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Abstract

In a repeated market for short-lived assets, we investigate wealth-driven
selection among boundedly rational traders whose investment rules depend
on endogenous market variables, such as current and past prices. We study
the random dynamical system describing prices and wealth dynamics and
characterize local stability of the long-run equilibria in which one or a group
of traders dominate. Multiplicity of stable and unstable equilibria, lead-
ing to endogenous fluctuations and assets mis-pricing, turns out to be a
common phenomenon generated by two different mechanisms. Firstly, con-
ditioning investment decisions on endogenous market variables implies that
dominance of an investment rule on others, in terms of relative wealth, may
be different for different prevailing prices, so that the market may fail to
select a global winner. Secondly, the feedback existing between past asset
prices and current investment decisions can lead to a form of deterministic
overshooting.
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1 Introduction

The Efficient Market Hypotheses (EMH), advanced as a general interpretative and
normative framework nearly forty years ago (Fama, 1970), has grown to become
a widely accepted working tool for the economic profession. A reason for the
widespread reliance on the EMH is to be found in the market selection argument
that supports it: if poorly informed boundedly rational investors are persistently
loosing wealth in favor of the better informed, the formers are ultimately driven
out of the market by the latters so that, in the long run, prices reflect the best
available information about fundamentals.1

Despite its pervasive influence in economics, a general formal proof of the selec-
tive capability of financial markets and, consequently, of the ultimate convergence
of asset prices toward fundamental values is still lacking. Only fairly recently
scholarshiply work has started to investigate this issue. Several behavioral models
based on evidence collected from laboratory experiments and real markets (see
Barberis and Thaler, 2003, and references therein) contend both the positive and
normative aspects of the EMH. Rational and informed behavior does not appear
a pervasive property of trading, nor does automatically guarantee, even if ap-
propriately implemented, better performances and higher probability to “survive”
the speculative struggle. The modeling effort of these studies has been, however,
limited to partial equilibrium models with an exogenous price dynamics.

A general equilibrium model was firstly proposed in Blume and Easley (1992).
In a repeated market for Arrow securities, they investigate wealth-driven selection,
and the informational content of asset prices, among investment rules that optimize
portfolio asset allocations and have fixed saving rates. They find that the best rule
for long term survival is maximizing the expected log wealth. In fact, this rule
can be seen as a generalization of the Kelly rule (Kelly, 1956) to equilibrium
models. When the “best” informed trader employs the log-rule, she gains all
the wealth in the long run and drives prices as close as possible to their correct
values. However, when the “best” informed trader uses another rule, Blume and
Easley are able to construct examples in which she vanishes, suggesting that the
market selection argument supporting the EMH deserves further investigation.
Two groups of contributions developed from their analysis.

A first group of works has investigated investment rules not necessarily coming
from utility maximization but expressed as fractions of wealth to be invested in
each asset (see Evstigneev et al., 2009, for a recent survey). Fractions are allowed
to depend on histories of exogenous variables, in particular past dividends, but not
on endogenous variables, such as equilibrium prices. Under the assumption that

1The same argument lies behind the evolutionary foundations of neoclassical economics
(Alchian, 1950; Friedman, 1953).
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saving rates are homogeneous across traders, a robust finding is that investing
proportionally to asset expected dividends, a rule named Generalized Kelly by
the authors, is the unique dominating rule. The result holds for both short- and
long-lived assets with general dividend processes, as shown in Amir et al. (2005)
and Evstigneev et al. (2008) respectively. These contributions are silent on the
outcome of market selection when rules depend on endogenous market variables
and/or when a full knowledge of the underlying dividend process is lacking.

A second group of works has instead focused on selection when investment
decisions are derived from expected utility maximization and traders have perfect
foresight on future prices but disagree about the dividend process. In these works
portfolio rules and saving rules depend both on endogenous and exogenous market
variables. Moreover, given maximization and perfect foresight, both rules are opti-
mal. The main objective is to establish if, at least in this idealized market set-up,
wealth reallocation selects for agents whose beliefs are “closest” to the underlying
dividend process. Sandroni (2000) and Blume and Easley (2006) find that when
markets are dynamically complete2 the answer is positive. The selection argument
behind informational efficiency is correct: in the long-run only the traders whose
beliefs are “nearest” to the correct ones are selected for, provided that all discount
future utility at the same rate.

There is however a general question that both groups of contributions leave
un-answered: except for few specific examples, it is not known how wealth-driven
selection works when investment rules depend on endogenous market variables
but, at the same time, traders are boundedly rational and do not have perfect
foresight on future prices, so that the employed rules may, ex-post, not be optimal.
The aim of the present paper is to answer this question. In particular, we build
upon the model in Blume and Easley (1992) and provide sufficient conditions for
asymptotic survival and dominance of investment rules that depend on current
and past equilibrium prices. Our final objective is to move closer to a formal
general check of the selective capability of financial markets, even when traders
are boundedly rational, and understand when there is support for the market
selection argument behind the EMH and when not.

The dependence of investment rules on past prices implies a feedback from
past to present market performances. This effect has already been investigated in
several heterogeneous agents models. The main finding is that market instability
and asset mis-pricing are in general possible (see Hommes, 2006; LeBaron, 2006, for
a review). In these works, selection operates according to fitness measures different
from relative wealth (Levy et al., 2000; Farmer, 2002; Chiarella and He, 2001,

2Notice that in an equilibrium model with sequential trading, as the one we consider here,
market completeness cannot be achieved unless agents coordinate on having rational expectations
on prices. On the issue of market completeness see also footnote 4.
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are among the few exceptions). Moreover, results are often derived for specific
investment behaviors and in a partial equilibrium framework. Some gaps have
been filled by our previous works, see e.g. Anufriev and Bottazzi (2010), Anufriev
et al. (2006), Anufriev and Dindo (2010), which study wealth-driven selection on
the general class of price dependent investment rules in a deterministic and growing
economy.

The present paper extends the analysis to stochastic economies. We study
market selection by analyzing the random dynamical system that describes prices
and wealth dynamics. In Section 3 we introduce our market model. In Section 4 we
indentify the wealth distributions and prices that are invariant under the wealth-
reallocation process and investigate their stochastic stability. We provide general
sufficient conditions stating whether any given rule is locally dominating, or locally
dominated by, other rules. Our findings apply to investment rules that are general
(smooth enough) functions of current and past prices so that a wide spectrum of
behaviors can be modeled, including those derived from the maximization of a
Constant Relative Risk Aversion (CRRA) expected utility.

In Section 5 we introduce the S-rule, a price dependent generalization of the
Kelly rule. When the S-rule trades in the market, it acts as the “local” cham-
pion: it destabilizes any long-run informationally inefficient market equilibrium
and, at the same time, it determines a market equilibrium where risky assets are
correctly priced proportionally to their expected dividends. This equilibrium is
never unstable, no matter the number and type of other competing investment
rules. However, when the S-rule is not used by any agent, the combination of
endogenous investment rules and bounded rationality may lead to multiplicity of
stable and unstable equilibria.

A first motivating example is in Section 2 while, in Section 6, different cases
of market selection failure are reviewed. The discussion clarifies that the multiple
equilibria and market instability are essentially related to two causes. Firstly, since
average wealth growth rates depend on equilibrium prices, the relative average
performance of rules can be different in different market states. For example, it
may well happen that, given two rules, the first has the highest average wealth
growth rate at the prices determined by the second while the second has the highest
average wealth growth rate at the prices determined by the first, so that none
can prevail. Alternatively either rule can prevail but only close to those market
states where it possesses all the wealth and it determines asset prices. Secondly,
instability might be related to price feedback. Even though a given rule has the
highest average wealth growth rate for all possible market states, prices feedback
may be strong enough to destabilize the market dynamics. In general, endogenous
fluctuations may emerge so that asset prices may not converge as close as possible,
given the competing rules, to their fundamental levels.
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2 An instructive example

In this section we shall consider the simplest example where the implication of
having endogenous rules used by boundedly rational agents can be fully appreci-
ated. Time is discrete and uncertainty is modeled as a two states i.i.d. Bernoulli
process {ωt} with ωt ∈ {1, 2} representing the state of the world at time t. For
any t the probability that ωt = 1 is π. In each period two Arrow securities can
be traded. Security i ∈ {1, 2} pays 1 if ωt = i and 0 otherwise. Both securities
are in unitary exogenous supply. Assets are traded sequentially by two agents in
competitive markets. Each trader demand is expressed as a portfolio rule, that
is, as a fraction of wealth to be invested in each asset. We do not specify how
rules are chosen. They can be behavioral, rules of thumb, or come from utility
maximization.3 As we shall formalize in the next section, the constraint that we
do impose on rules is that they are time independent (smooth enough) functions
of current and past equilibrium prices. Typically the dependence on current prices
is induced by the budget constraint while past prices can be used to learn the
dividend process or to forecast future prices. Importantly, agents are not assumed
to be able to coordinate their expectations on future prices. For this reason deci-
sions taken to be optimal given price expectations may turn out not to be so. In
fact, this is the only substantial difference between the present framework and the
complete market case analyzed in Sandroni (2000) and Blume and Easley (2006,
2009), or in the recent work by Massari (2013).4 In this example we further assume
that traders do not consume so that portfolio and investment rules coincide. The
question we address is what happens to agents’ wealth and asset prices in the long
run.

Name wt the wealth of agent 1. The total wealth in every period is equal to 1
so that the wealth of agent 2 is 1−wt. Name αi

t the fraction of wealth invested in
asset 1 by agent i in period t. Since traders do not consume, the budget constraint
implies that a fraction 1−αi

t is invested in asset 2. Asset prices are fixed by market
clearing. In particular, for the first asset it holds

pt = α1
twt + α2

t (1− wt) .

No consumption and unitary total wealth imply that the price of the second asset

3For example in Bottazzi and Dindo (2013) we consider the case of myopic CRRA expected
utility maximizers who differ in their coefficients of risk aversion and/or in their beliefs about π.

4 Because of the missing assumption of rational price expectations the number of possible
prices is larger than the number of independent assets, so that the market is “endogenously”
incomplete. However since for any given price vector all contingent wealth transfers can be
traded, the market is “exogenously” complete. See also the difference between endogenous and
exogenous uncertainty in Chichilnisky (1999) and Hahn (1999). Other authors refer to the
repeated market for Arrow securities as sequentially complete but not necessarily dynamically
complete, see e.g. Drèze and Herings (2008).
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is 1 − pt. Given prices and asset allocations in t, the wealth of agent 1 in period
t+1 depends on the realization of the Bernoulli process ωt+1 and it is equal to the
amount of Arrow securities of type ωt+1 purchased in t, that is

wt+1 =
α1
t,ωt+1

pt
wt .

We assume that portfolio decisions are (smooth) functions of current and past
prices. For simplicity, in this example we restrict past prices to the last observed
price, pt−1. Thus we can define investment rules αi(·, ·) for i = 1, 2 such that

αi
t = αi(pt, pt−1) , i = 1, 2 .

Given rules the market dynamics is summarized by

wt+1 =











α1(pt,pt−1)
pt

wt if ωt+1 = 1

1−α1(pt,pt−1)
1−pt

wt if ωt+1 = 2

(2.1a)

where

pt = α1(pt, pt−1)wt + α2(pt, pt−1)(1− wt) . (2.1b)

Since rules depend also on contemporaneous prices, the existence and uniqueness of
a positive market clearing price, i.e. a positive solution of (2.1b), cannot be given
for granted. In order to proceed we simplify further our example and assume that
rules depend either on current or past prices. We start from the latter dependence.

2.1 Dependence on past prices

First notice that with Arrow securities rules must be strictly positive, otherwise a
trader would, almost surely, have zero or negative wealth in finite time. Moreover,
given the budget constraint, invested wealth shares must also be in (0, 1). It follows
that when rules depend only on past prices, (2.1b) defines a unique price in the
interval (0, 1). The random dynamical system (2.1) is well defined and has two
variables, the current wealth of agent 1 and the previous price of asset 1. We name
xt = (wt, pt−1) the market state vector and define the maps f1 and f2 so that (2.1)
can be written as

xt+1 = fωt+1
(xt) .

To investigate the long-run behavior of wealth and prices we shall first focus on
specific market configurations with constant prices and constant wealth. We shall
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Figure 1: Investment rules α1(p) and α2(p) are plotted against the price of asset 1.
Equilibrium prices are given by the coordinate of their intersections with the EMC,
that is, points pA, pB and pC . The local stability of market selection equilibria
A,B,C can be appraised graphically with the aid of the line π.

name these states the Market Selection Equilibria (MSE, c.f. Section 3.3). A MSE
is a deterministic fixed points, that is, a state x∗ such that

x∗ = f1(x
∗) and x∗ = f2(x

∗) .

