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Abstract

Since the seminal work of Teece et al. (1994) firm diversification has been found to be
a non-random process. The hidden deterministic nature of the diversification patterns
is usually detected comparing expected (under a null hypothesys) and actual values
of some statistics. Nevertheless the standard approach presents two big drawbacks,
leaving unanswered several issues. First, using the observed value of a statistics provides
noisy and nonhomogeneous estimates and second, the expected values are computed
in a specific and privileged null hypothesis that implies spurious random effects. We
show that using Monte Carlo p-scores as measure of relatedness provides cleaner and
homogeneous estimates. Using the NBER database on corporate patents we investigate
the effect of assuming different null hypotheses, from the less unconstrained to the fully
constrained, revealing that new features in firm diversification patterns can be catched
if random artifacts are ruled out.
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1 Introduction

The relevance of corporate diversification structure in determining firm’s performance has,
since long, received ample recognition inside the industrial economics literature (in a vast
body of contributions, see: Rumelt, 1974; Berry, 1975; Teece, 1980; Rumelt, 1982; Teece,
1982). Quite soon, scholarly contributions suggested that it is not only how much firms
diversify to be important in determining their performances, but also how they do it. Firms
able to diversify their operations across related fields can enjoy the advantage of economies of
scope, likely generated by an increased utilization of incumbent investments or by technological
spillovers, which are clearly not attainable through a random diversification of activities.
Obviously, the econometric assessment and the empirical foundation of this statement require
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the identification of a measure of relatedness across fields. Devising it is not an easy task.
First of all, the identification of an empirical notion of economic proximity goes beyond the
simple identification of a broad taxonomy of productive activities (like for instance the one in
Pavitt, 1984). By definition, taxonomies classify, not relate, the possible fields of operation.
Then, they do not provide any direct notion of similarity across fields. Moreover, even if such
a notion can be indirectly derived, the reliance on ex-ante (and often introspective) assessment
of the particular characteristics of the different taxa is likely to ignore more structured, and
subtle, sources of complementarity among fields, often hidden to the “bird-eye” approach of
the researcher.

A slightly different case is constituted by hierarchical measures of relatedness based on
industrial sectors or technological classes. These classifications do in general provide a rather
fine distinction in a large number of fields. They are defined by national or international bodies
and avoid the risk of idiosyncrasies implicit in individual assessments. They might be useful,
and have been used, to obtain a measure of the (operating or technological) “scope” of the
firm, just by counting in how many sectors the firm is active (Montgomery, 1982) or how many
classes are spanned by the firm’s patents portfolio. However, their usefulness in investigating
the relationship existing between different sectors or classes is doubtful. Indeed, these classifi-
cations focus exclusively on one, or few, aspects characterizing the different fields. Industrial
classifications are usually based on the nature of the input goods (oil, steel, etc.), or on the
nature of the final markets (precision instruments, furniture,. . . ). Technological classifications,
like the ones used by patent offices, consider the technological fields in which the invention can
potentially be applied, without any consideration or reliance on economic aspects. In both
cases, these taxonomies do not identify the bundle of resources or competences specific to a
given field and, as such, are not able to capture the economic advantages (or disadvantages)
associated by the combined presence, inside a productive unit, of different activities. So the
fact that two industrial sectors share the first three digits of the SIC classification does not
tell much about the economic advantage faced by a firm active in both sectors, nor the fact
that two patents share the first three digit of the IPC classification reveals much about the
increased value of owning them both.

