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In this paper, we use a series of simple examples to illustrate how wealth-
driven selection works in a market for Arrow securities. Our analysis delivers
both a good and a bad message. The good message is that, when traders
invest constant fractions of their wealth in each asset and have equal con-
sumption rates, markets are informationally efficient: the best informed
agent is rewarded and asset prices eventually reflect this information. How-
ever, and this is the bad message, when asset demands are not constant
fractions of wealth but dependent upon prices, markets might behave sub-
optimally. In this case, asymptotic prices depend on preferences and beliefs
of the whole ecology of traders and do not, in general, reflect the best avail-
able information. We show that the key difference between the two cases
lies in the local, i.e. price dependent, versus global nature of wealth-driven
selection.
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1 Introduction

The aim of this paper is to illustrate, using simple examples, the good, the bad, and
the unknown about wealth-driven selection in asset markets. For this purpose, we
consider the simplest setting in which the problem can be investigated, a repeated
market for two Arrow securities. Each asset represents a different way to transfer
current wealth to future consumption or investment. Whereas aggregate wealth
is fixed ex-ante and depends only on the realized state of Nature, prevailing asset
prices and the distribution of wealth among agents are endogenously determined
and depend also on agents’ investment decisions. Even in our stylized framework,
whether the market is capable of rewarding the best informed agents or, more in
general, the nature of the long-run prices and wealth distributions is still an open
issue.

Despite this lack of knowledge, most models in economics and finance postulate
the ability of markets to select for agents whose equilibrium prices reflect the
correct, or the best available, information about asset fundamentals. They assume
so in much more complex settings than the one analyzed here. The underlying
idea is that agents who have inferior information would lose wealth over time in
favor of the better informed. If this were true, the market would converge to a
long-run equilibrium in which the best informed agent has all wealth and prices
would reflect this information. The market could be said to be informationally
efficient, as it efficiently conveys, through prices, the best available information
about asset fundamentals.

The examples of this paper are meant to illustrate when the above idea is
correct and when, and why, it is not. We show that the class of investment be-
haviors considered crucially influences the efficiency of the wealth-driven selection
process. To illustrate the point, we consider investment behaviors or “portfolio
rules” derived from the one period1 maximization of an expected log or power
utility, that is, Constant Relative Risk Aversion (CRRA) preferences, given rel-
ative risk aversion γ and subjective probabilities about the occurrence of states
of Nature. When γ = 1, that is with log utility, the demand is expressed as a
constant fraction of wealth to be invested in each asset. When γ 6= 1, that is with
power utility, the fraction of wealth becomes price dependent. We analyze the
asymptotic states of our market dynamics and compare results for the two cases.
When the fraction of wealth invested in each asset is constant, the agent whose
subjective probabilities are the “closest” to the true probability distribution of the

1Since we are primarily interested in analyzing the selective capability of markets, we assume
that agents are myopic and drop the assumption of perfect foresight or rational-expectations.
These assumptions would indeed sterilize the effect of the trading-induced wealth reallocation,
as all the problems would be reduced to an ex-ante identification of possible equilibria.
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states of Nature dominates the economy and takes all the wealth in the long run.2

Since the agent possessing the best information about the fundamental process
is rewarded by the market, prices are set to reveal this information. This is the
“good” side of selection in asset markets.

On the other hand, when portfolio rules are price dependent, long-run prices do
not need to represent the best available information. In general, it is not possible
to judge ex-ante who will be rewarded by the market and to what extent the latter
will be able to reveal the correct information about asset fundamentals. In fact,
it is easy to construct examples in which prices exhibit endogenous fluctuations
and never converge or, depending on initial conditions and realizations of states of
Nature, reveal the worst available information. This is the “bad” side of selection
in asset markets. Interestingly, the failure to select the best informed agents can
be related to analogous issues pointed out in Nelson and Winter (2002) within
the firm selection literature, namely: variety, behavioral continuity, limited path
dependence, and profit induced growth. We refer to the same classification at the
end of the paper when we summarize our findings.

Technically, the dynamics of agents wealth and asset prices can be formalized
as a discrete-time random dynamical system. Given agents wealth fractions, port-
folio rules, and asset prices at time t, the market dynamics is a random map which
depends on the next realized state of Nature. Different states of Nature give rise
to different reallocation of resources at time t + 1. The newly determined wealth
distribution, together with the updated portfolio rules, possibly changed by the
information revealed by previous trading, will, in turn, determine the next prices,
and the process is repeated over and over again. The analysis of long run wealth
and price distributions becomes the ultimate object of interest. In our previous
work, Bottazzi and Dindo (2010), we focused on the analytical investigation of
the random dynamical system representing the market dynamics and were able
to derive local stability conditions of those states in which only one trader has all
the wealth. In the present contribution, relying on those results, we discuss selec-
tion in asset markets using simple examples and with the help of a graphical tool,
thus avoiding technical proofs. First, by plotting agents portfolio rules against a
normalization of the supply, the so-called Equilibrium Market Curve (EMC, see
Section 4), we find the possible long-run selection equilibria as the short-run Wal-
rasian equilibria where only one agent has positive wealth. Second, comparing the
distance of each individual rule to a benchmark rule, the Kelly rule, so-called after
Kelly (1956), we discuss the local stability of single survivor equilibria. This char-
acterization of the long-run dynamics enables us to assess the selective capability
of the market and its informational efficiency.

2As we shall see, the appropriate quantification of the “distance” between probability distri-
butions is provided by the relative entropy.
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The outline of this paper is as follows. In the next section, we provide a brief
introduction to the recent works that have investigated wealth-driven selection in
asset markets. In Section 3, we introduce the asset market model and derive agents’
demand from the (myopic) maximization of a CRRA utility function. In Section 4,
we consider the case of constant portfolio rules, characterize the outcome of the
long-run market dynamics and show how, in this case, the market rewards the best
informed agent. The analysis begs the question of what happens with more general
demand functions. We answer this question in Section 5, where we introduce price
dependence in agents investment decisions. As the examples in Sections 5.1 and 5.2
show, the market selective capability in favor of the best informed agent turns from
working globally to working only locally so that the convergence of prices toward
informationally efficient values is not granted anymore. In Section 6, we show that
the local nature of market selection leads to the impossibility of ordering rules
according to their mutual survivability. In Section 7, we conclude by linking our
findings with those summarized by Nelson and Winter (2002) for the firm selection
literature, by presenting the open issues, and by setting a possible agenda for future
research.

