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Abstract

This paper presents a critical overview of somesmeattempts at building formal
models of organizations as information-processimd @oblem-solving entities.

We distinguish between two classes of models acogrtb two distinct objects of
analysis. The first class includes models mainigrasising information processing and
learning; the second class includes models focugpan the relationship between the
division of cognitive labor and search processoima problem-solving space.

The results begin to highlight important compamtproperties regarding the impact on
problem-solving efficiency and learning of differédotms of hierarchical governance,
the dangers of lock-in associated with specifierigrof adaptive learning, the relative
role of “online” vs. “offline” learning, the impacof the “cognitive maps” which
organizations embody, the possible trade-offs betweccuracy and speed of
convergence associated with different “decompasiiohemes”, the (ambiguous) role
of organizational memory in changing environments.

We argue that these are important formal tools tdevathe development of a
comparative institutional analysis focusing on th&inct properties of different forms
of organization and accumulation of knowledge.

Keywords: Information processing, Problem-solving, Organmaai structure.
JEL classification: D23, D83, L22



1. Introduction®

This work is meant to offer a critical overview tife achievements and challenges
ahead facing explicit formalizations of organizatoas information-processing and
problem-solving entities.

The importance of the information-processing areangnts is well acknowledged
within both agencyand capability-based theories of the firm, even if only the latte
focuses on the problem-solvifigatures of organizations.

Firms after all “do things” — whether material aca or more “immaterial” as a
software program or an airline reservation systerry to improve over time what they
do and quite often also try to innovate and finavrthings . “Problem-solving” is a
synthetic notion covering both the current operatiohan organization and its search
for novel ones.

In this respect, note that most formal represemtatiof organizations tend to offer
highly blackboxedaccounts of such activities. In that, agency modee an extreme
case to the point where the whole activity of infation processing is compressed in
some function maximization conditional on the apiate processing of the available
information while “problem solving”, in the aboverse, is almost entirely neglected.
On the contrary, here we shall survey those endsavwhich try to account for
organizational information processing and probleiwviag in terms of explicit
sequences of activities and procedures nestedsp#oific organizational arrangements
prescribing "who send which signals to whom" anchéwdoes what and in which
sequence".

The appreciative theories upon which such modeldepresent a small — but not
negligible and growing — minority of the economicofession who place their
“primitives” of the nature of economic organizatsom their problem-solving features,
in turn nested in ubiquitous forms of human “bouhdationality”, grossly imperfect

processes of learning and diverse mechanisms oélsdistribution of “cognitive

! The work draws upon other works of the authors, in particular: Cohen a# al. (1996), Dosi, Nelson and
Winter (2000), Marengo and Dosi (2005), which the reader is referred to for further details.
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labor”. The roots of this approach can be founthm works of Herbert Simon, James
March, Alfred Chandler and Richard Nelson and Sjdnénter.

The problem-solving activities of the firm can benceived as combinations of
physical and cognitive acts, within a proceduradirg to the achievement of a specific
outcome. Its internal organization determines tis&ribution of the informational inputs
across specific task units and, as such, the divief the cognitive labor. The general
idea is that firms possess the specific problenaisgl competencies associated with
their own operational procedures and routinesum tmbedded into the patterns of
intra-organizational division of labor and assigmiseof decision entitlements.

An illustrious antecedent of this view dates baickleed, to Adam Smith’s “Pin
Factory” example imheWealth of Nations:

“One man draws out the wire, another straightaithird cuts it, a
fourth points it, a fifth grinds it at the top foeceiving the head; to make
the head requires two or three distinct operatitmgut it on, is a peculiar
business, to whiten the pins is another; it is eadrade by itself to put
them into the paper; and the important businessaking a pin is, in this
manner, divided into about eighteen distinct openat which, in some
manufactories, are all performed by distinct hartdeugh in others the
same man will sometimes perform two or three ofrttigSmith, 1776)

How does one formalize these basic intuitions?

It is fruitful to distinguish between two (complemary) classes of models according
to two distinct objects of analysis. The first daacludes models mainly addressing
information processing and learning. Here the focsison the relation between
organizational performance, learning patterns dred structure of information flows.
Agents are adaptive learners who adjust their métion processing capability (i.e.
their knowledge of the environment) through locelltand-error.

The second class includes models focusing uponrélaionship between the
division of cognitive labor and search process ome problem-solving space,
addressing more directly the notion of organizatias repositories of problem-solving

2 See Chandler (1977), Cyert and March (1963), March and Simon (1993), Nelson (1991, 2008), Nelson and
Winter (1982), Simon (1962) and (1981).
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knowledge. Here the focus is on the problem-solyragedures which the organization
embodies. Indeed, managing an organization, degjgmd producing cars or software
packages, discovering a new drug, etc. can beenaeeomplicated problems whose
“solutions” are made of a large number of cognitarel physical acts. These kinds of
activities imply the coordination of large combioia&l spaces of components.

On the output side, components which make up afaertcan take a number of
alternative states: so, for example, in the caghefproduction of a car, one combines
different characteristics of the engine, alternatlesigns, different materials, etc. At the
same time, innovative search may be straightforlyarépresented in form of
combination of multiple “cognitive acts” eventuaihelding the solution of the problem
at hand, e.g. the discovery of a new molecule i@ required characteristics, a
reasonable and coherent software package, etc.thidten both examples the existence
of strong interdependencies among the componenthieh often are only partially
understood by all agents involved - implies that é¢ffect on the system’s performance
of a change in the state of a single componentratpen the values assumed by the
other ones. An implication is also that in this kinf problems it is impossible to
optimize the system by optimizing each single congpbn

By applying this view to organizational analysiseowcan conceive economic
organizations as bundles of routines, proceduresesr characterized by strong
interrelations which often are opaque to organireti members.

Notice, first, the partial “opagueness” of the magp between actions and outcomes
Is quite in tune with “garbage can” interpretatminorganizational dynamics (Cohen et
al. 1972).

Second, “interrelatedness” also lies behind pleofy evidence regarding the
widespread difficulties inreplication and transfers of incumbent organizational
arrangements (Winter and Szulanski, 1998, 2002d&aand Kogut, 1995).

Third, an obvious implication of such relativelyamue interrelatedness is also that
the introduction of a new routine which has progeperior in another situation might
have negative effects on the performance of therorgtion if other interrelated
components are not appropriately co-adapted (Marang Dosi, 2005; Marenga al.,
2000).



2. Information processing and structural learning

Let us start by considering those (still few) madehereby information-processing and
problem-solving activities are represented by efesnof condition-action (that is,
“if...then...”) rules.

Marengo (1992) and Marengo (1996) present a modethnfocuses upon the
modification of such information processing capéibd of individuals or subunits
within the organization, i.e. a process of "struatutearning. Agents are imperfect
adaptive learners, as they adjust their informagioytessing capabilities through local
trial-and-error. This adaptive learning is (at tepartly) driven by the information
coming from the environment and/or from other mersloé the organization.

Let

S={s, s §}
be the set of thil possible states of nature and
A={a,a,..,a}

the set of th&k possible actions the decision-maker can underféke. payoff to the
agent is given by a function:

/7. AXS R
where the agent's payoff to actianwhen the state of the worlgl occurs will be
indicated byr,.

The action the agent chooses depends obviousliieotevel of its knowledge about
the state of the world. The agent's state of kndgde(or information processing
capabilities) can be represented by a collectiosubketd(s) /7 SwhereP(s) is the set
of states of the world which the agent considerpassible (or cannot tell apart) when
the real state is.