Straightforward computations show that in general there exist only two types of
MSE. Either one agent has all wealth, which occurs at x∗

1 = (w∗ = 1, p∗1 = α1(p∗1))
and x∗

2 = (w∗ = 0, p∗2 = α2(p∗2)), or both agents have some wealth, which occurs at
x∗
1,2 = (w∗, p∗1,2 = α1(p∗1,2) = α2(p∗1,2)). In both cases prices are fixed points of any

investment rule i with positive wealth at the MSE, p∗ = αi(p∗).
It is useful to visualize the location of a MSE in a plot. In Fig. 1 we plot two

generic portfolio rules as a function of the (lagged) price p. Each intersection of
a rule (demand) with the diagonal (supply) —points A, B and C in the plot—
represent the price of a possible MSE. In A and C the associated MSE has w∗ = 0:
all the wealth is owned by agent 2. These are single survivor equilibria and we
say that in A and C agent 2 dominates and agent 1 vanishes (c.f. Definition 3.5
for a formal statement). Conversely, at a multiple survivor equilibria of the x∗

1,2

type, like point B, both agents survive and none vanishes. Notice that a multiple
survivor equilibrium requires that both rules intersect the supply curve at the same
price, requirement that makes it non-generic.
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No matter the shape of the investment rules, MSE lie on the function f(p) = p,
the value of the first asset supply. In our previous work, (Anufriev et al., 2006;
Anufriev and Bottazzi, 2010; Anufriev and Dindo, 2010) we have named this set the
“Equilibrium Market Curve” (EMC) since it is the locus of all long-run equilibria.
We keep this terminology here. In this example pB is closer than pA or pC to the
fundamental price of asset 1, i.e. its (discounted) expected dividend π. Thus, we
can say that market selection implies informationally efficiency if long-run prices
converge almost surely and for almost all initial conditions to pB. A necessary
condition is that B must be asymptotically stable, and A and C unstable. It turns
out that in this example with two traders and one lagged price, there are two
conditions that, if contemporaneously verified, are sufficient for the local stability
of a MSE.

The first condition is related to average wealth growth rates at MSE prices p∗.
Consider for example x∗

2 = (0, p∗2 = α2(p∗2)), where trader 2 has all the wealth. If
close to x∗

2 the average wealth growth rate of trader 1 is positive then, on average,
when p is near to p∗2 the wealth of trader 1 increases while the wealth of trader 2
shrinks (the total wealth is constant). The wealth wt does not converge to w∗ = 0
and x∗

2 is unstable. Thus for x∗
2 to be asymptotically stable the average wealth

growth rate of agent 1 must be negative in a neighborhood of x∗
2. The stability of

x∗
1 can be appraised along the same argument.
By the Law of Large Numbers the average (gross) growth rate at the MSE

x∗ = (w∗, p∗) can be computed from (2.1a) as

µ(w∗, p∗) =

(

(

α2(p∗)

α1(p∗)

)π (
1− α2(p∗)

1− α1(p∗)

)1−π
)2w∗−1

. (2.2)

The exponent (2w∗−1) ensures that at any x∗ where a single agent survives we are
computing the average (gross) growth rate of the vanishing agent at the prices set
by the surviving one. It follows that if µ(w∗, p∗) < 1 the MSE x∗ is asymptotically
stable: close enough to x∗ the wealth of the vanishing agent decreases and the
market is driven back to x∗. When instead µ(w∗, p∗) > 1, x∗ in unstable. Notice
that if both agents survive, as in B in Fig. 1, then the average growth rate µ(w∗, p∗)
is equal to one and it is not informative about the local stability.

Interestingly, these conditions can be given in terms of the relative entropy of
the investment rule of agent i at price p, (αi(p), 1 − αi(p)), with respect to the
(invariant) distribution (π, 1− π):

Iπ(α
i(p)) := π log

π

αi(p)
+ (1− π) log

1− π

1− αi(p)
. (2.3)

Since log(µ(w∗, p∗)) is equal to the relative entropy of the surviving rule minus the
relative entropy of the vanishing rule, both computed at equilibrium prices, the
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MSE x∗ = (w∗, p∗) can be asymptotically stable only if the surviving agent is the
one whose investment rule has, at equilibrium prices, the lowest relative entropy.
Stating stability in terms of relative entropy has the advantage that survival can be
directly appreciated in the EMC plot. In Fig. 1 the line π represents the probability
of occurrence of state 1. The distance between this line and αi(p) at a given price
p is an increasing function5 of Iπ(α

i(p)). Consider the point A where agent 2
dominates and 1 vanishes, that is, w∗ = 0 and p∗ = pA = α2(pA). Since at pA the
distance from π is larger for α2(pA) than for α1(pA, ), it is Iπ(α

1(pA)) < Iπ(α
2(pA))

and the equilibrium (w∗, p∗) = (0, pA) is unstable. Conversely, at pC the curve
nearest to π is α2, so that, at least according to this criterion, the equilibrium
(0, pC) is asymptotically stable.

Relative entropy, or relative average wealth growth rate, is not the only deter-
minant of local stability. When past realized prices influence current investment
decisions it could happen that the strength of price feedbacks is too strong for
the dynamics to settle down. In a specific MSE x∗, this strength can be directly
appraised by looking at

λ(w∗, p∗) = w∗
∂α1(p)

∂p

∣

∣

∣

∣

p=p∗
+ (1− w∗)

∂α2(p)

∂p

∣

∣

∣

∣

p=p∗
. (2.4)

If |λ(w∗, p∗)| < 1 then x∗ is stable with respect to price feedbacks. Otherwise,
when |λ(w∗, p∗)| > 1, x∗ is unstable.

Also this second source of instability can be appraised graphically. In the
example of Fig. 1, given the slope of α2(p) at pA and pC , we infer that both A and
C are stable under past price feedbacks. Since C is also stable in terms of relative
entropy, it represents an asymptotically stable single survivor equilibrium and a
possible outcome of the long-run market dynamics. C is the unique single survivor
stable equilibrium, but may not the unique stable long-run equilibrium. We have
still to evaluate the stability with respect to past price feedbacks of B, where
both agents survive. Locally, the market dynamics is equivalent to the dynamics
generated by a single agent whose investment rule is the wealth weighed average of
both surviving rules. Since |∂α1(pB)| < 1 and |∂α2(pB)| > 1, if w is large enough
then, by continuity, |λ(w∗, p∗)| < 1 and the point is stable. Conversely, for smaller
values of w, the over-reaction to price movements of α2 destabilizes the equilibrium.
Notice at last that since in B investment decisions of both agents are equal, the
distance of their rules in terms of relative entropy is zero and µ(w∗, pB) = 1.
For this reason if |λ(w∗, p∗)| < 1 the fixed point is stable but not asymptotically
stable. A perturbation can indeed generate a permanent change in the distribution

5Moreover when π = 0.5, as we often use, the relative entropy is symmetric around the line
π.
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of wealth. Prices converge back to their equilibrium level pB but the system ends
up in a fixed point with a different value of w∗.

We have established that whereas C is stable, A is unstable, and B may be
stable. Depending on initial conditions and realizations of ω, long-run prices may
converge to pC or to pB. Only in the second case they converge as close as possible,
given the two investment rules, to assets’ fundamental value. Moreover long-run
prices may also fail to converge at all and instead exhibit persistent fluctuations.
This is always the case when all selection equilibria are unstable. We shall give
more examples in Section 6.

2.2 Dependence on current prices

Consider the case in which investment rules depend on current but not on past
prices. The random dynamical system (2.1) becomes

wt+1 =











α1(pt)
pt

wt ωt+1 = 1

1−α1(pt)
1−pt

wt ωt+1 = 2

, (2.5a)

where pt is a solution of

pt = α1(pt)wt + α2(pt)(1− wt) . (2.5b)

Contrary to (2.1b), the pricing equation (2.5b) can possess multiple or no positive
solutions at all, so that the global dynamics may be ill-defined. However, MSE
can be defined as in the previous case. Moreover, as long as the intersections
of each investment rule with the EMC define positive and isolated prices, the
dynamics implied by (2.5a-2.5b) is well defined in a neighborhood of the MSE.
Due to the differentiability assumption of the αs, it is sufficient to require that
w∗∂pα

1(p∗) + (1− w∗)∂pα
2(p∗) 6= 1.

Here stability of x∗ does not depend on λ(w∗, p∗): since the investment rules
do not depend on past prices there is no room for the destabilizing role of price
feedbacks. If we interpret the rules in Fig. 1 as functions of current prices, the
slopes at the MSE A, B, and C, are no more related to feedback stability but to
the fact that the local dynamics is well defined. Graphical analysis implies that
in A and C the local dynamics is well defined. Instead in B there exists a value
of w∗ such that the weighted investment rule has slope 1 and the local dynamics
is degenerate. Whenever the local dynamics around x∗ is well defined, its local
stability depends only on µ(w∗, p∗), the average growth rate of the dominated
trader, or, graphically, by the relative distance of each investment rule from π.
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2.3 Relative Entropy and Price Feedback

How do the two sources of instability discussed above, relative entropy differences
and price feedback, compare with known results from the related literature?

Relative entropy determines average relative wealth growth. This is the same
force driving results in Blume and Easley (1992) or the works surveyed by Evstigneev
et al. (2009). Our toy-market example shows that relative entropy differences, and
thus the relative performance of endogenous rules, is a function of market states.
As a consequence, it can well happen, as in the example of Fig. 1, that multiple
selection equilibria exist and are stable, or that they are all unstable. As we shall
show in Section 6, in both cases the trader whose selection equilibrium prices are
closest to fundamentals is not granted to dominate. Conversely, in markets for
Arrow securities with exogenous, i.e. not price dependent, rules local stability al-
ways implies global stability and the trader who sets prices closest to fundamentals
attracts all the wealth in the long run with probability one (c.f. Proposition 3.1
in Blume and Easley, 1992). Relative wealth growth rates determine stability and
instability of long-run equilibria also in the deterministic, and growing, economies
studied in Anufriev et al. (2006); Anufriev and Bottazzi (2010); Anufriev and Dindo
(2010). The main difference of the present example is that due to its stochastic
nature, what matters for stability are expected growth rates, or relative entropy
differences.

The second source of instability, price feedback, is typical in the literature
on financial market models with heterogeneous agents (see e.g. the survey by
Hommes, 2006). The results we find are again similar to those in Anufriev et al.
(2006); Anufriev and Bottazzi (2010); Anufriev and Dindo (2010): a rule might
fail to dominate the market because of its overreaction to price movements. This
source of instability is similar to that of the deterministic overshooting observed
in price adjustment processes.

In the next section we present our full model and, in Section 4, our formal
results. Apart a few subtle details we have to cope with, the general conclusions
remain the same.

3 The model

Given the set of states of the world Σ = {1, . . . , s, . . . , S}, we define the set of
sequences Ω :=

∏+∞

−∞
Σ with elements ω = (. . . , ω0, . . . , ωt, . . .). For all t ∈ Z we

denote with {ω}t = ωt and with ωt all the elements of Ω with the same history
till time t. Let R be the cylinder σ-algebra and ρ a probability measure on R

so that (Ω,R, ρ) is a well-defined probability space. Each Rt is defined as the σ-
algebra generated by partial histories ωt. Name θ the shift operator on Ω, so that
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{θω}t = {ω}t+1, and θt the t-times composition of θ, so that {θtω}t′ = {ω}t′+t. We
assume that the measure ρ is such that if f is an integrable real random variable
on Ω it holds

lim
T→∞

1

T

T
∑

t=1

f(θtω) =

∫

Ω

dρ(ω) f(ω) almost surely (a.s.) on Ω . (3.1)

When θ in a measure-preserving and ergodic transformation of Ω the above is a
consequence of the Ergodic Theorem.

We study a market where, in each period t, I agents are trading K short-
lived assets in constant exogenous unitary supply. We denote agent i wealth in
period t as W i

t , and asset k price in period t as Pk,t, using the vector notations
Wt = (W 1

t , . . . ,W
I
t ) and Pt = (P1,t, . . . , PK,t) when appropriate.

