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The international trade network (ITN) has received renewed multidisciplinary interest due to re-
cent advances in network theory. However, it is still unclear whether a network approach conveys
additional, nontrivial information with respect to traditional international-economics analyses that
describe world trade only in terms of local (first-order) properties. In this and in a companion
paper, we employ a recently-proposed randomization method to assess in detail the role that local
properties have in shaping higher-order patterns of the ITN in all its possible representations (bi-
nary/weighted, directed/undirected, aggregated/disaggregated) and across several years. Here we
show that, remarkably, all the properties of all binary projections of the network can be completely
traced back to the degree sequence, which is therefore maximally informative. Our results imply
that explaining the observed degree sequence of the ITN, which has not received particular attention
in economic theory, should instead become one the main focuses of models of trade.

PACS numbers: 89.65.Gh; 89.70.Cf; 89.75.-k; 02.70.Rr

I. INTRODUCTION

The network of import/export trade relationships
among all world countries, known in the literature as the
International Trade Network (ITN) or the World Trade
Web (WTW), has received a renewed multidisciplinary
interest in recent years [1–13], due to impressive advances
in both empirical and theoretical approaches to the study
of complex networks [14–16]. A number of robust pat-
terns in the structure of this network have been empir-
ically observed, both in its binary (when only the pres-
ence of a trade interaction is considered, irrespective of
its intensity) and weighted (when also the magnitude of
trade flows is taken into account) description. These styl-
ized facts include local properties as well as higher-order
patterns. Local properties involve direct (first-order) in-
teractions alone, resulting in simple quantities such as
node degree (the number of trade partners of a country),
node strength (total trade volume of a country), and their
directed-network analogues (i.e., when these statistics are
computed taking into account edge/trade directionality).
Higher-order characteristics are more complicated struc-
tural properties that also involve indirect interactions, i.e.
topological paths connecting a country to the neighbors
of its neighbors, or to countries farther apart. Exam-
ples include degree-degree correlations, average nearest-
neighbor indicators, and clustering coefficients, to name
just a few of them.

In general, local and higher-order topological proper-
ties are not independent of each other. In particular,
even if one assumes that the network is formed as the

result of local constraints alone, with higher-order prop-
erties being only the mere outcome of specifying these
constraints, it turns out that so-called structural corre-
lations are automatically generated. Structural corre-
lations sometimes appear as complicated patterns that
might be confused with genuine correlations involving
higher-order statistics, and interpreted as the presence
of an additional level of topological organization. There-
fore, in any real network it is important to characterize
structural correlations and filter them out in order to as-
sess whether nontrivial effects due to indirect interactions
are indeed present.

In the specific case of the ITN, this problem is partic-
ularly important to assess whether the network formal-
ism is really conveying additional, nontrivial information
with respect to traditional international-economics anal-
yses, which instead explain the empirical properties of
trade in terms of country-specific macroeconomic vari-
ables alone. Indeed, as we discuss in more detail below,
the standard economic approach to the empirics of inter-
national trade [17] has traditionally focused its analyses
on the statistical properties of country-specific indica-
tors like total trade, trade openness (ratio of total trade
to GDP, i.e. Gross Domestic Product), number of trade
partners, etc., that can be easily mapped to what, in the
jargon of network analysis, one denotes as local proper-
ties or first-order node characteristics.

In this and in a companion paper [18], we explicitly
address this problem and exploit a recently proposed an-
alytical method [19] to obtain, for any given topologi-
cal property of interest, the value of the corresponding
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quantity averaged over the family of all randomized vari-
ants of the ITN that preserve the observed local proper-
ties. This allows us to identify empirical deviations from
locally-induced structural correlations. In this first pa-
per, we focus on the ITN as a binary network. We find
that higher-order patterns of all binary (either directed
or undirected) projections of the ITN are completely ex-
plained by local properties alone (the degree sequences).
This result is robust to different levels of commodity ag-
gregation: even if with an increasing scatter, the degree
sequence preserves its complete informativeness as more
disaggregated and sparser commodity-specific networks
are considered.

¿From an international-trade perspective, our results
indicate that binary network descriptions of trade can
be significantly simplified by considering the degree se-
quence(s) only. In other words, in any binary represen-
tation of the ITN, the degree sequence turns out to be
maximally informative, since its knowledge conveys al-
most the entire information about the topology of the
network. In the companion paper [18], we show that the
picture changes completely when considering the ITN as
a weighted network. We find that the ITN is an excel-
lent example of a network whose local topological prop-
erties cannot be deduced from its local weighted proper-
ties. These results highlight an important limitation of
current economic models of trade, that do not aim at ex-
plaining or reproducing the observed degree sequence but
focus more on the structure of weights [20]. The observed
extreme informativeness of the degree sequence leads us
to conclude that such models should be substantially re-
vised in order to explicitly include the degree sequence
of the ITN among the key properties to reproduce.

II. DATA AND METHODS

This Section describes the data we use to construct the
various representations of the network in this and in the
following paper [18], and briefly summarizes the method
we employ to obtain expected properties over randomized
counterparts of a network.

A. The International Trade Network

We use yearly bilateral data on exports and imports
from the United Nations Commodity Trade Database
(UN COMTRADE) [? ] from year 1992 to 2002. We
have chosen this database because, despite its relatively
short time interval (11 years), it contains trade data be-
tween countries disaggregated across commodity cate-
gories. This allows us to perform our analyses both at the
aggregate level (total trade flows) and at the commodity-
specific level, e.g. investigating whether local properties
are sufficient to explain higher-order ones in commodity-
specific networks of trade.

In order to perform a temporal analysis and allow com-
parisons across different years, we restrict ourselves to a
balanced panel of N = 162 countries that are present in
the data throughout the time interval considered. As to
the level of disaggregation, we choose the classification
of trade values into C = 97 possible commodities listed
according to the Harmonized System 1996 (HS1996) [?
]. Accordingly, for a given year t we consider the trade
value ecij(t) corresponding to exports of the particular
commodity c (c = 1, . . . C). Since, for every commodity,
exports from country i to country j are reported twice
(by both the importer and the exporter) and the two fig-
ures do not always match, we follow Ref. [13] and only
employ the flow as reported by the importer. Besides
commodity-specific data, we also compute the total value
e0ij(t) of exports from country i to country j as the sum
over the exports of all C = 97 commodity classes:

e0ij(t) ≡

C
∑

c=1

ecij(t) (1)

The particular aggregation procedure described above,
which coincides with the one performed in Ref. [13], al-
lows us to compare our analysis of the C commodity-
specific networks with a (C + 1)-th aggregate network,
avoiding possible inconsistencies between aggregated and
disaggregated trade data. We stress that the resulting ag-
gregated network data are in general different from those
used in other analyses [3, 4, 12] of the same network.
Nonetheless, as we show below, when we analyze net-
work properties that have also been studied in previous
studies of aggregate trade, we find perfect agreement.
The quantities {ecij(t)} (where c = 0, . . . C) defined

above are the fundamental data that allow us to obtain
different possible representations of the trade network, as
well as the corresponding randomized counterparts (see
below for the units of measure we adopted). When we
regard the ITN as a weighted directed network, we define
the weight of the link from country i to country j in year
t for commodity c as

wc
ij(t) ≡ ⌊ecij(t)⌉ c = 0, . . . C (2)

where ⌊x⌉ ∈ N denotes the nearest integer to the non-
negative real number x. When we adopt a weighted
but undirected (symmetrized) description, we define the
weight of the link between countries i and j in year t for
commodity c as

wc
ij(t) ≡ wc

ji(t) ≡

⌊

ecij(t) + ecji(t)

2

⌉

c = 0, . . . C (3)