The basic component of this learning system ismastioned, a condition-action
rule, where the execution of a certain action isdttional upon the agent's perception
that the present state of the world falls in onethef categories it has defined in its
mental model. The condition part is a categoryt thaa subset of the states of the



world, and is activated when the last detectde of the world falls in such a subset.
Practically, the condition is a string bfsymbols (as many as the states of the world)
over the alphabet {0,1)Jand it is satisfied whenever the last state of wwld
corresponds to a position where a “1” appearsinAdill, the condition:
c.C,...q, with ¢0{0,3

Is satisfied when, i is the last observed state of the world, we lawel. Thus, a set
of conditions defines a subset of the power se$.at is important to notice that each
condition defines one subjective state (or catégofythe world,as perceived by the
agent and defines its relationship with the objectitei€) states of the world. This
relationship remains anyway unknown to the decisi@ker, who is aware only of its
subjective states

The action part is instead a string of lengtthe number of the agent's possible

actions) over the same alphabet and with the faligwtraightforward interpretation:

aa,...a with ad{0,}
has one and only one position which equals &1, meaning that the actiom™is
chosen, and “0's” everywhere else.
The decision maker can be therefore represented $8t of such condition-action

rules:

where:
R:G,C..¢ = aa..a with ¢ ad{0}.

Each rule is assigned a “strength” and a “spetyficneasure.

Strength basically measures the past usefulnestheofrule, that is the rule's
cumulated payoff. Specificity measures the strigsnef the condition: the highest
specificity (or lowest generality) value is givemd rule whose condition has only one
symbol “1” and therefore is satisfied when and omlyen that particular state of the
world occurs, whereas the lowest specificity (@ tighest generality) is given to a rule
whose condition is entirely formed by “1's” andtierefore always satisfied by the

occurrence of any state of the world.



In this model, at the beginning of each simulatio® decision maker is supposed to
be completely ignorant about the characteristickhefenvironment he is going to face:
all the rules initially generated have the highgsherality, meaning that all their
conditions are formed entirely by 1's. The actiantgare instead randomly generated.

The decision maker is also assumed to have limi@uiputational capabilities,
therefore the number of rules stored in the sysiesach moment is kept constant and
relatively small in comparison to the complexitytoé problem which is being tackled.

This set of rules is processed in the followingpstehroughout the simulation
process:

1. Condition matchinga message is received from the environment wimfdrms
the system (the agent or a structured collectiaiein) about the last state of the world.
Such a message is compared to the condition dghalrules and the rules which are
matched, i.e. those which apply to such a stateeoivorld, enter the following step.

2. Competition among matched ruleall the rules whose condition is satisfied
compete in order to designate the one which is &tbt execute its action. To enter
this competition each rule makes a metaphorical™based on its strength and on its
specificity. In other words, the bid of each matthele is proportional to its past
usefulness (strength) and its relevance to theeptestuation (specificity):

Bid(R, ) =(k + k Specificity B) Strength,,R
wherek, and k, are constant coefficients. The winning rule is @msandomly, with
probabilities proportional to such bids.

3. Action and strength updatinghe winning rule executes the action indicatedtby
action part and has its own strength reduced byatheunt of the bid and increased by
the payoff that the action receives, given the aerce of the “real” state of the world.

If the ] rule is the winner of the competition, we have:
Strengtlf R, 1) = Streng(th)tr Paydf) + Rid R.
4. Generation of new ruleghe system must be able not only to select thetmo
successful rules, but also to discover new oness iBhensured by applyingenetic

operatorswhich, by recombining and mutating elements of &iready existing and

most successful rules, introduce new ones whichhingy might not improve the



performance of the system. Thus new rules are gterdly injected into the system by
recombining and/or locally modifying existing knaalge.

Genetic operatorgienerate new rules which - typically but not neae$y - explore
other possibilities in the vicinity of the currenthost successful ones. Hence, search is
not completely random but influenced by the sysiquast history.

In Marengo (1992) and Marengo (1996) two geneteraiors have been used for the
condition and one for the action part. The lateeaisimple local search and is just a
mutation in the “vicinity”: the action prescribed khe newly generated rule is chosen
(randomly) in the close proximity of the one prdésed by the parent rule. For example,
a mutation in the action part may probabilisticatiytate the product type prescribed by
the rule into one of the neighbouring product types

The two operators used for the condition part deserore attention because of their
role in modelling the evolution of the state of Wedge embedded into the system.
They operate in opposite directions:

- Specification a new condition is created which increases ttexifipity of the
parent one. Wherever the parent condition presants this is mutated (with small
probability) into a O;

- Generalization the new condition decreases the specificity ef plarent one.
Wherever the latter presents a 0, this is mutatéth Emall probability) into a1

Note that pecification and generalization stand for two possible "cognitive"
strategies which tend to drive the learning systemards, respectively, rules which
apply to more specific states of the world and sulénich instead cover a wider set of
states of the worfd

The basic model outlined so far is used to stushgréety of coordination problems

possibly conditional on changing environmental esathus analyzing organizations

3 In incumbent models, new rules take the place of the currently weakest ones, so that the total number of
rules is kept constant.

4 Different degrees of specification and generalizations can be simulated both by means of different
combinations of these two genetic operators and by varying the coefficient £, with which specificity enters
the bid equation: the higher this coefficient, the more highly specific rules will be likely to prevail over general
ones. The simulations discussed below use a specificity coefficient to summarize the overall inclination of the
system toward the search for specific rules, such coefficient will represent both the value £, in the bid
equation and the probability of application of the genetic operator of specification every time the genetic
operatot’s routine is called.
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which have to respond to an exogenamnsl changingenvironment by implementing
some collective actions.

Suppose for instance that a firm can produce aicertumber of product types,
demanded by an exogenous market, and that the grodyprocess is divided into
several parts, each of them being carried out lajffarent “shop”. The problem is
therefore to detect correctly which product typedésng demanded (the “state of the
world”) and to coordinate the actions of the shepghat the correct production process
is implemented.

As an illustration, suppose that there exist eigbssible product types, called
respectively “17, “2”,. . ., “8". The firm's prodition possibilities set is represented by
sequences of operations which can be of two typean( B). Such sequences have all
the same length and map into a product type, wikiclonventionally designated by the
number of operations of type A which are utilizedits production. For example the
product of type “8” could be produced by all andyotine production processes which
contain eight operations of type A. Each producpoocess is divided into two parts (of
the same length) which are carried out separatglywo “shops” (divisions). The
problem of the firm is therefore to forecast thedarct type which will be demanded by
the market and to implement the correct productmwacess by coordinating the
operations of the two shops. Suppose that the pagothe following: if the firm
produces the correct product type it receives afbaf 5 units; if it does not produce
the correct output it receives a negative payaffery by the distance of the actual
product type from the required one (for exampléhé market demands type “7” but the
firm produces type “5”, it will receive a payoff e?).

Suppose now that the all the decision-making wwliteh the organization is made of
are represented by agents whose knowledge of @ke st the world evolves exactly in
the way presented above.

Marengo (1992) and Marengo (1996) simulate the \aeba of a simple but quite
general organizational structure, visualized inuFégl, composed by a "management”
and two shops. The management observes the enwrdahhmessage (the last state of
the world), interprets it according to its, evolgin'model of the world", and sends a
message to the two shops.



Fiaure 1. Oraanizzional informational flows (Marenao.1992. 19

ENVIRONMENT

1
1B 1B

‘ MANAGEMENT ‘

2 2

3
SHOP 1 [ “ SHOP 2

Each of the two shops can, in general, observe tkirels of signals and develop an
interpretative model for each of them. These sgjaat, respectively, the environmental
signal (last observed state of the world), the mgssent by the management (based on
the latter’s interpretation of the environment), dhe signal sent by the other shop (in
the incumbent model, its last action). The lattés messages are coordinating devices,
respectively a centralized and a decentralized @med precisely at fostering
coordination among actions, whereas the formemailithe two shops to form their own
independent (from the management one) models ofdinkel.

The weights with which these three types of messagder the shops' decision
processes define the organizational balance betdifferentiation and commonality of
knowledge, in turn shaped by the power distributitong the organizational hierarchy.