2 Selection in asset markets

The investigation of the ability of markets to redistribute resources in favor of
the rational and better informed agents started with Blume and Easley (1992)
(see also Blume and Easley, 2010). They study the relative wealth dynamics
among different investors repeatedly exchanging Arrow securities in a temporary
equilibrium framework. Trading occurs because agents have different beliefs on the
likelihood that a security will pay its dividend and/or different risk preferences.
They find that market selection works in that there exists an investment rule that
dominates against any other rule and drives asset prices to their correct values. We
draw upon this result in Section 4 where we present the “good” side of selection in
asset markets. More in general, we show that, within portfolio rules that prescribe
investing a fixed fraction of wealth in each asset, informational efficiency holds and
asset prices converge as close as possible to their fundamentals. However, Blume
and Easley also construct examples where, in absence of the global dominating
rule, market selection does not work and leads to asset miss-pricing. We clarify
the origin of this form of inefficiency in Section 5 where we present the “bad” side
of selection in asset markets.

The following literature has tried to generalize the hypothesis under which
market selection does work. Evolutionary Finance (see Evstigneev et al., 2009,
for a recent survey) has focused on more general market structures, while keeping
agents behaviors in the class of constant rules we analyse in Section 4. Incomplete
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markets and generic Markovian processes driving the states of Nature have been
studied: Amir et al. (2005) and Evstigneev et al. (2008) extended the analysis
for short and long-living asset, respectively. Although partly different results have
been found with respect to the global dominating strategy, differences which led
to the introduction of the so-called generalized Kelly rule (see Sections 4-5), in all
these works it is confirmed that, as long as the global dominating rule is trading,
market informational efficiency holds.

A different group of works has focused on generalizing the class of rules to en-
compass any investment decision explicitly coming from utility maximization, so
that asset demand is not necessarily expressed as a fixed, belief dependent, fraction
of wealth. Assuming perfect foresight on realized prices and market completeness
Sandroni (2000) and Blume and Easley (2006) find that, no matter the functional
form of the utility function they maximize, the agent whose beliefs are “nearest”
the correct ones is selected in the long run. Sandroni (2005) generalizes this result
to specific types of incomplete markets. Although these results have strong impli-
cations, they are based on the very demanding assumption that agents are able
to coordinate on having perfect foresight on realized prices. This assumption does
not only imply that agents are able to coordinate their expectations, but also that
they can guess ex-ante the correct price. In all these works, market informational
efficiency is a by-product of allocative efficiency which, in turns, is granted by the
perfect foresight assumption.

In the context of financial market models with heterogeneous agents, the gen-
eral finding is that the interaction of boundedly rational agents may lead, through
the linking of past market performances to present returns, to endogenous price
fluctuations and asset mis-pricing (see Hommes, 2006; LeBaron, 2006, for a re-
view). In particular, in our previous work (see e.g. Anufriev et al., 2006; Anufriev
and Bottazzi, 2010; Anufriev and Dindo, 2010) we have studied wealth-driven mar-
ket selection on the class of price dependent investment rules in a standard model
with a risky and a risk-free asset. Those works are, however, based on an essen-
tially deterministic framework and do not discuss the informational efficiency issue
we are interested in here.

The effort to investigate wealth-driven selection in an stochastic framework
with non constant portfolio rules started with our recent contribution, Bottazzi
and Dindo (2010). There we take a standard Evolutionary Finance market model
with short-lived assets and add price dependent portfolio rules to the analysis.
We find that the comparison of the relative performance of portfolio rules is only
possible at given prices, explaining way there exist cases in which no rule gains all
wealth in the long run or in which different rules gain all wealth for different initial
conditions or different realizations of the fundamental process. We draw upon this
contribution in Sections 5-6 where we present the “bad” consequences of selection
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in asset markets.

3 The model

Assume that there are 2 possible states of Nature, state 1 and state 2. Their
unfolding in time can be represented by a Bernoulli process ω = (ω1, . . . , ωt, . . .),
with ωt ∈ {1, 2} and ωt = 1 with probability π for every t ∈ N. We denote with N

+

the set N ∪ {0}. In order to transfer wealth inter-temporally, and thus being able
to consume in the future, I agents can trade in two short-lived Arrow securities.
Asset k = 1, 2, exchanged in period t at price pk,t, pays one unit of the consumption
good in period t + 1 if ωt+1 = k, and zero otherwise. The consumption good is
the numeràire of the economy. Each agents’ demand is expressed as a fraction of
wealth, that is, the demand of agent i for asset k at time t is given by αi

k,tw
i
t/pk,t,

where αi
k,t is agent i invested fraction in asset k in period t, and wi

t is agent i wealth
in period t. We refer to the vector (αi

1,t, α
i
2,t) as the portfolio, or investment3, rule

of agent i in period t.
Asset markets open at time 0 and close at an arbitrary large final period T . We

assume that consumption occurs only in this final period. All intermediate wealth
is thus saved and re-invested in assets4. Agent i budget constraint implies that
her portfolio rule obeys to αi

1,t + αi
2,t = 1 for every t ∈ N

+. Moreover we impose
that αi

k,t ≥ 0, k = 1, 2, for every t ∈ N
+, as the agent who violates this constraint

will have negative wealth in finite time. Both constraints imply that each agent i
period t investment rule belongs to ∆2, the unitary simplex of R2.

The price of asset k = 1, 2 in period t, pk,t, is fixed by Walrasian market
clearing. Assuming unitary assets supply, period t market clearing can be written
both in terms of units

1 =
I

∑

i=1

αi
k,t w

i
t

pk,t
, k = 1, 2

3Portfolio rules are distinct from investment rules when intermediate consumption is consid-
ered, in which case the portfolio rule specifies the fraction of wealth to be allocated to each asset
whereas the investment rule also specifies the fraction of wealth to be saved and the fraction of
wealth to be consumed. See also footnote 4 below.