Starting from similar considerations, in their seminal work, Teece et al. (1994) introduce
an endogenous notion of relatedness, based on the “survivor principle” and derived from the
observed diversification patterns. The intuition is that firms diversified in more related fields,
due to positive economies of scope, enjoy on average higher competitive advantages, and thus
an higher probability to survive the competitive struggle. As a consequence, activities in re-
lated fields should appear with an higher frequency inside surviving firms. This suggests to
directly measure the relatedness of fields using the diversification patterns of firms themselves,
adopting the number of firms simultaneously active in a pair of fields (co-occurrencies) as a
proxy for the relatedness of the two fields. The actual degree of relatedness is finally obtained
by comparing the observed number of co-occurrencies with what would have been obtained
under the absence of any relatedness among the fields of activity. As suggested in Bryce and
Winter (2010), this endogenous notion of proximity can be applied to a wide range of issues in
strategic management, corporate finance and industrial economics and possesses several ad-
vantages. First, while it does not identify the “basket of resources” associated with each field,
it does directly address the question of the existence of some complementarity among different
baskets associated with different activities. Second, the idea of proximity that emerges from
this measure, being directly based on economic considerations, is not limited exclusively to the
existence and strength of technological spillovers. It can, equivalently, capture other business
aspects of the joint operation of different fields, like the sharing of managerial competences
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or financial advantages (Pehrsson, 2006). Third, being probabilistic in nature, this measure
allows for idiosyncratic elements and path-dependent constraints which can hinder the opti-
mal exploitation of resources in one particular firm. The averaging procedure across multiple
firms, implicit in the measure, should wash away these idiosyncratic hindrances and preserve
the goodness of the result. To illustrate the merit of this kind of measure, Bryce and Winter
(2010), using plant level data on the U.S. manufacturing sector, show that the simple counting
of co-occurrences (with some due corrections, see the next section) is able to identify “hidden”
relationships among SIC sectors which are several digits apart.

Once an underlying notion of relatedness is established, one can use some appropriate
averaging procedure across activities to obtain an empirical notion of corporate “coherence”,
measured as the degree of relatedness among the constituent businesses of a firm. This ap-
proach was proposed and effectively applied in Teece et al. (1994) to analyze the relation
between corporate coherence and firm’s scope. The same idea is adopted by Breschi et al.
(2003) to obtain a measure of coherence of patent portfolios. The computed measure is later
exploited in regression analysis investigating the determinants of corporate performance. A
similar approach is followed by Piscitiello (2004), who uses technological fields and output
markets to measure corporate coherence. This line of research is further investigated by Nesta
and Saviotti (2006) who find that the coherence of the knowledge base within firms is a sig-
nificant explanatory variable of firms stock market value. In Valvano and Vannoni (2003) the
relatedness measure is applied to a modified coherence index which takes into consideration
the notion of principal activity.

The present paper is mainly intended as a methodological contribution in the research line
described above. We show that the approach proposed by Teece et al. (1994), and adopted
as a standard methodology by a large portion of the literature, is affected by two potential
drawbacks.

The first drawback is associated to the measure of relatedness itself. Teece et al. (1994)
adopt a measure, or statistics, that catches how much the observed relatedness moves away
from its expected value. The expected value is computed using a well-defined mechanism of
random assignment between firms and industrial sectors. The discrepancy of the observed
statistics to its expected value is measured in unit of expected standard deviation. We will
show that this choice is biased in nature, providing nonhomogeneous and noisy estimates.
We propose to solve this problem adopting a new quantile-based estimator, which essentially
is the p-score of the observed relatedness statistics. Moreover, the use of a measure of pair
relatedness based on p-score allows for a simple and straightforward introduction of the notion
of “anti-relatedness”. This can be used to identify new features in firm diversification structure
and also answer the question raised in Bryce and Winter (2010) on the need to associate some
economic content not only to the presence, but also to the absence, of co-occurrencies.

The second drawback is linked with the random association mechanism adopted in Teece
et al. (1994) to compute the expected co-occurrence and its variance. Such kind of random
association mechanism will be referred as null model or null hypothesys. The mechanism they
adopt assume that the number of firms active in each industrial sector is fixed, and equal to
the value observed in actual data. Then they randomly assign firms to sectors, and compute
the probability that two sectors appear in the same firm. Obviously, in this way no constraints
are imposed on firms’ scope, i.e. on the number of industrial sectors in which each firm is
active. In principle, the mechanism allow any firms to be active in all sectors. As a direct
consequence of this assignment process, the implied distribution of firm scope converges to
a binomial. This contrasts with the Paretian shape of the scope distribution often observed
in industrial data. In these cases, very high levels of relatedness can be obtained because
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of spurious artifacts generated by the discrepancy between the implied distribution and the
observed one.

In order to investigate the possible emergence of spurious relatedness, and its effect on the
measure of corporate coherence, using data from the NBER Patent Data research project, we
analyze different association mechanisms between firms and industrial sectors/patent classes.
Specifically, four null models are identified and labeled in increasing order of the total number
of constraints they account for. The fully constrained null model, which takes into consider-
ation both sector occupancies and firm scopes, turns out to be remarkably more effective in
revealing the existence of patterns in the coherence structure of firms.