A high specificity coefficient for the condition gawhich classifies messages
coming from the management (messages of type 2igard-1) implies that shops
attribute great importance to the correct integireh of the coordinating messages

which are sent by the management. A low coefficiemplies instead that shops are

> Such weights are represented by the specificity coefficients which express the agent's search for a precise
model which interprets the corresponding type of message. A high specificity coefficient for the shops'
condition parts which classify messages coming from the environment (messages of type 1B in Figure 2)
implies that shops are aiming at building a detailed individual model of the wotld. A low coefficient implies
instead that shops do not pay much attention to the environment. When the coefficient is equal to zero we
have an organization in which shops do not form any autonomous model of the world but rely entirely on
the wortld's interpretation given by the management (messages of type 1 and 2).
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“free” to some extent to neglect hierarchical mgsesdVhen the coefficient is equal to
zero we have an organization without any form eftiadized coordination, in which top
management has no role.

Finally, a high specificity coefficient for the catidn part which classifies messages
coming from the other shop (messages of type 3igaré 1) implies that shops are
attaching high importance to mutual, decentralizeardination. When the coefficient is
equal to zero we have an organization without amgnfof decentralized coordination,
I.e. no inter-shop communication.

In general the model shows that the architectursuch information flows plays a
crucial role in determining the learning patternsl éhe performance characteristics of
the organization. In particular simulation resutism Marengo (1992) and Marengo
(1996) include the following.

First, in stationary environments (i.e. when thatestof the world does not change)
agents can in fact achieve coordination withoutdg any model of the environment
and resorting only to trial-end-erroum adaptive selection of rules. Interestingly, note
that if instead they try to learn, i.e. to buildcckua model and constantly improving it,
they need also to learn a model for the interpetabf coordinating messages
(messages 1 and/or 1B are not sufficient, and mgessaor 3 are also needed).

Second, if the environment undergoes predictablagds (for example of a cyclical
type), high specificity coefficients on the shopsbnditions which classify
environmental messages (message 1B) are neededeintorexploit the environmental
regularities. Shops need to have a direct accessvioonmental information in order to
develop the necessary decentralized learning.

Third, if the environment undergoes frequent andgredictable changes, the
organization has to develop stable routines whigk g “satisficing” average result in
most conditions. In this case decentralized legrmsndetrimental, because the stability
of such routine is continuously jeopardized by widlial efforts to grasp unpredictable
environments. Shops are better off by relying arttanagement's message

Under predictably changing environments the most@pate organization is the
one which, by partly decentralizing the acquisitimi knowledge about the

environment, can achieve higher levels of soplatta in its model of the world,
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provided that coordination mechanisms - whichcamtralized- are powerful enough to
enable the organization to solve conflicts of reprgations. On the other hand, this
very decentralization of the acquisition of knowgedcan be a source of loss when it is
more efficient for the organization to cling to @ust and stable set of routines. The
explorations so far suggest that “Knightian undetyd requires strong coordination
enforcing a set of coherent and robust routinesr ave entire organization.
Autonomous and decentralized experimentation candiafupt such a coherence.

In a somewhat similar modelling vein, Pentland dReuter (1994) formalize
organizational routines as a set of functionaliyikir patterns represented via rule-
based grammar models. So a routine is a “grammadntiwdefines all the action
patterns which are, so to speak, “legal”’, havinfjedent action patterns as possible
instantiations triggered by different environmeralintra-organizational signals (the
“if” part).

Moreover, it is quite straightforward to represalsio thememoryof an organization
(both its collective “cognitive” memory and its “egational” one) in terms of structured
ensembles of “if...then...” rules (cf. the classic Wabnd Ungson, 1991). With such
apparatus, Dosi, Marengo, Paraskevopoulou and ¥al@911) try to answer some
questions about the relationship between memoryrachexistics, organizational
architectures and patterns of environmental chdlgieat are the effects of different
distributions of memory elements within the orgatians? How does a shock like
labor turnover act upon both operational and cognihemories?).

The bottom line is that one ought to consider tiredoing models as a template for
a largely unexplored family of exercises which wkseriously on board (i)
informational imperfections; and even more impottgntifferences in cognitive
models, (ii) "boundedly rational" information pr@sing; (iii) adaptive learning; and
(iv) inter-organizational differences in informatiehannels and decision rules. Indeed
in the foregoing types of exercises, "blackboxirggfeduced to a minimum in so far as
flows of information, cognitive dynamics, and deémis acts are explicitly modelled.
The downside rests precisely in the high dimendignaf the space in which rules
evolve and the related difficulty in identifying nodt features of the mappings from

rules to organizational performances, however aefin
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3. Models of evolution in the space of "traits' and problem solving

A way of overcoming such drawbacks involves prdgissome “blackboxing”, in

particular concerning the relationship between wizgional traits (including of course
behavioural rules) and their actual expressions.hSuodelling genre prominently
includes a new family of evolutionary models of amgations inspired by biologist
Stuart Kauffman's so-called “NK model” (Kauffman,9B). His model of selection and
adaptation in complex environments represents explentities characterized by non-
linear interactions among their elements. In Kaaffim(1993) the “NK-model”

primarily deals with the evolution of populationt mological entities described by a
string of "genes", but its formal structure alloieg various applications in other
domains. The model, indeed, has lent itself to @wgrg number of applications,

extensions and modifications within the realm afasization studies. In this section we
will present the general characteristics of the Nkdel and review some of its
applications, well short of a comprehensive surweyh the primary purpose to flag

some of the main results and incumbent challenges.

3.1 The NK model

In the NK model, an entity (an organization for qurposes here) is represented as a
string of (binary) traits linked together by a thdeof interdependencies (referred to as
“epistatic” relations in population genetics) whigchap into an equally stylized
environment delivering performance feedbacks whinhturn, select in favor/against
such configuration of traits.

More formally, an organization is described by rngtof N loci which refer to the
set of traits iE1...N) that make up the organization (the system). Foh edement,
there exist possible stat8sThe set of all possible configurations (stringspystem’s

elementA;x A, X... Ay is called the possibility space of the system.

¢ In most applications and in all those we consider in this paper, the number of states is reduced — for the
sake of simplicity — to two: A [{0,1}.
13



Next, a fitness function FA1x A, x... Ay - [0,1] is defined which assigns a
(normalized) real number to each possible stringaasneasure of its relative
performance. The fitness of the string is usuailfireed as the mean value of the fitness
values of each element; (), which are in turn randomly drawn from a uniform

distribution between 0 and 1:

N

21
F = i=1
N
The degree to which the fithess of the organizatiepends on the interaction effects
among the traits is specified by the variak]evhich refers to the number of “epistatic”
relations among elements (in fact representingstngcture of the system itself). The
existence of these relations implies that the doumtiion of one element to the overall

fitness of the system is dependent both upon its state and upon the statekobther

elements. Thus, each trait can take25it* different values, depending on the value of
the trait itself and the value of tikeother traits with which it interacts. Two limit s@s

of complexity can be distinguished, ranging from thi@imum complexityvhenK=0,

to themaximum complexitywhenK=N-1.

The distribution of fithess values to all possiblenfigurations defines thiétness
landscapeof the system. This landscape can be exploredarckdor the configuration
with the maximum fitness value, moving from one faguration (a point in the fitness
landscape) to another, by changing the value ofeteraent. This “adaptive walk” ends
when a configuration is reached which has not imatedeighbours with better fitness.

Consider for example a system characterized\bg, A [0{0,1} andK=2. In this

case, all eight (2°) possible configurations can be depicted on a.cEaeh vertex of
the cube represents a different configuration efgfistem; vertices that are connected
to each other differ in only one trait. The fithesdue of each configuration is, in this

case, just the sum of the fitness value of eadt tra

14



Figure 2. Example of a performance landscape (fRiggelkow and Levinthal 2005
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3.2 Organizational dynamics on complex selection langdses

With such a model in mind, let us build upon ondhaf earliest applications of the
"NK" approach to organizational analysis, preseigdevinthal (1997). In Levinthal’s
simulations, populations of randomly generated siines (organizations) evolve on a
fitness landscape, whereby the evolution is dribgrvariation selection and retention
processes.

Variation, i.e. the generation of variety, is paed by two mechanisms:

- local search one-feature mutation with retention of stringghnhigher
fitness value.

