


1 

Framing the empirical findings on firm growth 

 

Marco Capasso 

School of Business and Economics and UNU-MERIT, Maastricht University.  
E-mail: marco.capasso@gmail.com 

 

Elena Cefis 
Department of Economics, University of Bergamo, and Tjalling C. Koopmans research Institute (TKI), 

Utrecht University. E-mail: elena.cefis@unibg.it 
 

Sandro Sapio 

Dipartimento di Studi Economici, Universita degli Studi di Napoli Parthenope, and LEM, Sant'Anna 
School of Advanced Studies, Pisa. E-mail: alessandro.sapio@uniparthenope.it 

 

November, 2010 

Abstract 

This paper proposes a general framework to account for the divergent results in the empirical literature on the relation 
between firm sizes and growth rates, and on many results on growth autocorrelation. In particular, we provide an 
explanation for why traces of the LPE sometimes occur in conditional mean (i.e. OLS) autoregressions of firm size or firm 
growth, and in conditional median (i.e. least absolute deviation) autoregressions, but never in high or low quantile 
autoregressions. Based  on  an  original  empirical  analysis  of  the  population  of  manufacturing  firms  in  the  Netherlands 
between 1994 and 2004, we find that there is no peculiar role played by the median of the growth distribution, which is 
approximately equal to zero independent of firm size. In economic terms, this is equivalent to saying that most of the 
phenomena of interest for industrial dynamics can be studied without reference to the behaviour of the median firm, and 
many ‘average’ relations retrieved in the literature, starting from the negative relation between average size and average 
growth, are driven by the few dynamic firms in the sample rather than the many stable ones.  Moreover, we observe the tent 
shape of the empirical firm growth rate distribution and confirm the skewness-size and the variance-size relations. The 
identified quantile regression patterns - autoregressive coefficients above 1 for fast decliners, and below 1 for fast growers - 
can be obtained by assuming negative variance-size scaling and Laplace growth rate distributions, and are robust to a mild 
positive relationship between skewness and size. A relationship between quantile regression patterns and previous findings 
is therefore uncovered. 
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size scaling. 
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1. Introduction 

Starting from the earliest empirical tests of the Law of Proportionate Effect (LPE), to the findings of 

serial correlation in firms’ growth rates, the industrial economics and industrial dynamics literature 

provides several results for firm growth. At first sight, these results seem contradictory and show that 

firm growth can be in some cases a completely erratic process, and in other cases a process displaying 

persistence (meaning that firm growth cannot be represented by a random walk process but is more 

structured). The main purpose of this paper is to propose a general framework, able to account for the 

divergent results in the empirical literature on firm growth. 

The Law of Proportionate Effects (LPE), also known as Gibrat’s Law after Gibrat’s (1931) seminal 

work, predicts that firm size follows a random walk and hence that the firm growth is erratic and 

independent of firm size (Sutton 1997; Bottazzi et al. 2002). If the LPE is satisfied, it means that, on 

average, small firms do not grow faster than large firms, and that there are no firms that persistently 

grow in a positive or in a negative direction (i.e. there cannot be persistent outperformers and/or 

underperformers). The LPE originally was used to explain the highly skewed distribution of firm sizes 

and has become an empirical and theoretical benchmark in discussions of firm growth (see Steindl 

1965; Hart and Prais 1956; Ijiri and Simon 1977; Hall 1987; Lotti et al. 2003; Bottazzi and Secchi 

2005; Dosi 2007).  

The vast literature testing the LPE provides mixed results (see the comprehensive reviews in Hay and 

Morris 1991, Sutton 1997, Caves 1998, Lotti et al. 2003 and Dosi and Nelson 2010). Some studies 

(Hart 1962; Hart and Prais 1956; Simon and Bonini 1958; Hymer and Pashigian 1962; Acs and 

Audretsch 1990) find evidence of the independence between firm growth and firm size. Other authors 

(Kumar 1985; Mansfield 1962; Evans 1987a, b; Fotopoulos and Louri 2004; Audretsch and Elston 

2002) reject the LPE hypotheses, identifying three main problems. First, that the LPE does not hold for 

samples of micro and small firms, which have been found to grow faster than larger firms (Mata 1994; 

Reid 1995) or for new-born/infant/young or entrepreneurial firms (Audretsch, Santarelli and Vivarelli 
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1999; Lotti et al. 2003).
1
 Second, growth processes are shown to deviate from the LPE in terms of the 

relationship between variance in growth rates and initial firm size (variance-size scaling). Starting with 

Hymer and Pashigian (1962) and Mansfield (1962) the level of variance in growth rates was found to 

be negatively correlated with firm size – a finding that was confirmed later by Amaral et al. (1997), 

Bottazzi et al. (2001) and Axtell (2001).  

Third, focusing on the average or median firm may not allow the dynamics of fast growing and fast 

declining companies to be captured. Quantile regressions (Koenker and Bassett 1978) model the 

dynamics of the conditional firm size distribution as a whole, ‘quantile by quantile’ (see also 

Buchinsky 1998 and Koenker and Hallock 2001). Fotopoulos and Louri (2004) reject the LPE for all 

quantiles, in a sample of Greek firms for the 1992-1997 period. They find mean reversion, and 

especially for fast-growing firms. Even more interestingly, the work by Dahl et al. (2010) on Danish 

manufacturing firms in the 1994-1996 period finds explosive growth for small quantiles and mean 

reversion for large quantiles, while Gibrat's law is satisfied for the quantiles close to the conditional 

median. Coad and Hölzl (2009) find similar results for Austrian firms in the service industries. Hence, 

the few existing applications of quantile regression to firm dynamics, indicate that for fast growing and 

fast declining firms, the LPE does not work.  

From a theoretical point of view, it is often claimed that the independence between the growth rate and 

the initial size of the firm rules out the concept of ‘optimal size’ based on U-shaped average cost curves 

(see e.g. Dosi 2007). Indeed, if the LPE holds, then firm growth is a multiplicative process independent 

of initial conditions, or, in other words, does not involve systematic scale effects. If the LPE does not 

hold, we observe a tendency towards monopoly (if firm growth follows an explosive path – i.e. the 

autoregressive coefficient is larger than 1) or a regression-to-the-mean, which, indirectly, supports the 

idea of some underlying ‘optimal firm size’ or ‘optimal technological structure’ (i.e. when the 

autoregressive coefficient is smaller than 1). In addition to the concept of an ‘optimal firm size’ there is 

the finding that firm size distributions are right-skewed, which signals the co-existence of many 

relatively small firms with a few large and very large firms, in numbers much higher than predicted by 

a Gaussian shape assuming a mean-reverting pattern of firm growth. However, this theoretical 

framework is not suited to explaining either quantile regression patterns or variance-size scaling –

                                                            
1 Gibrat’s law is most often tested on samples of manufacturing firms or large scale services. However, Piergiovanni et al. 