Therefore, in both the directed and undirected case,
wc

ij(t) is an integer quantity. Since in both cases we shall
be interested in tracking the temporal evolution of most
quantities, we also define rescaled weights (relative to the
total yearly trade flow) as follows:

w̃c
ij(t) ≡

wc
ij(t)

wc
tot(t)

c = 0, . . . C (4)
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HS Code Commodity Value (USD) Value per link (USD) % of aggregate trade
84 Nuclear reactors, boilers, machinery and

mechanical appliances; parts thereof
5.67× 1011 6.17× 107 11.37%

85 Electric machinery, equipment and parts;
sound equipment; television equipment

5.58× 1011 6.37× 107 11.18%

27 Mineral fuels, mineral oils & products of
their distillation; bitumin substances; min-
eral wax

4.45× 1011 9.91× 107 8.92%

87 Vehicles, (not railway, tramway, rolling
stock); parts and accessories

3.09× 1011 4.76× 107 6.19%

90 Optical, photographic, cinematographic,
measuring, checking, precision, medical or
surgical instruments/apparatus; parts &
accessories

1.78× 1011 2.48× 107 3.58%

39 Plastics and articles thereof. 1.71× 1011 2.33× 107 3.44%
29 Organic chemicals 1.67× 1011 3.29× 107 3.35%
30 Pharmaceutical products 1.4× 1011 2.59× 107 2.81%
72 Iron and steel 1.35× 1011 2.77× 107 2.70%
71 Pearls, precious stones, metals, coins, etc 1.01× 1011 2.41× 107 2.02%
10 Cereals 3.63× 1010 1.28× 107 0.73%
52 Cotton, including yarn and woven fabric

thereof
3.29× 1010 6.96× 106 0.66%

9 Coffee, tea, mate & spices 1.28× 1010 2.56× 106 0.26%
93 Arms and ammunition, parts and acces-

sories thereof
4.31× 109 2.46× 106 0.09%

ALL Aggregate (all 97 commodities) 4.99× 1012 3.54× 108 100.00%

TABLE I: The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the corresponding total trade value
(USD), trade value per link (USD), and share of world aggregate trade. From Ref. [13].

where in the directed case wc
ij(t) is given by Eq. (2)

and wc
tot(t) ≡

∑

i

∑

j 6=i w
c
ij(t) (the double sum runs

over all N(N − 1) ordered pairs of vertices), while
in the undirected case wc

ij(t) is given by Eq. (3) and
wc

tot(t) ≡
∑

i

∑

j<i w
c
ij(t) (the double sum runs over

all the N(N − 1)/2 unordered pairs). In such a way,
trend effects are washed away and we obtain adimen-
sional weights that are automatically deflated, allowing
consistent comparisons across different years and differ-
ent commodities.
In the binary representations of the network, we draw a

link from i to j whenever the corresponding weight wc
ij is

strictly positive. If Θ(x) denotes the step function (equal
to 1 if x > 0 and 0 otherwise), the adjacency matrix of the
binary projection of the network in year t for commodity
c is

acij(t) ≡ Θ[wc
ij(t)] c = 0, . . . C (5)

where wc
ij(t) is given either by Eq. (2) or by Eq. (3),

depending on whether one is interested in a directed or
undirected binary projection of the network respectively.
For each of the C + 1 commodity categories, we

can consider four network representations (binary undi-
rected, binary directed, weighted undirected, weighted
directed). When reporting our results, we will first
describe the aggregated networks (c = 0) and then
the disaggregated (commodity-specific) ones. In par-
ticular, among the 97 commodity classes, we will fo-

cus on the 14 particularly relevant commodities identi-
fied in Ref. [13], which are reported in table I. These
14 commodities include the 10 most traded commodi-
ties (c = 84, 85, 27, 87, 90, 39, 29, 30, 72, 71 according to
the HS1996) in terms of total trade value (following the
ranking in year 2003 [13]), plus 4 classes (c = 10, 52, 9, 93
according to the HS1996) which are less traded but more
relevant in economic terms. Taken together, the 10 most
traded commodities account for 56% of total world trade
in 2003; moreover, they also feature the largest values
of trade value per link (also shown in the table). The
14 commodities considered account together for 57% of
world trade in 2003. As an intermediate level of aggrega-
tion, we shall also consider the networks formed by the
sum of these 14 commodities. The original data {ecij(t)}
are available in current U.S. dollars (USD) for all com-
modities; however, due to the different trade volumes
involved, we use different units of measure for different
levels of aggregation [? ].

B. Controlling for local properties

As we mentioned, our main interest in the present work
is assessing whether higher-order properties of the ITN
can be simply traced back to local properties, which are
the main focus of traditional macroeconomic analyses of
international trade. Such standard country-specific prop-
erties include: total exports, total imports, total trade
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(sum of total exports and total imports), trade openness
(ratio of total trade to GDP), the number of countries
whom a country exports to and imports from, the total
number of trade partners (irrespective of whether they
are importers or exporters, or both). All these quan-
tities can be simply obtained as local sums over direct
interactions (countries one step apart) in a suitable rep-
resentation of the network.
For instance, the number of trade partners of country i

is simply the number of neighbors of node i in the binary
undirected projection, i.e. the degree

ki ≡
∑

j 6=i

aij (6)

In the above equation and in what follows, we drop the
dependence of topological quantities on the particular
year t for simplicity. We also drop the superscript c speci-
fying a particular commodity, as all the formulas hold for
any c. This means that, if the aggregated network of total
trade is considered, then aij and wij represent the aggre-
gate quantities a0ij and w0

ij , where the commodity c = 0
formally represents the sum over all commodities, as in
Eq. (1). Otherwise, if the commodity-specific network
involving only the trade of the particular commodity c
(with c > 0) is considered, then aij and wij represent the
values acij and wc

ij for that commodity.
The number of countries whom a country exports to

and imports from are simply the two directed analogues
(the out-degree kouti and the in-degree kini respectively)
of the above quantity in the binary directed description:

kouti ≡
∑

j 6=i

aij (7)

kini ≡
∑

j 6=i

aji (8)

Similarly, as evident from Eq. (3), country i’s total
trade coincides with twice the sum of weights reaching
node i in the weighted undirected representation, i.e. the
strength

si ≡
∑

j 6=i

wij (9)

Finally, total exports (imports) of country i are simply
the sum of out-going (in-coming) weights in the weighted
directed representation of the ITN. These quantities are
known as the out-strength souti and in-strength sini of node
i:

souti ≡
∑

j 6=i

wij (10)

sini ≡
∑

j 6=i

wji (11)

Another country-specific property which is widely used
as an explanatory variable of trade patterns is the GDP

or the per capita GDP (i.e. the ratio of GDP to popula-
tion). This property is sometimes used to rescale trade
values, as in the case of trade openness which is defined
as a country’s ratio of total trade to GDP. Unlike the
quantities discussed above, the GDP is not a topological
entity. Nonetheless, it is empirically observed to be pos-
itively (and strongly) correlated with the degree [3] and
with node strength [12] (we will comment more on this in
Section III). Therefore, even if this is not the main aim
of the present work, one should be aware that assessing
the role of local topological properties also indirectly im-
plies, to a large extent, assessing the role of the GDP of
countries.

Whether the topological architecture of the various de-
scriptions of the ITN can be understood simply in terms
of the above local properties, or whether there are ad-
ditional organizing principles generating a more compli-
cated structure, is an important open question. Ulti-
mately, this amounts to assess the effects of indirect in-
teractions in the world trade system. Indeed, a wealth
of results about the analysis of international trade have
already been derived in the macroeconomics literature
[17] without making explicit use of the network descrip-
tion, and focusing on the above country-specific quan-
tities alone. Whether more recent analyses of trade,
directly inspired by the network paradigm [1–12], are
indeed conveying additional and nontrivial information
about the structure of international import/export flows,
crucially depends on the answer to the above question.
Some network-inspired studies have already tried to ad-
dress this problem, but with ambiguous results. In some
cases, it was suggested that local properties are enough
to explain higher-order patterns [3, 6, 21], while in others
the opposite conclusion was reached [22]. However, pre-
vious analyses of the ITN focused on heterogeneous rep-
resentations (either binary [2, 3] or weighted [6, 10, 22],
either directed [4, 5, 23] or undirected [2, 3], either aggre-
gated [2, 3, 10] or disaggregated [13]) and using different
datasets, making consistent conclusions impossible.