This paper is organized as follows: in Section 2 we will briefly review the original measure
proposed by Teece et al. (1994), highlighting the mentioned drawbacks. Section 3 discusses
several possible measure of relatedness and the advantage of using p-scores. Section 4 describes
our data and investigates the effect of different null hypothesis on the measure of relatedness.
Section 5 extends this analysis to corporate coherence and Section 6 concludes.

2 Null Models and Previous Approaches

The notion of corporate coherence rests upon some underling measure of relatedness among
the different fields of corporate activities. In order to asses how much related are the activities
carried over by a firm, one needs a topology over the different fields of operation, which quanti-
fies their relative degree of proximity.1 The measure of relatedness can be made endogenous by
observing how active units actually distribute their activities between the various fields. The
precise definition of active unit can vary. It can be a plant or a firm. Analogously, different
classifications of the fields of operation has been explored, like industrial sectors (Piscitiello,
2004; Valvano and Vannoni, 2003), specific groups of similar products (Teece et al., 1994) or
patent classes (Breschi et al., 2003; Nesta and Saviotti, 2006). For practical purposes, however,
the scenario is similar in all these cases. One has N units and I fields. The distribution of the
activities is described by the adjacency matrix Cn,i ∈ NN×I defined as:

Cn,i =

{

1 if unit n is active in field i,
0 otherwise.

(1)

This binary matrix is also known as presence-absence matrix. Such kind of matrices have been
used in psychometry (Snijders, 1991) and spatial econometrics (Anselin, 1988) but they have
been most intensively studied in bio-geography and ecology (Connor and Simberloff, 1979;
Roberts and Stone, 1990; Sanderson et al., 1998; Zaman and Simberloff, 2002; Gotelli, 2001,
among others). The ecological problem deals with the detection of interactions among species
(e.g. of birds) in a given sample. The non-zero (resp. the zero) elements of the adjacency
matrices are interpreted as the presence (resp. the absence) of a specie in a geographical
area (e.g., an island of an archipelago as in Roberts and Stone, 1990). With an evolutionary

1In Bryce and Winter (2010) it is suggested that a topological notion of proximity should be superseded
by a stricter metric notion. Substituting proximity with distance could be in fact too much, and can bring
unwarranted consequences. Think for instance to two fields A and B, which use different technologies and a
third field, which we call AB, in which the two technologies partially overlap. It is plausible to think that
firms active in A or B are likely to diversify their operations by developing (or buying) part of the missing
technology, so that an high degree of relatedness between A and AB and between B and AB can be observed.
Differently from a metric notion, the topological idea of proximity does not imply that the field A and B
should be related. Indeed it could be that no firms are active in both the original “pure” technologies since
no advantages are associated with their joint operation.
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argument analogously to the ecological literature, Teece et al. (1994) suggest that the co-
evolution of economic units and the selection process driving the market, lead to the survival
of those units characterized by the more efficient mix of activities. As a result, activities
that are more related tend to appear together, inside the same unit, with higher frequency.
Thus they propose as a measure of association between two industrial sectors i and j the
co-occurrences matrix Ji,j, defined as the number of firms that are simultaneously active in
both sectors

Ji,j =
N
∑

i=1

Cn,i Cn,j = CT C . (2)

Given an observed adjacency matrix C ∈ NN×I , if a particular relationship among activity
fields (or species) exists, the observed value of the co-occurrences matrix is expected to be
non-random. For this reason, in order to assess the strength of the association, it is necessary
to build benchmark values for the co-occurrencies, representing the expected outcomes of a
random matching of units and fields, and compare them with the observed ones. The random
association mechanism between the N units and the I fields is usually referred as the “null
model” (see Gotelli, 2001; Gotelli and Graves, 1996). Teece et al. (1994) propose to consider
as the random benchmark the distribution of J generated by randomly assigning the N firms
to the I sectors. More precisely, they assume that the number of active units in each field
i, ui =

∑N

n=1 Cn,i, is fixed and equal to the actual number observed. Then, they imagine to
assign ui firms, randomly selected from the population of N firms, to each sector i. Under this
simple assignment procedure it is straightforward to derive the hypergeometric probability
distribution of the co-occurrences

Prob {Ji,j = x} =

(

ui

x

) (

I−ui

uj−x

)

(

K

uj

) , x ≤ max{ui, uj}. (3)