(2003) and Audretsch et al. (2004) have shown that the LPE holds for the hospitality sector, an instance of a small scale 

service, exception for a limited number of sub-sectors.   
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indeed, existing theoretical explanations of variance-size scaling rest on managerial behaviour 

(Buldyrev et al. 1997, Sutton 2002) and corporate diversification (Bottazzi and Secchi 2006). A 

general, encompassing theoretical framework, therefore, is still beyond reach. 

This paper performs new empirical tests of the LPE at all quantiles in the conditional size distribution, 

using a unique dataset of the entire population of manufacturing firms registered in the Netherlands for 

fiscal purposes (i.e. without any exogenous threshold on the size of the firms). This work moves a step 

nearer to a theoretical explanation of why the LPE breaks down, in the tails of the conditional size 

distribution, with a view to reconciling the different violations of the LPE with the findings that 

confirm it.  

Our contribution is threefold. First, we find that firms in the central quantiles of firm size distributions 

do not grow from year to year, while the LPE breaks down in the tails (autoregressive coefficients 

above 1 in the left tail and below 1 in the right tail of the conditional size distribution). We hypothesize 

that if the methodology chosen to test the LPE does not take account of the whole conditional size 

distribution, this could produce misleading results. In studies that use OLS methods, the LPE is 

supported because the OLS results are driven by the large mass of firms that are stable (those between 

the 25
th

 and the 75
th

 quantiles are often shown not to grow). In these cases, the OLS autoregressive 

coefficient is 1 or very close to 1 (Hart and Prais 1956; Simon and Bonini 1958; and Bottazzi et al. 

2001). When Least Absolute Deviation (LAD) estimators are used, the autoregressive coefficient is 

close to 1 because it is calculated on the 50
th

 percentile (Bottazzi et al. 2007). We find evidence that, in 

these cases, the LPE is supported because firms do not move from their original position in the size 

distribution, not because firm growth is an erratic process.  

Second, we prove that the pattern of quantile regression estimates identified, can be obtained by 

assuming variance-size scaling and Laplace distribution of conditional firm size. In other words, fast 

decliners (growers) appear to be driven by an explosive (mean-reverting) growth process since the 

variance in growth rates among small firms is wider than that among large firms. Even if we assume 

that the skewness of growth rates is sensitive to initial size, the equivalence between quantile regression 

patterns and variance-size scaling still holds (provided that the skewness is not too elastic with respect 

to initial firm size). The main implication of this is that quantile regression patterns are driven by the 

same economic mechanisms that give rise to variance-size scaling and are primarily related to 

managerial behaviour and corporate diversification.  
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Third, we provide new analytical evidence on firm growth rate distribution, in the line with the studies 

by Stanley et al. (1996), Bottazzi et al. (2002), Bottazzi and Secchi (2003), Dahl et al. (2010). If the 

LPE were to hold, we would obtain Gaussian distributions of firm growth rates. However, recent 

empirical evidence shows that the growth rate distributions have much fatter tails than the Gaussian 

distributions, and are usually asymmetric. Our contribution to this literature is based on our choice to 

use a dataset without exogenous thresholds on firm size. This allows us to obtain firm growth rate 

distributions that are symmetric, with fat tails. Our analysis shows that size does not affect the location 

of the distribution (which is why the LPE seems in some cases to be confirmed, e.g. Hart and Prais 

1956, or Mansfield 1962), but it affects the variance as well as the magnitude and sign of the skewness. 

The paper is structured as follows. Section 2 summarizes the relevant literature, Section 3 describes the 

data and the empirical evidence. Our empirical findings provide the background for the theoretical 

results developed in Section 4; proofs are provided in the Appendix. Section 5 concludes. 

 

2. Literature review 

Gibrat's law states that ``the probability of a given proportionate change in size during a specified 

period is the same for all firms in a given industry - regardless of their size at the beginning of the 

period'' (Mansfield, 1962, pp. 1030-1031). Formally, if we denote by ,t jS  the size of firm j  at time t  - 

measured by total sales, total assets, or number of employees - Gibrat's law is true if 

, 1,

1, 1,( | )t j t j

t j

S S
t jSProb S−

−

−
−  is constant across different size classes (Sutton, 1997; Caves, 1998; Geroski, 

1999; and Dosi and Nelson, 2010 provide extensive reviews of the literature). 

The most common approach to testing Gibrat's law ultimately asks whether small firms grow faster 

than large firms on average. Following Sutton (1997), let us assume that the evolution of firm size is 

determined by a double-indexed stochastic process { },t jS , where j J∈  indexes firms, and 0,1,..t = . 

indexes time. If ,t jε  is a random variable denoting the proportionate rate of growth between period 

1t −  and t  for firm j  , then 

, 1, , 1,t j t j t j t jS S Sε− −− =    (1) 

and 

( ) ( )( ) ( ), , 1, 0, 1, 2, ,1 1 1 1t j t j t j j j j t jS S Sε ε ε ε−= + = + + +A    (2) 
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If the variance of ,t jε  is small, the approximation ( ), ,log 1 t j t jε ε+ =  can be justified. Hence, taking 

logs and defining , ,logt j t js S≡ , we have that 

, 0, ,

1

T

t j j t j

t

s s ε
=

+∑0    (3) 

If the increments ,t jε  are independently and normally distributed, then , ,lnt j t js S≡  follows a random 

walk and the limiting distribution of ,t jS  is lognormal. Therefore, the growth of the firm is unrelated to 

its current size and depends only on the sum of the idiosyncratic shocks. In order to test Gibrat's law, 

previous work frequently uses the following general logarithmic specification 

, 1, ,t j t j t js s uμ β −= + +                     (4) 

where ,t js  is the log-size of firm i  at time t , and ,t ju  is a random variable that satisfies 

( ), ,| , 0 0t j t k jE u S k− > =    (5) 

( )
2

, , ,

,
| , 0

0 otherwise
t j i t k j

i j t
E u u S kτ

σ τ
−

⎧ = =
> = ⎨

⎩
   (6) 

Gibrat's law is confirmed if the hypothesis that 1β =  is not rejected by the data against 1β <  . The 

assumption that the error term ,t ju  is Gaussian justifies the estimation of parameters via Ordinary Least 

Squares (OLS).
2
 Gibrat’s law is supported in early work, such as Hart and Prais (1956), Simon and 

Bonini (1958), and Hymer and Pashigian (1962), but later studies found that smaller firms grow faster 

on average (Kumar 1985; Evans 1987a; Hall 1987; Dunne et al. 1989; Dunne and Hughes 1994; Hart 

and Oulton 1996; Reichstein and Dahl 2004). These works control for sample selection bias due to the 

fact that smaller companies are characterized by higher hazard rates. 