4This is equivalent to assuming a constant and homogeneous consumption rate for all agents,
bar a renormalization of price levels. As discussed in Blume and Easley (1992), the introduction of
heterogeneous consumption rates weakens markets informational efficiency when better informed
traders have a higher propensity to consume. Since the effect is well understood, we have chosen
not to consider it in the present analysis.
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or, more conveniently for our purposes, in terms of market values

pk,t =
I

∑

i=1

αi
k,t w

i
t , k = 1, 2 . (3.1)

At time t+ 1, if the event ωt+1 ∈ {1, 2} is realized, the wealth of agent i, wi
t+1, is

equal to the amount of shares of asset k = ωt+1 bought at time t, or

wi
t+1 =

αi
ωt+1,t

wi
t

pωt+1,t

. (3.2)

By summing up the previous equation over all the I agents and using (3.1), it
is clear that, no matter the initial wealth, the total wealth in the economy is
then equal to one, the total assets dividend payment. Since portfolio rules are
constrained to add up to one, this implies that

p1,t + p2,t = 1 for every t ∈ N
+ . (3.3)

The latter equation can be used to normalize prices so that we shall use p1,t = pt
and p2,t = 1− pt in what follows.

For definiteness and illustrative purposes, in this contribution we restrict our
analysis to the class of investment rules derived from the maximization of the
expected CRRA utility of next period wealth. However, as it will become clear
later, the phenomena we discuss have a general character and do not depend in
any respect on this assumption. An agent who assigns the subjective probability
πe to the realization of state 1 and who possesses a relative risk aversion parameter
γ derives period t portfolio rule (α1,t, α2,t) by maximizing the expected utility of
wealth in period t+ 1, that is, using (3.2), by solving

argmax(α1,t,α2,t)∈∆2

{

πeu

(

α1,twt

pt

)

+ (1− πe)u

(

α2,twt

1− pt

)}

,

where u is a log or power utility function

u(x) =







x1−γ

1−γ
if γ ∈ (0, 1) ∪ (1,+∞) ,

log(x) if γ = 1 .

(3.4)

It is straightforward to get the explicit solution of the maximization problem: when
γ 6= 1, the portfolio rule depends on pt but not on wt and reads

α1,t = α(pt; π
e, γ) =

(πe(1−pt)1−γ)
1
γ

(πe(1−pt)1−γ)
1
γ +((1−πe)(pt)1−γ)

1
γ
,

α2,t = 1− α(pt; π
e, γ) .

(3.5)
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When γ = 1, the previous solution collapses to constant portfolio rule

α1,t = α(pt; π
e, 1) = πe , and α2,t = 1− α(pt; π

e, 1) = 1− πe . (3.6)

We will denote with αi(p; πe, γ) the portfolio rule of agent i. As we shall see
in the following sections, the analysis of the market dynamics, and especially its
asymptotic characterization, critically depends on the nature of these rules.

4 The good: wealth-driven selection with con-

stant portfolio rules

In this section, we consider the benchmark case of constant portfolio rules, that is,
agents invest constant fractions of their wealth in each asset, irrespectively of their
wealth or assets prices. As shown in the previous section, this rule corresponds to
the maximization of the expected logarithmic utility of next period wealth.5 The
fraction of wealth invested in each asset is equal to the expected probability of
realization of the associated state of Nature, see (3.6).

Consider first the case of a market with a single investor. Let wt be the investor
wealth and α the share of wealth invested in asset 1. We assume that investors as-
sign a positive probability to both states, so that α ∈ (0, 1). The market dynamics
in (3.1-3.2) becomes

wt+1 =







αwt

pt
if ωt+1 = 1 ,

(1−α)wt

1−pt
if ωt+1 = 2 ,

(4.1)

where the price of the first asset is

pt = αwt . (4.2)

Substituting (4.2) in (4.1), it is immediately clear that, by investing a positive
amount in both assets, the trader will secure all future wealth no matter the
realization of the state of Nature. Wealth evolution does not pay any role and
pt = α for every t.

We can use a standard supply and demand plot to visualize the market equi-
librium price. In the left panel of Fig. 1 we plot both the supply market value p,
and the demand market value α. Their crossing, E1, fixes the equilibrium price,
which in this case is trivially equal to α. Consistently with our previous works, we

5Were the reader, for any reason, averse to the expected utility framework, he or she is free to
consider the constant rules as behavioral rules, that is, as mere descriptions of agents behavior.
Our results and the overall analysis remain the same.
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Figure 1: Left Panel: EMC plot representing a market with a single investor using
α = 0.4. The only possible outcome of the dynamics is E1. Right Panel: EMC plot
representing a two-agent market. Investment shares are α1 = 0.4 and α2 = 0.7,
respectively. E1 and E2 are the two single survivor long-run equilibria.

name the diagonal supply curve in this plot the Equilibrium Market Curve (EMC).
Indeed, we shall show that the EMC is the locus of all possible long-run equilibria
of our economy.

In order to study the role of the market in redistributing wealth among agents,
and the ensuing asset price behavior, we need to add a second investor. Let the
investment rules be α1 and α2, respectively. The wealth of agent i = 1, 2 evolves
according to

wi
t+1 =











αiwi
t

pt
if ωt+1 = 1 ,

(1−αi)wi
t

1−pt
if ωt+1 = 2 ,

(4.3)

where the price of the first asset is given by the combination of both rules

pt = α1 w1
t + α2 (1− w1

t ) , (4.4)

and we have used w2
t = 1 − w1

t . If, in a given period, agent i possesses all the
wealth, then p = αi and agent i will possess all the wealth in all subsequent
periods. If otherwise, both agents have positive wealth, prices are between α1 and
α2 and returns depend on the realization of the state of Nature. Notice that, in
each period, the market rewards the agent with the highest stake in the dividend
paying asset.