Asset dividend payoffs are paid in terms of an homogeneous good, the numéraire
of the economy. They depend on the past histories ωt but not explicitly on time.
Formally, we consider K real random variables on Ω, Dk with k = 1, . . . , K, and
define the dividend payed at time t+ 1 by asset k traded in t as

Dk,t(ω) = Dk(θ
tω) .

We assume that D(ω) = (D1(ω), . . . , DK(ω)) is measurable with respect to R1,
so that the dividend process Dt(ω) = (D1,t(ω), . . . , DK,t(ω)) is adapted to the
filtration {Rt , t ∈ Z}. From (3.1) it is6

lim
T→∞

1

T

T−1
∑

t=0

Dk(θ
tω) =

∫

Ω

dρ(ω)Dk(ω) a.s. on Ω .

Without loss of generality, we assume that that there are no redundant assets and
the process D is non-trivial, that is,

∑K
k=1 Dk(ω) > 0 almost surely and, for each k,

Dk(ω) > 0 with positive probability. The first assumption assigns probability zero
to the event that the total wealth in a given period is zero. The second assumption
implies that each asset will sooner or later pay a positive dividend.

Although we shall give results for the general dividend process, in most exam-
ples we assume a fixed dividend matrix, that is, the existence of a K × S matrix
D such that

Dk(ω) = Dk,ω1
, k = 1, . . . , K .

Non-triviality of the dividend process is equivalent to assume that D is positive
and has no zero rows nor zero columns. With a fixed matrix, if we define the
probability measure π = (π1, . . . , πS) on Σ such that

ρ({ω ∈ Ω|ωt = s}) = πs , s = 1, . . . , S for every t ∈ Z ,

6This will be a key property in the proofs of Section 4.
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we can easily compute

∫

Ω

dρ(ω)Dk(ω) =
S
∑

s=1

πsDk,s .

Notice at last that dividend matrices, both when they are fixed and when they are
history dependent as in the general case, could have rank lower than S, making
short-term trading incomplete.

Agents use assets to transfer wealth inter-temporally. We denote the fractions
of wealth invested in asset k by agent i at time t with αi

k,t. The wealth in period
t+ 1 depends on these fractions and on the dividends payed at time t+ 1

W i
t+1 =

K
∑

k=1

αi
k,tW

i
t

Pk,t

Dk,t(ω) , i = 1, . . . , I , (3.2a)

where, having normalized asset supplies to one, market clearing prices are set by

Pk,t =
I
∑

i=1

αi
k,tW

i
t , k = 1, . . . , K . (3.2b)

Since assets are in unitary supply and their dividend is the only source of future
wealth, the total wealth in each period is given by the sum of asset dividends paid
in the state of the world just realized. Thus the total wealth can be used to define
normalized dividends, individual wealth, and prices

dk,t(ω) =
Dk,t(ω)

∑K
h=1 Dh,t(ω)

, wi
t =

W i
t

∑K
h=1 Dh,t(ω)

, pk,t =
Pk,t

∑K
h=1 Dh,t(ω)

,

so that
I
∑

i=1

wi
t =

K
∑

k=1

dk,t(ω) = 1 , t ∈ Z . (3.3)

In what follows we shall use d to denote the normalized dividend process, or
normalized dividend matrix. Notice that equations (3.2a-3.2b) are unchanged
when written in terms of normalized variables.

3.1 Endogenous investment rules

The dynamics of wealth distribution and its effect on asset prices depends on
the types of investment behaviors considered. A first, natural, assumption to be
imposed on asset demands is that they should satisfy a budget constraint or

K
∑

k=1

αi
k,t = 1− αi

0,t , i = 1, . . . , I, t ∈ Z ,
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where αi
0,t denotes the fraction of wealth consumed by agent i in t. We assume

that consumption cannot be negative nor exhaust all the wealth, so that

K
∑

k=1

αi
k,t ∈ (0, 1] , i = 1, . . . , I, t ∈ Z . (3.4)

Together with the market clearing equation (3.2b) the latter implies a bound on
normalized prices

K
∑

k=1

pk,t =
I
∑

i=1

(1− αi
0,t)w

i
t ≤ 1, t ∈ Z. (3.5)

A second assumption is that demands in t are such that the probability that an
agent is left without wealth at time t+ 1 is zero, i.e.

wi
t+1 =

K
∑

k=1

αi
k,tdk,t(ω)

pk,t
wi

t > 0 a.s. on Ω. (3.6)

Assumptions (3.4) and (3.6) are natural because consuming all the wealth or not
being diversified enough imply an (almost) sure exit and thus no impact on the
long-run market dynamics.

Finally we assume that investment fractions depend on market variables, in
particular current and past L prevailing prices, but not on the histories of states
of the world nor on past dividends. Within the expected utility framework, this is
consistent with the maximization of CRRA expected utilities with any coefficient
of relative risk aversion, a fixed dividend matrix, and fixed i.i.d. beliefs about
the probabilities of the states of the world. However, since rules do not depend on
wealth, other types of maximizing behaviors, such as CARA utilities, are excluded.
Rules not coming from the maximization of expected utility can be also considered,
as long as they are expressed as functions of prices and do not depend on histories
ωt nor on past dividends. Notice however that investment rules may depend also
on past prices. This dependence could exist for a number of reasons: past prices
could be employed to predict future asset prices, which is needed when an agent
investment horizon is longer than one period; they could be used to infer about the
dividend process, acknowledging that an asset prices may reflect the properties of
its dividend process; or they could be used to evaluate if assets are mis-priced.7

All the assumptions on rules are formalized in the following

7We are aware that the most general investment rules should depend, other than on prices,
also on the realizations of states of the world and/or of the stochastic dividend process, as well
as on agent wealth. Mathematical tractability constraints us to the present setting. We leave
the inclusion of a feedback from the dividend process and other dependencies to future work.
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Definition 3.1. An endogenous investment rule is a vector function α : R(L+1)K →
RK such that

A1 the fraction of wealth invested in period t on asset k is

αk,t = αk(pt) k = 1, . . . , K , (3.7)

where pt = (pt,p
1
t , . . . ,p

L
t ) with

8 pl
t = pt−l;

A2 the total wealth invested in assets is always positive and never greater than
one, 0 <

∑K
k=1 αk(p) ≤ 1, and what is not invested is consumed, α0,t =

1−
∑K

k=1 αk(pt);

A3 assets portfolios are sufficiently diversified, that is
∑K

k=1 αk(p)dk(ω)/pk > 0
almost surely.

Throughout the paper we shall name A the set of endogenous investment rules
and assume that αi ∈ A for each agent i. A1 specifies that given a rule, investment
decisions are time-invariant functions of normalized prices.9 A2 comes from (3.4)
and the consumption bounds. A3 comes from (3.6) and guarantees that agents’
portfolios are sufficiently diversified. Since we have assumed that the dividend
process is non-trivial, the set of positive rules always belong to A. Moreover, if the
dividend process d is diagonal (as in the case of Arrow securities) A3 implies that
all rules are positive, αi

k(p) > 0, a no short-selling constraint. Notice, however,
that for the general dividend process short-selling is allowed. As a consequence,
when prices are such that arbitrage opportunities exist our rules can exploited
them.10 Some examples of rules in the class A are provided in the applications of
Sections 5 and 6 as well as in Bottazzi and Dindo (2013).

3.2 Market Dynamics

Given asset dividends, a set of investment rules, a history of prices, and an initial
wealth distribution, wealth update (3.2a) and market clearing (3.2b) determine
the dynamics of asset prices and agents’ wealth for all subsequent periods.

8The compact notation for lagged prices allows l to be equal to 0, in which case trivially
p0

t = pt and p0k,t = pk,t.
9In our framework rules depend on normalized prices pt rather than on Pt. If demands come

from utility maximization, rules are homogeneous of degree zero, so that the two formulations
are equivalent.

10Since dividends are assumed to be positive an arbitrage must involves a short position in
some assets. Given prices p and the dividend process d, the portfolio y ∈ RK is an arbitrage if
py ≤ 0 and y d(ω) ≥ 0 almost surely, with at least one of the inequalities being strict.
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If investment rules do not depend on current prices, (3.2b) explicitly determines
the unique vector of market clearing prices. Conversely, when some of the rules
depend on contemporaneous prices, prices are implicitly fixed through a system
of K equations. Given the generality of A, existence and uniqueness of a set of
positive market clearing prices is in general not guaranteed.

The derivation of sufficient conditions on the set of rules that guarantee local
uniqueness is postponed to the formal analysis of Section 4. At the present stage
we shall just assume, for the sake of exposition, that for almost all sequences ω
and all states xt = (wt, pt) there exist K positive maps fk such that

pk,t+1 = fk(xt; θ
tω) , k = 1, . . . , K , (3.8)

and the market dynamics implied by (3.2) and endogenous rules is equivalent to
the following system of I +K(L+ 1) equations

F(θtω)xt :=



























w1
t+1 =

∑K
k=1

αi
k
(pt)wi

t

pk,t
dk(θ

tω) , i = 1, . . . , I ,

pk,t+1 = fk(xt; θ
tω) , k = 1, . . . , K ,

plk,t+1 = pl−1
k,t , k = 1, . . . , K , l = 0, . . . , L .

Let ∆K−1 denote the simplex in RK with the canonical base as vertexes and ∆K
c

denote the simplex in RK with the canonical base plus the origin as vertexes, or

∆K
c =

{

x ∈ RK

∣

∣

∣

∣

∣

K
∑

k=1

xk ≤ 1 and xk ≥ 0, k = 1, . . . , K

}

.

Name ∆K−1
+ and ∆K

c+ their respective subsets with all positive components. Due
to normalizations in (3.3) and (3.5), and to the assumed positivity of (3.8), each
F(·) maps the set X = ∆I−1 × (∆K

c+)
L+1 in itself. The first I components of F

characterize the dynamics of agents’ wealth fractions, whereas the other compo-
nents fix prices using market clearing and keeps track of their past values. The
Random Dynamical System ϕ : Z×Ω×X → X representing the market dynamics
is defined iterating F(·) and θ. For any given period t, initial state x0, sequence
ω, the market state in t is

ϕ(t, ω, x0) = F(θt−1ω) ◦ . . . ◦ F(θω) ◦ F(ω)x0. (3.9)

A set of initial conditions x0 ∈ X and a realization of the stochastic process ω ∈ Ω
define a trajectory of the system. The map F may not preserve the properties
of the measure ρ. As a result, even if we assume an ergodic dividend process,
the price and wealth process may not be ergodic. For this reason, and given the
arbitrariness of the dividend process, population size I, memory span L, and the
generality of rules in A, the following analysis concentrates on the local dynamics.
We postpone the analysis of the global dynamics generated by (3.9) to future work.
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3.3 Market selection equilibria

Our approach to market selection consists in studying the existence and stability
of long-run market states where one or a group of traders gain all the wealth and
(normalized) asset prices are positive and constant.11 As already anticipated in
Section 2, we name these long-run outcomes Market Selection Equilibria (MSE).
Technically MSE are given by the deterministic fixed points of (3.9) or

Definition 3.2. The state x∗ = (w∗, p∗) ∈ X is a Market Selection Equilibrium if
it is a deterministic fixed point of the Random Dynamical System ϕ generated by
the map F(·) and by the shift operator θ, i.e.

F(θtω)x∗ = x∗ (3.10)

for almost all ω ∈ Ω and for every t ∈ Z.

In a Market Selection Equilibrium the allocation of wealth implied by the asset
exchanged has come to a rest point. Those trader who retain a positive amount
of wealth are thus the winners of the competitive struggle and, given the pricing
equation, they set equilibrium prices.

Not all MSE represent interesting asymptotic states, however. Indeed, in order
for the market dynamics to actually converge to a MSE, at least when starting
from a neighborhood of it, the equilibrium must be asymptotically stable.

Definition 3.3. A Market Selection Equilibrium x∗ is asymptotically stable if, for
almost all ω ∈ Ω and for all x in a neighborhood U(ω) of x∗, limt→∞ ||ϕ(t, ω, x)−
x∗|| = 0.

For some equilibria we use the weaker notion of stability, which is sufficient to
guarantee that orbits do not diverge from a deterministic fixed point when initial
conditions are sufficiently close to it.

Definition 3.4. A Market Selection Equilibrium x∗ is stable if, for any neighbor-
hood V of x∗ and for almost all ω ∈ Ω, there exists a neighborhood U(ω) ⊆ V of
x∗ such that limt→∞ ϕ(t, ω, x) ∈ V for all x in U(ω).