 

The detection of heavy tails in the distribution of firm growth rates (Stanley et al. 1996; Bottazzi and 

Secchi 2003) pushed a number of authors to estimate the model in Eq. 4 by means of an LAD 

estimator, assuming that the error term ,t ju  is drawn from a Laplace distribution (see Bottazzi et al. 

                                                            
2
The test is a one-tailed test, which we also use in our empirical analysis in order to be consistent with 

the literature on testing for unit roots. Note also that 1β >  implies explosive growth paths, i.e., firms 

grow faster as they get larger. This situation is conceivable for a short but not an indefinite period. 

Moreover, from a qualitative perspective, the implications for market structure are similar to those of 

1β = : concentration will increase over time, although at a faster rate. 
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2007; Bottazzi and Secchi 2006). Although OLS estimation minimizes the sum of the squared 

deviations from the mean, it is well known that the mean of a random variable is highly sensitive to 

extreme values. The LAD is a robust estimator because it is based on the median. Thus, in an LAD 

approach Gibrat's law holds if the median growth rate is independent of initial size, which occurs when 

1β =  . 

Over and above the statistical robustness issues, one of the major economic implications of heavy tails 

is that fast-growing firms account for a non-negligible share of an industry population and drive the 

industry dynamics entirely. Therefore, large (positive and negative) growth rates cannot be dismissed 

as outliers. For this reason, assessing the validity of Gibrat's law on the mean or median firm, as in the 

OLS and LAD approaches, is far less relevant than testing it on fast-growing (in a positive or negative 

direction) firms. Quantile regressions, introduced by Koenker and Bassett (1978), represent an 

important advance in this respect because they model the dynamics of the firm size distribution as a 

whole, ‘quantile by quantile’. It should be noted that quantile regression relaxes the restrictive 

assumption that the error term is identically distributed at all points in the conditional distribution - 

thereby satisfying the requirement of a robust estimation method. Buchinsky (1998) and Koenker and 

Hallock (2001) report on several applications of this methodology in Economics. 

 

Let ( | )pQ x y  denote the p-th quantile of x  conditional on y  ( (0,1)p ∈ ). A quantile regression model 

for firm log-size reads 

 

( ), 1, , , 1, 1,|p

t j p p t j t j p t j t j p p t js s u Q s s sμ β μ β− − −= + + = +          (7) 

 

In the model, ,
p
t ju  is an i.i.d. innovation; pμ  and pβ  are the constant coefficients to be estimated. More 

specifically, pβ  is the first-order autoregressive coefficient of firm log-size; pμ  is the regression 

intercept. The p  subscripts indicate that the model coefficients are allowed to vary across quantiles of 

the conditional size distribution. The coefficient pβ  is interpreted as the marginal change in final size 

due to a marginal change in initial size, conditional on being on the p-th quantile of the final size 

distribution. The reader is referred to Koenker and Bassett (1978) for technical details on the estimator. 

Note that when 1/ 2p =  we are back to the LAD estimator. Gibrat's law is confirmed at the p-th 

quantile if pβ  is not significantly different from 1. 
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One of the earliest applications of the quantile regression to test Gibrat's law is provided by Machado 

and Mata (2000), who analyse a sample of Portuguese manufacturing firms observed in 1983 and 1991, 

using a Box-Cox transformation of the quantiles. Firm size is shown to be positively related to industry 

growth, patents and exports, and Gibrat’s Law is contradicted by the departures of the firm size 

distribution from lognormality. 

 

Since 2000, several estimates of linear quantile regression models of conditional firm size or growth 

have been performed. Lotti et al. (2003) study 855 Italian firms born in 1987 and observed through to 

1993. Gibrat's law fails during the first year of a firms' activity in 5 out of the 6 industries analysed, but 

pβ  gets closer to 1 as the firm life-cycle evolves.
3
 Fotopoulos and Louri (2004) reject Gibrat's law for 

all quantiles, in a sample of Greek firms in the period 1992-1997 because pβ  is significantly below 1, 

and especially for fast-growing firms. The work by Dahl et al. (2010) on Danish manufacturing firms in 

1994-1996 finds that 1pβ >  for small quantiles ( 0.4p ≤  ) and 1pβ <  for large quantiles 

( 0.7p ≥ ), while Gibrat's law is satisfied for the quantiles close to the conditional median. Coad and 

Hölzl (2009) provide similar results for Austrian firms in the service industries. All these studies 

control for persistence in firm growth rates and industry-specific effects. 

 

The assumption of an i.i.d. error term is questioned by evidence on serial growth rate correlation: 

positive according to Ijiri and Simon (1964), Singh and Whittington (1975), Chesher (1979), Bottazzi 

et al. (2001); and negative according to Boeri and Cramer (1992), Bottazzi et al. (2007). Coad (2007) 

provides a quantile regression analysis of serial growth correlation for a sample of French companies, 

and finds no correlation for the median firms, and negative correlation in the tails. If the error term is 

serially correlated, firm growth rates in one period depend on firm growth rates in the previous periods; 

hence Gibrat's law might be violated even if the first-order regression coefficient is equal to 1. 

 

                                                            
3
See also Lotti et al. (2009) for more on the theoretical underpinnings of these results. 
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3. Empirical evidence 

3.1 The dataset 

The data used in this paper were collected by the Centraal Bureau voor de Statistiek (CBS) and come 

from the Business Register of enterprises. The Business Register database includes the entire 

population of firms registered for fiscal purposes in the Netherlands in the year considered. The 

database reports detailed information on the sector of the company at the 5-digit of the SBI (the Dutch 

Standard Industrial Classification), number of employees and dates of entry and exit of the firms in the 

market. The definition of entry and exit excludes changes in a firm's sector of activity; in these cases, 

the firm is regarded as continuing. The BR also supplies information on different types of exit, 

distinguishing between exits due to failure, mergers, acquisition, and radical restructuring. Our 

observation period covers the years 1994 to 2004. For each year, we selected all the manufacturing 

firms present in the Business Register. The population includes firms with zero employees, referred to 

as self-employment. In this study, the variable of interest is the size of the firm, proxied by number of 

employees.
4
  

Table 1 presents the descriptive statistics for firm log size, where firm log size is defined as 

log(Size 1)+ , based on the presence of self-employment where firm size is set equal to 0. Table 1 

presents the overwhelming importance of micro-firms in the dataset, which contributes to the right-

skewness in the log-size distribution depicted in Figure 1. While a Gaussian distribution of log-size can 

derive from a random walk growth of incumbent firms (and then be a clear signal that the LPE holds), a 

right-skewed distribution where the upper tail resembles a Pareto or a Yule distribution can be caused 

by  the presence of new entrants and still be consistent with the LPE (Simon and Bonini, 1958). In our 

case, the right-skewness of the log-size distribution, confirmed by the QQ-plot in figure 2, and the 

linear fit of the upper tail of the firm size distribution, shown in the log-log plot of figure 1 (right 

panel), could then in principle be consistent with the LPE. However, failures of the LPE often depend 

on the behaviour of young small firms having a higher average growth, as Lotti and Santarelli (2004) 

point out before analysing the evolution of the size distribution over time for cohorts of new entrants. 