In this work, we address this problem in more detail
and we separately consider all the four possible levels
of description of the network (binary/weighted and di-
rected/undirected), for both commodity-specific and ag-
gregate trade data. For each of these versions of the
same network, we compare the empirical structural prop-
erties with their randomized counterparts, obtained in
each case by specifying the corresponding local proper-
ties alone, and generating a collection of otherwise max-
imally random graphs as a null model. Moreover, we
perform a temporal analysis and check the robustness of
these results over time. Therefore we obtain, for the first
time in this type of study, a detailed and homogeneous
assessment of the role of local properties across different
representations of the trade network, using various levels
of commodity aggregation, and over several years. For
clarity, we divide our analysis in two parts. Here we con-
sider only the possible binary projections of the ITN. In
the companion paper [18], we study its possible weighted
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representations.

C. The randomization method

Given a real network with N vertices, there are various
ways to generate a family of randomized variants of it.
The most popular one is the local rewiring algorithm pro-
posed by Maslov and Sneppen [24, 25]. In this method,
one starts with the real network and generates a series of
randomized graphs by iterating a fundamental rewiring
step that preserves the desired properties. In the binary
undirected case, where one wants to preserve the degree
of every vertex, the steps are as follows: choose two edges,
say (i, j) and (k, l); rewire these connections by swapping
the end-point vertices and producing two new candidate
edges, say (i, l) and (k, j); if these two new edges are not
already present, accept them and delete the initial ones.
After many iterations, this procedure generates a ran-
domized variant of the original network, and by repeating
this exercise a sufficiently large number of times, many
randomized variants are obtained. By construction, all
these variants have exactly the same degree sequence as
the real-world network, but are otherwise random. In
the directed and/or weighted case, proper extensions of
the rewiring step defined above allow to generate analo-
gous ensembles of randomized networks with fixed local
constraints. This method allows one to check whether
the enforced properties are partially responsible for the
topological organization of the network. For instance,
one can measure the degree correlations, or the cluster-
ing coefficient, across the randomized graphs and com-
pare them with the empirical values measured on the
real network. This method has been applied to various
networks, including the Internet and protein networks
[24, 25]. Different webs have been found to be affected
in very different ways by local constraints, making the
problem interesting and not solvable a priori.
The main drawback of the local rewiring algorithm is

its computational requirements. Since the method is en-
tirely numerical, and analytical expressions for its results
are not available, one needs to explicitly generate several
randomized graphs, measure the properties of interest
on each of them (and store their values), and finally per-
form an average. This average is an approximation for
the actual expectation value over the entire set of al-
lowed graphs. In order to have a good approximation,
one needs to generate a large number M of network vari-
ants. Thus, the time required to analyze the impact of
local constraints on any structural property is M times
the time required to measure that property on the orig-
inal network, plus the time required to perform many
rewiring steps producing each of the M randomized net-
works. The number of rewiring steps required to obtain
a single randomized network is O(L) where L is the num-
ber of links [19, 24, 25], and O(L) = O(N) for sparse net-
works while O(L) = O(N2) for dense networks (the ITN
is a dense network). Thus, if the time required to mea-

sure a given topological property on the original network
is O(Nk), the time required to measure the randomized
value of the same property is O(M · L) + O(M · Nk),
which is O(M ·Nk) as soon as k ≥ 2.
A recently proposed alternative method, which is in-

credibly faster due to its analytical character, is based on
the maximum-likelihood estimation of maximum-entropy
models of graphs [19]. In this method, one first specifies
the desired set of local constraints {Ca}. Second, one
writes down the analytical expression for the probability
P (G) that, subject to the constraints {Ca}, maximizes
the entropy

S ≡ −
∑

G

P (G) lnP (G) (12)

where G denotes a particular graph in the ensemble,
and P (G) is the probability of occurrence of that graph.
This probability defines the ensemble featuring the de-
sired properties, and being maximally random otherwise.
Depending on the particular description adopted, the
graphs G can be either binary or weighted, and either
directed or undirected. Accordingly, the sum in Eq. (12),
and in similar expressions shown later on, runs over all
graphs of the type specified. The formal solution to the
entropy maximization problem can be written in terms of
the so-called Hamiltonian H(G), representing the energy
(or cost) associated to a given graph G. The Hamilto-
nian is defined as a linear combination of the specified
constraints {Ca}:

H(G) ≡
∑

a

θaCa(G) (13)

where {θa} are free parameters, acting as Lagrange multi-
pliers controlling the expected values {〈Ca〉} of the con-
straints across the ensemble. The notation Ca(G) de-
notes the particular value of the quantity Ca when the
latter is measured on the graphG. In terms ofH(G), the
maximum-entropy graph probability P (G) can be shown
to be

P (G) =
e−H(G)

Z
(14)

where the normalizing quantity Z is the partition func-

tion, defined as

Z ≡
∑

G

e−H(G) (15)

Third, one maximizes the likelihood P (G∗) to obtain the
particular graphG

∗, which is the real-world network that
one wants to randomize. This steps fixes the values of
the Lagrange multipliers that finally allow to obtain the
numerical values of the expected topological properties
averaged over the randomized ensemble of graphs. The
particular values of the parameters {θa} that enforce the
local constraints, as observed on the particular real net-
work G

∗, are found by maximizing the log-likelihood

λ ≡ lnP (G∗) = −H(G∗)− lnZ (16)
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to obtain the real network G
∗. It can be shown [21] that

this is equivalent to the requirement that the ensemble
average 〈Ca〉 of each constraint Ca equals the empirical
value measured on the real network:

〈Ca〉 = Ca(G
∗) ∀a (17)

Note that, unless explicitly specified, in what follows we
simplify the notation and simply write Ca instead of
Ca(G

∗) for the empirically observed values of the con-
straints. This is consistent with the notation already
adopted in Sections IIA and IIB. Once the parameter
values are found, they are inserted into the formal ex-
pressions yielding the expected value

〈X〉 ≡
∑

G

X(G)P (G) (18)

of any (higher-order) property of interest X. The quan-
tity 〈X〉 represents the average value of the property X
across the ensemble of random graphs with the same av-
erage (across the ensemble itself) constraints as the real
network. For simplicity, we shall sometimes denote 〈X〉
as a randomized property, and its value as the random-

ized value of X. In the Appendix we provide a detailed
account of the expressions for the randomized properties
appearing in the following analysis.

Technically, while the local rewiring algorithm gen-
erates a microcanonical ensemble of graphs, contain-
ing only those graphs for which the value of each con-
straint Ca is exactly equal to the observed value Ca(G

∗),
the maximum-likelihood method generates an expanded
grandcanonical ensemble where all possible graphs with
N vertices are present, but where the ensemble average of
each constraint Ca is equal to the observed value Ca(G

∗).
One can show that the two methods converge for large
networks [19]. However, the maximum-likelihood one is
remarkably faster. Importantly, enforcing only local con-
straints implies that P (G) factorizes as a simple product
over pairs of vertices. This has the nice consequence that
the expression for 〈X〉 is generally only as complicated
as that for X. In other words, after the preliminary
maximum-likelihood estimation of the parameters {θa}
(which only takes seconds), in this method the time re-
quired to obtain the exact expectation value of an O(Nk)
property across the entire randomized graph ensemble is
the same as that required to measure the same property
on the original real network, i.e. still O(Nk). Therefore,
as compared to the local rewiring algorithm, which re-
quires a timeO(M ·Nk), the maximum-likelihood method
is O(M) times faster, for arbitrarily large M . Using this
method allows us to perform a detailed analysis, covering
all possible representations across several years, which
would otherwise require an impressive amount of time.