In the previous definitions the neighborhood U might depend on the realization
of the process ω. If a MSE is neither asymptotically stable nor stable we shall say
that it is unstable.

When characterizing MSE and their local stability the following terminology
is useful.

11Since we have assumed that investment rules do not depend on histories of states of the
world nor on past dividends, prices can be constant when wealth fractions are constant.

17



Definition 3.5. An agent i is said to survive on a given trajectory generated by
the dynamics (3.9) if lim supt→∞ wi

t > 0 on this trajectory. Otherwise, an agent n is
said to vanish on that trajectory. A surviving agent i is said to dominate on a given
trajectory if she is the unique survivor on that trajectory, that is, lim inft→∞ wi

t = 1

Notice that survival and dominance are defined only with respect to a given
trajectory. A trader may survive on a given trajectory but vanish on others. A
similar definition is given in Blume and Easley (1992) for a stochastic setting like
ours12 and in Anufriev and Bottazzi (2010) and Anufriev and Dindo (2010) for a
deterministic setting.

Applying the previous definition to a MSE x∗, we shall say that agent i domi-
nates at x∗ if w∗i = 1, she survives if her wealth share is strictly positive, w∗i > 0,
while she vanishes if w∗i = 0. Such taxonomy can be applied both to a stable or
unstable MSE, but the implications are very different in the two cases. When the
equilibrium is stable, all trajectories starting in a neighborhood of the equilibrium
stay close to it, so that a survivor in the MSE also survives on all these trajec-
tories. If, moreover, the agent is the unique survivor and the equilibrium is also
asymptotically stable, then that agent dominates on all trajectories starting inside
a proper neighborhood. Conversely, when the equilibrium is unstable, the trader
who dominates or has positive wealth in the MSE might not dominate or might
even vanish with positive probability when initial conditions are close to the MSE.

In the rest of the paper we shall show that the ergodicity imposed on the
dividend process, the market clearing equations, and the wealth evolution are
sufficient to uniquely characterize all Market Selection Equilibria and to derive
their local stability conditions.

4 Local Stability of Market Selection Equilibria

In this section we derive results about the existence and local stability of Market
Selection Equilibria for the market dynamics described by (3.9). In presenting
our findings it is convenient to treat the case of single survivor equilibria first and
move to the multiple survivors case at a later stage.

4.1 Single survivor equilibria

As previously noted one cannot assume that positive market clearing prices exist
and are unique for any set of rules in A and any initial conditions x0. Since all our
results about long-run prices and wealth are local, it is sufficient to concentrate

12Notice however that in Blume and Easley (1992) dominance is defined as lim inft→∞ wi
t > 0

so that, as for survival, more than one rule may dominate on a given trajectory.
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on the dynamics close to specific market states. In what follows, our first step is
to characterize single survivor MSE with positive prices. Then, we will provide
sufficient conditions for local uniqueness of market clearing prices around a MSE.
This guarantees that the local dynamics is well defined. Finally we characterize
the asymptotic stability of single survivor MSE.

At a MSE where a single trader has all the wealth and prices are constant, the
market clearing conditions (3.2b) imply that asset prices are fixed points of the
investment rule that dominates. Using the terminology and graphical examples of
Section 2, this is equivalent to find the intersection of every component of the rule
assumed to dominate with the corresponding component of the EMC by setting
α(p,p1, . . . ,pL) = p. If no other rules share the same fixed point prices, i.e. if
no other rule intersects the EMC at the same prices, we have a single survivor
equilibrium.

Theorem 4.1. Consider a market for K short-lived assets with non-trivial divi-
dend process d, where I agents invest according to rules in A using L price lags.
Assume agents’ wealth and asset prices evolve according to ϕ in (3.9). The state
x∗ = (w∗, p∗) with wi∗ = 1 and wj∗ = 0 for j 6= i is a single survivor Market
Selection Equilibrium where trader i dominates if and only if p∗ = (p∗, . . . ,p∗) ∈
(∆K

c+)
L+1 solves αi(p∗) = p∗, but αj(p∗) 6= p∗ for j 6= i.

At a single survivor MSE x∗, a unique trader has all the wealth and fixes
positive asset prices. Moreover, a transfer of wealth to any other trader would
imply a price change. Given x∗, a well-defined local dynamics exists provided that
the excess demand function has an isolated zero in p∗. Sufficient conditions can
be obtained using the implicit function theorem:

Theorem 4.2. Under the hypothesis of Theorem 4.1, let x∗ be a single survivor
MSE where, without loss of generality, the I-th trader dominates. Assume fur-
ther that all investment rules i ∈ {1, . . . , I} are continuously differentiable in a
neighborhood of p∗, αi ∈ C1(p∗). If the matrix

H :=











(αI
1)

1,0 − 1 (αI
1)

2,0 (αI
1)

3,0 . . . (αI
1)

K,0

(αI
2)

1,0 (αI
2)

2,0 − 1 (αI
2)

3,0 . . . (αI
2)

K,0

...
...

...
. . .

...
(αI

K)
1,0 (αI

K)
2,0 (αI

K)
3,0 . . . (αI

K)
K,0 − 1











, (4.1)

where

(αi
k)

h,l :=
∂αi

k (p)

∂plh

∣

∣

∣

∣

x∗

, i = 1, . . . , I , l = 0, 1, . . . , L , k, h = 1, . . . , K , (4.2)

is non-singular, then the dynamics is locally well-defined, that is, there exists a
neighborhood X of x∗ where prices are positive and (3.9) is well defined.
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Importantly the set X does not depend on ω so that the Random Dynamical
System ϕ is locally well defined. Notice that when the investment rule of agent
I does not depend on current prices, then H = −I so that the non-singularity
condition is trivially fulfilled.

The crucial issue is now to assess whether an agent dominating or vanishing at
a MSE is also dominating or vanishing on all trajectories starting close enough to
it. The next theorem provides sufficient conditions for the asymptotic stability or
instability of a single survivor MSE.

Theorem 4.3. Under the hypothesis of Theorem 4.2, consider the fixed point
x∗ = (w∗, p∗) of Theorem 4.1 where wI∗ = 1 and αI(p∗) = p∗ and assume that the
matrix H defined in (4.1) is non-singular. Define

µi := exp

∫

Ω

dρ(ω) log

(

K
∑

k=1

αi
k(p

∗)

αI
k(p

∗)
dk(ω)

)

, i = 1, . . . , I − 1 , (4.3)

and

P (λ) :=
L
∑

l1=1

. . .
L
∑

lK=1

λLK−
∑

j lj
∑

σ

sgn(σ)
K
∏

k=1

(

(ᾱI
k)

σk,lσk − λ δk,σk
δlσk ,1

)

(4.4)

where

(ᾱI
k)

h,l := −

K
∑

k′=1

{H−1}k,k′(α
I
k′)

h,l l = 0, 1, . . . , L , k, h = 1, . . . , K ,

(αI
k′)

h,l are defined in (4.2), δ is Kronecker’s delta, and σ are the permutations of
the set {1, . . . , K}. If µi < 1 for all i = 1 . . . , I − 1 and all the roots of P (λ) have
absolute value smaller than one, then the fixed point x∗ is asymptotically stable.
If, for some i, µi > 1 or if a root of P (λ) has absolute value greater than one, then
the fixed point x∗ is unstable.

The quantity µi defined in (4.3) is trader i average wealth growth rate when
prices are determined by trader I. If µi is lower than one, then at the prices set
by trader I the wealth of trader i decreases, on average. The exogenous transfer
of a small amount of wealth from agent I to agent i would be reverted back by
market forces. Conversely, if µi is greater than one, the dominance of trader I can
be effectively challenged by trader i.13 Thus, a sufficient condition for a MSE in
which agent I dominates to be unstable is that there exists a i ∈ {1, . . . , I − 1}
such that µi > 1.

13When arbitrage opportunities exist the value of µi may even indicate that the wealth of
agent i grows or shrinks deterministically in each period.
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Notice that the µs take also into account different consumption patterns. At a
MSE in which trader I dominates, if she invests proportionally to an agent i but
consumes more, then there exists a constant c ∈ (0, 1) such that αI = c αi. As a
result µi = 1/c > 1 so that the MSE in which agent I dominates is unstable. With
equal portfolio rules, the agent who consumes the most can never dominate.

The second set of stability conditions concerns the roots of a polynomial which
depends on the derivatives of the surviving investment rule. They account for
potential market instability related to the strength of price feedbacks.

The polynomial (4.4) can be heavily simplified if the rules are such that the k-
th component of the I-th investment rule, αI

k, depends only on the prices (present
and past) of asset k. In the following we shall name this property of investment
rules the no-cross-dependence condition. It holds

Corollary 4.1. Under the assumptions of Theorem 4.3, if trader I investment
rule satisfies the no-cross-dependence condition then P (λ) simplifies to

P (λ) =
K
∏

k=1

(

λL −
L
∑

l=1

λL−l(ᾱI
k)

(k,l)

)

, (4.5)

and each (ᾱI
k)

h,l reduces to

(ᾱI
k)

h,l =
(αI

k)
h,l

1− (αI
k)

h,0
l = 0, 1, . . . , L , k, h = 1, . . . , K .

Whether or not the no-cross dependence condition is satisfied for rule I, if the
latter is a sufficiently flat function of past prices, so that its partial derivatives are
close to zero, the corresponding MSE is stabilized. Indeed, as a straightforward
application of Theorem 4.3 one has the following

Corollary 4.2. Under the hypothesis of Theorem 4.3, if trader I investment rule
depends only on current prices then the asymptotic stability of x∗ depends only on
the value of µs as defined in (4.3).

4.2 Multiple survivors equilibria

We move now to investigate MSE where more rules have positive wealth, or mul-
tiple survivors equilibria. These equilibria are associated with prices that are fixed
simultaneously by all the survivors. Thus it must be that all survivors take, at
equilibrium, the same portfolio decisions.

Theorem 4.4. Consider a market for K short-lived assets with non-trivial divi-
dend process d, where I agents invest according to a rule in A using L price lags.
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Assume agents’ wealth and asset prices evolve according to ϕ in (3.9). The state
x∗ = (w∗, p∗) with shares wM∗, . . . , wI∗ such that

∑I
m=I−M+1 w

m∗ = 1 is a man-
ifold of multiple survivors Market Selection Equilibria where the last M traders
dominate if and only if p∗ = (p∗, . . . ,p∗) ∈ (∆K

c+)
L+1 solves αi(p∗) = p∗ for

i = I −M + 1, . . . , I but αj(p∗) 6= p∗ for j = 1, . . . , I −M .

By fixing the same prices, the rules of the surviving traders have a common
“intersection” with the EMC. Their common intersection defines a manifold of
MSE because each reallocation of wealth among surviving agents does not change
the equilibrium prices and it is still a MSE. As a result some potentially surviving
agents can even possess a zero wealth share. The manifold of multiple survivor
equilibria has dimension equal to the number of potential survivors minus one
and is isomorphic to ∆M−1. We turn now to the specification of the sufficient
conditions for the stability or instability of x∗ = (w∗, p∗). The following theorem
generalizes both Theorem 4.2 and 4.3 to the present case.

Theorem 4.5. Consider the manifold of MSE x∗ = (w∗, p∗) of Theorem 4.4 and
assume that all investment rules i ∈ {1, . . . , I} are continuously differentiable in
a neighborhood of p∗, αi ∈ C1(p∗). Sufficient conditions for the existence of a
well-defined local dynamics in a neighborhood of each x∗ and for the stability or
instability of each x∗ are the same as those specified, respectively, in Theorem 4.2
and 4.3 provided that

(i) condition (4.3) is checked only for the last I −M rules,

(ii) in the definition of (ᾱk)
h,l, H, and thus P (λ), the expression (αI

k)
h,l is re-

placed by

〈αk〉
h,l :=

M
∑

m=I−M+1

(αm
k )

h,lwm∗ l = 0, 1, . . . , L , k, h = 1, . . . , K . (4.6)

Intuitively, results for multiple survivors MSE mimic those for a single survivor
MSE with the dominating rule equal to the weighted average of all surviving rules,
the weights being equal to their equilibrium wealth shares. If at a certain MSE
all I agents take the same investment decision, all quantities µ will be equal to
one, so that the only necessary conditions for local stability that are binding are
those related to the roots of the polynomial P (λ), representing the strength of
the “average” price feedback. This is exactly what occurs at p = pB in the two-
trader example of Section 2. Notice also that while the statement in Theorem 4.3
concerns asymptotic stability, the conditions of Theorem 4.5 only assure stability.
This is the obvious consequence of the fact that multiple survivor equilibria are
non-isolated equilibria.
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5 Never vanishing rules

Knowing about the determinants of local survival and dominance, the next issue
we address is whether there exist rules that never vanish. In Section 5.1 we char-
acterize such a rule, which we name S-rule or α⋆. In Section 5.2 we compare it
with the Kelly rule and its generalizations. In the Section 5.3 we show that in
the specific class of investment rules which depend on some given statistics of past
prices it is possible to find rules that successfully adapt to α⋆.