In the next subsection we follow a similar intuition: we consider subsets of firms having a given initial 

size, and track their size distribution over a three-year time span. 

                                                            
4 All the results shown in this section were obtained using the R software package, except for the 

quantile regression results that were obtained using the qreg and grqreg functions of the Stata software 

package. 
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3.2 Empirical conditional distributions 

The columns in Table 2 report the quantiles of firm size for companies with 5, 10, 20 and 50 employees 

at time 1t − , and companies with 5, 10, 20 and 50 employees at time 2t − . Notice that the sample 

conditional median is remarkably stable: at time t , the median size of firms that at time 1t −  were 

size x , is still x . In fact, the conditional median is constant even after 2 years. Further information on 

the shape of the conditional size distribution is provided in the last three rows in Table 2, which present 

scale, skewness and kurtosis statistics developed by Oja (1981) and Ruppert (1987).
5
 

Scale statistics is zero for the smallest companies; for example, if we condition on 1 {5,10}tS − =  or 

2 {5}tS − = : the 25% and 75% firm quantiles are the same as the median. Hence, the growth rate 

distributions for small firms show a sharp modal peak. These distributions become smoother as we 

move towards the larger firms, as demonstrated by the positive scale values. Size distributions 

conditioned on 1 {5,10,20}tS − =  and 2 5tS − =  are symmetric, but there is a positive skew when 

1 50tS − =  and when 2 {10,20,50}tS − = . Kurtosis is larger for smaller firms and for size distributions 

conditioned on 2tS − . Hence, smaller firms are also heavier-tailed. 

Table 3 reports the gross 1-year and 2-year growth rate 1/t tS S −  and 2/t tS S −  quantiles. While the 

values in the 50%  quantile row are all equal to 1, those in the left tail are below 1 and those in the right 

tail above 1. Interestingly, the left tail quantiles tend to increase with 1tS −  and with 2tS − , while the 

right tail quantiles tend to decrease. These patterns are clearer in the most extreme quantiles. Hence, 

smaller companies are more likely to experience large positive or negative growth episodes. 

Figure 3 depicts the empirical probability densities of firm size, conditional on size being 5, 10, 20 and 

50 employees at time 1t − , on a double logarithmic scale. Consistent with the above findings, 

compared to a Gaussian process, densities appear to be more sharply peaked and heavier-tailed. The 

densities for 1 5tS − =  and 1 10tS − =  display longer right tails; this is the effect of censoring since 

the number of employees cannot go below 0. The conditional size distribution of larger firms seems to 

be less dispersed. 

                                                            
5
Let pQ  be the p-th quantile. The scale is defined as 0.75 0.25

0.75 0.25

Q Q

Q Q

−
+

, the skewness as 0.75 0.25 0.50

0.75 0.25

2Q Q Q

Q Q

+ −
− , and 

the kurtosis as 0.90 0.10

0.75 0.25

Q Q

Q Q

−
− . See also Machado and Mata (2000). 
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These conditional firm size distributions provide two hints. First, we can reasonably expect that an 

LAD regression of current size on lagged size will yield a unitary coefficient, consistent with Gibrat’s 

Law. This is implied by the observed stability of the conditional median. Second, Gibrat’s Law may 

not apply to company growth at all points in the conditional size distribution: in fact, conditional 

extreme quantiles change across size classes. Against the background of all the above results, we 

analyse the sample in more depth based on the quantile regressions. 

 

 

3.3 Quantile regression estimates 

To prove that firm growth is unrelated to current size and depends only on the sum of idiosyncratic 

shocks, it is not enough that the first-order regression coefficient in Eq. 7 is equal to 1. If the error term 

is serially correlated, firm growth rates in one period depend on firm growth rates in the previous 

periods; hence Gibrat's law might be violated even if the first-order regression coefficient is equal to 1. 

Therefore, we extend the quantile regression model in Eq. 7 by assuming serial correlation in the error 

term: 

 

, 1, ,

p p p

t j p t j t jε ρ ε υ−= +            (8) 

 

where pρ  is the first-order autocorrelation coefficient of ,
p
t jε  , and ,

p
t jν  is an i.i.d. sequence. Following 

Chesher (1979), the quantile regression we estimate is the second order autoregressive model 

 

( ), 1, 1, 2, 2, , , 1, 1, 1, 2, 2,|p

t j p p t j p t j t j p t j t j p p t j p t js s s Q s s s sω γ γ υ ω γ γ− − − − −= + + + = + +    (9) 

 

where the coefficients pω  , 1,pγ  and 2,pγ  are linked to the structural coefficients pμ  , pβ  and pρ  in 

Eq. 7, as follows: 

 

( )1p p pω μ ρ= −      (10) 

1, p p pγ β ρ= +       (11) 

2, p p pγ β ρ= −       (12) 
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The structural coefficients are retrieved from the estimated coefficients using the formulae: 

 

( )2

1, 1, 2,

1
/ 1 4

2
p p p p pμ ω γ γ γ⎛ ⎞= − − +⎜ ⎟

⎝ ⎠
   (13) 

( )2

1, 1, 2,

1
4

2
p p p pβ γ γ γ= + +      (14) 

( )2

1, 1, 2,

1
4

2
p p p pρ γ γ γ= − +      (15) 

 

Gibrat's law is satisfied at the p-th quantile if the joint hypothesis 1pβ =  , 0pρ =  cannot be rejected 

at the conventional significance levels. 

The model is estimated on pooled data including all firms irrespective of size, and on three subsamples 

of firms with less than 20 employees at time 1t − (size class 1 - corresponding to micro firms), firms 

with 20 to 199 employees (size class 2 - small-medium firms) and firms with more than 199 employees 

(size class 3 - large firms). After pooling the data, we have 456,874 observations in the whole 

population sample, 395,408 micro firms, 55,243 small-medium firms, and 6,223 large firms. 

