export flows). To check if the foregoing results also apply in the case of weighted-network

directed statistics, which instead take fully into account trade-flow directionality, we have studied

predicted vs. observed values of population averages of such statistics and their correlation. We

have focused on in- and out-strength, and the breakdown in four directed statistics of ANNS and

WCC (see Table 4). In all cases, all results obtained above hold. In particular, OLS can easily

reproduce all versions of average disaggregated ANNS, while it slightly underestimates the average

of all directed clustering coefficients. Both PPML and ZIP fail to capture average ANNS and

WCC. Incidentally, according to K-S tests, all three methods are able to fully explain both in- and

out-strength distributions, but only OLS predictions get higher-order statistic distributions right.

All correlations16 are correctly predicted by OLS (with a slight overestimation as far as clustering-

strength relationships are concerned), whereas both PPML and ZIP always fail in replicating

correlations among directed statistics. Once again, the ability to predict the binary (directed)

structure of the ITN becomes crucial: despite the fact that the three methods correctly replicate

the correlation between in- and out-strength, only the OLS (by construction) exploits a perfect

prediction of the binary structure, and therefore results in a good approximation of the patterns

characterizing weighted statistics.

3.2 Binary Statistics

Our weighted-network exercises show that the GM can provide a quite satisfactorily picture of ITN

properties only if one restricts the estimation to strictly-positive trade flows, i.e. if the observed

binary structure is taken as given. The fact that binary trade links play a crucial role in explaining

ITN weighted topology indicates that any GM model aiming at endogenously estimating binary

links must somewhat take into account the discrete nature of the binary ITN and try to obtain a

more accurate estimation of the exact location of the zeros in trade matrices.

But is the GM able to correctly predict the binary structure of the ITN? In other words, can

one employ the independent variables traditionally used in GM equations to predict whether a

trade link exists or not? To address this issue, we employ the most natural candidate model for

16Among all possible correlations of directed statistics with node in- and out-strength we have selected only
those economically more relevant. For example, we have focused on the correlation coefficient between ANNSout,in

and NSout (and not that between ANNSout,in and NSin) because one is much more interested in understanding
whether a country that exports more, in turn exports to countries that imports more, rather than knowing whether
a country that imports more, in turn exports to countries that imports more.
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estimating the probability that a given link is present, i.e. a logit specification. More specifically,

for any cross-section t, we estimate:

Prob{aij = 1|xij} =
exp{xij · θ}

1 + exp{xij · θ}
= Λ(xij; θ) (12)

Notice that Eq. (12) is exactly the functional form that we fit in the first stage of the ZIP

estimation. Therefore, we can employ first-stage estimates for a zero flow ψ̂ij from the ZIP model

and build the predicted probability matrices Ξ̂, whose generic entry ξ̂ij = 1 − ψ̂ij represents the

estimated probability of observing a directed link from country i to country j in that year.17

Of course, as already mentioned, ξ̂ij > 0 for all links ij. Therefore, if we just employ Ξ̂, we

will end up with a full-network for the predicted binary ITN, as it happens for PPML and ZIP

procedures. This impairs all subsequent analyses, as they strongly depend on a correct estimation

of the binary structure.

In what follows, we propose a strategy to employ the GM to predict the binary ITN. To get a

reasonable prediction for the binary ITN, we proceed in two ways. First, for each year, we take the

matrix Ξ̂ and we delete all the links associated to predicted probabilities smaller than the observed

ITN density. This generates a predicted binary ITN with a density approximately similar (for

numerical reasons) to the observed one.18 This leads to the following:

Definition 4 (Density-Induced Predicted Binary ITN) The density-induced predicted binary

International Trade Network, for each given cross-section t, is represented by a binary-directed

graph, where the nodes are countries and the adjacency asymmetric matrix Â(ρ) has entries

âij(ρ) = 1 if and only if ξ̂ij > ρ, where ρ is observed ITN density in year t.

Second, we exploit a simulation-based procedure that, instead of using density-matching thresh-

olds, fully exploits the information in Ξ̂. More precisely, in each year, we generate a sample of M

independent adjacency matrices Âm = {âmij}, for m = 1, . . . ,M where in each sample âmij is drawn

from a Bernoulli distribution with parameter ξ̂ij, independently across all pairs ij. More formally:

Definition 5 (Bernoulli Predicted Binary ITN) The Bernoulli predicted binary International

Trade Network, for each given cross-section t, is represented by a distribution of M binary-directed

17We have also experimented with the matrix of predicted probabilities coming from the full ZIP estimation,
where each element equals ψ̂ij+(1− ψ̂ij)µ̂ij , without noticing any dramatic changes in the results we present below.