III. THE ITN AS A BINARY UNDIRECTED
NETWORK

As we mentioned in Section IIA, in its binary rep-
resentation the ITN is defined as a graph whose edges
report the presence of trade relationships among world
countries, irrespective of the intensity of these relation-
ships. The binary representation of the ITN can be either
undirected or directed, depending on whether one is in-
terested in specifying the orientation of trade flows. In
both cases, the complete information about the topology
of the network is encoded in the adjacency matrix A,
whose entries {aij} are defined as in Eq. (5).
In the simplest case, the presence of at least one of the

two possible trade relationships between any two coun-
tries i and j (either from i to j or from j to i) is rep-
resented as one undirected edge between nodes i and j.
Therefore aij = aji and A is a symmetric matrix. In this
binary undirected description, as shown in Eq. (6), the
local constraints {Ca} are the degrees of all vertices, i.e.
the degree sequence {ki}. Therefore, the randomization
method described in Section IIC works by specifying the
constraints {Ca} ≡ {ki} and allows us to write down the
probability of any graph G in the grandcanonical ensem-
ble, which is uniquely specified by its generic adjacency
matrix A. As summarized in Appendix A, this allows
us to easily obtain the expectation value 〈X〉, formally
defined in Eq. (18), of any property X across the ensem-
ble of binary undirected graphs whose expected degree
sequence is equal to the empirical one. Note that, among
the possible properties, the degree of vertices plays a spe-
cial role, as its expectation value 〈ki〉 is exactly equal to
the empirical value ki, as required by the method. There-
fore the values {ki} are useful control parameters and can
be efficiently used as independent variables in terms of
which other properties X can be visualized.
For the sake of simplicity, in Sections IIIA and III B we

first report the results of this analysis on a single snap-
shot of the commodity-aggregated network (the last year
in our temporal window, i.e. 2002). Then, we discuss
the robustness of our results through time by tracking
them backwards in Section III C. We finally consider the
disaggregated analysis of commodity-specific networks in
Section IIID.

A. Average nearest neighbor degree

We start with the analysis of the aggregated version of
the ITN, representing the trade of all commodities (c = 0
in our notation). In the following formulas, the matrix
A therefore denotes the aggregate matrix A

0, where we
drop the superscript for brevity. As a first quantity, we
consider the average nearest neighbor degree (ANND) of
vertex i, defined as

knni ≡

∑

j 6=i aijkj

ki
=

∑

j 6=i

∑

k 6=j aijajk
∑

j 6=i aij
(19)
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FIG. 1: Average nearest neighbor degree knn
i versus degree

ki in the 2002 snapshot of the real binary undirected ITN
(red points), and corresponding average over the maximum-
entropy ensemble with specified degrees (blue curve).

and measuring the average number of partners of the
neighbors of a given node i. The above quantity in-
volves indirect interactions of length two, as evidenced
from the presence of terms of the type aijajk in the def-
inition. Whether these 2-paths are a simple outcome of
the concatenation of two independent edges can be in-
spected by considering the correlation structure of the
network, and in particular by plotting knni versus ki. The
result is shown in Fig. 1. We observe a decreasing trend,
confirming what already found in previous studies em-
ploying different datasets [2, 4, 12]. This means that
countries trading with highly connected countries have a
few trade partners, whereas countries trading with poorly
connected countries have many trade partners. This cor-
relation profile, known as disassortativity, might signal
an interesting pattern in the trade network. However, if
we compare this trend with the one followed by the corre-
sponding randomized quantity 〈knni 〉 (see Appendix A for
its expression), we find that the two behaviors coincide.
This is an important effect of structural constraints in a
dense network [26]: contrary to what naively expected
[27], even in a network where links are drawn randomly
between vertices with given heterogeneous degrees, the
ANND is not constant. This means that the degree se-
quence constrains the correlation structure, and that it is
impossible to have a flat profile (knni independent of ki)
unless one forces the system to display it by introducing
additional mechanisms (hence additional correlations of
opposite sign).

B. Clustering coefficient

A similar result is found for the behavior of the clus-

tering coefficient ci, representing the fraction of pairs of
neighbors of vertex i which are also neighbors of each

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

k

c,
Xc
\

FIG. 2: Clustering coefficient ci versus degree ki in the 2002
snapshot of the real binary undirected ITN (red points), and
corresponding average over the maximum-entropy ensemble
with specified degrees (blue curve).

other:

ci ≡

∑

j 6=i

∑

k 6=i,j aijajkaki

ki(ki − 1)

=

∑

j 6=i

∑

k 6=i,j aijajkaki
∑

j 6=i

∑

k 6=i,j aijaik
(20)

The clustering coefficient is a measure of the fraction of
potential triangles attached to i that are actually real-
ized. This means that indirect interactions of length
three, corresponding to products of the type aijajkaki
entering Eq. (20), now come into play. Again, we find a
decreasing trend of ci as a function of ki (see Fig. 2). This
means that trade partners of highly connected countries
are poorly interconnected, whereas partners of poorly
connected countries are highly interconnected. However,
if this trend is compared with the one displayed by the
randomized quantity 〈ci〉 (see Appendix A), we again
find a very close agreement. This signals that in the ITN
also the profile of the clustering coefficient is completely
explained by the constraint on the degree sequence, and
does not imply the presence of meaningful indirect inter-
actions on top of a concatenation of direct interactions
alone.

The above results show that the patterns observed in
the binary undirected description of the ITN do not re-
quire, besides the fact that different countries have spe-
cific numbers of trade partners, the presence of higher-
order mechanisms as an additional explanation. On the
other hand, the fact that the degrees alone are enough to
explain higher-order network properties means that the
degree sequence is an important structural pattern in its
own. This highlights the importance of reproducing the
observed degree sequence in models of trade. We will
comment more about this point later on.
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FIG. 3: Temporal evolution of the properties of the nearest
neighbor degree knn

i in the 1992-2002 snapshots of the real
binary undirected ITN and of the corresponding maximum-
entropy ensembles with specified degrees. a) average of knn

i

across all vertices (red: real, blue: randomized). b) standard
deviation of knn

i across all vertices (red: real, blue: random-
ized). c) correlation coefficient between knn

i and ki (red: real,
blue: randomized). d) correlation coefficient between knn

i

and 〈knn
i 〉. The 95% confidence intervals of all quantities are

represented as vertical bars.

C. Evolution of binary undirected properties

We now check the robustness of the previous results
through time. This amounts to perform the same anal-
ysis on each of the 11 years in our time window ranging
from 1992 to 2002. For each of these snapshots, we spec-
ify the degree sequence and generate the maximally ran-
dom ensemble of binary undirected graphs as described in
Section IIC. We then compare each observed propertyX
with the corresponding average 〈X〉 (repeating the pro-
cedure described in Appendix A) over the null model for
that specific year. We systematically find the same re-
sults described above for each and every snapshot. For
visual purposes, rather than replicating the same plots
shown above for all the years considered, we choose a
more compact description of the observed patterns and
portray its temporal evolution in a simple way. As we
now show, this also provides us with a characterization
of various temporal trends displayed by each topological
property, conveying more information than a fixed-year
description of the trade system.

We first consider the average nearest neighbor degree.
For a given year, we focus on the two lists of vertex-
specific values {knni } and {〈knni 〉} for the real and ran-
domized network respectively. We compute the aver-
age (mknn and m〈knn〉) and the associated 95% confi-
dence interval of both lists and plot them together as
in Fig. 3a. We repeat this for all years and obtain a
plot which informs us about the temporal evolution of
the ANND in the real and randomized network sepa-
rately. We find that the average value of the empirical
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FIG. 4: Temporal evolution of the properties of the cluster-
ing coefficient ci in the 1992-2002 snapshots of the real binary
undirected ITN and of the corresponding maximum-entropy
ensembles with specified degrees. a) average of ci across all
vertices (red: real, blue: randomized). b) standard devia-
tion of ci across all vertices (red: real, blue: randomized).
c) correlation coefficient between ci and ki (red: real, blue:
randomized). d) correlation coefficient between ci and 〈ci〉.
The 95% confidence intervals of all quantities are represented
as vertical bars.