- Radical changes (“long jumps’) mutation of many (possibly all)
features with retention of strings with higher fisevalue.

Selection is obtained by simple birth and deathc@ss: organizations die with a
probability inversely proportional to their relagiviitness and are replaced by newly

born ones. Some of these organizations are randgemgrated, owing possibly no
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resemblance to the existing ones, while others rapmica of existing successful
organizations.

Information is maintained intertemporally by meaf$wo mechanisms:

- retention successful existing organizations have a higmebability of
surviving. Their features tend therefore to surwiith them.

- replication some of the newly born organizations, which replé®ad
performing ones which are selected out, are copfethe most successful
existing organizations. The features of the latéed therefore to spread in the
population.

Consider a large population of randomly generateghrizations which evolves
according to the just mentioned mechanisms of 8efeand information reproduction
but suppose that variation can be only local, that only one bit at a time can be
mutated for every organization. Local adaptatiord aselection will reduce the
heterogeneity of the population: bad performerd ba selected out and replaced by
copies of good performers. In the meantime goodopeers will climb with local
mutations the fithess peaks on whose slopes tleelpeated.

However, the final outcome of the evolutionary @& will crucially depend on the
value ofK, i.e. the complexity of the fithess landscape.nW¥it0 local adaptation will
quickly take all the organizations to the only gbloptimum: thus selection and
adaptation will completely wipe out the initial beageneity of the population and yield
convergence to unique optimal organizational fofRor higher values oK the
landscape will display an increasing number of llogptima on which subsets of
organizations will converge according to their iaditconfigurations. Selection and
adaptation will reduce the heterogeneity but welver make it disappear.

This result, robust and general in this framewarkyst not be overlooked, as it
provides a simple and intuitive explanation of gegsistence of heterogeneity among
firms, a piece of evidence widely reported by tieraturebut at odds with standard
theories, according to which deviations from theydmést practice should be only a
transient property inevitably due to fade away asket selective forces operate. Note
also that aK increases not only does the number of local optimogeases, but also the
size of the basin of attraction of each of thendtemshrink. It could well be therefore
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that none of the organizations might be locatethenbasin of attraction of the global
optimum and therefore no organization will ever dfithe globally optimal
configuration.

In complex environments diversity of organizatiof@ms can even emerge out of
homogeneity. Levinthal (1997) shows that even if @tarts from a population of
homogeneous organizations, random local searchcasdumutations in different
directions in the landscape.HH0 such initial random mutations will take orgari@as
in the basins of attraction of different local op#i. On the other hand, selection and
adaptation will onlypartially reduce such diversity.

If organizations can perform more radical chandglesmg jumps”), i.e. mutate many
(possibly all) features, also in presence of lakg@eterogeneity tends to disappear,
though very slowly, as organization located on spbmal peaks can always perform -
though with low probability - a radical mutation iwh allows them to jump on a higher
fitness “hills”, until they reach the highest onee.(the one whose peak is the global
optimum). However, note also thaiNfis large enough such a process may have a very
low probability and be of no actual consequencettiermedium term evolution of the
population under consideratidn.

Consider now the case of environmental changesgchwban be modelled by re-
drawing the fitness contributions of some featwafer the population has evolved and
stabilized over previous local optima.

Suppose first that such a change concerns onlyfeatere andk=0, then if the
fitness contribution of only one attribute is maekf, the global optimum will either
remain where it was or move to a point which isast one mutation away. Thus, if the
population has already evolved and located on tbkat) optimum, it can easily and
quickly adapt and move to the new global optimunmuations show that all
incumbent organizations survive to such an enviremal change.

However, if the complexity of the landscape is hi{gk0), even the modification of
the fithess contribution of just one attribute cause a large alteration of its shape. In

high dimensional landscapes with large N localrmoptimay well move far away. This
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implies that a population which has settled onltdoal optima of the initial landscape
will find it generally very difficult to adapt tche change. Mortality of incumbents will
rapidly rise aK increases.

If the environment changes more radically, i.e. fii@ess contributions of many
(possibly all) the attributes are re-drawn, we ayéifferent picture. As we have already
mentioned, in a “simple” landscape wkKh= 0 all organizations quickly converge to the
same configuration, which correspond to the unigjobal optimum and diversity dies
out. If a dramatic environmental shock happenswhbich the global optimum moves
far away from its initial position, the entire poatibn will find itself in a low fitness
area of the landscape and incumbent organizatioadilely to be outperformed by
newly created ones with random configuration.

On the contrary, with higkk, to repeat, the population tends to remain distedut
over a large number of local optima but the upsifieall that is that with some
probability a subset of the population might waetidf itself not too far from the high
fithess portion of the new post-shock landscapeerdity helps the population adapt to
dramatic environmental changes.

Levinthal’'s analysis has been expanded and broddeya few works which have
further studied the relationship between orgarorati design and environmental
complexity and turbulence. Rivkin and Siggelkow 2P (cf. also Siggelkow and
Rivkin 2006) tackle the issue of multilevel orgaatipnal search by introducing an
explicit representation of organizational structune NK-type models. Decisions over
the N policies (bits of the string) are allocated amatifferent departments and a
superordinate CEO has the function of coordinatiegartmental decisions.

More in detail, each department controls a givemlmer of policies and is engaged
in increasing the fitness contribution of such ek (climbing the departmental
“subscape”, i.e. the landscape generated by owlgetipolicies). As — in general — any
policy change in one department changes also ther atepartments’ fithess values,

each department may also attach some weight tesBtchanges of other departments.

7 There is a much more general point here related to the time scale of evolution. In many dynamics there
might well be an asymptotic state which however does not have any interpretative relevance for empirical
phenomena as the time of convergence is extremely long.
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This weight, ranging from 0 to 1, is a model pareamevhich stands for the degree of
“horizontal” inter-department coordination.

Finally, the organization has a CEO endowed with plower of taking the final
decisions by selecting departments’ proposals. thigr purpose, the CEO asks each
departmenti for their most preferred alternatives and selébtsse combination of
departments’ proposals which deliver the higheganizational fithess.

The interplay between departments and CEO credtes the authors call a set of
“sticking points”, i.e. organizational configurat®to which no alternative exists which
can go through the approval of all subjects invdl\v@ticking points do not necessarily
correspond to organizational local optima: firshss-vetoes of departments and CEO
can prevent also improvements which would incraasefitness of the organization
and, on the other side, a department can, in sorogntstances, implement a change
which is beneficial for itself but not for the amtiorganization and therefore unlock the
organization from a local optimum, if it happenedt in one.

Divergence between the set of local optima andstteof sticking points is larger
when the following conditions are met:

1. decisions are allocated among a larger numberpdrtments;

2. interdependencies among policies allocated to riffedepartments are
stronger;

3. the weight that each department attributes to akpartments’ fitness is
lower;

4. the number of proposals the CEO receives from deats is larger and
the latter give higher weight to others’ fitness.

Sticking points areompetency trapthat organizations might want to escape from.
One way to accomplish this is by changing the omgdional structure. Siggelkow and
Levinthal (2003) and Siggelkow and Levinthal (200&)alyze the performance

consequences of changes in organizational strigtws@y from a centralized to a

Some parameters 4, measure the degree of CEO discretion: at one extreme, if 4, is equal to one for all
departments, then the CEO can automatically approve each department’s most preferred alternative, without
any de facto selection power. At the other extreme, if 4, is equal to the number of all envisageable alternatives
for all departments, then the CEO has a de facto full discretionary control over all policies.
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decentralized one, or vice versa. Quite a few, itz all, changes tend to be beneficial
to performance, not so much due to the intrinsicegop fitness of the “new”
organizational form but rather to the very facttttiee switch has a de-locking effect
upon past “sticking points”.

The set of goals a successful organization shoulduguis not limited to the broad
search on the performance landscape. Once a goanf secisions has been found,
stability should also be among the priorities ofjanizational design (cf. Rivkin and
Siggelkow 2003). Moreover, firms must take into @att not only the performance
level they can reach, but also the speed at wihieiz tan improve on it, especially in
environments that change frequently and in no ptadie ways (cf. Siggelkow and
Rivkin 2005).