18We also performed two alternative threshold-based exercises. In the first one, we delete all the links associ-
ated to predicted probabilities smaller than a given threshold s, which is chosen so as to approximately match the
empirically-observed ITN density. In the second one, the optimal threshold is chosen so as to minimize the Manhat-
tan distance between the observed adjacency matrix and the predicted binary one, where the latter is defined, for
each given threshold s, as the binary matrix where a link is in place if and only if ξ̂ij < s. Both procedures lead to
very similar optimal thresholds, which are in turn very close to the density we get by straightforwardly setting the
threshold equal to ρ. Therefore, we present here only results for the case where the threshold is equal to observed
density.
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graphs, where for each graph the nodes are countries and the adjacency asymmetric matrix Âm,

m = 1, . . . ,M , has entries âmij that are drawn independently from a Bernoulli distribution with

parameter ξ̂ij.

In our exercises, we set M = 10, 000 and we employ simulated predicted matrices to compute

Monte-Carlo standard deviations for all statistics of interest (of course with the first method we

do not have any source of variation in predicted values, therefore no error bars can be computed).

Note also that density-induced predicted binary ITN preserves almost exactly observed density,

while the Bernoulli predicted binary ITN preserves that quantity only on average.

Our main results are reported in Figures 6 and 7, where we plot observed binary statistics vs.

predicted ones, using density-induced and Bernoulli procedures (see Definitions 4 and 5 above).19

To begin with, note that both density-induced and Bernoulli predictions are quite successful in

tracking average total ND. Actually, Bernoulli-predicted binary ITN can exactly replicate, on

average, that statistics. Conversely, density-induced predictions slightly deviate from observed

values.20 This is not surprising, as it means that both models are able to get a good proxy of

observed density.21

The fact that a Logit estimation is on average able to predict observed density explains why

a ZIP model, which employs the very same Logit specification in its first stage, predicts very well

average total NS. For that statistics is an average over all existing links and it is not so much

affected by where these links are actually located. This is not true of ANNS and WCC, which in

fact are badly reproduced by a ZIP model because require a more precise knowledge of where links

are placed.

A similar problem arises in the binary ITN for both density-induced and Bernoulli predictions:

the former persistently overestimates observed average ANND and BCC, whereas the latter per-

sistently underestimates them. Again, this hints to an inherent inability of the GM to well predict

the presence a link.

Things seem to improve a bit when we move to correlation structure. Density-induced predic-

tions are able to well capture binary disassortativity in the last part of the sample, but they only

partially get right clustering-degree correlation. Conversely, Bernoulli-based predictions seem to

perform quite satisfactorily in both cases: although on average observed correlations are rarely

replicated, the inherent variability of this procedure allows one to conclude that there exists a

sufficiently large number of simulations where predicted correlations are very similar to observed

ones.

19We focus here only on undirected measures. All main results hold also for directed network statistics.
20This is entirely due to numerical problems, as often it is impossible to purge from the predicted matrix Ξ̂ a

number of links so as to perfectly match observed density.
21Average total ND is indeed equal to L/N , where L is the number of links, and hence equals (N − 1)ρ.
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4 Concluding Remarks

In this paper, we have studied whether a gravity model (GM), the work-horse theoretical reference

in international trade, can explain the statistical properties of the international-trade network.

Our exercises show that the GM does a very good job in replicating the weighted-network

structure of the ITN only if one fixes its binary architecture equal to the observed one. More

generally, the GM performs very badly when asked to predict the presence of a link, or the level

of the trade flow it carries, whenever the binary structure must be simultaneously estimated.

Therefore, the GM turns out to be a good model for estimating trade flows, but not to explain

why a link in the ITN gets formed and persists over time. In other words, knowing country-specific

variables (country GDP, etc.) and country bilateral interactions (bordering conditions, belonging

to the same RTA, etc.) is not enough to predict the presence of a link. However, conditional on the

information that a link exists, such variables can well predict how much trade that link actually

carries.

Notice that these results are largely independent on which variables are actually entering the

gravity equation we fit to the data. In the foregoing exercises, we have used a standard specification

where many of the most-employed GM variables enter the regression. We have also tried and

augment the equation with other explanatory variables that resulted statistically not significant,

but can nevertheless improve the percentage of explained trade-flow variance, without observing

any dramatic increase in the goodness of fit of ITN network statistics.