ANND has been increasing steadily during the time pe-
riod considered. However, the same is true for its ran-
domized value, which is always consistent with the real
one within the confidence intervals. This means that the
null model completely reproduces the temporal trend of
degree-degree correlations. Similarly, in Fig. 3b we plot
the temporal evolution of the standard deviations sknn

and s〈knn〉 (with associated 95% confidence intervals)
of the two lists of values {knni } and {〈knni 〉}. We find
that the variance of the empirical average nearest neigh-
bor degree has been decreasing in time, but once more
this behavior is completely reproduced by the null model
and therefore fully explained by the evolution of the de-
gree sequence alone. Moreover, in Fig. 3c we show the
Pearson (product-moment) correlation coefficient rknn,k

(with 95% confidence interval) between {knni } and {ki},
and similarly the correlation coefficient r〈knn〉,k between
the randomized quantities {〈knni 〉} and {ki} (recall that
{〈ki〉} = {ki} by construction). This informs us in a
compact way about the evolution of the dependence of
the ANND on the degree, i.e. of the change in the struc-
ture of the scatter plot we showed previously in Fig. 1.
We find that the disassortative character of the scatter
plot results in a correlation coefficient close to −1, which
has remained remarkably stable in time across the inter-
val considered, and always very close to the randomized
value. The complete accordance between the real and
randomized ANND in each and every snapshot is con-
firmed by Fig. 3d, where we show the correlation coef-
ficient rknn,〈knn〉 (with 95% confidence interval) between
the empirical ANND, {knni }, and the randomized one,
{〈knni 〉}. We observe an approximately constant value
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FIG. 5: Average nearest neighbor degree knn
i versus degree

ki in the 2002 snapshots of the commodity-specific (disaggre-
gated) versions of the real binary undirected ITN (red points),
and corresponding average over the maximum-entropy ensem-
ble with specified degrees (blue curve). a) commodity 93; b)
commodity 09; c) commodity 39; d) commodity 90; e) com-
modity 84; f) aggregation of the top 14 commodities (see
Table I for details). From a) to f), the intensity of trade and
level of aggregation increases.

close to 1, signaling perfect correlation between the two
quantities. This exhaustively explains the accordance be-
tween the real and randomized ANND for all vertices,
while the other three panels of Fig. 3 also inform about
various overall temporal trends of the ANND, as we dis-
cussed.

In Fig. 4 we show the same analysis for the values {ci}
and {〈ci〉} of the clustering coefficient. In this case we
observe an almost constant trend of the average cluster-
ing coefficient (Fig. 4a), a decreasing standard deviation
(Fig. 4b), and a stable strong anticorrelation between
clustering and degree (Fig. 4c). Again, we find that the
real and randomized values are always consistent with
each other, so that the evolution of the empirical values
is fully reproduced by the null model. This is confirmed
by Fig. 4d, which shows that the correlation between
{ci} and {〈ci〉} is always very close to 1. As for the
ANND, these results clearly indicate that the real and
randomized values of the clustering coefficient of all ver-
tices are always in perfect agreement, and that the tem-
poral trends displayed by this quantity are completely
explained by the evolution of the degree sequence.
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FIG. 6: Clustering coefficient ci versus degree ki in the 2002
snapshots of the commodity-specific (disaggregated) versions
of the real binary undirected ITN (red points), and corre-
sponding average over the maximum-entropy ensemble with
specified degrees (blue curve). a) commodity 93; b) commod-
ity 09; c) commodity 39; d) commodity 90; e) commodity
84; f) aggregation of the top 14 commodities (see Table I for
details). From a) to f), the intensity of trade and level of
aggregation increases.

D. Commodity-specific binary undirected networks

We complete our analysis of the ITN as a binary undi-
rected network by studying whether the picture changes
when one considers, rather than the network aggregat-
ing the trade of all types of commodities, the individual
networks formed by imports and exports of single com-
modities. To this end, we focus on the disaggregated
data described in Section IIA and we repeat the analysis
reported above, by identifying the matrix A with various
disaggregated matrices Ac (with c > 0).

We find that the results obtained in our aggregated
study also hold for individual commodities. For brevity,
we only report the scatter plots of the average near-
est neighbor degree (Fig. 5) and clustering coefficient
(Fig. 6) for the 2002 snapshots of 6 commodity-specific
networks. The 6 commodities are chosen among the top
14 reported in Table I. In particular, we select the two
least traded commodities in the set (c = 93, 9), two inter-
mediate ones (c = 39, 90), the most traded one (c = 84),
plus the network formed by combining all the top 14
commodities, i.e. an intermediate level of aggregation
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between single commodities and the completely aggre-
gated data (c = 0), which we already considered in the
previous analysis (Figs. 1 and 2). With the addition of
the latter, the results shown span 7 different cases or-
dered by increasing trade intensity and level of commod-
ity aggregation. Similar results hold also for the other
commodities not shown.
If we compare Fig. 5 with Fig. 1, we see that the

trend displayed by ANND in the aggregated network is
preserved, even if with a slightly increasing scatter, as
sparser and less disaggregated commodity classes are con-
sidered. Importantly, the accordance between real and
randomized values is also preserved. The same is true
for the clustering coefficient, cf. Fig. 6 and its compari-
son with Fig. 2. These results indicate that the degree se-
quence maintains its complete informativeness across dif-
ferent levels of commodity resolution, and irrespective of
the corresponding intensity of trade. Thus, remarkably,
the knowledge of the number of trade partners involv-
ing only a specific commodity still allows to reproduce
the properties of the corresponding commodity-specific
network.
As a summary of our binary undirected analysis we

conclude that, in order to explain the evolution of the
ANND and clustering of the ITN, it is unnecessary to
invoke additional mechanisms besides those accounting
for the evolution of the degree sequence alone. Since
the ANND and clustering already probe the effects of in-
direct interactions of length two and three respectively,
and since higher-order correlations involving longer topo-
logical paths are built on these lower-level ones, the
null model we considered here must fully reproduce the
properties of the ITN at all orders. In other words,
we found that in the binary undirected representation
of the ITN the degree sequence is maximally informa-
tive, as its knowledge allows to predict virtually all the
topological properties of the network. The robustness of
this result across several years and different commodity
classes strengthens our previous discussion about the im-
portance of including the degree sequence among the fo-
cuses of theories and models of trade, which are instead
currently oriented mainly at reproducing the weighted
structure, rather than the topology of the ITN.

IV. THE ITN AS A BINARY DIRECTED
NETWORK

We now consider the binary directed description of the
ITN, with an interest in understanding whether the in-
troduction of directionality changes the picture we have
described so far. In the directed binary case, a graph G

is completely specified by its adjacency matrix A which
is in general not symmetric, and whose entries are aij = 1
if a directed link from vertex i to vertex j is there, and
aij = 0 otherwise. The local constraints {Ca} are now
the two sets of out-degrees and in-degrees of all vertices
defined in Eqs.(7) and (8), i.e. the out-degree sequence

{kouti } and the in-degree sequence {kini }. In Appendix B
we show how the randomization method enables in this
case to obtain the expectation value 〈X〉 of a property X
across the maximally random ensemble of binary directed
graphs with in-degree and out-degree sequences equal to
the observed ones. When inspecting the properties of
the ITN and its randomized variants, the useful indepen-
dent variables are now the values {kouti } and {kini } (or
combinations of them), since they are the special quanti-
ties X whose expected value 〈X〉 coincides with the ob-
served one by construction. Again, we first consider the
2002 snapshot of the completely aggregated ITN (Sec-
tions IVA and IVB), then track the temporal evolution
of the results backwards (Section IVC), and finally per-
form a disaggregated analysis in Section IVD.