The right panel of Fig. 1 illustrates a two-agent market using the “EMC plot”.
E1 and E2 are the crossing of agent rules with the EMC. They are deterministic
fixed points of the random dynamical system specified by (4.3): no matter the
realized states of Nature, the market dynamics starting in E1 (or E2) will stay
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there for ever. E1 and E2 are the single survivor equilibria of the market dynamics
since they occur when one agent possesses the entire wealth. The question we want
to answer is whether for generic initial conditions the market will converge toward
a single survivor equilibrium or keep fluctuating between them. For this purpose,
we use the evolution of the wealth ratio. From (4.3), knowing that ωt+1 = 1 with
probability π, one has

w1
t+1

w2
t+1

=











α1

α2

w1
t

w2
t

with probability π ,

1−α1

1−α2

w1
t

w2
t

with probability 1− π .

(4.5)

The wealth of the agent with the highest stake in asset 1, that is, the agent with
the larger belief α (agent 2 in the example in the right panel of Fig. 1), increases
with probability π and decreases with probability 1 − π. In T periods, denoting
with T1 the number of times state 1 is realized, one has

w1
T

w2
T

=

(

α1

α2

)T1
(

1− α1

1− α2

)T−T1 w1
0

w2
0

,

and, taking the log,

log
w1

T

w2
T

= T1 log
α1

α2
+ (T − T1) log

1− α1

1− α2
+ log

w1
0

w2
0

.

Since, for the Law of Large Numbers, T1/T → π as T → ∞, one obtains

lim
T→∞

1

T
log

w1
T

w2
T

=

(

π log
α1

α2
+ (1− π) log

1− α1

1− α2

)

. (4.6)

To interpret (4.6), notice that the investment rule of each agent can be seen as
a probability measure (α, 1− α) defined over the states of Nature. Consider now
the relative entropy of this measure with respect the true probabilities (π, 1 − π)
defined as

Iπ(α) = π log
π

α
+ (1− π) log

1− π

1− α
. (4.7)

Iπ(α) is always non-negative and is zero if and only if α = π. The relative entropy
is a measure of information loss: the lower its value, the greater the agreement of
the beliefs (α, 1− α) with the true Bernoulli distribution (π, 1− π). Substituting
the expression for the relative entropy in (4.6), one obtains

lim
T→∞

1

T
log

w1
T

w2
T

= Iπ(α
2)− Iπ(α

1) .

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α(
p)

p

Iπ(α1)

Iπ(α2)

S1

U2

EMC
π

α1
α2

Figure 2: EMC plot representing a two agents market with π = 1/2, α1 = 0.4,
and α2 = 0.7. The two possible long-run outcomes of the dynamics are S1, where
agent 1 dominates, and U2, where agent 2 dominates. Since the line α1 is closer
to π than α2, S1 is globally stable and U2 unstable.

If Iπ(α
2) > Iπ(α

1) the limit is positive, which implies that w2
T → 0 as T →

∞. Agent 1 dominates, that is, gains all the wealth in the long-run. If instead
Iπ(α

2) < Iπ(α
1), then w1

T → 0 as T → ∞. In this case, agent 2 dominates. We
have established that the agent whose investment rule or beliefs have the lowest
relative entropy with respect to the process generating the sequence of states of
Nature dominates. At the same time, long-run prices will reflect the best beliefs
and will move as close as possible to the probability distribution (π, 1−π). In this
sense, the market is informationally efficient.

It is useful to restate this result using the EMC plot. For this purpose, we
add the line π to the two-agent EMC plot in the right panel of Fig. 1 to obtain
Fig. 2. Notice that the relative entropy of a strategy α is monotonically related
to its distance from the line π. Indeed, the expression in (4.7) is monotonically
decreasing in α if α < π and monotonically increasing if α > π. Moreover, when
π = 1/2, as in all the examples of this paper, the function Iπ(α) is symmetric
around π, so that the relative entropy can be directly derived from the Euclidean
distance in the EMC plot.6 Thus, since in Fig. 2 the π line is closer to α1 than
to α2, if both agents start with positive initial wealth, no matter how much in
favor of agent 2, agent 1 will gain all wealth in the long run and the price of the
first asset converges to E1. Technically, we have just established that the only

6When π 6= 1/2, one can use the function Iπ(α) to rescale the vertical axis in the EMC plot
so that the entropic distance can be still inferred by visual inspection.
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(globally) stable equilibrium is E1.
From the previous discussion it is clear that the best possible constant portfolio

rule, the rule that gains all wealth when trading with (different) constant rules, is
the rule with minimal entropic distance from the process governing the succession
of the states of Nature. The rule prescribes investing a fraction of wealth π in
the first asset and a fraction 1 − π in the second asset. This rule, to invest
proportionally to the probabilities, is named the Kelly rule after Kelly (1956).
Although it has its origin in models with exogenous prices (exogenous odds in the
original betting framework, see e.g. Breiman 1961), it provides the average highest
growth rate of wealth also in our model. According to our analysis, when present in
the market, the Kelly rule beats any other different constant rule and bring prices
to the probability revealing values π and 1 − π. In terms of the maximization
problem, the Kelly rule corresponds to an investor possessing correct beliefs about
the process governing the state of Nature and having CRRA preferences with
unitary relative risk aversion coefficient, i.e. logarithmic utility, a principle known
as log-optimality.7

In the EMC plot, the Kelly rule coincides with the probability line π, so that
comparing distances with respect to the probability line amounts to comparing
distances with respect to the Kelly rule. Thus, we can restate the global stability
results by saying that the rule closest to the Kelly rule is the one that takes all
the wealth in the long-run.

Similar conclusions can be reached in the general case of many assets and many
agents, as originally shown in Blume and Easley (1992) (see also Evstigneev et al.,
2009, for a survey of other possible extensions). In all cases, the agent gaining all
wealth in the long-run is the one using the rule with the lowest relative entropy
with respect to the invariant distribution of the dividend generating process. By
gaining all wealth, this agent drives prices toward the single survivor fixed point
“closest” to the probability measure ruling the states of Nature process. In this
case, the market is informationally efficient and prices assets as close as possible
to their probability revealing values. This is not, however, the end of the story.