In order to better explain the topological properties of the ITN many alternative strategies

may be pursued. First, one may consider to augment a GM specification with network-related

variables. It may be indeed argued that if standard economic variables entering in the GM are not

enough to explain link formation, perhaps this is because the presence of a link between any two

countries might be actually explained by the very local structure of the network (e.g., degrees of

the two countries, etc.). Of course this introduces some endogeneity to the problem, because the

presence of a link in turn affects local network properties. By properly dealing with endogeneity

issues in estimation, one can hope to better explain the binary structure of the ITN.

Second, one might borrow social-network statistical methodologies currently employed to model

the evolution of directed graphs over time as continuous-time Markov processes (Snijders, 2005).

For example, one may envisage setups where each single node chooses its outgoing link (i.e. whether

to export to another country or not) based on a myopic optimization of some objective function,

where the latter may be the result of many firm-level decisions within the origin country.

Finally, one may think to explore international-trade models where the decision of a firm located

in country A to export goods to country B, which possibly never imported products from A before,

is rooted in a more detailed micro-foundation. This may require to blend together two strands of

literature, one on the role of heterogeneous firms in international trade (Melitz, 2003; Bernard et al.,
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2007) and the other on models of trade network formation based on simple aggregate dynamics

(Garlaschelli and Loffredo, 2004; Bhattacharya et al., 2008; Riccaboni and Schiavo, 2010).
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1970 1975 1980 1985 1990 1995 2000
Countries (No.) 129 135 142 148 145 157 154
Trade Flows (No.) 6583 7618 8162 9108 10289 12138 11828
Density 0.40 0.42 0.41 0.42 0.49 0.50 0.50
Average Trade 51.03 56.43 57.48 61.54 70.96 77.31 79.81
Countries making up 50% of trade 7 8 7 7 7 8 8
Flows making up 50% of trade 73 99 90 73 69 74 79
Countries making up 90% of trade 39 39 38 37 31 32 33
Flows making up 90% of trade 794 900 894 871 749 826 855
% Countries making up 50% of trade 5.43% 5.93% 4.93% 4.73% 4.83% 5.10% 5.19%
% Flows making up 50% of trade 1.11% 1.30% 1.10% 0.80% 0.67% 0.61% 0.67%
% Countries making up 90% of trade 30.23% 28.89% 26.76% 25.00% 21.38% 20.38% 21.43%
% Flows making up 90% of trade 12.06% 11.81% 10.95% 9.56% 7.28% 6.81% 7.23%

Table 1: Subramanian and Wei (2003) Database. Summary statistics.

23



Label Related to Description Source

W Link Imports in U.S. Dollars Subramanian and Wei (2003)
Y Country Gross-domestic product Subramanian and Wei (2003)
area Country Country area in Km2 Subramanian and Wei (2003)
pop Country Country population Subramanian and Wei (2003)
d Link distance between two coun-

tries, based on bilateral dis-
tances between the largest
cities of those two countries,
weighted by the share of the
city in the overall countrys
population

CEPII (http://www.cepii.fr/)

landl Country Dummy variable equal to 1 for
landlocked Countries

CEPII (http://www.cepii.fr/)

continent Country Categorical variable indicat-
ing the continent of the coun-
try

CEPII (http://www.cepii.fr/)

contig Link Contiguity dummy equal to 1
if two countries share a com-
mon border

CEPII (http://www.cepii.fr/)

comlang off Link Dummy equal to 1 if both
countries share a common of-
ficial language

CEPII (http://www.cepii.fr/)

comcol Link Dummy equal to 1 if both
countries have had a common
colonizer

CEPII (http://www.cepii.fr/)

colony Link Dummy equal to 1 if both
countries have ever had a colo-
nial link

CEPII (http://www.cepii.fr/)

curcol Link Dummy equal to 1 if both
countries are currently in a
colonial relationship

CEPII (http://www.cepii.fr/)

comrelig Link Percentage in which both
countries share religions

CEPII (http://www.cepii.fr/)

comcur Link Dummy equal to 1 if both
countries have a currency
unions

CEPII (http://www.cepii.fr/)

gsp Link Dummy equal to 1 if both
countries share a generalized
system of preferences

CEPII (http://www.cepii.fr/)

rta Link Dummy variable equal to 1 if
both countries involved in re-
gional, bilateral or preferen-
tial trade agreements

WTO (http://www.wto.org/)