A. Directed average nearest neighbor degrees

We start with the analysis of the binary directed trade
network aggregated over all commodities (c = 0). There-
fore, in the following formulas, we set A ≡ A

0. The
average nearest neighbor degree of a vertex in a directed
graph can be generalized in four ways from its undirected
analogue. We thus obtain the quantities

k
in/in
i ≡

∑

j 6=i ajik
in
j

kini
=

∑

j 6=i

∑

k 6=j ajiakj
∑

j 6=i aji
(21)

k
in/out
i ≡

∑

j 6=i ajik
out
j

kini
=

∑

j 6=i

∑

k 6=j ajiajk
∑

j 6=i aji
(22)

k
out/in
i ≡

∑

j 6=i aijk
in
j

kouti

=

∑

j 6=i

∑

k 6=j aijakj
∑

j 6=i aij
(23)

k
out/out
i ≡

∑

j 6=i aijk
out
j

kouti

=

∑

j 6=i

∑

k 6=j aijajk
∑

j 6=i aij
(24)

In the above expressions, indirect interactions due to
the concatenation of pairs of edges are taken into ac-
count according to their directionality, as clear from the
presence of products of the type aijakl. A fifth possibil-
ity is an aggregated measure based on the total degree
ktoti ≡ kini + kouti of vertices:

k
tot/tot
i ≡

∑

j 6=i(aij + aji)k
tot
j

ktoti

(25)

The latter is a useful one to start with, as it provides a
simpler analogue to the undirected case we have already

studied. In Fig. 7 we plot k
tot/tot
i as a function of ktoti for

the 2002 snapshot of the binary directed ITN. The trend
shown does not differ substantially from its undirected
counterpart we showed in Fig. 1. In particular, we ob-
tain a similar disassortative character of the correlation
profile. Importantly, we find again a good agreement
between the empirical quantity and its expected value

〈k
tot/tot
i 〉 under the null model (obtained as in Appendix

B).
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FIG. 7: Total average nearest neighbor degree k
tot/tot
i versus

total degree ktot
i in the 2002 snapshot of the real binary di-

rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified out-degrees and
in-degrees (blue curve).

We now perform a more refined analysis and con-
sider the four directed versions of the ANND defined in
Eqs.(21)-(24), as well as their expected values under the
null model (see Appendix B). The result is shown in
Fig. 8. We immediately see that all quantities still dis-
play a disassortative trend, with some differences in the
ranges of observed values. Again, all the four empirical
behaviors are in striking accordance with the null model,
as the randomized curves (obtained as in Appendix B)
show. This means that both the decreasing trends and
the ranges of values displayed by all quantities are well
reproduced by a collection of random graphs with the
same in-degrees and out-degrees as the real network.
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FIG. 8: Directed average nearest neighbor degrees versus
vertex degrees in the 2002 snapshot of the real binary di-
rected ITN (red points), and corresponding averages over the
maximum-entropy ensemble with specified out-degrees and

in-degrees (blue curves). a) k
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FIG. 9: Total clustering coefficient ctoti versus total degree
ktot
i in the 2002 snapshot of the real binary directed ITN

(red points), and corresponding average over the maximum-
entropy ensemble with specified out-degrees and in-degrees
(blue curve).

B. Directed clustering coefficients

We now consider the directed counterparts of the clus-
tering coefficient defined in Eq. (20). Again, there are
four possible generalizations depending on whether the
directed triangles involved are of the inward, outward,
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cyclic or middleman type [28]:

cini ≡

∑

j 6=i

∑

k 6=i,j akiajiajk

kini (kini − 1)
(26)

couti ≡

∑

j 6=i

∑

k 6=i,j aikajkaij

kouti (kouti − 1)
(27)

ccyci ≡

∑

j 6=i

∑

k 6=i,j aijajkaki

kini kouti − k↔i
(28)

cmid
i ≡

∑

j 6=i

∑

k 6=i,j aikajiajk

kini kouti − k↔i
(29)

where k↔i ≡
∑

j 6=i aijaji is the reciprocated degree of ver-
tex i, defined as the number of bidirectional links reach-
ing i [23, 28]. This quantity represents the number of
trade partners, acting simultaneously as importers and
exporters, of country i. The directed clustering coeffi-
cients are determined by indirect interactions of length 3
according to their directionality, appearing as products
of the type aijaklamn in the above formulas. At the same
time, since they always focus on three vertices only, they
capture the local occurrence of particular network motifs

[29] of order 3. A fifth aggregated measure, based on all
possible directions, is

ctoti ≡

∑

j 6=i

∑

k 6=i,j(aij + aji)(ajk + akj)(aki + aik)

2
[

ktoti (ktoti − 1)− 2k↔i
]

(30)

As for k
tot/tot
i , the latter definition is a good starting

point for a comparison with the undirected case. In Fig. 9
we show ctoti and 〈ctoti 〉 (see Appendix B) as a function
ktoti for our usual snapshot. We see no fundamental dif-
ference with respect to Fig. 2. Again, the randomized
quantity does not deviate significantly from the empiri-
cal one.
We now turn to the four directed clustering coefficients

defined in Eqs.(26)-(29). We show these quantities in
Fig. 10 as functions of different combinations of kini and
kouti , depending on the particular definition. As for the
directed ANND, we observe some variability in the range
of observed clustering values. However, all the quantities
are again in accordance with the expected ones under the
null model (see Appendix B).

C. Evolution of binary directed properties

We now track the temporal evolution of the above re-
sults by performing, for each year in our time window,
an analysis similar to that reported in sec.III C for the
undirected case.
We start by showing the evolution of the total aver-

age nearest neighbor degree k
tot/tot
i in the four panels of

Fig. 11, where we plot the same properties considered
previously for the undirected ANND in Fig. 3. We find
that the temporal evolution of the average (Fig. 11a) and

standard deviation (Fig. 11b) of k
tot/tot
i is essentially the

same as that of the undirected knni , apart from differences
in the range of values. Similarly, the correlation coeffi-

cients between k
tot/tot
i and ktoti (Fig. 11c), 〈k

tot/tot
i 〉 and

〈ktoti 〉 = ktoti (Fig. 11c), k
tot/tot
i and 〈k

tot/tot
i 〉 (Fig. 11d)

mimic their undirected counterparts, confirming that the

perfect accordance between k
tot/tot
i and 〈k

tot/tot
i 〉 is stable

over time, and that the disassortative trend of k
tot/tot
i as

a function of ktoti (Fig. 7) is always completely explained
by the null model.

We now consider the four directed variants k
in/in
i ,

k
in/out
i , k

out/in
i , k

out/out
i . For brevity, for these quan-

tities we only show the evolution of the average values,
which are reported in Fig. 12. We find that the overall

behavior previously reported for the average of k
tot/tot
i

(Fig. 11a) is not reflected in the individual trends of
the four directed versions of the ANND. In particular,

the averages of k
in/in
i (Fig. 12a), k

in/out
i (Fig. 12b) and

k
out/out
i (Fig. 12d) increase over a downward-shifted but

wider range of values than that of k
tot/tot
i , whereas the

average of k
out/in
i (Fig. 12c) is almost constant in time.

The moderately increasing average of k
tot/tot
i is therefore

the overall result of a combination of different trends
followed by the underlying directed quantities, some of
these trends being strongly increasing and some being
almost constant. Therefore we find the important result
that there is a substantial loss of information in passing
from the inherently directed quantities to the undirected
or symmetrized ones. Still, when we compare the empiri-
cal trends of the directed quantities with the randomized
ones, we find an almost perfect agreement. This implies
that even the finer structure of directed correlation pro-
files, as well as their evolution, is reproduced in great
detail by controlling for the local topological properties
alone.