A comprehensive analysis of differences in perforoeabetween organizational
structures in terms of stability, convergence tiam& solution quality is offered by
Mihm et al. (2010). In the analytical model they present, ganization is engaged in a
purely decentralized search to solve a complex probkith many interdependent sub-
problems.

The first crucial parameter s;, which measures how much each agent discounts the
importance of the other sub-problems compared gthown one. In one extreme case,
all employees take fully into account the overatfprmance of the firmb;;=1; in the
opposite casdy ;=0 wheni#j, each employee acts myopically. The second pasarrset
the rate at which agents update their informatioouathe others’ decisions, the update
time being an independent Poisson process for éaxkion maker.

The decentralized search performs well, provided #@ih employees act fully
holistically (0;=1), and updating is immediate. What lifi<1? Mimh et al show
analytically that in this case the probability thia# search is unstable approaches N as
grows. Intuitively, potential loops of mutual infloce between agents grow up as
interdependences are not taken fully into accauotthe decision process.

Introducing hierarchy can change the problem-sglvitynamics in two different
ways. First, it can give managers a veto power t¢iverothers’ decisions. When this
happens, the analytical result shows that the isoliguality converges monotonically
to a final level even at the cost of an inferioabjy.
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Second, the hierarchy can change communicationirheences patterns among
employees. By creating departments, workers in gneup may consider the
performance of other groups less important, or ey be less affected by the others’
decisions. If this second effect is allowed to aperthen it can be shown that there is
always a choice of departments and of interdeparel@mportance such that search
progress toward a solution becomes fast and statpen at the cost of solution quality.
Basically, cycling behaviours are avoided by weakgniinterdepartmental
interdependencies.

In the simulated model, Mihrat al consider a structure in which 48 workers are
grouped into six departments, which in turn areicstred into two areas of three
departments each; the area managers report to Eae The front-line workers are
assumed to act holistically while differences inybpia” are at the managers level.
Moreover, updating among subgroups is delayed.

Three dimensions of decision making are analyzée. first is the order of problem
solving, which can be parallel or sequential. Teeosd is théocusof decision making.
The third is the structure of the hierarchy.

Simulations results can be summarised in the fotigwvay. In the first dimension,
sequential search performs better in most casele \phrallel search is desirable only
when speed is much more important than solutiotitguén the second dimension, the
key result is that decisions should be delegatedh& lowest level that has the
information necessary to make the decision. Canaitidn at the lowest management
level provides the same effect as full central@atiwhether or not the managers act
holistically. In the third dimension, the main deivof the search performance is the size
and the number of departments; how the structuoegisnized at the intermediate levels
is irrelevant for the firm’s performance.

A final comment about the main building-block in NKodels is in order here. In
most analysis, interactions among decisions aranass to be randomly generated.
However, organizations tend to show highpatterned interdependences between
decisions. Rivkin and Siggelkow (2007) address tisisue by emphasising the
implications of differentinteraction patternsin terms of the long-run value of

exploration along the landscape. Different intaoacpatterns are modelled isdluence
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matricesthat differ with respect to the actumlrangemenif interdependences among
decisions.

Their simulation shows that even if the total numdieinteractions among decisions
is held constant, performance landscapes can diféekedly both in the number and in
the average height of the peaks they contain. Tlyevkeiables to understand what
drives these differences are the number of “unimftia¢’ decisions, that is decisions
that do not affect any other decision, and the rema “uninfluenced” decisions, that
is decisions that are not affected by any othersd®t The presence of “uninfluential”
decisions creates large smooth subspaces on edompence landscape that limit the
number of local peaks; on the other hand, when naaysions are uninfluenced, it is
more likely to have a handful of decisions that\agy sensitive to many other choices.
This creates the potential for many conflicting domats and lots of internally
consistent configurations of choices.

As local peaks proliferate, it becomes more unjikel a searching firm to climb a
high peak. This result is quite common in NK mogdeélst Rivkin and Siggelkow show
that the proliferation of local peaks comes alsmorfrthe verypattern of interactions
and not only from the actual degrees of epistabcretations amongst decisions.
Together, the performance difference between fiemgaged irhigh exploration(that
is, firms that in each period try to change malegisions) and firms engaged low
exploration (that is, firms that in each period try to changdyoone decision) is
increasing in the number of local peaks. That & tore rugged the performance

landscape is, the more valuable is to be engagetlioal changes.

3.3 Cognitive and experiential search

Gavetti and Levinthal (2000) add another perspedtivthe analysis of search processes
and look at the relations between forward-lookimgl dackward-looking search and
their effects on performances. The roots of thdirdison between the two search
processes go back to Simon (1955): the former waslcognition-ridden, forward-
looking choices based on off-line evaluation okmlatives, even very distant from
current behavior; the latter entails experienttaice based on on-line evaluation of a

limited set of alternatives which are close to entibehaviors.
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In Gavetti and Levithal’'s model, the organizatidrocoses a policy on the basis of a
simplified and incomplete “cognitive model” of igvironment, entailing “templates”
which cannot directly prescribe actions. In thisitext, existing practices function as
defaults for elements not specified by the cognitrepresentation and allow the
identification of a specific course of action. Thitsmay happen that actors with the
same cognitive template may engage in different\aeha

These hypotheses are translated into a NK-based|nmoddnich the organization’s
limited cognition corresponds to a simplified regmetation of the fitness landscape
which is assumed to be of lower dimensionality ttl@actual landscape (N1<N), even
if grounded in it. This is captured by the assuompthat for each point of the cognitive
representation (of the perceived landscape) there?d™ points in the actual fitness
landscape that are consistent with this point. fithess value assigned to each point of
the cognitive representation corresponds to theageefitness values of thes&'?
points.

An organization which chooses according to its dbgn representation explores
regions and not single points, of the landscape, while #Width of these regions
depends on the crudeness of the representationn Wtl cognitive and experiential
search are at work, organization identifies a pickits perceived N1-dimensional
landscape (by cognitive or off-line search) andntlexplores the remaining N-N1
alternatives through a local (or on-line) searckeldaon one bit-mutations. The role of
experiential search becomes more and more impaatatite crudeness of the cognitive
representation increases. It is important to natieee the role of the initial cognitive
search in identifying the superior, on average,nsa®f attractions. Initial off-line
search then helps in finding a good position frohiclv the local search can start.

Gavetti and Levinthal show that in a context of petitive ecologies in which low
performance organizations are selected out, orgaais which adopt a joint cognitive
and experiential search dominated the populatidns Becomes particularly evident
under rugged landscapes, in which organizationshvbse purely experiential search
are trapped into local optima.

In this framework what are the effects of adaptatirough changes in the cognitive
representation? Gavetti and Levinthal considereghedfects both in the case of purely
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cognitive search and in that of joint cognitive axgberiential search, also with changes
in the actual fitness landscape. In the case ot prognitive representation the
organization chooses an alternative on the basits ainderstanding of the payoffs as
characterized by a set of N1 attributes. In thisectéhe effects of changes in the
representation depend on the complexity of thedeaple (the value &f). If K is high
these changes may produce good performances, pscénecompensate for a poor
representation of the landscape. However, if omsiders organizations which use joint
off-line and on-line search, the shift to a newresentation may also destroy the
accumulated (on-line) experience.

Changes in the representation can enhance organizaperformance when the
landscape itself changes as the new representat@ynmore effectively identify new
(superior) basins of attraction, and this can campte for the loss of experiential
wisdom.

However, thelocus in which the change in the representation is decican be
crucial for the effectiveness of the change it98Hvetti (2005) explores this linkage by
situating the cognitive and the experiential seaveithin hierarchical structures
characterized by different allocations of “cogrativights”. In his NK model, each
organization creates a new division engaged inva lime of business after an initial
period of activity in a single line. Managers fiestplore the new landscape by way of
local search, then decide which representation ¢obyscomparing the representations
they have in their cognitive memory with the actpalyoff of the local search. The
organizational hierarchy determines exactly at WHevel (firm or divisional) and in
which way this choice is made. The performancemut of the various organizational
structures is analyzed in four contexts that diffemg two dimensions. The first is the
degree of economies of scope between the two dingsithe second is the heterogeneity
between the problems they face.