7In some contributions of the Evolutionary Finance literature, the Kelly rule has been replaced
by the generalized Kelly rule, that is, investing proportionally to expected assets payoffs. Despite
the fact that the two rules coincide in a market with only Arrow securities, they differ under more
general asset structures. In particular, the generalized Kelly rule is in general not log-optimal,
although it has been shown to dominate among constant rules, see Evstigneev et al. (2009). The
relation between the log-optimal Kelly rule and the generalized Kelly rule is the object of ongoing
research. See also Section 5.3 of this paper and Section 5.1 in Bottazzi and Dindo (2010).
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Figure 3: Portfolio rules derived by the maximization of a CRRA utility defined
in (3.5-3.6). Left panel: values of γ close to 1. Right panel: extremal values of γ.

5 The bad: wealth-driven selection with price

dependent portfolio rules

In this section, we investigate market behavior under wealth-driven selection when
agents have values of the relative risk aversion coefficient γ different from one. As
is clear from (3.5), this implies that portfolio rules depend on prices. In Fig. 3,
different rules are displayed, both for values of γ close to one (left panel) and far
from it (right panel). The shapes of CRRA portfolio rules are consistent with
the notion of risk aversion. When γ is close to zero, agents are close to being
risk-neutral, and choose to invest all their wealth in the asset with the highest
(subjective) expected return, so that extremal values of α become more likely. On
the contrary, more risk adverse agents tend to split their wealth proportionally to
asset prices in order to achieve a less risky, but smaller, return. In this case the
value of α remains closer to the EMC for a wide price range.

When rules depend on prices, agents’ wealth evolve according to

wi
t+1 =











αi(pt)wi
t

pt
ωt+1 = 1

(1−αi(pt))wi
t

1−pt
ωt+1 = 2

, i = 1, 2 , (5.1)

where pt is a solution of the (now implicit) equation

pt = α1(pt)w
1
t + α2(pt)(1− w1

t ) . (5.2)

Since αi(p) ≷ p for p ≶ πe,i, as can be shown directly from (3.5), the right hand
side of (5.2) is greater than pt when pt < min{π1, π2}, while lower than pt when
pt > max{π1, π2}. Being a continuous function, it has at least an intersection
with the supply curve pt in the interval [min{π1, π2},max{π1, π2}]. Regarding
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uniqueness, given the analysis of market dynamics we shall employ in what follows,
we need only to ensure that the equilibrium price where agent 1 or agent 2 has
all wealth, π1 and π2, respectively, are regular, that is, locally unique. The result
follows easily by imposing either w1

t = 1 or w1
t = 0 in (5.2) and using again

αi(p) ≷ p for p ≶ πe,i. Once an equilibrium price is fixed, the evolution of wealth
ratios still reads

w1
t+1

w2
t+1

=











α1(pt)
α2(pt)

w1
t

w2
t

with probability π ,

1−α1(pt)
1−α2(pt)

w1
t

w2
t

with probability 1− π ,

, (5.3)

but now, due the price dependence of the αs, the value of the ratio w1
T/w

2
T after T

time steps depends on the price history. At each time step we can still compute the
expected log-growth rate of the wealth ratio which can be written as the difference
of the relative entropies

E

[

log
w1

t+1

w2
t+1

− log
w1

t

w2
t

]

= π log
α1(pt)

α2(pt)
+ (1− π) log

1− α1(pt)

1− α2(pt)

= Iπ(α
2(pt))− Iπ(α

1(pt)) .

The difference depends on prevailing prices, and so does the relative distance from
the Kelly rule, as can be seen in the EMC plot. As a result, there may exist
prices at which rule 1 is nearer to the Kelly rule, thus having the lowest relative
entropy and gaining, on average, wealth shares, and prices at which rule 2 is nearer.
Market selection through entropy minimization operates only locally, that is, for
given prices, rather than globally.

Since the relative performance of rules is price dependent, a global stability
analysis similar to the one done in the previous section is not straightforward.
Thus, we follow a different approach: we analyze the occurrence of the asymptotic
states in which a single agent dominates. First, we identify the single survivor
equilibria at which all the wealth is in the hands of one agent and prices are
accordingly set by the agent rule. Second, we check whether market dynamics is
stable for prices close to these equilibria.8 For example, in the two agents market
dynamics illustrated in the left panel of Fig. 4, local stability analysis amounts to

8In other words, we shall first identify all the deterministic fixed points of the random dy-
namical system, and then perform their local asymptotic stability analysis. The local analysis
is made possible by the fact that in single agent markets the equilibrium price is regular, i.e.
locally unique, so that the market dynamics is well defined. Thus market dynamics can be
linearized around the fixed points and agents can be described as if they were using suitably
defined constant rules. As a result, the analysis of asymptotic states can proceed along the lines
of Section 4. For sufficiently smooth investment rules, results from the linearized markets carry
over to the original market, albeit only locally (see Bottazzi and Dindo, 2010, for details).
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Figure 4: EMC plots representing two-agent markets with price dependent rules.
Left panel: π = 1/2, α1(p) = α(p; 0.25, 1), α2(p) = α(p; 0.65, 0.5). The two
possible long-run outcomes of the dynamics are S1, where agent 1 dominates, and
S2, where agent 2 dominates. Both are locally stable. Right panel: π = 1/2,
α1(p) = α(p; 0.25, 2), α2(p) = α(p; 0.65, 1). Both long-run equilibria U1 and U2 are
unstable.

studying the dynamics in the neighborhoods of S1, where w1 = 1 and the price
of the first asset is p = α1, and of S2, where w2 = 1 and prices are set by the
solution of p = α2(p). The local analysis provides sufficient insight to discuss the
asymptotic behavior of prices and wealth.