The expression for the mean µi,j and standard deviation σi,j of the above distribution can be
easily derived (Feller, 1976). The first is a measure of the number of co-occurrencies expected
between two unrelated fields. The second, instead, measures the deviation from this level due
to the random nature of the matching. Finally, Teece et al. (1994) propose to detect couples
of related fields identifying those having large levels of the t-statistics

t̂i,j =
Ĵi,j − µi,j

σi,j

, (4)

which measures how much standard deviations away the observed values are from their ex-
pected value under the null hypothesis. From now on we will denote with â the value of a
generic quantity a observed in the dataset. Since large values of t̂ are very unlikely under
the null, their observation implies that some “deterministic” mechanisms are forcing the two
fields to appear together so often, whence their large relatedness.

A first drawback of the proposed approach is that the matrix t̂i,j is not, in general, a valid
device to detect possible deterministic effects. It can indeed attain abnormally high levels.
Let us clarify this point with a simple example. Suppose to have N = 140 firms. Consider two
pairs of industrial sector. The first pair is composed of sectors with equal number of firms,
ui1 = 8,uj1 = 8. The second pair has hugely differing numbers of firms, ui2 = 100, uj2 = 7.
Moreover, suppose that two pairs of sectors have the same level of relatedness according to
the t-statistics, that is ti1,j1 = ti2,j2 = 0.5. Simple computations based on the hypergeometric
distribution density (3) show that

Prob [t ≥ 0.5|N = 140, ui = 8, uj = 8] = .0675 ,
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while
Prob [t ≥ 0.5|N = 140, ui = 100, uj = 7] = .3546 .

Even if the value of the t-statistics is the same, it constitutes, under the considered null, a
very unlikely outcome for the symmetric case, while it is a near-to-average value for the case
with unequal occupancies. The reason is that with very heterogeneous occupancies ui, the
implied distribution of the J ’s becomes very skew and the t-statistics is no longer a reliable
measure of likelihood.

The second drawback of the discussed approach is somehow deeper, and concerns the choice
of the null hypothesis. It is clear that assuming a constant number of firms per sector, ui,
and assign this exact number of firms to it, is not the unique random association mechanism
between firms and activity fields. Let vn =

∑I

i=1 Cn,i be the observed number of fields in
which firm n is active (the firm scope). Instead of the previous approach, one can imagine
to keep these numbers fixed, and assign to each firm n, exactly vn activity fields randomly
selected from the I available. This random assignment procedure of sectors to firms (instead
of firms to sectors) will lead to a new probability distribution, in general different from the
one obtained under the previous null. A new distribution will in turn implies different levels
for the t̂ and different assessment of the degree of relatedness.

In general, one can see the null model as a way of randomly distributing the M =
∑

n vn =
∑

i ui occupancies, that is the number of 1’s in the original matrix, among the N × I entries
of the adjacency matrix C. Given the problem at hand, one can naturally identify four main
null hypotheses:

• H1: Full Randomness.

Random assignment of the M occupancies in the N × I entries of C. In this case only
the total number of occupancies is a fixed quantity. Consequently, the row and column
sums, ui with i ∈ {1, ..., I} and vn with n ∈ {1, ..., N}, are random variables.

• H2: ui fixed, vn random.

Random assignment of ui firms to activity field i, with i ∈ {1, ..., I}. The total number
of links M and column sums ui are given quantities, while row sums vn are random
variables.

• H3: vn fixed, ui random.

Random assignment of vn activities to firm n, with n ∈ {1, ..., N}. This case is the
symmetric case of H2. The firm scopes vn are given quantities while the industrial
occupancy numbers ui are random variables.

• H4: ui fixed, vn fixed.

Random assignment of theM occupancies in theN×I entries of C, preserving both firms
scope and the number of firms per field. This null corresponds to the most conservative
case, where both column and row sums are assinged by the dataset.

The hypotheses are labelled in increasing number of constraints. H1 has only one con-
straint. H2 and H3 have a number of constraints equal to the number of fields and the
number firms, respectively. H4 has N + I constraints. The approach proposed in Teece et al.
(1994) corresponds to hypothesis H2. It is rather intuitive that the more constraints one con-
siders, the more adherent the null hypothesis is to the actual data. Consequently, H4 should
be the better choice, if there are no specific reasons to presume that the other nulls, with
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less constraints, are more adequate. This null, however, entails a slightly increased compli-
cation in the computation of the relevant statistics. On the other hand, the distorting effect
of assuming a too lax null can be easily made apparent. In Section 5, the results obtained
under the different null hypotheses are compared, using a publicly available database on firms
patents. Before performing our exercises, we have to spent some words on the actual definition
of relatedness we use.