Table 4 summarizes the quantile regression estimates and the corresponding structural coefficients. The 

whole sample and the micro firm subsample estimates of the first-order coefficients 1γ  are equal to 1 

in all but the 10% quantile. In the small-medium firm subsample, 1γ  is equal to 1 for the 40% to 60% 

quantiles, below 1 in the right tail, and above 1 in the left tail. In the large firm subsample, 1γ  is equal 

to 1 in the 40% to 60% quantiles, above 1 in the 10% quantile, and negative in all the others. Second-

order autoregressive coefficients 2γ  are substantially different from 0 only for the small-medium and 

large firm subsamples; they are negative in the left tails and positive in the right tails. 

Next, we focus on the structural coefficients. The whole sample estimates are ˆ 1pβ =  for all except the 

extreme quantiles, with 0.1β̂  slightly below 1 and 0.9β̂  slightly above 1. The pattern is similar for micro 

firms. For the small-medium and large firms, ˆ 1pβ =  only for the quantiles 0.4 to 0.6 quantiles; pβ is 

above 1 in the left tail and below 1 in the right tail. Differences are even greater in the size class 2, 

especially in the right tail where 0.9
ˆ 0.967β = . These estimates are depicted in Figure 4, which shows 

95% confidence bands. Figure 4 shows that, with the exception of the lower quantiles of large firms 
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where departures from Gibrat’s Law are not significant, all other departures from Gibrat's Law are 

significant although only slightly. Most values of pρ  are very close to 0, except for those cases where 

they are considerably lower than 0. 

 

In interpreting these results, it should be remembered that the size distribution of micro firms (size 

class 1) is left-censored because the number of employees is bounded at 0. This might be distorting the 

results for micro firms. Also, the similarities in the estimates for size class 1 and the whole sample 

estimates are because micro firms are the most numerous in the sample. Estimates of pβ  and pρ  

obtained on small-medium and large companies (size classes 2 and 3) are probably more realistic and 

are in line with the findings in Dahl et al. (2010) for Danish firms, and Coad and Hölzl (2009) for 

Austrian firms. Hence, in what follows we focus on the pattern of estimates obtained on small-medium 

and large firms. We try to explain why Dutch companies with large positive growth rates are mean-

reverting and why the growth process in Dutch companies with large negative growth rates is 

explosive. 

 T 

 F F 

4. Why does the LPE break down in the tails? 

We have detected slight, but statistically significant departures from the LPE for fast growing, and fast 

declining Dutch companies. Fast growers grow less (and fast decliners decline less) if they were large 

in size at the beginning of the period – in line with the findings in Coad and Holzl (2009) and Dahl et 

al. (2010). At the same time, we observed that both variance and skewness in the conditional size 

distribution fall with size. So are these empirical facts related? One useful insight is provided by 

Koenker (2005), who stresses that discrepancies among estimated coefficients at different quantiles - as 

in our case – are indicative of heterogeneity within the population. In our case, the inverse variance-

size scaling is indeed an instance of heteroskedasticity in the distribution of firm growth rates. It would 

be reasonable to conjecture that the LPE fails at the extreme quantiles of the conditional growth rate 

distribution for the same reasons that give rise to variance-size scaling. The variation of the skewness, 

across different firm size classes, is another source of heteroskedasticity, which might affect the 

validity of the LPE. The pattern of quantile estimates of the LPE obtained and the variance-size and 

skewness-size scaling appear to be closely related.  
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In the following subsections, we explore these insights. Sub-section 4.1 analyses the 

equivalence between quantile estimates and variance-size scaling under the assumption that firm 

growth rates are Laplace distributed. In Sub-section 4.2 we relax the assumption of symmetry and 

consider Asymmetric Laplace growth rates in order to assess the impact of skewness-size scaling. Sub-

section 4.3 provides theoretical interpretations of these relationships between LPE, variance and 

skewness.  

 

4.1 Quantile regression coefficients and varianceǦsize scaling 

Suppose firm growth rates are distributed as Laplace random variables, as suggested in the literature 

(Amaral et al. 1997; Axtell 2001; Bottazzi and Secchi 2003, 2006; Fagiolo and Luzzi 2006). Laplace 

distributions have a probability density function (pdf) 

 

,

,

1
( )

2

t jg m

a

t jf g e
a

−
−

=    (17) 

 

where m  is the mean and a  is the width parameter. Because Laplace distributions are symmetric, m  

is also the median. The variance is 2
,[ ] 2t jV g a=  , therefore the width parameter a  is proportional to 

the standard deviation (by a factor 2  ). 

The p  -quantile of ,t jg  is 

 

,

,

( ) log(2 ) (0,1 / 2]

( ) log(2(1 )) [1 / 2,1)
p t j

p t j

Q g m a p p

Q g m a p p

= +

= − −
∈
∈    

 

Notice that 1/2 ,( )t jQ g m= . However, the quantile regression focuses on conditional quantiles. 

Therefore, to obtain a theoretical explanation for the quantile regression results in the previous section, 

we assume functional dependence of the growth rate distribution parameters m  and a  on the lagged 

log-size 1,t ts − . We also assume the median growth rate to be linear in the lagged log-size, 

 

1, 1,( ) ( 1)t j t jm m s sβ− −= = −  
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with [0,1]β ∈ , and that the width is decreasing with size according to a power law, in line with the 

previously cited literature: 

 

1,

1,( ) t js

t ja a s e
α −

−= =  

 

with 0α ≤ . The conditional growth rate quantiles can thus be written as: 

1,
, 1, 1,( | ) ( 1) log(2 )       (0,1/2]t js

p t j t j t jQ g s s e p pαβ −
− −= − + ∈      (20) 

1,

, 1, 1,( | ) ( 1) log(2(1 )) [1 / 2,1)t js

p t j t j t jQ g s s e p p
αβ −

− −= − − − ∈    (21) 

 

These are non-linear functions of the lagged log-size. However, the quantile regression approach 

assumes a linear dependence. Let us Taylor-expand Eq. 20 and Eq. 21 up to the first order, around a 

given log-size ps
∗ : 

 

( ) ( )
*

* *
, 1, , 1,| ( | ) 1 log(2 ) , (0,1 / 2]ps

p t j t j p t j p t j pQ g s Q g s e p s s p
αβ α− −

⎡ ⎤≈ + − + − ∈⎢ ⎥⎣ ⎦
 (22) 

( ) ( ) ( )
*

* *
, 1, , 1,| | 1 log(2(1 )) , [1 / 2,1)ps

p t j t j p t j p t j pQ g s Q g s e p s s p
αβ α− −

⎡ ⎤≈ + − − − − ∈⎢ ⎥⎣ ⎦
 (23) 

 

Finally, we obtain the conditional log-size quantiles by adding 1,t js −  to both sides of the above 

formulas, which yields: 

 

( ), 1, 1,|p t j t j p p t jQ s s sμ β− −≈ +          (24) 

 

where 

 

log(2 )ps
p e p

αβ β α
∗

≡ +  if (0,1/2]p ∈  ;  

log(2(1 ))ps
p e pαβ β α

∗
≡ − −  if [1/2,1)p ∈  ;  
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1( | )
,( | ) p t t

p

dQ g s
p p t j p pds
Q g s sμ −

∗
∗ ∗≡ −  . 