Simulation results show that the crucial mechanidnving the difference in
performances is the way in which information is gsged in the exploratory phase. In
particular, two properties seem to emerge. Firsaiching the outcome of the local
search with an appropriate cognitive representaienomes more difficult as the
manager in charge of decisions is higher in theahtfy. This effect is stronger when
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divisions face heterogeneous problems as top mesagelike divisional mangers,
have to assess potentially contrasting action-ouécoralationships. Second, a
systematic bias favors signals originating in the division: managers tend to select
representations that fit the original businesseadtof choosing representations that
capture the new domain. This effect is again irgirgpin the heterogeneity of the
divisions’ businesses.

These models shed light on the role of cognitivard®e both in conditioning
experiential learning by constraining the localrsbao the most promising regions of
the landscapes and in shaping organizational seancter different hierarchical
structure. The analysis of the interplay betweemn tthio logics of action in different
contexts represents indeed a significant progressa-vis representations of
organizational search processes just via “one-hitatron” search or totally random
“big jumps”.

Knudsen and Levinthal (2007) look at another cagamidimension of the search
process, that is the capacity of evaluating alteres. In fact, all the models considered
so far take for granted that agents are always gwambmparing the outcomes of the
local search, but in many task environments thighinnot be true. Simulation results
show indeed that an imperfect evaluation of altévea can be beneficial for
organizations in that it avoids the rapid idenéfion of the local peak within the initial
basin of attraction.

A further step in the direction of opening up th@danizational problem solving
black box” entails an explicit representation ofgamizational problem solving
procedures, their emergence and their dynamics.

3.4 Problem solving organization and the division dida

Following Simon (1981), Marengo and Dosi (200%cus on strategies for the
reduction of problem complexity through the divisiof problem solving labor, that
results in the decomposition of large and compleblems into smaller sub-problems

which can be solved independently. In fact, procéstivision of labour is a major and

% See also Marengo ¢ a/. 2000.
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long neglected driving force in explaining the inneatures and boundaries of
economic organization. In particular, traditional gamizational economics has
concentrated upon the governance of transaction cemtractual relations between
given “technologically separable” units, but does tackle the analysis of where such
technologically separable units come from or, eweore importantly, of whether
organizational structures have some at all.

The issue bears a fundamental importance becatse niost processes of division
of labour take placwithin organizations and, second, it empirically happéas most
of the times technologies are born in a highlygné¢ed fashion, and possibly undergo
subsequent vertical disintegration both within @mdong firms. In other words, one
could say that “in the origin there were organasi’ and then markets develop along
the lines defined by the processes of divisiorabblr, rather than the other way round
as postulated by transaction costs economics.

In Marengo and Dosi (2005) different organizatiostalictures (with varying degrees
of vertical integration) are compared in terms beit dynamic problem-solving
properties determined by their patterns of divisiof labour and problem
decomposition. The basic assumption is that sohangiven problem requires the
coordination ofN atomic “elements” or “actions” or “pieces of knowtge”, which we
can generically call components, each of whichassume some number of alternative
states. The one-bit mutation algorithm at the baktee NK model can be conceived as
a particular case in which the problem is fully a®posed and the search process is
fully decentralized: each sub-problem consist single component (bit). As showed by
Kaufmann (1993), this algorithm is very quick, butan converge only to the local
optimum whose basin of attraction contain the ahitonfiguration. On the opposite
extreme, there is the case of no decompositionlat@responding to a strategy in
which all the components (bits) are simultaneouslytated. In this case the global
optimum can be reached by exploring all the possioinfigurations. In between there
are all the other possible divisions of labor sm#s.

Note that the effectiveness of the decompositioieims of system performances, is
strongly affected by the existence of interdependgramong the components of the
problem: so, for example, separating interdependemponents and then solving each
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sub-problem independently will prevent the very oty of overall optimization.
Note also that, as pointed out by Simon, becausleeobpaqueness of the interrelations
between components, an optimal decomposition viaidin of labor that separates into
sub-problems only the components that are indepgrfdem each other - cannot be
generally achieved by bounded rational agents, mdimally are bound to aim aear-
decompositionsthat is decompositions that try to put togethéhw the same sub-
problem only those components whose interdependesrae“more important” for the
performance of the system.

Finally note that the search space is not givergenously, but is constructed by
agents that possess subjective representatiohg astriucture of the problem. In that the
distance between the real structure of the prohlésnreal decomposition) and the
subjective representation that agents have ofsitshdramatic effect on problem solving
outcomes.

More formally, one can characterize a problem byfdHewing elements:

The set of componentC={¢,,c,, ..., &}, where each component can take one out of
a finite number of states. Normally, a binary sétcomponents is assumed for
simplicity: ¢ 0 {0,1} /4.

A configuration, that is a possible solution to ieblem: x' = ¢,c}..c, .

The set of configurationsX ={x*,x?,....x> }.

An ordering over the possible configuratiors> X (or X > ¥) holds whenevex is
weakly (or strictly) preferred tgl.

A problem is fully defined by the paiK(>).
As the size of the set of configurations is expaiann the number of components,
whenever the latter is large, the state spaceeoptbblem becomes much too vast to be
extensively searched by agents with bounded cortipngh capabilities. One way of

reducing its size is to decompd3it into sub-spaces.

10 A decomposition can be considered as a particular case of search heuristics: search heuristics ate, in fact,
ways of reducing the number of configurations to be considered in a search process.
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Let1={1,2,...,N be a set of indexes and let a blbtl, O | be a non-empty subset of
it; the size of bloclkd; is its cardinality|di|. A decomposition of the problenx,(>) is
defined as a set of blocks:

k
D={dy,db, ... ,d} such that| Jd, =1.
i=1

Note that a decomposition does not necessarily havee a partition (that is the
intersection between two decompositions need ntttdempty set).

Given a configuratiox' and a blocld;, the bIock-configurationx‘(d,-) is the substring

of length|d;| containing the components of configuratidbelonging to blocki;:

X'(d)=x X, .. Oj, Od, .

X

The notationxi(d-,-) is used to indicate the substring of lendtfd| containing the
components of configuratioti not belonging to bloch,.

Two block-configurations can be joined into a largck-configuration by means
of theJ operator so defined{(d,) 0 y(dn) = z(d;dn) wherez = xi if kUd; andz, = yj if
kOdh,

The size of a decomposition is defined as thedizts largest defining block:

IDI= max{|dal,|dz], ..., |d}.

Coordination among blocks in a decomposition matyeei take place through
market-like mechanisms or via other organizatiocmabhngements (e.g. hierarchies).
Dynamically, when a new configuration appearssitasted against the existing one
according to its relative performance. The two a@urftions are compared in terms of
their ranks and the superior one is selected, whdether one is discarded.

More precisely, let us assume that the currentigorgtion isX and take blocld,
with its current block-configuration'(ds). Let us now consider a new configuration
x(dy) for the same block, if:

X(dr) DX (cln) 2 X(ch) OX(d)

1 Blocks in our model can be considered as a formalization of the notion of modules used by the
flourishing literature on modularity in technologies and organizations (Baldwin and Clark, 2000) and
decomposition schemes are a formalization of the notion of system architecture which defines the set of
modules in which a technological system or an organization are decomposed. We will come back to
modularity literature later on.
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thenx(dy) is selected and the new configuratidf,) 0 X(d.) is kept in place oK,
otherwisexX(dy) is discarded anxl is kept.

It might help to think in terms of a given divisioof labor structure (the
decomposition scheme) within firms, whereby indiadworkers and organizational
sub-units specialize in various segments of the ymrtioh process (a single block).
Decompositions, however, sometimes determine alsdoundaries across independent
organizations specialized in different segmentthefwhole production sequence.