The same analysis is shown for the total clustering co-
efficient ctoti in Fig. 13, and for the four directed vari-
ants cini , couti , ccyci , cmid

i in Fig. 14. Again, we find
that the four temporal trends involving the overall quan-
tity ctoti (Fig. 13) replicate what we have found for its
undirected counterpart ci (shown previously in Fig. 4).
When we consider the four inherently directed quanti-
ties (Fig. 14), we find that the averages of cini (Fig. 14a)
and ccyci (Fig. 14c) display an increasing trend, whereas
the average of cmid

i (Fig. 14d) is constant and that of
couti (Fig. 14b) is even decreasing. When aggregated,
these different trends give rise to the constant behavior of
the average ctoti , which is therefore not representative of
the four underlying directed quantities. This also means
that, similarly to what we found for the ANND, there
is a substantial loss of information in passing from the
directed to the undirected description of the binary ITN.
However, all the fine-level differences among the directed
clustering patterns are still completely reproduced by the
null model.
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FIG. 11: Temporal evolution of the properties of the total av-

erage nearest neighbor degree k
tot/tot
i in the 1992-2002 snap-

shots of the real binary directed ITN and of the corresponding
maximum-entropy ensembles with specified out-degrees and

in-degrees. a) average of k
tot/tot
i across all vertices (red: real,

blue: randomized). b) standard deviation of k
tot/tot
i across

all vertices (red: real, blue: randomized). c) correlation coef-

ficient between k
tot/tot
i and ktot

i (red: real, blue: randomized).

d) correlation coefficient between k
tot/tot
i and 〈k

tot/tot
i 〉. The

95% confidence intervals of all quantities are represented as
vertical bars.

D. Commodity-specific binary directed networks

We now study the binary directed ITN when disag-
gregated (commodity-specific) representations are con-
sidered. We repeat the analysis described above by set-
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FIG. 12: Averages and their 95% confidence intervals (across
all vertices) of the directed average nearest neighbor degrees
in the 1992-2002 snapshots of the real binary directed ITN
(red), and corresponding averages over the maximum-entropy
ensemble with specified out-degrees and in-degrees (blue). a)

average of k
in/in
i ; b) average of k

in/out
i ; c) average of k

out/in
i ;

d) average of k
out/out
i .
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FIG. 13: Temporal evolution of the properties of the total
clustering coefficient ctoti in the 1992-2002 snapshots of the
real binary directed ITN and of the corresponding maximum-
entropy ensembles with specified out-degrees and in-degrees.
a) average of ctoti across all vertices (red: real, blue: random-
ized). b) standard deviation of ctoti across all vertices (red:
real, blue: randomized). c) correlation coefficient between
ctoti and ktot

i (red: real, blue: randomized). d) correlation co-
efficient between ctoti and 〈ctoti 〉. The 95% confidence intervals
of all quantities are represented as vertical bars.

ting A ≡ A
c with c > 0. For brevity, we report our

analysis of the 6 commodities described in Section IIID
and selected from the top 14 categories listed in table I
(again, we found similar results for all commodities). To-
gether with the aggregated binary directed ITN already
described, these commodity classes form a set of 7 differ-
ent cases ordered by increasing trade intensity and level
of commodity aggregation.
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FIG. 14: Averages and their 95% confidence intervals (across
all vertices) of the directed clustering coefficients in the 1992-
2002 snapshots of the real binary directed ITN (red), and
corresponding averages over the maximum-entropy ensemble
with specified out-degrees and in-degrees (blue). a) cini ; b)
couti ; c) c

cyc
i ; d) cmid

i .
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FIG. 15: Total average nearest neighbor degree k
tot/tot
i

versus total degree ktot
i in the 2002 snapshots of the

commodity-specific (disaggregated) versions of the real binary
directed ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified out-degrees and
in-degrees (blue curve). a) commodity 93; b) commodity 09;
c) commodity 39; d) commodity 90; e) commodity 84; f) ag-
gregation of the top 14 commodities (see Table I for details).
From a) to f), the intensity of trade and level of aggregation
increases.

In Figs. 15 and 16 we show the behavior of the total av-
erage nearest neighbor degree and total clustering coeffi-
cient for the 2002 snapshots of the 6 selected commodity-
specific networks. When compared with Figs. 7 and 9,
the plots confirm what we have found in Section IIID
for the binary undirected case. In particular, the be-
havior displayed by the ANND and clustering in the
commodity-specific networks becomes less and less noisy
as more intensely traded commodities, and higher levels
of aggregation, are considered. Accordingly, the agree-
ment between real and randomized networks increases,
but the accordance is already remarkable in commodity-
specific networks, even the sparsest and least aggregated
ones. These results confirm that, irrespective of the level
of commodity resolution and trade volume, the directed
degree sequences completely characterize the topology of
the binary directed representations of the ITN.
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FIG. 16: Total clustering coefficient ctoti versus total de-
gree ktot

i in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the real binary directed ITN
(red points), and corresponding average over the maximum-
entropy ensemble with specified our-degrees and in-degrees
(blue curve). a) commodity 93; b) commodity 09; c) com-
modity 39; d) commodity 90; e) commodity 84; f) aggre-
gation of the top 14 commodities (see Table I for details).
From a) to f), the intensity of trade and level of aggregation
increases.

V. CONCLUSIONS

All the above results clearly imply that, in the undi-
rected as well as the directed case, for all the years con-
sidered, and across different commodity classes, the dis-
assortativity and clustering profiles observed in the real
binary ITN arise as natural outcomes rather than gen-
uine correlations, once the local topological properties
are fixed to their observed values. Therefore we can con-
clude that the higher-order patterns observed in all the
binary representations of the ITN, as well as their tem-
poral evolution, are completely explained by local con-
straints alone. This means that the degree sequence(s)
of the ITN is maximally informative, since its knowl-
edge systematically conveys a full picture of the binary
topology of the network. These results have important
consequences for economic models of trade. In particu-
lar, they suggest that the ITN topology should become
one of the main focuses of international-trade theories.
While most of the literature concerned with modeling
international trade has focused on the problem of repro-
ducing the magnitude of nonzero trade volumes (the most
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important example being gravity models [30]), much less
emphasis has been put on correctly replicating the binary
topology of the ITN. However, our results clearly show
that the purely topological structural properties (and in
particular the degree sequence) of the ITN carry a signif-
icant amount of information. A first step in reproducing
the ITN topology is the model in Ref. [3], where the prob-
ability pij of a trade relationship between two countries i
and j was modeled as a function of the GDP values of the
countries themselves, and all the topological properties of
the network were successfully replicated. Interestingly,
the form of that function coincides with the connection
probability of the null model considered here, shown in
Appendix A in Eq. (A3), where the role of the Lagrange
multiplier xi associated with ki is played by the GDP
of country i. Indeed, an approximately monotonic rela-
tionship between GDP and degree has been observed [3],
providing a connection between these two results. From
another perspective, the above remark also means that
the accordance between the real ITN as a binary undi-
rected network and its randomized counterpart is repli-
cated under an alternative null model, that controls for
the empirical values of the GDP rather than for the de-
gree sequence. The importance of reproducing the binary
topology of trade is reinforced by the analysis of the ITN
as a weighted network with local constraints, as we show
in the following paper [18].
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APPENDIX A: BINARY UNDIRECTED
PROPERTIES

In the binary undirected case, each graph G is com-
pletely specified by its (symmetric) Boolean adjacency
matrix A. The randomization method [19] described in
Section IIC proceeds by specifying the degree sequence
as the constraint: {Ca} = {ki}. The Hamiltonian there-
fore reads

H(A) =
∑

i

θiki(A) =
∑

i

∑

j<i

(θi + θj)aij (A1)

and one can show [31] that this allows to write the graph
probability as

P (A) =
∏

i

∏

j<i

p
aij

ij (1− pij)
1−aij (A2)

where

pij =
xixj

1 + xixj
(A3)