 

This is essentially a first-order quantile regression model, but now the pβ  coefficient is constituted of 

two parts: 

 

 ( )1
2

β β= , which defines the median growth-size relationship, and is equal to 1 under Gibrat’s 

Law;  

 log(2(1 ))pse p
αα
∗

−  in the right tail, or log(2 )pse p
αα
∗

 in the left tail, depending on the variance-

size scaling coefficient α  and the quantile percentage p . 

 

More generally, we can relax the power-law scaling assumption and, using a generic function 1,( )t ja s −  

for the width coefficient, we can show that the quantile regression coefficient pβ  then reads 

 

( )log(2 ) (0,1 / 2]

( )log(2(1 )) [1 / 2,1)

p p

p p

a s p p

a s p p

β β β
β β β

∗

∗

′≡ + >

′≡ − − <

∈
∈

 

 

As long as 0a ′ < , the results based on power-law scaling are confirmed. The steeper the variance-size 

relationship (i.e. the larger α ), the greater the gap between pβ  and 1
2
β . Thus, we can make the 

following proposition. 

 

Proposition 1. Let firm growth rate ,t jg  be Laplace distributed, conditional on initial firm log-size. If 

the width coefficient is decreasing in initial firm size, then 

 

 1/2pβ β>  in the left tail of the conditional size distribution, defined by (7) ( (0,1/2)p ∈  );  

 1/2pβ β<  in the right tail ( (1/2,1)p ∈ ). 

 

The pattern predicted by Proposition 1 resembles the pattern observed in our ‘size class 2’ and ‘size 

class 3’ subsamples in Table 4. If there is no variance-size scaling ( 0α = ), all quantile regression 
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coefficients collapse to 1
2
β . 

We can conclude, therefore, that the pattern of quantile regression estimates for Dutch companies with 

at least 20 employees - explosive growth in the left tail of the conditional size distribution, mean-

reversion in the right tail - can be obtained by assuming a decreasing relationship between the variance 

in firm growth rates and firm size. 

 

4.2 Quantile regression coefficients and skewness 

How generalizable is this conclusion? The above analysis is grounded on the assumption of a Laplace 

growth distribution. Under this assumption, discrepancies among the regression coefficients at different 

quantiles, can only be due to changes in the width of the distribution across size classes. If firm 

heterogeneity is captured only by scale and location differences, we could apply a ‘conditional 

location-scale model’, as defined in Machado and Mata (2000), and abandon quantile regression. 

However, our results and those in Capasso et al. (2009) show that the growth rate distribution for large 

Dutch companies is left-skewed; it is symmetric only for medium companies. Reichstein and Jensen 

(2005) find that in the growth rate distribution of Danish companies the right tail is fatter than the left 

tail. Therefore, skewness seems to be another source of heterogeneity among firms from different size 

classes. 

In order to understand how changes in skewness across size classes affect results, we extend the 

analysis to the case of an Asymmetric Laplace (AL) conditional growth distribution (Kotz et al. 2001). 

The probability density function of an AL random variable reads: 

 

1

2

2

1
( )

1
1

( )
1

g m

a

g m

a

f g e g m
a

f g e g m
a

κ

κκ
κ
κ
κ

−

−

−
= ≥

+

= <
+

 

 

Here a  and m  are respectively, scale and location parameters. Skewness is regulated by κ : 

specifically, 1κ <  indicates a right skew, 1κ >  indicates a left skew (i.e. it implies a more negative 

skewness). The symmetric Laplace distribution is obtained by setting 1κ = . Variance 

2 2 2[ ] ( )V g a κ κ−= +  is increasing in a , while the relationship with κ  is U-shaped, with a minimum 

at  1κ =  . The quantiles are given by  
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2 2

2 2

2
2

2

1
( ) log

1

( ) log (1 )(1 )
1

p

p

Q g m a p p

a
Q g m p p

κ κκ
κ κ

κκ
κ κ

⎛ ⎞+ ⎟⎜ ⎟= + ≤⎜ ⎟⎜ ⎟⎜ +⎝ ⎠

⎡ ⎤= − + − ≥⎢ ⎥⎣ ⎦ +

 

 

We can now condition variance and quantiles on lagged log-size, 1ts − . We need to assume that a  and 

κ  depend on the lagged log-size. If the growth of large companies is more left skewed than the growth 

of small companies, as our results and those in Capasso et al. (2009) show, it is reasonable to assume 

that 1( ) 1tsκ κ −= ≥  with 0κ′ >  (i.e., larger firms are negatively skewed). In this case, the variance 

is increasing in κ , hence an inverse variance-size scaling can be obtained only if we assume 

1( )ta a s −=  with 0a ′ < . More precisely, we need 
2 2

2 2
a
a

κ κ κ
κκ κ

−

−
′ ′−

+
> .

6
 Finally, it is useful to 

assume that the median also depends on lagged size ( 1( )tm m s −=  ), although we do not impose any 

restriction on the sign of its first derivative. 

The conditional quantiles can then be rewritten as: 

 

2 2
1 1

1 1 1 1 2 2
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1 1 1 2
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Taking the first-order Taylor approximation around ps
∗  and adding 1ts −  on both sides yields an 

expression for the conditional quantiles of the time- t  log-size ts  : 

 

1 1( | )p t t p p tQ s s sμ β− −≈ +  

                                                            
6
 In order to obtain this condition, we need to take the logarithm of conditional variance 

2 2 2[ | ] ( ) ( ( ) ( ) )V g s a s s sκ κ−= +  and find the region where its first derivative with respect to s  is 

negative. 
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where 

 

1

( | )
1

p t p

p
t

dQ g s

ds
β

∗

−
≡ +  

 

is the regression parameter for the pth -quantile, and 1( | )
( | ) p t t

p

dQ g s
p p t p pds
Q g s sμ −

∗
∗ ∗≡ − . The following 

proposition outlines the conditions behind the pattern of quantile regression estimates identified, if 

conditional growth rates are AL-distributed. 