Note that, dynamically, different inter-organizabrnlecompositions entail different
degrees of decentralization of the search procEss. finer the inter-organizational
decompositions, the smaller the portion of the deapace which is being explored by
local variational mechanisms and tested (howevearaatly) by market selection. Thus
there is inevitably a trade-off: finer decomposisoand more decentralization make
search and adaptation faster (if the decompositidhe finest, search time is linear in
N), but on the other hand, the process exploredlamand smaller portions of the
search space, thus decreasing the likelihood thtanal (or even “good”) solutions are
ever generated and tested.

Decompositions are sorts of templates (“categdomat in the “mental models”
perspective) which determine how new configuratiares generated and can be tested
afterward by the selection mechanism. In largeckespaces in which only a very small
subset of all possible configurations can be geadraand undergo testing, the
procedure employed to generate such new configumsfplays a key role in defining
the set of attainable final configurations.

Marengo and Dosi assume that boundedly rationaitagsn only search locally in
directions which are given by the decompositiorw menfigurations are generated and
tested in the neighborhood of the given one, wimetighbors are new configurations
obtained by changing some (possibly all) componesttsn a given block.

Given a decompositioB={d;,d,, ... ,d}, a configurationx is a preferred neighbor
or simply a neighbor of configuratiot with respect to a bloc#t, 0 D if the following
three conditions hold:

1. x = x!

2.%x =x) OkOd,
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3.x #x!,

Conditions 2 and 3 require that the two configuragi differ only by components
which belong to blockl,. According to the definition, a neighbor can badateed from a
given configuration through the operation of a Bnglecentralized coordination
mechanism.

The set of neighbors of a configuratiwfor blockd; is calledH;(x,d).

The set of best neighboBxx,d) 0 Hi(x,d) of a configuratiorx for blockd; is the set
of the most preferred configurations in the satefhbors:

Bi(x,d)={y /Hi(x,d) such thay >z //z[ Hi(x,d)}
By extension from single blocks to entire decompmss, the definition of the set of

neighbors for a decomposition is:
k
H(x,D) = JH, (x.d,).
i=1

Here the configuration is a local optimum for trecdmpositiorD if there does not
exist a configuratiory such thay [J H(x,D) andy > x.

A search path or, for short, a paR{X,D) from a configurationX and for a
decompositiorD is a sequence, starting frofn of neighbors:

P(X,D)=x' X1 X2 ... with xX*™ O H(X"™ D).

A configurationx is reachable from another configuratidrand for decomposition
D if there exists a patR(x,D) such thak' [ P(X,D).

Suppose configuratio® is a local optimum for decompositidd: the basin of
attraction ofx¥ for decompositiorD is the set of all configurations from which is
reachable:

¥,D)={y, such thaflP(y,D) with X O P(y,D)}.

Now letx’ be the global optimum and B0 X with X’ 0 Z. We say that the problem
(X,2) is locally decomposable & by decompositio if Z 0 ¢{’,D). If Z=X, we say
that the problem is globally decomposable by deasitiponD.

The perfect decomposability requirement can beegefl into one of near-
decomposability: the problem is no longer requit@dbe decomposed into completely
separated sub-problems, i.e. sub-problems whid dohtain all interdependencies, but

it can be sufficient to find sub-problems which t@n the most relevant
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interdependencies, while less relevant ones caigb@cross sub-problems. In this way,
optimizing each sub-problem independently will m@cessarily lead to the global
optimum, but to a “good” solution. In other woragar-decompositions give a precise
measure of the trade-off between decentralizatiosh @ptimality: higher degrees of
decentralization, while generally displaying a highdaptation speed, are likely to be
obtained at the expense of the asymptotic optignalftthe solutions which can be
reached.

As a consequence, Marengo and Dosi arrange allctimgigurations inX by
descending rankK={>’,x}, ¥,..} wherex >x**, andX, = {x’X, ... ¥} is the ordered
set of the begt configurationsX, is said to be reachable from a configuratyon X,
and for decompositioB if there exists a configuratiot X, such thax' CP(y,D).

The basin of attraction{X,,D) of X, for decompositionD is the set of all
configurations from whiclX, is reachable. I#/{X,,D) = X, D is ap-decomposition for
the problemp-decompositions of minimum size can be found withabgorithm which
computes minimum size optimal decompositions.

It is straightforward to show that asincreases one can generally find finer near-
decompositions. This shows that the organizatistrakture sets a balance in the trade-
off between search and adaptation speed and ofyimhtlis easy to argue that in
complex problem environments, characterized by gtrorand diffused
interdependencies, such a trade-off will tend twdpce organizational structures which
are more decomposed and decentralized than whatdwoe optimal given the
interdependencies of the problem space.

Different organizational forms implement differedecomposition heuristics and
might be characterized by different representatadrtbe problem and therefore present
different properties in terms of the effectivenessl efficiency of the derived search
processes (cf. Marengo, Pasquali and Valente (2@0%) theoretical discussion of the
topic). In particular a trade-off exists between ptewrity and optimality: a finer
decomposition makes search faster, but the explaraf smaller portion of the search
space reduces the likelihood to generate and tledsttsan optimal solution. The
application of these ideas to organizational detegds to the comparison, in terms of
relative performance, between not decomposed tésiganization-embodied) and
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decomposed tasks (coordinated via market-like nm@shraor via simple organizations
structured as sets of perfectly independent tagksg of the main conclusions is that
the advantages of decentralization (faster adaptatisually imply a cost in terms of
sub-optimality (impossibility to reach global opain This casts strong doubts on the
efficacy of market selection processes as subssitdor individual optimization:
selection is not able to select out sub-optimaluiess nor to select for optimal ones if
both are somehow complementary to each-other iruabcbrganizations and

technologies.

3.5 Modelling the coupling mechanisms between capasland governance

Marengo and Dosi (2005), as well as most of coatigms of this genre, while
concentrating on the problem-solving features gfaaizational dynamics, censor any
incentive compatibility issue. An attitude that,reted above, is quite typical within the
capability-based framework.

There is nothing, however, preventing this type aofalysis to go beyond the
exclusive focus on firms dsci of coordination and dsci of creation, implementation,
storage and diffusion of productive knowletigend explicitly take on board the issues
of incentive governance and control discussed taiiaiely in Coriat and Dosi (1998).
Attempts in this direction are formal analyses ysD Levinthal and Marengo (2002;
2003) which incorporate issues of conflict of i, power and control over agents’
decisions within the analytical framework of Marerand Dosi (2005) and Marengo
al. (2000) and discuss the interaction between probiepnesentation and incentive
mechanisms. In particular, the double role of peaobrepresentation is stressed: on the
one hand it defines the “cognitive” structure ok tproblem and the consequent
decomposition which is adopted (definition of tearas subsets or blocks of

components); on the other hand, it has importansequmences for a reward mechanism

12 A more complete “co-evolutionary” picture is discussed by Dosi (1995). Organizations are assumed to be
characterized by six correlated dimensions: the distribution of formal authority; the distribution of power; the
incentive structure; the structure of information flows; the distribution of knowledge and competence. In this
context organization dynamics can be conceived as a process of adaptation and selection according to
multiple, and possibly conflicting, objectives.
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based on the distinction between organization'sstéy) and team’s (block)
performance as it defines what organization conceigea team.

The analysis starts by considering the conflictsnéérest among problem solving
teams generated by the adoption of team-level th@emechanisms. While under a
global reward an alternative (a particular confagian of sub-problem’s components) is
selected if it improves the overall organizatiop&formance, with a team-level reward
mechanism a would-be alternative is acceptedeifitances the performance of the unit
even if it degrades the overall organization’s perfance. It can be shown that if the
organization’s representation of the problem isawstect (it does not correspond to the
right structure of the problem in terms of inteatedns among components) the
adoption of a global reward allows the organizatiorreach a global optimum. But
what is more interesting is that, even if the reprgation of the problem is not correct,
the adoption of a team-level reward structure tendsthe long run, to produce
performances that are similar to the global- reware. Thus, goal conflicts prevent the
organization to remain absorbed in local optima aot as substitute for a correct
representation of the problem (Dosi, Levinthal 8atengo, 2002).