(with xi ≡ e−θi) is the probability that a link exists be-
tween vertices i and j in the maximum-entropy ensem-
ble of binary undirected graphs, subject to specifying a
given degree sequence as the constraint. If the latter
is chosen to be the empirical degree sequence {ki(A

∗)}
of the particular real network A

∗, then Eq. (A3) yields
the exact value of the connection probability in the en-
semble of randomized networks with the same average
degree sequence as the empirical one, provided that the
parameters {xi} are set to the values that maximize the
likelihood P (A∗) [19]. These values are the solution of
the following set of N coupled nonlinear equations [21]:

〈ki〉 =
∑

j 6=i

xixj

1 + xixj
= ki(A

∗) ∀i (A4)

Once the values {xi} are found, they are inserted into
Eq. (A3) which allows to easily compute the expecta-
tion value 〈X〉 of any topological property X analyti-
cally, without generating the randomized networks ex-
plicitly [19]. Equation (A4) shows that, by construc-
tion, the degrees of all vertices are special local quantities
whose expected and empirical values are exactly equal:
〈ki〉 = ki. The expectation values of the higher-order
topological properties considered in the main text can
be obtained as in Table II. The expressions are derived
exploiting the fact that 〈aij〉 = pij , and that different
pairs of vertices are statistically independent, which im-
plies 〈aijakl〉 = pijpkl if (i − j) and (k − l) are distinct
pairs of vertices, whereas 〈aijakl〉 = 〈a2ij〉 = 〈aij〉 = pij
if (i − j) and (k − l) are the same pair of vertices.
Also, the expected value of the ratio of two quantities
is approximated with the ratio of the expected values:
〈n/d〉 ≈ 〈n〉/〈d〉.

APPENDIX B: BINARY DIRECTED
PROPERTIES

In the binary directed case, the above results can be
generalized as follows. Each graph G is completely spec-
ified by its Boolean adjacency matrix A, which now is in
general not symmetric. The constraints specified in the
randomization method [19] (see Section IIC) are now
the joint in-degree and out-degree sequence: {Ca} =
{kini , kouti }. The Hamiltonian takes the form

H(A) =
∑

i

[

θini kini (A) + θouti kouti (A)
]

=
∑

i

∑

j 6=i

(θini + θoutj )aij (B1)

The above choice leads to the graph probability [19]

P (A) =
∏

i

∏

j 6=i

p
aij

ij (1− pij)
1−aij (B2)

where

pij =
xiyj

1 + xiyj
(B3)



16

Empirical undirected properties Expected undirected properties
aij 〈aij〉 = pij =

xixj

1+xixj

ki =
∑

j 6=i aij 〈ki〉 =
∑

j 6=i pij

knn
i =

∑
j 6=i aijkj

ki
〈knn

i 〉 =
∑

j 6=i pijkj

〈ki〉

ci =
∑

j 6=i

∑
k 6=i,j aijajkaki∑

j 6=i

∑
k 6=i,j aijaik

〈ci〉 =
∑

j 6=i

∑
k 6=i,j pijpjkpki∑

j 6=i

∑
k 6=i,j pijpik

Empirical directed properties Expected directed properties
aij 〈aij〉 = pij =

xiyj
1+xiyj

kin
i =

∑

j 6=i aji 〈kin
i 〉 =

∑

j 6=i pji

kout
i =

∑

j 6=i aij 〈kout
i 〉 =

∑

j 6=i pij

ktot
i = kin

i + kout
i 〈ktot

i 〉 = 〈kin
i 〉+ 〈kout

i 〉 = ktot
i

k↔
i =

∑

j 6=i aijaji 〈k↔
i 〉 =

∑

j 6=i pijpji

k
in/in
i =

∑
j 6=i ajik

in
j

kin
i

〈k
in/in
i 〉 =

∑
j 6=i pjik

in
j

〈kin
i

〉

k
in/out
i =

∑
j 6=i ajik

out
j

kin
i

〈k
in/out
i 〉 =

∑
j 6=i pjik

out
j

〈kin
i

〉

k
out/in
i =

∑
j 6=i aijk

in
j

kout
i

〈k
out/in
i 〉 =

∑
j 6=i pijk

in
j

〈kout
i

〉

k
out/out
i =

∑
j 6=i aijk

out
j

kout
i

〈k
out/out
i 〉 =

∑
j 6=i pijk

out
j

〈kout
i

〉

k
tot/tot
i =

∑
j 6=i(aij+aji)k

tot
j

ktot
i

〈k
tot/tot
i 〉 =

∑
j 6=i(pij+pji)k

tot
j

〈ktot
i

〉

cini =
∑

j 6=i

∑
k 6=i,j ajkajiaki

kin
i

(kin
i

−1)
〈cini 〉 =

∑
j 6=i

∑
k 6=i,j pjkpjipki∑

j 6=i

∑
k 6=i,j pjipki

couti =
∑

j 6=i

∑
k 6=i,j aikaijajk

kout
i

(kout
i

−1)
〈couti 〉 =

∑
j 6=i

∑
k 6=i,j pikpijpjk∑

j 6=i

∑
k 6=i,j pijpik

c
cyc
i =

∑
j 6=i

∑
k 6=i,j aijajkaki

kin
i

kout
i

−k↔
i

〈ccyci 〉 =
∑

j 6=i

∑
k 6=i,j pijpjkpki

〈kin
i

〉〈kout
i

〉−
∑

j 6=i pijpji

cmid
i =

∑
j 6=i

∑
k 6=i,j aikajkaji

kin
i

kout
i

−k↔
i

〈cmid
i 〉 =

∑
j 6=i

∑
k 6=i,j pikpjkpji

kin
i

kout
i

−
∑

j 6=i pijpji

ctoti =
∑

j 6=i

∑
k 6=i,j(aij+aji)(ajk+akj)(aki+aik)

2
[

ktot
i

(ktot
i

−1)−2k↔
i

] 〈ctoti 〉 =
∑

j 6=i

∑
k 6=i,j(pij+pji)(pjk+pkj)(pki+pik)

2
[∑

j 6=i

∑
k 6=i,j(pjipki+pijpik)+2(kin

i
kout
i

)−2
∑

j 6=i pijpji

]

TABLE II: Expressions for the empirical and expected properties in the binary (undirected and directed) representations of
the network.

(with xi ≡ e−θout
i and yi ≡ e−θin

i ) is the probability that
a link exists from vertex i to vertex j in the maximum-
entropy ensemble of binary directed graphs with speci-
fied in- and out-degree sequences. If the empirical de-
gree sequences {kini (A∗)} and {kouti (A∗)} of a particular
real directed network A

∗ are chosen as constraints, then
Eq. (B3) yields the exact value of the connection proba-
bility in the ensemble of randomized directed graphs with
the same average degree sequences as the empirical ones,
provided that the parameters {xi} and {yi} are set to the
values that maximize the likelihood P (A∗) [19]. These
values are the solution of the following set of 2N coupled
nonlinear equations [21]:

〈kouti 〉 =
∑

j 6=i

xiyj
1 + xiyj

= kouti (A∗) ∀i (B4)

〈kini 〉 =
∑

j 6=i

xjyi
1 + xjyi

= kini (A∗) ∀i (B5)

After the values {xi} and {yi} are found and plugged
into Eq. (B3), the expectation value 〈X〉 of any topolog-
ical property X can be calculated analytically, avoiding
the numerical generation of the random ensemble [19].
Now, by construction, the in-degrees and out-degrees of
all vertices are special local quantities whose expected
and empirical values are exactly equal: 〈kini 〉 = kini and
〈kouti 〉 = kouti as shown in Eq. (B5). The higher-order
topological properties considered in the main text have
the expectation values shown in Table II, obtained using
the same prescription as in the undirected case plus the
additional care that now (i− j) and (j − i) are different
(and statistically independent) directed pairs of vertices.
Therefore 〈aijaji〉 = pijpji.
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