In the following sections, we use portfolio rules of the types given in (3.5-
3.6) to illustrate the implication of the price dependency for market informational
efficiency. Notice that, no matter the value of γ, all the rules with the same πe

cross the EMC at the same point, that is, p = πe (c.f. rules in Fig 3). As a
result, irrespectively of their preferences, if agents share the same beliefs about
the occurrence of states of Nature, then assets are priced at that level and all
agents have the same unitary return, and constant wealth. Prices represent the
homogeneous beliefs, and preferences do not matter. As we shall see, the dynamics
is more interesting when agents disagree on the value of π.

5.1 Coexistence of stable long-run market equilibria

For the first example depicted in Fig. 4, left panel, we take π = 1/2, πe,1 = 0.25,
γ1 = 1, πe,2 = 0.65, and γ2 = 0.5. There exist two single survivor equilibria: S1,
where only agent 1 survives and the price of the first asset is set at p = πe,1, and
S2, where only agent 2 survives and the price of the first asset is set to p = πe,2.

Computing the distances of portfolio rule α1 and α2 from π at the price corre-
sponding to S1 one finds that |α

2(πe,1)−1/2| > |πe,1−1/2| = 1/4. Then for initial
prices near to πe,1 the rule used by agent 1 has a lower relative entropy compared
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Figure 5: Simulations of the wealth dynamics for the market represented in the
left panel of Fig. 4 with initial condition w1

0 = 1/2 and two different realizations
of ω. Left panel: agent 2 dominates. Right panel: agent 1 dominates.

to the rule used by agent 2 , i.e. Iπ(α
2(pt)) > Iπ(α

1(pt)). The wealth share of
agent 1 will, on average, increase and will eventually converge to one. As a result,
if the market share of the first agent is almost 1, and we imagine forcefully moving
a small fraction of wealth from agent 1 to agent 2, the dynamics of the market will
bring the system back to the situation in which w1 = 1. We have established that
S1 is locally stable.

A symmetric argument holds in S2, where |πe,2 − 1/2| = 3/20 < |πe,1 − 1/2|,
so that agent 2 is closer to the probability line π than agent 1. Then for initial
prices near to πe,2, it is the wealth share of agent 2 that increases, on average, so
that rule α2 will eventually dominate. It follows also that S2 is locally stable. We
have found that the market dynamics has two locally stable fixed points, or two
possible long-run equilibria: there exist market trajectories at which the first agent
dominates and asset prices converge to S1, and trajectories at which the second
agent dominates and asset prices converge to S2.

In Fig. 5, we plot the wealth dynamics9 for two different simulations, that is,
two different sequences ω, and the same initial conditions w1

0 = w2
0 = 1/2. In

the left panel, despite some initial fluctuations, the second agent dominates in the
long-run and the price of the first asset converges to πe,2. In this case, the market
behaves efficiently, as it rewards the strategy based on the most accurate beliefs.
In the right panel, conversely, it is the first agent who gains all the wealth in the
long run. When the value of p is relatively small, due to the lower risk aversion,
agent 2 is more distant than agent 1 from the probability line, so that the market

9When performing simulations, we need to ensure that the market equilibrium is unique for
all possible wealth distribution, and not only when a single agent has all the wealth. For the rules
the wealth dynamics of which is plotted in Fig. 5 the result easily holds because their convex
combination is always non-increasing and thus has a unique interception with the EMC.
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Figure 6: Price and wealth dynamics for the market represented in the right
panel of Fig. 4. Left panel: typical wealth dynamics. Right panel: typical price
dynamics.

selects against the former and the price of the first asset approaches πe,1.
We have shown that, despite the long-run price πe,2 being “closer” to the asset

fundamental value π = 1/2 than the long-run price πe,1, there are cases where
prices converge to the latter. In this example, the market is not informationally
efficient. It is not enough to have the “best” beliefs to dominate as preferences
matter, too. Finally, notice that if the agent with the best beliefs would be at least
as risk adverse as logarithmic preferences imply, or γ1 ≥ 1, then informational
efficiency would be established again. The fact that a particular level of risk
aversion is enough to recover informational efficiency is not a general property
though, as the next example shows.

5.2 Coexistence of unstable long-run market equilibria

Consider two agents with the same beliefs as in the previous example, i.e. πe,1 =
0.25 and πe,2 = 0.65, but with different risk preferences, γ1 = 2 and γ2 = 1. Notice
that agent 1 is still more risk averse than agent 2. The corresponding EMC plot
is depicted in the right panel of Fig. 4. Two single agent equilibria exist: U1,
where agent 1 dominates and prices are fixed at p = πe,1; and U2, where agent 2
dominates and prices are fixed at p = πe,2. Consider the relative distance of α1(p)
and α2 from the probability line π at these two prices. By graphical inspection, it
can be easily seen that rule α2 is closer to π at πe,1, the price set by rule α1, and
rule α1 is closer to π at πe,2, the price set by rule α2. Since the market rewards the
rule with the lowest relative entropy, that is, closest to the π line, agent 1 wealth
share increases, on average, when price, are near to those set by rule α2, that is,
when the latter is the rule with the larger wealth share. Conversely, agent 2 gains
most wealth when agent 1 has the larger wealth share.
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Simulations of a generic wealth and price dynamics for this market10 are pre-
sented in the plots of Fig. 6. At the beginning, prices are close to πe,1, agent 2
is (on average) better-off and takes most wealth, thus driving prices close to πe,2,
where agent 1 is better-off, thus driving prices close to πe,1 and so on and so forth.
Both agents’ wealth keeps fluctuating indefinitely in the range (0, 1). Prices be-
have accordingly and keep fluctuating in the interval (πe,1, πe,2), never converging
to the “best” beliefs. Prices and wealth fluctuations have an endogenous cause and
do not represent any change in market fundamentals, nor in agents’ preferences.
From the observation of Fig. 6 alone, believing that assets markets are able to set
prices according to the best available information, one would wrongly conclude
that the asset dividend process is non-stationary. It is true, however, that the
long-run average price seems close to the payoff payment probability π = 1/2.
A precise characterization of how close would require the analysis of the global
dynamics, which is not performed here. Upon admitting that prices may have
short-run persistent fluctuations, due to agents heterogeneity in preferences and
expectations, despite the lack of market informational efficiency average prices do
seem to deliver a not too incorrect information in this example.