Power is introduced by allowing one team (a blatkhie decomposition) to stop the
mutation of any other blocks that decreases its petformance (veto power). The
evidence suggests that, under specific condititmes,adoption of such a mechanism
lead to good solutions. In particular, a team relsaheme with veto power is superior
to the global reward structure when the organipafioepresentation of the problem is
based on a finer decomposition than the real ondranthtter is not too complex. This
Is due to the fact that veto power interrupts tlyeliog among possible solutions
generated by a team-based reward structure pregetkie advantages in terms of
greater search effort which are typical of thisaedvmechanism.

A principal-agent-like model of interaction is reduced considering the case of
control over the decisions of other organizatiamaimbers by a principal, the residual
claimant of the total payoff, who can “order” othdo keep performing a given action
or to switch to a different one. This activity isnsidered to have a cost which depends
on the span of control, i.e. the dimension of esgb-unit, and it is higher when the
principal wants to induce a change in agent’s actimn when he wants to elicit the
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same behaviour (the principal’s profit is definexdtiae total output of the organization
minus the “elicitation cost”). When actions areeistependent, the control function, as
any other problem-solving activity, cannot be atyir decomposed. Thus, the
interaction between a cognitive dimension and a robntlimension has to be
considered. The effects on total performance andptireipal’s profit are analyzed
considering four different cases: right, almosthtigwrong and minimal (one-
component units) perceived decomposition by agewit) reference to different
decompositions of the underlying problem and tharr&ctness” of the decomposition
itself.

Obviously if the organizational decomposition is tligue” one, perfectly
knowledgeable agents not facing any incentive caiipty problem would make
costly control redundant. However, interestingljnen the organization has a wrong
representation of the problem space (and in pdaticunderestimates the span of
interdependencies), agents subject to costly conteyl generate a better performance
than the one produced by perfectly ‘cooperativerds.

Finally Dosi, Levinthal and Marengo (2002) analymere explicitly the double role
of problem representation. The work examines, migdar, by means of a simulation
model, the relations between cognitive decomposteanmd operational decompositions.
The former establish search heuristics and targdtsreas the latter implement search
processes driven by those targets. The exercisessti@w if cognitive decompositions
are correct then it is efficient to have maximurmiglon of labor at the operational
level, as this increases speed and accuracy ofadapto targets. On the contrary, if
cognitive decompositions do not correspond to thee” ones, coarser division of labor
at the operational level ensures less accurat@rompt adaptations to the imperfectly

set target.

3.6 Modularity and organizational architecture

The existence of different organizational decomjpmss and hierarchies poses a
problem: to what extent can boundedly rational &gedentify the true structure?
Ethiraj and Levinthal (2004a) address this questiothin a NK model in which

organizations are characterized along the two déwes of “decomposability” and
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“hierarchy”. In a loosely (tightly) coupled orgasmion, there are few (many)
interdependencies between departments; in the dediomension, the organization is
said to be “hierarchical” if the structure of irdependencies between departments is
unidirectional (e.g., the decisions of the firspdgment influence the decisions of the
second department, but not the other way around).

In the model, there are five relevant aspectsribatl to be specified. The first is the
generative structure that can be of four diffetgpes, depending on the characteristics
along the two dimensions. The second is the boupdational second-order adaptation
that concerns the organization design. Managerassemed to have control over the
number of departments and the assignment of furetiothem. In particular, they can
split an existing department into two or more newatéments, can combine two or
more into one or reallocate functions among them.

The third aspect is the first-order adaptation Wwhsorresponds to the usual one-bit
mutation implemented simultaneously in each of departments. The fourth is the
environmental change which is modelled as a ranclwange in the generative structure
that affects the coupling of decision both withimdabetween departments. The final
modelling specification concerns the selection merdm. Here, the probability that an
organization will be selected is proportional ®performance.

Simulation results show that hierarchical structuaee always able to converge to
the generative structure when managers are engagedond order adaptation. On the
contrary, non-hierarchical structures never mantagereach a stable state. Non-
hierarchical and loosely coupled structures contiouexist in six different forms at the
end of the experiment; non-hierarchical and tighttupled structures preserve the
initial heterogeneity throughout the experiment,gasging that second-order adaptation
is relatively ineffective.

When an environmental change occurs, the effeats®0f second-order adaptation
is considerably reduced, but the ranking betwegmarozations is the same as before.
Non-hierarchical and tightly coupled organizati@me the bad performers also in this
case.

Ethiraj and Levinthal address also the questioconfiplementarity of first-order and
second order adaptation with results that are amtd the ones presented above. When

35



there is a simultaneous process of first-order @edond-order adaptation, all
organizational structures perform better with respe the setting in which only first-
order adaptation is on the stage. In the ranking,ktad performer is, once again, the
non-hierarchical and tightly coupled organization.

Ethiraj and Levinthal (2004b) use a similar setnporder to answer the following
guestion: given a “true” structure and supposingt thoundedly rational agents are
unable to uncover it, is it better to “over-modidef or to “under-modularize™? In
particular, how does over- or under-modularizataffect local search and module
recombination performance over time?

Simulations show that when firms are engaged anlgcal search, the effectiveness
of innovation is lower the greater the deviationtloé design structure from the true
underlying structure. More interesting, Ethiraj drelinthal find that, in the long run,
erring on the side of greater integration posestoperformance penalties than erring
on the side of greater modularity.

When module recombination is allowed to operatenghiget more complicated.
With recombination but no local search, over-modm#ion gives more benefits than
under-modularization. Recombination helps firmsawoid local peaks, but as the size
of each module gets larger, a greater number asidacchoices will be replaced and
the probability of incorrect changes becomes high#hen recombination and local
search are allowed to interact, under-modularizsnggain a better strategy than over-
modularizing. With few modules, local search congates for the poor performance of
recombination; with many modules, local search appéo counteract the effect of

recombination.

4. Conclusions

Parallel to the qualitative analyses of organizatias structured bundles of problem-
solving capabilities (for a critical review of thieerature cf. Dosi, Faillo and Marengo,
2008), a growing number of contributions have beguoffer formal accounts of such
organizational properties and their dynamics. Taren&l instruments are diverse: they

include NK models representing organizations asmbges of interrelated “traits”
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mapping into some overall environmental fitness tlé firm; classifiers system
representations of the problem-solving procedurggdred by diverse internal or
environmental states; decomposition schemes of @anoascendancy allowing the
analysis of the performance properties of differ&epresentations” in the problem-
solving space and different patterns of divisioragnitive and operational labour.

The formal modelling of organizations as problervisg entities bears important
consequences also in terms of the theory of pramlu@nd technology. In fact, the
problem-solving activity conceived of as combinasiaf physical and cognitive acts,
within a procedure, leading to the achievement specific outcome is quite near to a
representation aechnology in actiorconceived as eecipe or aprocedure However,
the properties of such representation into the €losmensional) space of input/output
relations is till underanalyzed, an exception beugrswaldet al (2000) who offer a
promising example of the use of the apparatus of Mikdels to study the
microeconomic theory of technological evolution. (afso the discussion in Dosi and
Grazzi 2006 and Dosi and Nelson 2010).

The results begin to highlight important compamtproperties regarding, among
other, the impact on problem-solving efficiency dedrning of different forms of
hierarchical governance, the dangers of lock-ino@ased with specific forms of
adaptive learning, the relative role of “online”. Vsffline” learning, the impact of the
“cognitive maps” which organizations embody, thesgble trade-offs between
accuracy and speed of convergence associated Wfthedit “decomposition schemes”,
the (ambiguous) role of organizational memory inngiag environments.

In a nutshell, one has finally begun to developriarinstruments allowing exercises
of comparative institutional analysis (cf. Aoki, 2Q0focusing on the distinct properties
of different forms of organization and accumulatadrknowledge. It is a work which is

only at its exciting start.
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