Table 2: Variables employed in the gravity-model estimation.
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Regressor OLS(W>0) PPML ZIP-Poisson ZIP-Logit

ln gdp i (α1) 1.415***(0.023) 1.302***(0.049) 1.278***(0.048) -0.954***(0.025)
ln gdp j (α2) 1.323***(0.021) 1.697***(0.047) 1.65***(0.047) -0.961***(0.023)
ln dist ij (α3) -1.034***(0.023) -0.725***(0.033) -0.721***(0.033) 0.533***(0.033)
ln area i (β11) -0.068***(0.013) -0.097***(0.022) -0.09***(0.022) 0.107***(0.013)
ln area j (β21) -0.108***(0.012) -0.14***(0.035) -0.135***(0.034) 0.15***(0.013)
ln pop i (β12) -0.402***(0.025) -0.401***(0.07) -0.393***(0.068) 0.206***(0.026)
ln pop j (β22) -0.42***(0.025) -0.773***(0.057) -0.744***(0.056) 0.25***(0.026)
landl ci (δ11) -0.456***(0.051) -0.509***(0.092) -0.48***(0.091) 0.517***(0.047)
landl cj (δ21) -0.472***(0.046) -0.451***(0.124) -0.426***(0.123) 0.579***(0.047)
continent i (δ12) 0.004(0.02) -0.16***(0.038) -0.153***(0.038) 0.043*(0.019)
continent j (δ22) -0.05**(0.019) -0.257***(0.042) -0.259***(0.041) -0.086***(0.018)
contig (θ1) 0.823***(0.112) 0.572***(0.113) 0.622***(0.114) 0.996***(0.216)
comlang off (θ2) 0.637***(0.055) 0.407***(0.084) 0.376***(0.083) -0.728***(0.061)
comcol (θ3) 0.785***(0.084) 0.399(0.276) 0.41(0.274) -0.26**(0.077)
colony (θ4) 1.091***(0.088) -0.252**(0.093) -0.226**(0.092) 0.476*(0.239)
curcol (θ5) -2.334(1.923) 0.156(0.737) 0.345(0.718) 2.081(1.291)
comrelig (θ6) 0.266***(0.066) -0.094(0.109) -0.148(0.109) -0.676***(0.081)
comcur (θ7) 0.554***(0.111) -0.139(0.107) -0.136(0.107) -1.493***(0.18)
gsp (θ8) 0.484***(0.047) 0.349***(0.107) 0.303***(0.106) -2.015***(0.116)
rta (θ9) 0.338***(0.053) 0.204**(0.078) 0.181**(0.078) -0.672***(0.078)
cons (γ) -20.666***(0.394) -21.693***(0.852) -20.8***(0.868) 21.636***(0.487)

No. Obs 11828 23562 11828 23562
F or Wald chi2 1423 15029 14083 5691.15
Prob > F or chi2 0 0 0 0
R2 or Pseudo R2 0.68 0.93 0.92 0.43
Vuong Z - - 82.76
Prob > Z - - 0

Table 3: GM estimation. Year: 2000. ZIP-Poisson: second stage of the ZIP estimation process.
ZIP-Logit: first stage of the ZIP estimation process. Note: i = exporter; j = importer.
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Figure 1: Observed vs. GM-predicted average node total strength. 95% confidence bands are
displayed as error bars around predicted values. Note: in the OLS plot node strength is computed
using log of trade flows.
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Figure 2: Observed vs. GM-predicted average total ANNS. 95% confidence bands are displayed
as error bars around predicted values. Note: in the OLS plot node strength is computed using log
of trade flows.
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Figure 3: Observed vs. GM-predicted average total WCC. 95% confidence bands are displayed as
error bars around predicted values. Note: in the OLS plot node strength is computed using log of
trade flows.
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Topological
Properties Binary Weighted
Degrees/Strengths NDin

i = kini =
∑

j aji
NDout

i = kouti =
∑

j aij
NDout

i = ktoti = kini + kouti

NSin
i = sini =

∑
j wji

NSout
i = souti =

∑
j wij

NStot
i = stoti = sini + souti

ANND/ANNS ANNDin,in =
∑

j ajik
in
j

kini

ANNDin,out =
∑

j ajik
out
j

kini

ANNDout,in =
∑

j aijk
in
j

kouti

ANNDout,out =
∑

j aijk
out
j

kouti

ANNDtot =
∑

j(aij+aji)k
tot
j

ktoti

ANNSin,in =
∑

j ajis
in
j

kini

ANNSin,out =
∑

j ajis
out
j

kini

ANNSout,in =
∑

j aijs
in
j

kouti

ANNSout,out =
∑

j aijs
out
j

kouti

ANNStot =
∑

j(aij+aji)s
tot
j

ktoti

Clustering BCCcyc
i =

∑
j

∑
k aijajkaki

kini kouti −k↔i

BCCmid
i =

∑
j

∑
k aikajiajk

kini kouti −k↔i

BCC in
i =

∑
j

∑
k akiajiajk

kini (kini −1)