 

Proposition 2. Let the firm growth rate tg , conditional on initial firm size, be distributed as an 

Asymmetric Laplace, with width and skewness decreasing with size - respectively ( 0a ′ < ) and 

( 0κ′ >  ).
7
 

 

If  

a) the location parameter function 1( )tm s −  satisfies 

 

2

2 2

2 2
log

1 1

m a a

m a m

κ κ κ κ
κ κκ κ

⎡ ⎛ ⎞ ⎤⎛ ⎞′ ′ ′ ′⎟⎜⎟⎜⎢ ⎥⎟= + +⎟ ⎜⎜ ⎟⎟ ⎜⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠ + +⎝ ⎠⎣ ⎦
 

and  

b) the skewness function κ  is less elastic to firm size than the width ( )aaκ
κ
′ ′<   

then, in the size autoregressive model specified by (7): 

1. the conditional median firm size is driven by a Gibrat process: 1/2 1β =  ;  

2. firms in the left tail of the conditional size distribution are driven by an explosive process: 

1pβ >  for (0,1/2)p ∈  ;  

3. firms in the right tail of the conditional size distribution are driven by a mean-reverting process: 

1pβ <  for (1/2,1)p ∈  . 
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See Appendix 1 for the proof.  

Note that if condition (b) is satisfied, then the variance in the growth rate is decreasing in size, because 

the condition for inverse variance-size scaling previously indicated, i.e. 

2 2

2 2

a

a

κ κ κ
κκ κ

−

−
′ ′−

+
>

, is 

also satisfied. Therefore, the message from Proposition 2 is that even if skewness decreases with size, 

the observed pattern of quantile regression coefficients is driven by inverse variance-size scaling - 

provided that skewness is less sensitive than width to initial size. 

 

4.3 Theoretical interpretation 

The picture that emerges hints at the equivalence between two pieces of evidence: lack of support for 

the LPE in the tails; growth rate variance is decreasing with respect to size. This equivalence is 

compatible with skewness decreasing with size, provided that this decline is mild. We can conjecture 

that the pattern of quantile regression estimates that emerges, is rooted in the same economic 

mechanisms that give rise to variance-size scaling in firm growth performances, which is related to 

managerial behaviour, risk diversification and the evolutionary processes of learning and selection. At 

the same time, there are reasons why we might expect that, for large firms, the right tail of the growth 

distribution will decline faster than the left tail, including diseconomies of growth and scale, market 

power, and managerial attention, all of which lead to left-skewed growth rate distributions for large 

firms. Our results suggest that the pattern of quantile regression estimates identified, will survive as 

long as these mechanisms are not too strong. We describe each of these issues in more detail.  

 

The evidence of variance-size scaling has been rationalized in a few formal models, and is 

consistent with evolutionary accounts of industry dynamics. In the models proposed by Buldyrev et al. 

(1997) and Sutton (2002), variance-size scaling is determined by the firm’s internal dynamics which is 

shaped by managerial behaviour. In Buldyrev et al. (1997), the firm is comprised of equally-sized units; 

if the proportional growth rates of these units are statistically independent, the firm’s growth rate 

variance scales with size according to a power law with exponent 0.5α = . At the other extreme, 

0α =  if unit growth rates are perfectly correlated. The observed scaling exponents are replicated if 

unit growth rates are highly, but imperfectly correlated. Sutton (2002) disputes the assumption of a 

                                                                                                                                                                                                            
7 Recall that 1κ >  denotes a left skew. 
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positive correlation between units, and shows that correlating mechanisms are not necessary to obtain 

variance-size scaling. In his model, the firm consists of a number of (approximately) independent 

businesses, and unit growth rates are independent; the result is that variance in firm growth rates is a 

power law of firm size with the empirically ‘correct’ exponent. A third model of the scaling 

phenomenon is proposed by Bottazzi and Secchi (2006), and relies on the risk-spreading effects of 

corporate diversification (see also Bottazzi et al., 2001). After showing empirically that larger firms 

operate in a greater number of submarkets, the authors use a stochastic branching process as a 

metaphor for the cumulative nature of core competences. Larger companies manage to achieve more 

homogeneous growth performance because they exploit the synergies among units operating in 

different submarkets.  

 

In addition to the above formal models, insights on variance-size scaling are provided in the 

literature on firm entry, which stresses the role of evolutionary dynamics in the processes of firm 

survival and firm growth. It has become a stylized fact that new entrants on average are smaller than 

incumbents (Geroski 1995, Caves 1998, Dosi 2007). Hence, the heterogeneity observed among small 

firms may be due in part to systematic differences among entrants, translating possibly into highly 

heterogeneous growth performance. New firms seem to be highly asymmetric in three respects: 

determinants of entry, and founders’ experience; strategic goals; expected costs and performance. 

These asymmetries are likely to translate into dramatically different growth paths. The first aspect is 

discussed in Santarelli and Vivarelli (2007), who distinguish between ‘progressive’ entry determinants, 

such as the existence of favourable economic and technological opportunities, and ‘regressive’ 

motivations, as in the case of firm founders seeking to escape from unemployment or low-wage jobs. 

The latter motivations are likely to result in slower growth or annihilation by the competition. Second, 

not all new firms pursue growth as a strategic objective (Cabral and Mata 2003). There are cases of 

firms that stay small in order to avoid tax, to maintain workforce flexibility,
8
 or because they are 

‘control averse’, for example, scientist and engineer firm founders want to maintain control of their 

high-tech ventures (see Cressy 1995; Chittenden et al. 1996; Cressy and Olofsson 1997). At the same 

time, new firms based on a growth strategy will come under pressure to grow fast in order to survive 

and reach a minimum efficient scale. These differences in relation to strategy are likely to disappear for 

large firms, implying widely dispersed growth rates only for small firms. Finally, in the ‘passive 
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learning’ model proposed by Jovanovic (1982), entrants have very heterogeneous expectations about 

their relative efficiency and, therefore, their growth performance is highly asymmetric. Firms whose 

cost expectations prove over-optimistic decline, and may choose to exit, while firms with realistic cost 

expectations will adjust their size gradually as these expectations change. Thus, large firms could be 

seen as the survivors in an evolutionary process through which they managed to learn, and achieve 

stable and homogeneous expansionary paths.   

 

As already underlined, our theoretical results emphasize the role of skewness in conditioning 

the success of the LPE at the extreme quantiles. The industry dynamics literature provides some 

reasons for skewness-size scaling. Penrose (1959) suggests that sustaining a rapid pace of growth 

entails relatively high operating costs, and that fast-growers tend to be over-stretched and enjoy little 

slack. These diseconomies of growth – sometimes dubbed the ‘Penrose effect’ (Coad 2009) – may 

interact with diseconomies of scale, more frequent in large companies. If this occurs, large firms will 

prefer to avoid fast growth. Aversion to fast growth can also be due to market power: large firms 

controlling a significant fraction of the market may restrict their growth in order to preserve high prices 

(Nelson and Winter 1982; Nelson 1987). Finally, in large firms involved in diversification, managerial 

attention may be a binding constraint, hindering their ability to grow. All of these mechanisms could 

explain why the right tail in the growth rate distribution declines faster for large firms, but do not 

restrict the behaviour of the left tail. If diseconomies of growth and scale, market power and managerial 

attention are strong enough, the skew in large firms’ growth rates distributions may be extremely 

negative, possibly violating condition (b) in Proposition 2. 