Before we start it is convenient to introduce a survival relation on rules.

Definition 5.1. Given two rules α1, α2 ∈ A it is α1 � α2, if, for almost all initial
conditions x0 ∈ X and almost all ω ∈ Ω, rule α1 does not vanish when it trades
only with rule α2.

Local stability and instability of MSE are informative on the survival relation.
If there are no stable MSE in which α1 dominates then α2 � α1, and vice versa. If
instead we can identify a stable MSE in which α1 dominates then α2 � α1, but not
necessarily α1 � α2, since there could be also a stable MSE in which α2 dominates.
It follows that the relation � needs not to be complete. Notice, however, that we
can asses the stability of a MSE using the results of the previous Section only when
the rules considered satisfy the assumptions of Theorem 4.2 in a neighborhood of
their MSE.

5.1 A Star rule

Let A0 denotes the subset of A made of constant (exogenous) rules. Given a
measure ρ and a non-trivial dividend process d, on the set A0 ×∆K

c+ we define

Iρ,d(α,p) = −

∫

Ω

dρ(ω) log

(

K
∑

k=1

αk

pk
dk(ω)

)

. (5.1)

Iρ,d(α,p) is a generalization of the relative entropy (2.3) to the general dividend
process d, measure ρ, and to vectors α and p possibly non adding-up to one.14 Its
exponential is the inverse of the average growth rate of α when prevailing prices
are equal to p. The rule which maximizes this growth rate for each p, or minimizes
(5.1), never vanishes in a pairwise comparison.

For fixed ρ and d, we define the S-rule α⋆(p) as the rule that minimizes Iρ,d(α,p)
for each given price vector p. Since the minimizing vector in A0 might be different
for different prices, α⋆(p) generically depends on prices and belongs to A. If

14More precisely when the dividend process d is defined by the identity matrix we recover
Iρ,d(α

i(p), π) = Iπ(α
i(p)).
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prices p are such that there are no arbitrage opportunities, compactness and strict
convexity of the minimization problem ensures that then S-rule is well defined and
continuous.

Theorem 5.1. On the set of p ∈ ∆K
c+ for which there are no arbitrages the rule

α⋆(p) = argmin
α∈A0

{Iρ,d(α,p)} (5.2)

is a well defined function of p. Moreover α⋆(p) is of class C1, satisfies
∑K

k=1 α
⋆
k(p) =

1, and α⋆(p) = p if and only if pk =
∫

Ω
dρ(ω)dk(ω) for every k = 1, . . . , K.

If instead p is such that there are arbitrage opportunities, then there exist
unbounded portfolios in A0 that give infinite wealth with positive probability. In
this case the S-rule would exploit the arbitrage opportunities taking unbounded
positions. An immediate consequence of the unboundedness of the S-rule under
arbitrage is that when the S-rule is trading market clearing prices do not exhibit
arbitrage.

Consider a finite set of rules E ⊂ A such that the assumptions of Theorem 4.2
are satisfied for all possible MSE. For instance E can be made of rules belonging
to A0, as those considered in the works surveyed by Evstigneev et al. (2009), or
of rules derived by the maximization of CRRA utility functions of wealth, as the
ones considered in Bottazzi and Dindo (2013), or any mixture of them.

Theorem 5.2. Given the set E, if α⋆ ∈ E then α⋆ � α for every α ∈ E.

The previous theorem exploits the fact that rules are sufficiently well behaved
to allow the inference of global properties of the dynamics from the local analysis
of Section 4: for almost all ω ∈ Ω the S-rule never vanishes. The reason is that
otherwise the market would converge to a MSE in which the other rule dominates,
but, since α⋆ has the maximal average growing rate for all possible market states,
the MSE where the other rule dominates must be unstable, leading to a contradic-
tion. Notice also that, since in absence of arbitrage Theorem 5.1 guarantees that
α⋆ is of class C1, and in particular at its intersection with the EMC, the sets E

where Theorem 5.2 can be applied is not trivial.
When many rules compete in the same market against the S-rule, one can prove

that the the S-rule survives almost surely and assets are priced correctly.

Theorem 5.3. Consider a set E with α⋆ ∈ E. All deterministic fixed points
x∗ = (w∗, p∗) where α⋆ vanishes are unstable. Moreover, there exists at least one
stable deterministic fixed point in which α⋆ survives and long-run asset prices are
equal to p∗k =

∫

Ω
dρ(ω)dk(ω) for all k = 1, . . . , K.
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Notice at last that one can define an S-rule associated with any consumption
level α0 by conditioning the minimization in (5.2) to the set of vectors obeying to
∑K

k=1 αk ≤ 1− α0. The resulting rule will still satisfy Theorems 5.2 and 5.3 if the
set E is restricted to the rules having the same (or higher) consumption rates.

5.2 Generalized Kelly rules

Consider a dividend process defined in terms of a constant and non-trivial diagonal
matrix d as in the example of Section 2. In this case the S-rule coincides with the
so called Kelly rule, that is, α⋆

k(p) = πk (Kelly, 1956). When d is not diagonal,
α⋆ is price dependent and can be seen as a generalization of the Kelly rule. As
an example consider d =

( 1/2 , 0
1/2 , 1

)

and an invariant measure π = (2/3, 1/3). The
S-rule can be easily found to be

α⋆
1(p1, p2) =

2p2 − 3p1
3(p2 − p1)

, α⋆
2 = 1− α⋆

1 ,

when prices do not allow arbitrage, p2 > p1, and any unbounded arbitrage other-
wise. When prices are bound to add up to one, we can name p1 = p, as in the
example of Section 2. In absence of arbitrage, p < 1

2
, the fraction α⋆(p) to be

invested in the first asset becomes

α⋆(p) =
2− 5p

3(1− 2p)
. (5.3)

The S-rule plays a central role in the graphical analysis introduced in Section 2.
In fact it is the relative wealth growth rate of a rule with respect to the S-rule
that determines its survival possibility. Since for any given price vector, and thus
also at any given MSE, the S-rule is maximal with respect to the average wealth
growth rate, to have the highest wealth growth rate is equivalent to be “nearest”
to that rule. We shall exploit this fact in Section 6.2 where we use the EMC plot
to analyze local survival and dominance with a non-diagonal matrix d.

Another generalization of the Kelly rule in repeated markets for short-lived
assets has been proposed by Amir et al. (2005) (see also Evstigneev et al., 2009).
When the dividend process is formed using a dividend matrix d this generalized
Kelly rule, which we name αAEHS from the initials of its proponents, is αAEHS

k =
∑S

s=1 πsdk,s for k = 1, . . . , K. The rule states to invest in proportion to assets
expected dividends. If d is diagonal α⋆ and αAEHS coincide. If d is not diagonal,
they differ. It is still true, however, that the intersections of the two rules with the
EMC coincide (c.f. Th. 5.1) so that the two rules set the same prices when trading
together. In Amir et al. (2005) it is shown that the αAEHS dominates globally
on the class of rules that do not depend on endogenous market variables, such as
prices, but do depend on partial histories of the dividend process.15

15Since αAEHS does belong to the set of rules A0 ⊂ A, and given that it does not vanish when
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5.3 Learning from prices

In Section 5.1 we have established that the S-rule, not being dominated by any
other rule, never vanishes. Is the S-rule the unique rule having this property?
The answer is negative as we show in this Section by considering a class of “price
learning” rules that, using only market information given by past prices, adapt to
any other rule and are never dominated. In particular they are not dominated by
the S-rule.

Consider a rule αL of class C1 that satisfies the no-cross-dependence condition,
has zero consumption, and is consistent, that is, αL

k (p) = pk, k = 1, . . . , K for
any constant price vector p = (p, . . . ,p). We assume the following: αL does not
depend on current prices but only on some statistics, like the mean and/or or
variance, of L past realized prices16; the statistics assigns equal weights to all past
prices; for every k = 1, . . . , K, all partial derivatives of αL are equal, or

(αL
k )

k,l = (αL
k )

k,l′ , for every l, l′ = 1, . . . , L , k = 1, . . . , K . (5.4)

The previous assumptions imply a substantial simplification in the sufficient con-
dition for local stability of the market selection equilibrium where αL dominates.

Theorem 5.4. Consider a MSE x∗ in which only the investment rule αL survives.
Define (αL

k )x∗ the common value of the partial derivative of the k-th component of
the investment rule at the fixed point x∗. All the roots of polynomial P (λ) defined
in Theorem 4.3 are inside the unit circle provided that

(αL
k )x∗ ∈

(

−1,
1

L

)

, for every k = 1, . . . , K . (5.5)

The extension of the previous result to the case of multiple survivors case is
straightforward: conditions are not on partial derivatives (αL

k )
k,l but on convex

combinations of partial derivatives of the type 〈αk〉
k,l. In this case the equilibrium

could be stable for some mixtures of strategies and unstable for others. When
this is the case, the stability condition can be re-written in terms of which wealth
distributions among survivors guarantee stability.

We can now apply the previous result considering a market populated by a
price learner using αL and a trader using the S-rule α⋆. Consider a fixed point
x∗ = (w∗, p∗), with p∗ = α⋆(p∗) = αL(p∗) and where w∗ ∈ (0, 1) is the wealth

trading with α⋆, the reader might wonder whether it also does not vanish when trading with
any other price dependent rule. We do not have an answer to this question at this stage of our
research. Notice that surviving against α⋆ is necessary but not sufficient for surviving against
any other rule. The right panel of Fig. 5 illustrates this last point with an example.

16Several so called “technical” rule of chartist inspiration, like trend detection, ceiling and floor
crossing, fall in this category.
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share of α⋆. Then, if the assumptions of Theorem 4.2 are satisfied in x∗, using the
notation of Theorem 5.4, one has

Corollary 5.1. If for every k = 1, . . . , K

w∗ > 1−
1

(αL
k )x∗L

when (αL
k )x∗ > 0 ,

and

w∗ > 1−
1

|(αL
k )x∗ |

when (αL
k )x∗ < 0 .

then the MSE x∗ is stable.

The intuition behind this result is simple. Given a value of (αL
k )x∗ there always

exists an appropriate bound on the fraction of wealth of the S-rule that assures
that the portfolio of a price learner asymptotically approaches fast enough the
market portfolio. The market portfolio, α(p) = p, has constant wealth and thus
never vanishes. As a result, a price learner never vanishes when trading with an
agent using the S-rule, in that there always exists a finite wealth fraction of the
former that stabilizes the MSE where both survive. Since it is never the case that
the S-rule dominates a price learner, we have established17 that αL � α⋆. The
assumption of zero-consumption is essential to the proof. Indeed any rule with a
positive consumption rate would vanish against the S-rule.

6 Assets mis-pricing and endogenous fluctuations

As discussed in Section 2.3, when rules are exogenous and assets are Arrow securi-
ties market selection achieves informational efficient outcomes. With more general
rules this is not the case. In Section 6.1 we show that, despite the existence of
never vanishing rules, the survival relation on the set A of endogenous rules is not
transitive and thus rules cannot be ordered according to their ability to survive
(or dominate). This result is responsible for the possible inefficiency of very simple
market settings. We illustrate this point discussing two examples of market selec-
tion failure taken from previous contributions. First, in Section 6.2 we consider
the example presented in Evstigneev et al. (2009) in which market incompleteness
is responsible of persistent mis-pricing. Using the graphical analysis based on the
EMC plot we re-obtain the original result and we show that when the rules are
endogenous the same phenomenon is present also in markets for Arrow securi-
ties. Second, in Section 6.3 we review an example presented in Blume and Easley

17In fact, along the same lines, it is straightforward to show that αL � α for every α of class
C1 at its equilibria.
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(1992). We show that persistent mis-pricing is not only the result of market select-
ing the least informed trader, as in the original example, but can also derive from
persistent heterogeneity of beliefs that the repeated trading is not able to resolve.