5.3 Some special rules

There exists an important price dependent rule that we have not considered be-
cause it does not fall in the class of CRRA rules: holding the market portfolio.
The market portfolio rule corresponds to αM(p) = p, which coincides with the
EMC line in a EMC plot. This rule does not define an unique market equilibrium,
in the sense that it is consistent with all prices in (0, 1). No matter the realized
states of Nature, it has constant and unitary return, and thus constant wealth, as
can be easily derived from (3.2). Regarding market selection the market portfolio
rule is special because, no matter the rule used by competing agents, by adapting
to prevailing prices it never disappears.

Since α(p; πe, γ) → p as γ → ∞, CRRA myopic maximizing agents approach
the market portfolio rule when the coefficient of relative risk aversion increases to
infinity (see the right panel of Fig. 3). Thus agents with high risk aversion have
higher chances of surviving in the long run. By contrast, agents with low risk
aversion tend to invest all the wealth in the under-priced asset (see the right panel
of Fig. 3). This behavior puts survivability at great risk in the sense that, resulting

10Also in this example, when performing simulations, we need to ensure that the market
equilibrium is unique for all possible wealth distribution and not only for the single survivor
case. The result can be established by looking at the first derivative of the convex combination
of the two rules, which has limit +∞ for p → 0, first decreasing and then increasing, and limit
+∞ for p → 1. It follows that the convex combination of the two rules cannot have more than
one intercept with the EMC.

18



in a large relative entropy for a large price range, exposes the agent at the risk of
disappearing from the market even when the beliefs of the competing agents are
relatively far from the truth.11

A particularly interesting question is to find the best performer, that is, the
portfolio rule that gains all wealth when trading against any other rule. In our
context an answer to this question is not available, as it would require performing
the global market dynamics analysis. However, it can be shown that the (log-
optimal) Kelly rule, i.e. to invest proportionally to the correct probabilities, has
only stable fixed points and destabilizes all other single survivor fixed points. In
this sense, the Kelly rule is a local champion, that is, the best performing rule in
the neighborhoods of fixed points where a single agent survives. When it is present
in the market, prices do converge to the informationally efficient level (π, 1 − π).
Notice, however, that the Kelly rule is not only characterized by the correctness
of its beliefs but also by the precise structure of its preferences, corresponding to
a coefficient of relative risk aversion equal to one. As the previous examples show,
the same beliefs with different preferences may not grant informational efficiency.
In any case, the Kelly rule may not be the unique survivor.12

6 Rule ordering

In the previous section, we learned that the market may select different agents
for different price ranges. In this section, we show the consequences of a price-
dependent selection on the possibility to order rules according to their relative
market performance. Ordering rules would be a desirable property in that it
would allow us to express an absolute judgment about their relative virtue. If
the order relation “doing better than”, meaning “gaining all wealth when trading
with”, could be established, transitivity would imply that, if rule α+ does better
than rule α−, the same rule α+ would also do better than any other rule inferior
to α−. Having an order relation would thus allow for an ex-ante characterization
of the asymptotic state of the market: given an ecology composed of a collection
of different trading rules, irrespectively of their nature or number, it is only the
best rules in the collection that will survive and set prices in the long run.

In markets with constant rules, as those analyzed in Section 4, a natural relation
can be established using the relative entropy Iπ(α). We define rule α+ to be better

11Even more in danger are risk neutral agents, or risk lovers, who, by investing all their wealth
in the asset with the highest expected payoff, would disappear from the market in finite time.

12Referring to the discussion in footnote 7, in the case of price dependent rules, it is log-
optimality that grants local dominance. In the context of price dependent rule and non-Arrow
asset structures, the generalized Kelly rule of Amir, Hens, Evstigneev, and Shenck-Hoppeè, i.e.
investing proportionally to expected payoff, is not log-optimal. Regarding both points see Section
5.1 of Bottazzi and Dindo (2010).
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Figure 7: EMC plot representing a market with π = 1/2 and the three rules
considered in Section 6.

than rule α− when its relative entropy is lower or

α+ ≻ α− if and only if Iπ(α
+) < Iπ(α

−) . (6.1)

It is immediate to see that this relation is anti-reflexive and asymmetric. Since the
relative entropy is a concave function of its argument13, then if Iπ(α

+) < Iπ(α
0)

and Iπ(α
0) < Iπ(α

−), for any λ ∈ [0, 1], it holds

Iπ(λα
+ + (1− λ)α0) ≤ λIπ(α

+) + (1− λ)Iπ(α
0) < Iπ(α

0) < Iπ(α
−) .

In particular, Iπ(α
+) < Iπ(α

−), so that the relation defined in (6.1) is also tran-
sitive and, hence, a (strict) order relation. Among constant rules, it thus makes
sense to ask which rule is the best, irrespectively of the specific rules trading in a
given market. Unfortunately, the possibility to build an order relation is lost when
price dependent rules are taken into account as, shown by the following example.
Fix π = 1/2 and consider the following three CRRA portfolio rules (also plotted in
Fig. 6): rule one, α1(p), has πe,1 = 0.25 and γ1 = 2; rule two, α2(p), has πe,1 = 0.3
and γ1 = 1; and rule three, α3(p), has πe,1 = 0.65 and γ1 = 1.

When only α1(p) and α2(p) are trading, the price p is the unique14 solution of

pt = α1(pt)w
1
t + α2(pt) (1− w1

t ) ,

13It directly follows for the convexity of the log function.
14In all the examples of this section, uniqueness of the market equilibrium price can be estab-

lished by following the same reasoning presented in footnote 10.
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Figure 8: Market with π = 1/2 and the three rules considered in Section 6. Left
panel: wealth dynamics. Right panel: prices dynamics.

which is always between p = πe,1 = 0.25, when agent 1 has all the wealth, and
p = πe,2 = 0.3, when agent 2 has all the wealth. Since, for all realized prices, i.e.
prices between πe,1 and πe,2, rule α2 has a lower relative entropy than rule α1, or
Iπ(α

2(p)) < Iπ(α
3(p)) for all p ∈ [πe,1, πe,2], agent 2 dominates for every initial

condition: the wealth of the first agent converges to zero and prices converge to
πe,2 = 0.3. We can state that α2 ≻ α1 and the market is informationally efficient.