3 Measures of Relatedness

The main problem in the direct use of the number of co-occurrencies Ji,j as a measure of
relatedness is that its spectrum [0,min (ui, uj)] is pair-dependent. It is in general better to
deal with a normalized quantity. For this purpose one can simply consider the normalized
co-occurrences matrix Ni,j defined as

Ni,j =







Ji,j

ui+uj−Ji,j
if Ji,j > 0

0 if Ji,j = 0.

(5)

Note that Nij ∈ [0, 1], moreover Ni,j = 1 if and only if ui = uj = Ji,j, that is if and only if
every firm active in i is also active in j (and vice versa).

As a further candidate for relatedness statistics, we consider the odds-ratios, largely ex-
ploited in social science, medical research and ecology (see for example Bishop et al., 1975;
Mehta et al., 1985; Rudas, 1985; Zaman and Simberloff, 2002). In fact, this statistic is related
to contingency table analysis. Consider two fields i and j and let ni,j be the number of firms
active in both i and j (i.e. ni,j = Ji,j), while let n0,0 indicate the number of firms not in i nor
in j. Define n0,i = ui − Ji,j as the number of firms in i only and, similarly, n0,j = uj − Ji,j as
those in j only. Assume that the “treatment” of the firm is represented by being active in field
j and that the success is achieved if the firm is present in field i. Consequently, the fraction
of success among the treated is ni,j/n0,j, while among the untreated amounts to ni,0/n0,0,
thus the odds-ratio becomes Ri,j = n0,0 ni,j/n0,j ni,0. Notice that this expression is symmetric
under the interchange i and j. If uj = Ji,j, then every treated firm achieves success (it is also
present in i) and, simultaneously, every untreated firm does not achieve success (it is absent
in i). As a consequence the treatment reaches its maximum efficiency, i.e. Ri,j = 1. Therefore
the definition of the odds-ratio statistics reads:

Ri,j =







n0,0 ni,j

n0,j ni,0
if (n0,i > 0 and n0,j > 0)

1 if (n0,i = 1 or n0,j = 1) .

(6)

The simple co-occurrences matrix Ji,j, the normalized co-occurrencies Ni,j and the odd-
ratios Ri,j are all non-decreasing functions of the strength of association among sectors. For
this reason they all provide an acceptable measure of relatedness. Nevertheless, they are
essentially different in nature. To see it, suppose to have an adjacency matrix like this:

C =









1 1
1 1
0 1
1 0









,
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i.e. there are four firms and two classes with u1 = 3, u2 = 3. In this case n0,0 = 0 and the
three proposed measures are ordered as follows:

R1,2 = 0 < N1,2 =
1

2
< J1,2 = 2 . (7)

The fact that there are no “untreated” firms with no success makes the odds-ratio measure
vanish, while according to N1,2 and J1,2 a positive association is present, due to the first two
rows of the adjacency matrix.

All the measure of relatedness discussed above suffer from the problem of non-homogeneity
and noise presented in the previous section: when the distribution of activity fields across firms,
or of firms across fields, is skewed, as often occurs in real data, all these statistics have highly
skewed distributions and the consequent statistics-based inference becomes unreliable.2 This
problem is solved when the p-score associated with the chosen statistics3 is used. Consider
a measure A, defined in terms of the adjacency matrix, and a null hypothesis H. For each
couples of fields i and j one can consider the probability pi,j that, under the chosen null, the

value of the statistics Ai,j would be below the observed one Âi,j:

pi,j(A,H) = Prob
[

Ai,j ≤ Âi,j|H
]

. (8)