6.1 Dominance and ordering

The relation introduced in Definition 5.1 does not induce an order relation on any
finite set of rules E ⊂ A. The crucial idea behind this result is that although
rules relative “distance” with respect to the S-rule does imply an ordering, this
ordering is only local and not global, as it depends on prevailing prices. To see it
we propose the following example. In the context of the toy market of Section 2,
consider the following three zero-consumption investment rules. The fraction of
wealth to be invested in the first asset, whose price is denoted as p, is respectively

α1(p) = 0.3 , α2(p) =







0.9 p ≤ 0.2
1.5− 3p 0.2 < p ≤ 0.3
0.6 p > 0.3

, α3(p) =

{

0.2 p ≤ 0.3
p− 0.1 p > 0.3

.

These rules are depicted, together with the S-rule α⋆ = π, in Fig. 2. All three
rules form a set E where the local stability conditions of Section 4 can be used.
Moreover, when two of them are trading, the market dynamics is well defined for
all possible wealth distributions. For example when only rules 1 and 2 compete
on the market, naming w the wealth fraction of trader 1 and solving (2.5b) for
market prices gives

pt = 0.6− 0.3wt .

The price of asset 1 is always between 0.3 (when w = 1) and 0.6 (when w = 0).
Plugging this price equation in (2.5a) one obtains the 1-dimensional dynamical
system describing the evolution of the market. The same analysis can be repeated
for the other two possible pairings.

From the local stability conditions, whose results can be inferred by graphical
inspection of Fig. 2, we conclude that at prices where trader 1 or trader 2 dominates
α2 is closer to the S-rule than α1. The MSE were rule 1 dominates is thus unstable
while the MSE where rule 2 dominates is stable, so that α2 never vanishes and
α2 � α1. The inverse statement, α1 � α2, is not true since the MSE where rule
2 dominates is stable. The same reasoning can be applied to the other pairings
concluding that α1 never vanishes when trading with α3, but not the inverse, and
α3 never vanishes when trading with α2, but not the inverse. Since α2 � α1,
α1 � α3 but α2 � α3, we can state that the relation is not transitive.
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Figure 2: The relation � is not transitive as α2 � α1 , α1 � α3, but α3 � α2.
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Figure 3: Coexistence of unstable MSE and long-run heterogeneity in the example
of Sec. 3.3 from Evstigneev et al. (2009).
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Figure 4: Wealth shares and prices dynamics for the example of Sec. 3.3 from
Evstigneev et al. (2009) when rules α1 and α2 are trading.

6.2 Endogenous fluctuations and path dependency

In Section 3.3 of Evstigneev et al. (2009) an incomplete market with 3 states of
the world but only 2 assets is considered. Using our notation S = 3, K = 2,
and the normalized dividend matrix is d =

( 1/2 , 1/2 , 0
1/2 , 1/2 , 1

)

. The process driving the

states of world is i.i.d. with π = (1/3, 1/3, 1/3). The authors consider three rules:
α1 = (1/2, 1/2), α2 = (1/4, 3/4), and α3 = (1/3, 2/3). Fig. 3 illustrates the three
rules in a EMC plot. Since all rules do not consume, prices add up to one and
we set p1 = p, p2 = 1 − p. The plot also reports the S-rule found by solving the
maximization problem (5.2).The solution coincides with (5.3).

When only rules α1 and α2 compete there are two possible MSE labeled E1 and
E2 in Fig. 3. In E1 trader 1 dominates and p = 1/2. In E2 trader 2 dominates and
p = 1/4. Both equilibria are unstable: when p = 1/4 trader 1 is closer to the S-rule
than trader 2 while when p = 1/2 is trader 2 to be closer.18 Since neither trader
prevails in the long run, heterogeneity is persistent and prices do not converge to
constant values. Simulations reported in Fig. 4 show how wealth shares are time
varying and the price of the first asset keeps fluctuating in the interval (1/4, 1/2).
The fact that prices in E2 are closer to discounted dividends than prices in E1

is not enough to guarantee that trader 2 ultimately dominates. We can interpret
this as a form of asset mis-pricing induced by persistent heterogeneity. It is also
shown that when α3 is added to the trading rules prices stabilize and converges
to the correct values.19 In fact E3, the MSE in which trader 3 dominates, is the
unique stable MSE.20

18When p ≥ 1/2 there exist arbitrage opportunities. Despite rule α2 is not an arbitrage, on
average it still invests “better” than rule α1.

19The proof is based on global results previously presented in Amir et al. (2005)
20Notice that α3 = αAEHS and even if the S-rule and αAEHS are rather different, they coincide

at p =
∑

3

s=1
πsd1,s = 1/3.
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Figure 5: Coexistence of unstable MSE (left panel) and coexistence of stable MSE
(right panel) in the toy market of Section 2.

Moving from exogenous to endogenous rules our contribution shows that in-
complete markets or non-diagonal assets are no longer required to observe market
instability. Consider the complete market described in Section 2, two Arrow se-
curities and two equally likely states, populated in turn by the couples of rules
depicted in the left and right panel of Fig. 5. In the left pane, linear rule 2 invests
a larger share of wealth in asset 1 as its price increases and can thus be thought
of as a market follower rule. In the right panel, rule 2 does the opposite and can
thus be thought of as a contrarian rule. In the left panel, both MSE are unstable,
despite the fact that assets are better priced in the MSE where rule 2 dominates.
This is the same kind of market failure discussed in the previous example. Con-
versely, in the right panel, both MSE are locally stable. Thus rule 1 can dominate
with finite probability despite the fact that it is rule 2 that correctly prices the
assets. In this second case heterogeneity is not persistent but asset mis-pricing,
caused by dependency on initial conditions and on the realization of ω, may be
quite severe.

In Bottazzi and Dindo (2013) we present more examples where coexistence of
stable or of unstable equilibria occurs generically when traders traders are CRRA
myopic utility maximizers, have different beliefs over the invariant distribution,
and different coefficients of relative risk aversion.

6.3 Vanishing of the informed trader

In Theorem 5.4 of Blume and Easley (1992) it is shown that in an i.i.d. economy
with aggregate risk, that is, where

∑

k Dk,s 6=
∑

k Dk,s′ if s 6= s′, having correct
beliefs is not sufficient to avoid vanishing. In particular, among myopic expected
utility maximizers with constant coefficient of relative risk aversion γ, given a rule
with correct beliefs and γ 6= 1, there always exists a rule with worst beliefs but γ
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Figure 6: Left panel: Dominance of the uninformed trader as in Blume and Easley
(1992). Right panel: long-run coexistence of uninformed and informed traders. In
both examples demands are as in (6.1), D1 = 2, D1 = 1, and π = (0.5, 0.5).

closer to one, such that the former vanishes when trading against the latter.
To see an example, consider a market for two securities with dividends D =

(

D1 , 0
0 , D2

)

, D1 6= D2. Name trader i beliefs (πi, 1−πi) and her coefficient of relative

risk aversion γi. By solving the related maximization problem, the fraction to be
invested in asset 1 by trader i as a function of its normalized price p can be found
to be

αi(p) =

(

πi
(

D1

p

)1−γi
)

1

γi

(

πi
(

D1

p

)1−γi
) 1

γi

+

(

(1− πi)
(

D2

1−p

)1−γi
) 1

γi

. (6.1)

In the left panel of Fig. 6 trader 2 has correct beliefs but has γ2 < 1. Trader 1
has incorrect beliefs but has γ1 = 1. Parameters are chosen so that for all possible
equilibrium prices, and thus also at the two MSE, trader 1 is closer to the S-rule
than trader 2. It follows that the MSE where 1 dominates is stable while the
MSE where 2 dominates is unstable. The correct beliefs of trader 2 will never
be reflected in prevailing prices. However the dominance of the worst informed is
not the unique possible failure of wealth-driven selection. Another possibility is
represented by the right panel of Fig. 6. Here we change the preferences of the
second trader to make both MSE unstable and obtain long-run heterogeneity of
beliefs and persistent price fluctuations.
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7 Conclusion

We investigate wealth-driven selection in a repeated market for short-lived assets
where traders are boundedly rational and investment rules depend on current and
past equilibrium prices. We derive local stability conditions of long-run Market
Selection Equilibria where a rule, or a group of rules, dominates and determines
asset prices. A strength point of our results is that they can be applied to any
repeated market for short-lived assets as long as their dividend process is ergodic.
In particular we do not have restrictions on the number of traders, nor on the type
of rules they use, as long as they are smooth enough, diversified, and satisfy the
usual budget constraint. Our analysis shows that coexistence of stable and unsta-
ble equilibria are generic and might lead to persistent heterogeneity, endogenous
fluctuations, path-dependency, and mis-pricing. We identify two different sources
of market selection failures. The first is related to the fact that rules’ long-run
average growth rates can be ordered only for a given set of prevailing prices. A
rule might outperform other rules at certain prices, having there the highest aver-
age growth rate, and fail to do so at other prices. The second source of selection
failure is that an investment rule may have a too strong past prices feedback to
let the price dynamics converge.

Our results cast doubts on the validity of the selection argument underlying the
informational efficiency of financial markets, at least when traders are boundedly
rationals so that markets are not dynamically complete. The market does not
generically selects a unique log-run winner and asset prices do not need to be as
close as possible, given the competing rules, to their fundamental values. Also
a trader with perfect knowledge about the underlying dividend process is not in
general guaranteed to survive. Only if a trader has perfect knowledge regarding
the underlying dividend process and exploits it at best using the S-rule, then the
selection equilibria where she survives are the unique stable equilibria. In this case
prices correctly reflect, in the long-run, assets’ fundamental values.

Our future work shall be oriented at establishing whether our local results are
also informative of the global dynamics; whether they carry over also when trader
rules depend on partial histories of the dividend process; and, most importantly,
if the market selection failures we identify are able to make sense of the financial
anomalies found by the empirical literature.
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A Appendix: Proofs

A.1 Section 4

For the sake of the proofs, it is useful to write the system of I+K(L+1) equations
characterizing the market dynamics in terms of the two functions W and P =
(P1,P2, . . . ,PK) so that

F(θtω)xt :=

















































W(xt; θ
tω) :=







w1
t+1 = W1(xt; θ

tω)
...

...
...

wI
t+1 = WI(xt; θ

tω)

P(xt; θ
tω) :=



































P1(xt; θ
tω) :=











p1,t+1 = f1(xt; θ
tω)

p11,t+1 = p1,t
...

...
...

pL1,t+1 = pL−1
1,t

...
...

PK(xt; θ
tω) :=











pK,t+1 = fK(xt; θ
tω)

p1K,t+1 = pK,t
...

...
...

pLK,t+1 = pL−1
K,t

.

(A.1)

Proof of Theorem 4.1 The result follows from substitution of x∗ in (A.1).
W(x∗;ω) = w∗ holds because, for every ω, if i 6= I wi∗ = 0 is a fixed point of
Wj(·, ω); if i = I, since by assumption p∗k = αI

k(p
∗) for k = 1, . . . , K, wI∗ = 1

is a fixed point of WI(·, ω). P(x∗;ω) = p∗ holds because current prices are fixed
by I (all other agents have zero wealth) so that p∗k = αI

k(p
∗) holds by assumption

for k = 1, . . . , K, lagged prices are instead all equal by constructions given that
p∗ = (p∗, . . . ,p∗).

Proof of Theorem 4.2 After noting that prices are implicitly defined by the
set of K equations in (3.2b) or

pk,t+1 =
I
∑

i=1

wi
t+1α

i
k(pt+1) , k = 1, . . . , K

with wI
t+1 = 1 and wi

t+1 = 0 for i 6= I, the result follows by applying the implicit
function theorem. More specifically we apply the theorem for each of the S maps
F, one for each state of the world. If we take X as the intersection of all S
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neighborhoods X(s) where the explicit map is well defined, the resulting set X
does not depend on s and thus also not on ω.

Proof of Theorem 4.3 Consider the reduced system in [0, 1]I−1 × (0, 1)K(L+1)

of dimension I−1+K(L+1) obtained by substituting wI
t = 1−

∑I−1
i=1 w

i
t. With an

abuse of notation we will keep using the same names for the map f , and thus also
F, even though its definition has actually changed. In particular the definition of
f given in (3.8) becomes

fk(xt;ω) =
I−1
∑

i=1

W
i(xt;ω)(α

i
k,t+1 − αI

k,t+1) + αI
k,t+1 , k = 1, . . . , K . (A.2)

F defined in (A.1) and x∗ vary accordingly, in particular x∗ = (0, . . . , 0, p∗).
Given x∗ and X as in Theorem 4.2, the map F and the shift map θ define a

Random Dynamical System ϕ : N × Ω×X → X such that

ϕ(t, ω, x) = F(θt−1ω) ◦ . . . ◦ F(θω) ◦ F(ω)x. ,

see e.g. Def. 2.1 in Coayla-Teran and Ruffino (2004). We shall show that sufficient
conditions for the stability and instability of x∗ can be given in terms of the
Lyapunov spectrum of its Jacobian.