Compare now rule α2 and rule α3. When they are trading, the price p is in
between πe,2, when agent 2 has all the wealth, and πe,3, when agent 3 has all the
wealth. Since for all these prices agent 3 has a lower relative entropy, rule α3

dominates in the long run and prices converge to πe,3 = 0.65. We can then state
that α3 ≻ α1 and, again, the market is informationally efficient.

Transitivity, necessary for ≻ being a (strict) order relation, would now imply
α3 ≻ α1. When only α1 and α3 are trading the price is fixed between πe,1 and
πe,3, depending on the relative wealth size. Now, importantly, relative entropies
Iπ(α

3) and Iπ(α
1) do not have the same ranking for all realized prices, as can

be appreciated by comparing the relative distance from the probability line π in
the plot of Fig. 6. When rule 1 is close to having all wealth and the price of the
first asset is close to πe,1 it is Iπ(α

3) < Iπ(α
1). Otherwise, the opposite ranking

occurs. As a result, local stability analysis says that both fixed points where a
rule dominates are unstable, so that neither rule 1 nor rule 3 can ever be said
to dominate. The proposition α3 ≻ α1 is thus false, and upon introducing the
relation ∼ by saying that two rule are equivalent when none dominates, it holds
that α3 ∼ α1.

By using a counterexample, we have established that, among price-dependent
rules, relative dominance is not transitive and thus it does not define an order
relation. It is also interesting to analyze the market dynamics when all three rules
are trading in the same market. Market clearing prices are now functions of two
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wealth shares, w1 for agent 1 and w2 for agent 2, since w3
t = 1 − w1

t − w2
t . Since

all fixed points are locally unstable, as can be judged by comparing the relative
distances to the Kelly rule π in the EMC plot of Fig. 6, wealth fractions, and
thus prices, keep fluctuating (see also the right panel of Fig. 6). Again, the market
cannot be said informational efficient: despite rule α3 having the best information,
the market fails to set prices according to it.

7 Conclusion and open issues

We have discussed wealth-driven selection in a market for two Arrow securities
using a series of simple examples. When portfolio rules are constant, the rule
with the lowest relative entropy attracts all wealth in the long run, thus driving
prices as close as possible to asset fundamentals. This happens, for instance,
when all agents maximize a CRRA expected utility with unitary relative risk
aversion coefficient. The picture changes when price dependent portfolio rules
are considered, for instance, when the coefficient of relative risk aversion of some
traders is different from one. In this broader case, wealth-driven selection works
only locally, that is, for given prices, and the market may not be able to select the
rule that uses the best information.

In the context of market selection of profit maximizing firms, Nelson andWinter
(2002) argue that postulating the capability of markets to select for the global
optimum (investor in our context, firm in their) might open four possible issues.
Our examples show that the same issues play a role also in asset markets. The
first issue is variety : selection operates exclusively on the existing competing rules,
so that if the optimal rule is not trading in the market, it cannot possibly be
selected. This is obviously the case in the asset markets we consider, no matter
whether rules are price dependent or constant. The second issue is behavioral

continuity : a rule that is successful in period t is not necessarily successful in
period t + 1, when market conditions may have changed. This is precisely what
happens in our example with two locally unstable fixed points, where each rule is
the most successful at the prices determined by the other. If, in a given period
market, prices are close to the beliefs of rule 1, then rule 2 is (on average) the most
successful. The wealth share of the latter does, on average, increase and prices are
brought close to its beliefs so that rule 1 becomes now the most successful. Hence
behavioral continuity does not hold, no rule is selected, and wealth shares and
prices keep fluctuating indefinitely. Notice that this contrasts with the outcome
of a market in which only constant portfolio rules are trading. In that case,
the ranking induced by relative entropy holds for all market conditions, hence
implying behavioral continuity. The third issue is limited path dependence, or
the fact that there can be transient phases in which markets dynamics eliminates
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“good” rules. This is precisely what happens when we have two locally stable fixed
points. Irrespectively of the ordering of long-run outcomes, wealth selection may
drive the market towards either outcomes, depending on initial conditions and/or
specific realizations of states of Nature. As such, there exist cases in which the
best informed agent is driven out of the market in the transient. By the fourth
issue, profit-induced growth, it is meant that, even if a rule is earning wealth, it is
not granted that this wealth is in fact used to grow. This is equivalent to what
happens when modeling traders with heterogeneous propensity to consume. We
did not discuss explicitly the issue in this paper, but since the more is consumed
the less is invested, a trade off between the quality of beliefs and the quantity
of consumption determines the local stability of long-run equilibria; see Bottazzi
and Dindo (2010) for more details. As these four main issues suggest, in general
it is not possible to order strategies according to their market performance and
one cannot be sure of the informational content of prices, as it is not granted that
prices reflect the best available information.

To conclude, the unknown part of the story is probably the largest and is
composed of many interrelated open questions. First, in this paper we have not
dealt with any form of learning, regarding neither the exogenous dividend process,
nor endogenous market prices. Both types of learning have been separately in-
vestigated. In order to have stability, the former should be not too slow and the
latter not too fast (see e.g. Blume and Easley, 2010; Bottazzi and Dindo, 2010,
respectively). Their joint investigation is however still missing. Second, one would
like to consider also rules that depend on wealth. This has both a behavioral
relevance, as the individual wealth level and its variation over time are natural
indicators for the appropriateness of the implemented rule, and a positive appeal,
as it allows the study of market selection for a broader class of risk preferences, e.g.
constant absolute risk averse agents. Third, further work is needed to characterize
the global market dynamics. In more complicated settings than the ones analyzed
here, one cannot rely exclusively on local stability results. Finally, an important
new direction of investigation is the extension of the present analysis to markets
for long-lived assets. Whereas with constant rules the message doesn’t change (see
e.g. Evstigneev et al., 2009), it is not known what happens when more general
portfolio rules are considered.
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