BCCout
i =

∑
j

∑
k aikajkaij

kouti (kouti −1)

BCCtot
i =

∑
j

∑
k(aij+aji)(ajk+akj)(aki+aik)

2
[
ktoti (ktoti −1)−2k↔i

]

WCCcyc
i =

∑
j

∑
k w

1/3
ij w

1/3
jk w

1/3
ki

kini kouti −k↔i

WCCmid
i =

∑
j

∑
k w

1/3
ik w

1/3
jk w

1/3
ji

kini kouti −k↔i

WCCin
i =

∑
j

∑
k w

1/3
jk w

1/3
ji w

1/3
ki

kini (kini −1)

WCCout
i =

∑
j

∑
k w

1/3
ik w

1/3
ij w

1/3
jk

kouti (kouti −1)

WCCtot
i =

∑
j

∑
k(w

1/3
ij +w

1/3
ji )(w

1/3
jk +w

1/3
kj )(w

1/3
ki +w

1/3
ik )

2
[
ktoti (ktoti −1)−2k↔i

]

Table 4: Binary and weighted topological properties of the ITN. Note: Time labels are suppressed for notational convenience.
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OLS
1970 1975 1980 1985 1990 1995 2000

NStot 0.05 (1.00) 0.03 (1.00) 0.04 (1.00) 0.03 (1.00) 0.04 (1.00) 0.03 (1.00) 0.03 (1.00)
ANNStot 0.05 (1.00) 0.05 (0.99) 0.04 (1.00) 0.04 (1.00) 0.03 (1.00) 0.03 (1.00) 0.05 (1.00)
WCCtot 0.05 (0.99) 0.05 (0.99) 0.04 (1.00) 0.07 (0.88) 0.05 (0.99) 0.05 (0.98) 0.06 (0.95)

PPML
1970 1975 1980 1985 1990 1995 2000

NStot 0.06 (0.96) 0.10 (0.44) 0.11 (0.31) 0.11 (0.27) 0.08 (0.78) 0.08 (0.64) 0.08 (0.72)
ANNStot 0.98 (0.00) 0.99 (0.00) 0.99 (0.00) 0.97 (0.00) 0.94 (0.00) 0.94 (0.00) 0.94 (0.00)
WCCtot 0.45 (0.00) 0.36 (0.00) 0.32 (0.00) 0.38 (0.00) 0.32 (0.00) 0.29 (0.00) 0.34 (0.00)

ZIP
1970 1975 1980 1985 1990 1995 2000

NStot 0.06 (0.96) 0.07 (0.92) 0.08 (0.77) 0.09 (0.6) 0.06 (0.94) 0.08 (0.73) 0.05 (0.98)
ANNStot 0.95 (0.00) 0.93 (0.00) 0.94 (0.00) 0.87 (0.00) 0.83 (0.00) 0.85 (0.00) 0.83 (0.00)
WCCtot 0.48 (0.00) 0.41 (0.00) 0.38 (0.00) 0.40 (0.00) 0.33 (0.00) 0.32 (0.00) 0.36 (0.00)

Table 5: Two-sample Kolmogorov-Smirnov test statistics. Null hypothesis: predicted and observed
node-statistics sequences come from the same distribution. P-values in parentheses.
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Figure 4: Observed vs. GM-predicted correlation between total node strenght and total ANNS.
95% confidence bands are displayed as error bars around predicted values. Note: in the OLS plot
node strength and ANNS are computed using log of trade flows.
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Figure 5: Observed vs. GM-predicted correlation between total node strenght and total weighted
clustering coefficient (WCC). 95% confidence bands are displayed as error bars around predicted
values.
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Figure 6: Observed vs. GM-predicted average statistics in the binary ITN. Logit estimation. Den-
sity: average statistics in the Density-Induced Predicted Binary ITN (see Definition 4). Bernoulli:
average statistics in the Bernoulli Predicted Binary ITN (see Definition 5). 95% confidence bands
are displayed as error bars around predicted Bernoulli values.
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Figure 7: Observed vs. GM-predicted correlation between statistics in the binary ITN. Logit esti-
mation. Density: average statistics in the Density-Induced Predicted Binary ITN (see Definition
4). Bernoulli: average statistics in the Bernoulli Predicted Binary ITN (see Definition 5). 95%
confidence bands are displayed as error bars around predicted Bernoulli values.
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