The Jacobian J(ω, x) of F can be written as

J(ω, x) =

(

∂W
∂W

∂W
∂P

∂P
∂W

∂P
∂P

)

, (A.3)

or, subdividing the part relative to prices, with obvious notation,

J(ω, x) =















∂W
∂W

∂W
∂P1

. . . ∂W
∂PK

∂P1

∂W
∂P1

∂P1
. . . ∂P1

∂PK

...
...

. . .
...

∂PK

∂W
∂PK

∂P1
. . . ∂PK

∂PK















. (A.4)

The element i, j of each block matrix is the partial derivative of the i-th component
of the numerator with respect to the j-th component of the denominator.

In each sub-block ∂W/∂Pk the first column reads

{

δW

δPk

}

i,1

=

(

∑

k′

(αi
k′)

k,1

pk′,t
dk′,t(ω)−

αi
k,t

(pk,t)2dk,t(ω)

)

wi
t , i = 1, . . . , I − 1 ,
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while for l > 1 it is

{

δW

δPk

}

i,l>1

=

(

∑

k′

(αi
k′)

k,l−1

pk′t
dk′,t(ω)

)

wi
t , i = 1, . . . , I−1 , L = 2, . . . , L+1 .

Since w∗j = 0 if j 6= I, the previous expressions at x∗ read
{

∂W

∂P

∣

∣

∣

∣

x∗

}

i,j

= 0 for all i, j .

As a result, the Jacobian matrix evaluated at x∗, J∗(ω) = J(ω, x∗), is lower block
triangular and the eigenvalues of J∗(ω) are those of the left-upper wealth/wealth
block and right-lower price/price block. These blocks turn out to have a peculiar
structure at x∗.

Let us start from the left-upper block ∂W/∂W,. Taking the partial derivatives
of wealth fractions gives

{

∂W

∂W

}

i,j

=
∂Wi(xt;ω)

∂wj
t

= δi,j

K
∑

k=1

αi
k,t

pk,t
dk,t(ω) i, j = 1, . . . , I − 1

so that the block computed in x∗ = (0, . . . , 0, p∗) becomes diagonal and reads

∂W

∂W

∣

∣

∣

∣

x∗

=















µ1(ωt+1) 0 . . . 0
0 µ2(ωt+1) . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . µI−1(ωt+1)















, (A.5)

where, using the fact that prices are fixed by trader I,

µi(ωt+1) =
K
∑

k=1

αi
k(p

∗)

αI
k(p

∗)
dk,t(ω) . (A.6)

Concerning the right-lower block ∂P/∂P, in a neighborhood of the fixed point
x∗ it holds that

{

∂Pk

∂Ph

}

1,l

=
∂fk(xt;ω)

∂pl−1
h,t

∣

∣

∣

∣

∣

x∗

l = 1, . . . , L+ 1 ,

(A.7)

= −

K
∑

k′=1

H−1
k,k′(xt)Mk′,h,l
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where H−1 is the inverse of the matrix Hk,k′(xt) =
∑I

i=1 w
i
t+1(α

i
k(pt+1))

k′,l, defined
in Theorem 4.2 and non-singular buy assumption, and

Mk′,h,l =
I−1
∑

i=1

(

{

∂W

∂Ph

}

1,l

+ wi
t+1

(

(

αi
k′

)h,l
−
(

αI
k′

)h,l
)

)

+
(

αI
k′

)h,l
. (A.8)

Substituting in (A.7) the expression of (A.8) computed at x∗ and using the matrix
defined in (4.1) leads to

{

∂Pk

∂Ph

∣

∣

∣

∣

x∗

}

1,l

= −

K
∑

k′=1

H−1
k,k′(α

I
k′)

h,l = (ᾱI
k)

h,l , l = 1, . . . , L (A.9)

and {∂Pk/∂Ph|x∗}1,L+1 = 0. The other rows are all zero but for the diagonal blocks
which have a “Jordan” form, that is,

{

∂Pk

∂Ph

}

i>1,l

=
∂plk,t+1(xt;ω)

∂pl−1
k,t

= δk,hδi+1,i , i = 2, . . . , L+1 l = 1, . . . , L+1 .

As a result

∂Pk

∂Ph

∣

∣

∣

∣

x∗

=















(ᾱI
k)

h,1 (ᾱI
k)

h,2 . . . (ᾱI
k)

h,L 0
δk,h 0 . . . 0 0
0 δk,h . . . 0 0
...

...
. . .

...
...

0 0 . . . δk,h 0















, k, h = 1, . . . , K . (A.10)

The eigenvalues associated with the price blocks are obtained from the character-
istic polynomial defined as the determinant

P (λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∂P1

∂P1
− λI . . . ∂P1

∂PK

...
...

. . .
...

∂PK

∂P1
. . . ∂PK

∂PK
− λI

∣

∣

∣

∣

∣

∣

∣

∣

,

where I stands for the (L + 1) × (L + 1) identity matrix. The last zero columns
in each column-block is responsible for a factor λ. This generates an eigenvalue 0
of multiplicity K. Once the associated K columns, and their corresponding rows,
have been removed one remains with a residual matrix of dimension KL. This
matrix hasK rows filled with ᾱs. Each other row is zero but for two elements 1 and
−λ. Using the Laplace formula iteratively, the final expression of the characteristic
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polynomial of the lower-right block becomes

P (λ) = λk

L
∑

l1=1

. . .

L
∑

lK=1

λLK−
∑

j lj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ᾱI
1)

1,l1 − λδ1,l1 (ᾱI
1)

2,l2 . . . (ᾱI
1)

K,lK

(ᾱI
2)

1,l1 (ᾱI
2)

2,l2 − λδ1,l2 . . . (ᾱI
2)

K,lK

...
...

. . .
...

(ᾱI
K)

1,l1 (ᾱI
K)

2,l2 . . . (ᾱI
K)

K,lK − λδ1,lK

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which, using the Leibniz formula for the computation of the determinant, and
dropping the factor λK , reduces to (4.4).

Consider now the linear Random Dynamical System J∗(T, ω) generated by the
Jacobian in x∗, J∗(·), and by the shift operator θ

J∗(T, ω) = J∗(θT−1ω) . . . J∗(θω)J∗(ω) .

Applying the Oseledec’s multiplicative ergodic theorem (or MET see e.g. Coayla-
Teran and Ruffino, 2004, Th. 2.1) the Lyapunov spectrum of J∗(T, ω) can be
used to determine the stability or instability of x∗, provided that the integrability
condition is satisfied, that is, as long as

E log+ ||J∗|| :=

∫

Ω

log+ ||J∗(ω)||ρ(ω) < ∞ , (A.11)

where log+ a = Max{log a, 0}. Due to assumptions A2-A3 the element of J∗ are
finite almost surely, so that (A.11) immediately follows.

The MET then states that:

i) there exists a splitting ofR(I−1)K(L+1) in p random subspaces E1(ω), . . . , Ep(ω)
with non-random dimensions d1, . . . , dp such that

J∗(T, ω)Ei(ω) = Ei(θ
Tω) , i = 1 . . . , p ;

ii) there exists a Lyapunov spectrum {η1, . . . , ηp}, p ≤ (I − 1)K(L + 1), such
that for all v ∈ R(I−1)K(L+1), v 6= 0,

lim
T→∞

1

T
log ||J∗(T, ω)v|| = ηi ⇔ v ∈ Ei(ω) .

The spectrum is related to the stability and instability of x∗. When all ηi 6= 0 for
all i we say that x∗ is hyperbolic and the stability or instability of x∗ carry over
locally for the nonlinear map ϕ.
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The next step is to compute the spectrum of J∗(T, ω). First, since J∗(ω) is
block triangular for every ω, so it is J∗(T, ω), which can be written as

J∗(T, ω) =

(
(

∂W
∂W

∣

∣

x∗

)T
0

�
(

∂P
∂P

∣

∣

x∗

)T

)

, (A.12)

where

� =
T−1
∑

t=0

(

∂W

∂W

)T−t−1
∂P

∂W

(

∂P

∂P

)t

,

=
T−1
∑

t=0

∂W(θTω)

∂W
. . .

∂W(θt+1ω)

∂W

∂P(θtω)

∂W

∂P(θt−1ω)

∂P
. . .

∂P(ω)

∂P
. (A.13)

This implies that the eigenvalues of J∗(T, ω) are given by the union of the eigen-
values of the T -iteration of the 2 diagonal blocks of J∗(ω).

The left-upper block is random but diagonal. It follows that the first I − 1
subspaces of the splitting are deterministic and generated by the canonical base.
Then, we can compute the first I − 1 Lyapunov exponents by evaluating

{J∗(T, ω)}i,i = µi(θ
T−1ω) . . . µi(θω)µi(ω) , i = 1 . . . , I − 1 .

with µi() as defined in (A.6). Thus

ηi = lim
T→∞

1

T

T
∑

t=1

log ||µi(θ
tω)|| = lim

T→∞

1

T

T
∑

t=1

log

(

K
∑

k=1

αi
k(p

∗)

αI
k(p

∗)
dk(θ

tω)

)

which, because of the assumed ergodicity of the process, reduces to the log of the
expression in (4.3).

Concerning the right-lower block, the matrix in (A.10) does not depend upon
the realization of ω. This implies that the the subspaces of the splitting of the
right-lower block components are just the eigenspaces of ∂P/∂P. Moreover, since
the eigenvalues of its T -product are just the T power of the eigenvalues of ∂P/∂P,
each Lyapunov exponent ηi for i = I, . . . , p are the roots of (4.4).

Summarizing, the sufficient condition for the asymptotic stability (instability)
of x∗ is that all the (at least one of the) roots of (4.4) and µi in (4.3) are lower
(greater) than one. Moreover, x∗ is hyperbolic if all these quantities are different
from one.

Finally, since the Random Dynamical System ϕ is C1 (because F in (A.1) is C1)
the Local Hartman-Grobman theorem (see Coayla-Teran and Ruffino, 2004, Th.
3.2) ensures that the asymptotic stability results of the linear Random Dynamical
System J∗(T, ω) carry over locally to the Random Dynamical System ϕ, and the
theorem is proved.
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Proof of Corollary 4.1 The polynomial (4.4) is heavily simplified when the
investment rule of agent I in asset k depends only on current and past prices
of asset k itself, the no-cross-dependence condition. In this case all off-diagonal
price/price blocks (A.10) have zero entries, and the characteristic polynomial of
each diagonal block k = 1, . . . , K is given by

P (λ) = λ

(

λL −

L
∑

l=1

λL−l(ᾱI
k)

(k,l)

)

,

that is, one eigenvalue is equal to zero while the other L eigenvalues are the zeros
of (4.5).

Proof of Theorem 4.5 The proof proceeds along the same lines of that of
Theorem 4.3. It is still convenient to omit the state variable wI

t by using wI
t =

1 −
∑I−1

i=1 w
i
t. Consider the Jacobian J∗(ω), of F computed at the fixed point x∗.

The components of the off-diagonal wealth/price and price/wealth blocks read

{

∂W
∂Pk

∣

∣

∣

x∗

}

i,1
=

{

0 i = 1, . . . , I −M

−wi∗

p∗
k

dk,t(ω) i = I −M + 1, . . . , I − 1
, (A.14)

{

∂W
∂Pk

∣

∣

∣

x∗

}

i,j>1
=

{

0 i = 1, . . . , I −M
∑

k′
wi∗

p∗
k′
(αi

k′)
k,j−1dk′,t(ω) i = I −M + 1, . . . , I − 1

,(A.15)

{

∂Pk

∂W

∣

∣

x∗

}

1,j
=

{

µj(ωt+1)(α
j
k(p

∗)− p∗k) j = 1, . . . , I −M
0 j = I −M + 1, . . . , I − 1

,(A.16)

{

∂Pk

∂W

∣

∣

x∗

}

i>1,j
= 0 j = 1, ..., I − 1 , (A.17)

for k = 1, . . . , K and where µj(ωt+1) is defined as in (A.6). Diagonal blocks have
a similar structure to that found for the single survivor case. In particular the
wealth/wealth block is

∂W

∂W

∣

∣

∣

∣

x∗

=



















µ1(ωt+1) . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . µI−M(ωt+1) 0 . . . 0
0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1



















, (A.18)

where each µi(ωt+1) is defined in (A.6) and 1s comes from the fact that µi(ωt+1) = 1
for all i = I −M + 1, . . . , I − 1. Price/price blocks are obtained from (A.7) with
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the substitution of the derivatives of the I-th investment rule with the average
of the derivative of all surviving rules, weighted with the associated equilibrium
wealth shares. Defining 〈H〉, 〈M〉, 〈ᾱ〉, as in, respectively, (4.1), (A.8) and (A.9)
replacing (αI

k)
h,l with 〈αk〉

h,l defined in (4.6), each price/price blocks is given by

∂Pk

∂Ph

∣

∣

∣

∣

x∗

=















〈ᾱk〉
h,1 〈ᾱk〉

h,2 . . . 〈ᾱk〉
h,L 0

δk,j 0 . . . 0 0
0 δk,j . . . 0 0
...