Based on the above discussion, we can make two main conjectures. On the one hand, the LPE 

does not hold at the extreme quantiles of the conditional size distribution because learning, market 

selection, risk diversification and correlations among units cause growth performance among large 

firms to be more similar. On the other hand, the signs of the deviations from the LPE depend on the 

strength of the skewness-size scaling: the observed quantile regression estimate patterns require 

diseconomies of scale, diseconomies of growth, market power and limits on managerial attention to be 

not too strong. 

                                                                                                                                                                                                            
8 In some countries, firing regulations are less restrictive for companies with small workforces (e.g. in 

Italy, for companies with less than 20 employees).  
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5. Conclusions 

This study frames the empirical evidence on firm growth by increasing our understanding of the 

processes that jointly drive many of the empirical findings in the literature. Assuming that firm growth 

rates are Laplace distributed (as in Amaral et al. 1997, Buldyrev et al. 1997, Bottazzi and Secchi 2003) 

with the location parameter equal to zero, and that the width of the growth distribution decreases with 

initial firm size (as found in this paper and several previous works), we can derive the pattern of 

quantile regression estimates observed by Coad and Hölzl (2009) and Dahl et al. (2010), for our dataset 

of Dutch firms: autoregressive coefficients above 1 for fast decliners, and below 1 for fast growers. In 

other words, under certain conditions variance-size scaling and the observed quantile regression 

patterns are equivalent. Such equivalence disappears if we assume Asymmetric Laplace growth rates 

with a skewness that is very steeply increasing with initial firm size.  

Our analysis provides some explanations for the negative relation between firm size and mean 

of growth rates, and many results on size and growth autocorrelation in the literature since the 1980s. 

In particular, we have provided an explanation for why traces of the LPE sometimes occur in 

conditional mean (i.e. OLS) autoregressions of firm size or firm growth, and in conditional median (i.e. 

least absolute deviation) autoregressions, but never in high or low quantile autoregressions. 

In this paper, a central role is played by the asymmetry in the growth rate distribution, and the 

changes in the shapes of the left and right tails that occur as average firm size increases. The 

importance we attribute to the skewness in the growth rate distribution is counterbalanced by the 

negligible relevance we assign to its location parameter. We assume that there is no peculiar role 

played by the median of the growth distribution, which is approximately equal to zero independent of 

firm size. In economic terms, this is tantamount to saying that most of the phenomena of interest for 

industrial dynamics can be studied without reference to the behaviour of the median firm, and many 

‘average’ relations retrieved in the literature, starting from the negative relation between average size 

and average growth, are driven by the few dynamic firms in the sample rather than the many stable 

ones.  

Although the main intuitions of the present study come from an analysis of the stylized facts, 

this work is not limited to a ‘dead reckoning’ based on past research, but includes an original empirical 

analysis of the population of manufacturing firms operating in the Netherlands between 1994 and 2004. 

Our analysis has enabled observation of the tent shape of the empirical firm growth rate distribution, 

confirmation of the skewness-size and the variance-size relations, and has allowed us to dismiss the 
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role of location, to run the quantile autoregressions that connect us with the most recent literature, and 

to uncover a relationship with the previous findings. 

Our study is a phenomenological work of framing what has been observed. Full understanding 

of the economic processes underlying the facts described requires observation of other firm-level 

variables. The heterogeneity of firm behaviour, the intrinsic differences between stable and dynamic 

firms and between small and large firms, and the importance of extreme events, implicitly raise the 

questions about why some firms are more dynamic than others, and why, within a set of dynamic firms, 

some enjoy durable success while others are not able to maintain persistent growth. Analyses of firm 

growth that take account of different innovative behaviours, capital structures, geographic locations 

would complement our study and enable investigation of the economic roots of the phenomena 

investigated in this paper. 
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Appendix 

 

Proof of Proposition 2. 
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Its first derivative with respect to 1ts −  is 
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Setting this to zero yields ( )2
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′ ′ ′ ′= + +  ; further algebra leads to part (a) of 

the proposition. 

 

Part (b). Whether pβ  is above or below 1 depends on the sign of 
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Plug the value of m ′  obtained from part (a) into Eq. 36 and Eq. 37 to yield 
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Let us consider three cases: (i) 1
2

(0, )p ∈  ; (ii) 
2

2
1
2 1

( , )p κ
κ+

∈  ; (iii) 
2

21
( ,1)p κ
κ+

∈  . 

It is easy to see that, under case (i), in Eq. 38 0a aκ κ′ ′+ >  implies 
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Case (ii) is again relevant for Eq. 38: this time, 0a aκ κ′ ′+ >  implies 
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Finally, case (iii) is relevant for Eq. 39: in that equation, the term in brackets is positive, because 
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Overall, case (i) allows the conclusion that 1pβ <  when 1/2p < , whereas cases (ii) and (iii) show 

that 1pβ >  when 1/2p >  . These conclusions prove part (b) of our proposition. 
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Table 1: Descriptive statistics for the yearly unconditional distributions of firm log size. 

 

 

 

Table 2: Quantiles of current firm size (
tS ) conditional upon lagged firm size 1tS − = 

{5, 10, 20, 50} and 2tS − = {5, 10, 20, 50}, along with rescaled range and rescaled interquartile 

range, using pooled data. 
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Table 3: Quantiles of the gross 1-year growth rates 1/t tS S −  conditional upon lagged firm 

size 1tS −  = {5, 10, 20, 50} and of the gross 2-year growth rates 2/t tS S − conditional upon 

2tS −  = {5, 10, 20, 50}, using pooled data. 
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Table 4: Quantile regression estimates: estimated and structural 

parameters for the whole sample and for size classes 1, 2, 3. 
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Figure 1: Histogram of the frequencies (left) and log frequencies (right) for 

the empirical distribution of firm log size in year 2004. 

 

 

Figure 2: QQ plot of the empirical distribution of firm log size in 

year 2004 against a theoretical gaussian distribution. 
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Figure 3: Empirical probability densities of firm log size tS , conditional upon 

1tS − = {5, 10, 20, 50} (clockwise). Notice the double logarithmic scale. 
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Figure 4: Quantile regression coefficients. Clockwise: whole sample, size class 1, size class 2, size 

class 3. Red lines indicate point estimates; shaded areas indicate the confidence intervals. 

 