...
. . .

...
...

0 0 . . . δk,j 0















, k, h = 1, . . . , K , (A.19)

The resulting Jacobian matrix has the structure

J∗(ω) =





W 0 0
0 I A
B 0 P



 , (A.20)

where (W 0
0 I ) is the wealth/wealth block (A.18), in particular W is the (I −M)×

(I−M) upper diagonal block and I is the (M−1)×(M−1) identity matrix, P is the
K(L+1)×K(L+1) price/price block built using (A.19), A is a (M−1)×K(L+1)
matrix with elements defined by (A.14-A.15), B is a K(L + 1)× (I −M) matrix
with elements defined by (A.16-A.17), and 0 denotes, case by case, a matching
null matrix. It is a trivial algebraic result that the T products of (A.20) possess
the structure

J∗(T, ω) =





W T 0 0
C ′ I A′

B′ 0 P T



 ,

where the exact form of the matrices A′,B′,C ′ depend on the choice of T and is
not relevant for our analysis. It then follows that the determinant of J∗(T, ω) can
be easily computed as the product of the determinants of its diagonal blocks W T

and P T . As a result, sufficient conditions for stability can be derived along the
same lines of the proof of Theorem 4.3, where diagonal blocks have changed from
(A.5) and (A.10) to (A.18) and (A.19), respectively.

Notice that, also in the case of multiple survivors, the stochastic component
enters only in the diagonal wealth/wealth block. For multiple survivors, however,
the characteristic polynomial of the wealth/wealth block possesses a unit root with
multiplicity M − 1. Consequently, the fixed point is non-hyperbolic, and thus not
asymptotically stable. We shall show that each fixed point x∗ = (w∗, p∗) belonging
to the manifold where

M
∑

m=1

w(I−M+m)∗ = 1
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is nevertheless stable. For any realization ω of the process, the direct sum of the
eigenspaces associated with each unitary eigenvalue is the linear space VI spanned
by the M − 1 vectors em, m = I − M + 1, . . . , I − 1 of the canonical base of
RI−1+K(L+1). As the direction of each vector em corresponds to a change in the
relative wealth of the m-th and I-th survivor, each small enough perturbation v ∈
VI away from x∗ push the dynamics to a new point x′∗ = x∗ + v = (w′∗, p∗) where
the wealth distribution w′∗ differs from w∗ for the reallocation of wealth among the
M surviving agents corresponding to v∗. Since x′∗ is a deterministic fixed point,
when perturbations are restricted to VI the original point x

∗ is stable. For the more
general case notice that any perturbation h can be written as h = h′ + h⊥ with
h′ ∈ VI , h

⊥ ∈ V ⊥
I and that x′∗ is asymptotically stable for perturbations h⊥ along

the stable manifold and stable for perturbations h′ along the center manifold. The
fixed point is hence stable, but not asymptotically stable.

A.2 Section 5

Proof of Theorem 5.1 Since Iρ,d(α,p) is defined only for vectors p ∈ ∆K
+ , we

can change variables from αk to xk = αk

pk
for every k = 1, . . . , K. Solving (5.2) is

thus equivalent to solving

min
x∈B+(p)

{Iρ,d(x)} . (A.21)

where B+(p) = {x ∈ RK |
∑

k xkdk(ω) > 0 a.s. and x · p ≤ 1}. Since the lower
bound is never reached for those x where

∑

k xkdk(ω) = 0 with positive proba-
bility, we can equally solve min{exp Iρ,d(x)} on B(p) = {x ∈ RK |

∑

k xkdk(ω) ≥
0 a.s. and x · p ≤ 1}.

For this purpose we first show that when there are no arbitrage opportunities
the set B(p) is compact. B(p) is the intersection of (possibly infinite) closed
halfspaces and thus a convex and closed polyhedron. The set B(p) is not empty
because it contains the non empty set {x ∈ RK |xk ≥ 0 for all k and x · p ≤ 1}.
Assume now by absurd that B(p) is unbounded. Then it must exist a direction
a ∈ RK , a 6= 0, such that for every x ∈ B(p)

x+ λa ∈ B(p) , ∀λ ≥ 0 , .

This is equivalent to state that for all λ ≥ 0
∑

k

(xk + λak)dk(ω) ≥ 0 a.s.

and
∑

k

(xk + λak)pk ≤ 1 .
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Since λ is an arbitrary non negative constant then it must hold
∑

k

akdk(ω) ≥ 0 a.s.

and
∑

k

akpk ≤ 0 .

Adding to this the fact ad(ω) = 0 a.s. if and only if a = 0, which we have excluded,
implies that a is an arbitrage. Since the latter contradicts our hypotheses we
conclude that B(p) is bounded for all p where arbitrages are not possible. Being
also closed, B(p) is compact.

We have shown that in absence of arbitrage solving (A.21) is equivalent to
the minimization of a continuous function on a compact set, whish has always a
solution. Moreover, since we have already argued that such minima will never be
attained for those x where

∑

k xkdk(ω) = 0 with positive probability, we can go
back to solve the original minimization problem (A.21).

Computing the Hessian matrix H of Iρ,d(x) one finds

{H}n,m =

∫

Ω

dρ(ω)
dm(ω)dn(ω)

(

∑K
k=1 xkdk(ω)

)2 , (A.22)

so that y ·Hy, y ∈ RK , is equal to

y ·Hy =
∑

n,m

ynym

∫

Ω

dρ(ω)
dn(ω)dm(ω)

(

∑K
k=1 xkdk(ω)

)2 =

∫

Ω

dρ(ω)
(
∑

n yndn(ω))
2

(

∑K
k=1 xkdk(ω)

)2 .

(A.23)

The former expression is always positive for non-trivial payoff processes d, so that
Iρ,d(x) is strongly convex for all vectors x ∈ B+(p). Adding to this continuity and
non-satiation, which are trivially proved, standard consumer theory theorems, see
e.g. Proposition 2.8 in Ginsburgh and Keyzer (1997), can be used to show that
x⋆(p) · p = 1, which implies α⋆

0(p) = 0, and that x⋆(p) (and thus α⋆(p)) is a well
defined function of class C1.

Regarding the equilibria of α⋆, by deriving the first order conditions of the
minimization problem (A.21), it is immediate to check that pk =

∫

Ω
dρ(ω)dk(ω)

for all k = 1, . . . , K is the unique vector of prices where x⋆(p) = 1, and thus where
α⋆(p) = p.
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Proof of Theorem 5.2 Given that α⋆ ∈ E, when α⋆ is trading equilibrium
prices do not allow for arbitrage, otherwise an equilibrium would not exist. It
then follows from Th. 5.1 that α⋆ is well defined and of class C1 in p. Let now
wt be the wealth share of the S-rule and assume that there exist s trajectory ϕt

where limt→∞ wt = 0. Then asymptotic prices converge toward a single survivor
equilibrium where the rule α dominates, that is where limt→∞ pt,k −αk(pt) = 0 for
any k = 1, . . . , K. It follows that limt→∞ Iρ,d(αt,pt) = 0. Since for construction
α⋆ minimizes Iπ(α,p) for all p it holds

lim
t→∞

Iρ,d(α
⋆
t ,pt) = lim

t→∞
Iρ,d(α

⋆
t , αt) ≤ 0 .

This implies that the quantity µ defined in (4.3) is never lower than one. When µ
is greater than one, the trajectory wt converges towards an unstable deterministic
fixed point. When µ is equal to one, the long-run prices are also an equilibrium
of α⋆. In both cases events in ω that generate these trajectory wt on which the
S-rule vanishes are of measure zero in ρ.

Proof of Theorem 5.3 The proof replicate that of Theorem 5.2 at each de-
terministic fixed point where an agent, or a set of agents, survives. In particular
when prices do not converge to the equilibrium of α⋆ the corresponding deter-
ministic fixed point is unstable. Thus the only possible stable deterministic fixed
points have prices fixed by α⋆(p) = p whose unique solution is pk =

∫

Ω
dρ(ω)dk(ω)

for all k = 1, . . . , K as shown in Th. 5.1. Obviously at all these fixed points α⋆

survives and at least one of such fixed points exists, namely, the one where α⋆

dominates.

Proof of Theorem 5.4 Since by hypothesis the price learner rule αL does not
depend on contemporaneous prices and satisfies both the no-cross dependence
condition and (5.4), the characteristic polynomial (4.5) reduces to

P (λ) =
K
∏

k=1

(

λL − (αL
k )x∗

L
∑

l=1

λL−l

)

.

P (λ) is thus the product of K polynomials having all one zero root and the same
form namely

P (x;α) = xL − α
L−1
∑

l=0

xl .

The problem of determining whether the roots of P (λ) are all inside the unit circle
can thus be solved by looking at P (x;α).
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If α = 0 all roots are inside the unite circle. Assume that α > 0. On the unit
complex circle, |z| = 1, it holds

|zL − P (z;α)| = |α
L−1
∑

l=0

zl| ≤ α
L−1
∑

l=0

|zl| = Lα .

It follows that if α < 1/L, |zL − P (z;α)| < 1 = |zL| for |z| = 1. The latter
inequality together with Rouchè’s Theorem (see e.g. Lang, 1993) imply that the
polynomial P (z;α) and zL have has the same number of roots inside the unit circle.
Moreover notice that if α ≥ 1/L, it holds both P (1;α) ≤ 0 and limx→+∞ P (x;α) =
+∞, implying the existence of a root greater or equal to one. Provided that α is
positive, we have proved that α < 1/L is both a necessary and sufficient condition
for P (x;α) having all the roots inside the unit circle.

Take now α < 0. The complex polynomial P (z;α) can be rewritten as

P (z;α) =
L
∑

l=0

zl − (1− |α|)
L−1
∑

l=0

zl .

and its roots are the solutions of

L
∑

l=0

zl = (1− |α|)
L−1
∑

l=0

zl .

Multiplying the left and right hand side by z− 1 (remembering we are adding the
root z = 1) and rearranging the terms leads to

|z − (1− |α|)| =
|α|

|z|L
,

provided z 6= 0, which we can always assume since zero is never a root. Assume
now |α| < 1. If a root with modulus bigger or equal than one, but different from
z = 1, exists, one could write

|α| < |z − (1− |α|)| =
|α|

|z|L
≤ |α| ,

which is a contradiction. We have proved that |α| < 1 is a sufficient condition for
all roots being inside the unit circle. The condition is also necessary. Indeed, since
the modulus of the constant in P (z;α), |α|, is given by the product of the moduli
of all the roots, when |α| ≥ 1 there must exist at least a root with modulus bigger
or equal to 1.

47



Interestingly, the role of the memory parameter L is different in the case of
positive and negative prices feedbacks. In general, for consistent estimators, partial
derivatives depend on the number of lags considered and scale with 1/L: the
longer the agent’s memory, the lower the partial derivative. Then if (αL

k )x∗ < −1,
by increasing the number of past observation, that is, the memory, it is always
possible to cross the bound of −1 and thus stabilize the fixed point. Conversely,
if (αL

k )x∗ > 1/L, an increase in the memory of the strategy does not improve the
stability of the fixed point because the bound scales with 1/L as well.

Proof of Corollary 5.1 The corollary is easily proved by using results from
Theorem 5.4 and upon realizing that the characteristic polynomial now depends
on the convex combination of partial derivatives, that is, 〈α〉k = (1−w∗)(αL

k )x∗ k =
1, . . . , K, rather than on (αk)x∗ k = 1, . . . , K, because all the partial derivatives
of the S-rule are zero.
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