The p-score pi,j depends on both the adopted statistics A and the considered null H. Its value
can be obtained from a theoretical distribution, when available, as in the case of H2 and J
statistics, or, more generally, by Monte Carlo distribution. In the latter case, one considers
a given number of random occupancy matrices, called “replications”, all fulfilling the rows
and column constraints associated with the chosen null, and for each matrix computes the
relevant statistics. For each couple (i, j), one keeps record of the fraction of times the statistic
computed on the random matrix is below the statistic originally computed with the empirical
matrix. When a sufficiently large number of replications is considered, for the Law of Large
Number, the fraction converges toward the p-score defined in (8). In the case of H1, H2 and
H3, the generation of random matrices is easy, and can be obtained with a simple fire-and-
place algorithm, described in Appendix A.1. Conversely, in the case of H4, because of the
number of constraints, the generation of random matrices is more problematic and require a
different approach. The issue and the employed algorithm are discussed in Appendix A.2. It is
possible to give a straightforward interpretation of the p-score pi,j as a measure of relatedness:
a value of pi,j near to one means that the associated value of Ai,j is much larger than the one
expected under the null. As a consequence the two fields are strongly related.

As we will see in the next sections, the use of a p-score makes the actual choice of the
relatedness statistics basically irrelevant. Moreover the use of p-scores as a proxy for relat-
edness lead naturally to the idea of positive and negative association. Assume that under a
given null H, for a couple of fields i and j, we obtain pi,j = .5. This means that, according to

H, half of the possible value of Ai,j are below Âi,j and half are above it. In other words, the

probability to find a value less than Âi,j equals the probability to find a grater value. Since the
degree of association of i and j is fully explained by the random model, one concludes that the
relatedness between i and j is zero. Conversely, pairs that show an association with a p-score

2This is true in general for all the statistics based on the adjacency matrix, like for instance the cosine
index. For finiteness we limit our comparison to the three example presented in this section.

3This was partially done in (Breschi et al., 2003). Indeed they considered a p-score based measure in their
investigation of the effect of firm size threshold on the average degree of relatedness across sectors. They
however revert to cosine index in their regression analysis.
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Figure 1: The left panel reports the approximated (empty circles) and the Monte Carlo (thin
black line) implied distribution of firm scopes under H2. The thick black line represents the
empirical distribution. The right panel reports the approximated (empty circles) and the
Monte Carlo (thin black line) implied distribution of columns occupancy numbers under H3,
together with the empirical distribution (thick black line).

grater (resp. less) than .5 must be interpreted as positively (resp. negatively) correlated. In
this spirit, the measures of positive and negative relatedness are defined respectively as

p+i,j (A,H) = max (2 pi,j − 1, 0) (9)

and
p−i,j (A,H) = −min (2 pi,j − 1, 0) . (10)

Both p+i,j and p−i,j take values in [0, 1]. The quantity in (9) is a proxy for (positive) relatedness:
it is equal to 1 for fully positively associated pairs (pi,j = 1) and it is zero when no association
is found (pi,j = 0.5). On the contrary the quantity in (10) is a proxy for negative relatedness
(or anti-relatedness): it equals 1 for fully negatively associated pairs (pi,j = 0) and equals zero
when there is no association at all.

4 Data Description and the Effect of Null on Related-

ness Measures

The empirical exercises of the present paper are based on patent data collected and published
on-line by the NBER Patent Data project. The database matches information on patent
assignees from U.S. patent office with firms appearing in the COMPUSTAT database. The
description of the matching procedure can be found in Bessen (2009).4 The dataset covers the
period from 1976 to 2006. It is very large and contains milions of lines. In order to have a
manageable dataset we consider only firms with more than 50 patents. Thereafter we discard

4The data and the documentation are publicly available at:

https://sites.google.com/site/patentdataproject/Home/downloads
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all industrial sectors that have not been chosen by the remaining firms. The final dataset is
composed of N = 1289 firms and I = 975 industrial sectors (classified according to four digit
IPC). The observed adjacency matrix has M = 73598 elements different from zero (≈ 5.8% of
the total entries). For the sake of clarity hereafter we will refer to firms and patent classes.

The first element to consider in valuating the null hypotheses introduced in the previous
section is the implications they have in terms of the distribution of non-constrained variables.
Suppose to assume hypothesis H2. In this case the distribution of the number of classes per
firm vn is not fixed, and follows the same distribution for any n:

Prob [vn = k|H2] =
∑

{li=0,1}

I
∑

i=1

(

I

k

)

(ui

N

)li
(

1−
ui

N

)1−li

δ∑I
i=1

li,k
, (11)

where δ is the Kronecker delta function, and the sum is performed over all the possible vectors
(l1, ..., lI), with li = 0, 1. The sum does in fact contains 2I terms and since I = 975, it
is unfeasible. This problem can be circumvented by an approximation: setting all column
occupancy constant and equal to their average value:

ui ≈ 〈u〉
def
=

∑I

i=1 ui

I
,

one obtains the expression:

Prob [vn = k|H2] ≈

(

I

k

) (

〈u〉

N

)k (

1−
〈u〉

N

)1−k

. (12)

Figure 1 reports the implied density for the vn under H2. Both the approximated expression
(12) and the original one (11), computed with Monte Carlo techniques, are reported.5 As
can be seen, the approximation is very good across the entire support of the distribution.
Conversely, the comparison with the empirical density differs in a noticeable way. Indeed
the implied distribution is much more peaked. This suggests that hypothesis H2 implies an
almost uniform distribution of sectors across the different firms, while in the data firm scopes
are highly heterogeneous.

The same reasoning could be applied to H3. In this case the implied distribution of the
u’s, that is the number of firms per class, would be peaked around its mean value. The right
panel of Figure 1 reports the implied distribution of the columns occupancy numbers under
the null of fixed firms scopes, both approximated through (12) and computed via Monte Carlo,
together with the empirical one. The latter appears to be Pareto-like and completely disagrees
with the implied one.

The choice of nullH2 orH3 implicitly assumes an uniform distribution of firms across fields,
or of fields across firms. None of the two assumptions is verified in our data. This disagreement
has a direct effect on economic inference. Consider for instance the analysis performed in
Breschi et al. (2003) of the degree of non-randomness in firms’ patent diversification structure.
They classify firms according to the number of patents they own and look at the degree of
relatedness among the different fields when firms of different classes are considered. They adopt
H2 as a null and find that the fraction of positive related fields increase dramatically when

5Like any other statistics, the occupancy density can be computed by replications of the co-occurrencies
matrix, under the chosen null, as described in the previous section.
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Figure 2: Percentage of pairs with a p-value grater than 0.90 (darker lines) or less than 0.10
(lighter lines) under the different null as a function of the larger allowed firm scope.

larger firms are considered, from less than 5% to more than 80%. Conversely the fraction of
negatively related fields decreases from almost 50% to less than 4%.6 We repeat their exercise
in our data. We consider different groups of firms, taking successively only those firms that
have patents in less than 50, 100, 200, 400, 600 and 800 different patent classes. Analogously
to what done in Breschi et al. (2003), for each choice of the threshold we count how much
pairs of patent classes display a p-value greater than 0.90 or less than 0.10, according to the
four null hypotheses, using the t-statistics defined in (4). Results are shown in Figure 2. As
can be seen, we replicate the Breschi et al. (2003) findings when using H2: the firms’ scope
has a large effect on both positive and negative relatedness. Conversely, using H4 as a null,
one obtains much more stable levels. The stronger dependence of relatedness levels on firms
size, generated by H2, is a spurious phenomenon. It has to do with the fact that when larger
firms are considered, the scope of the firms becomes, by definition, more heterogeneous, and
the disagreement of H2 with the data increases.

This suggests that leaving some data constrain ”free” produces a spurious overestimation
of the deterministic nature of the adjacency scenario with respect to that obtained if all
constraints were taken into account.

The discussion above and the examples in this sections suggest to consider H4 as the more
reliable null and discard all other hypotheses. But so far we only analyzed the structure of
relatedness among fields. In the next section we will reinforce this impression by showing how
and to what degree the choice of different nulls impact on the analysis of corporate coherence.

5 Corporate Coherence: Measures and Findings

We start by repeating on our database the analysis originally suggested in Teece et al. (1994).
As a first measure of corporate coherence we consider the weighted average relatedness (WAR)

6Breschi et al. (2003) use the EPO-CESPRI database containing patent assignees (firms or individual) of
patents grated by the European Patent Office.
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Figure 3: WARn (left) and WARNn (right), computed according to (13) and (14), as a function
of vn.

defined according to

WARn =
1

vn

∑

i

Cn,i

(

∑

j 6=i qn,j t̂i,j
∑

j 6=i qn,j

)

. (13)

where qn,j is the number of patents in class j owned by firm n and where t̂ij is defined in (4).
For each firm n only those patent classes i in which the firm is active, i.e. such that Cn,i = 1,
are considered. Thereafter one computes the mean relatedness between class i and all other
classes j 6= i within the firm, weighted by the number of patents qn,j held by the firm itself.
A final averaging is performed through the vn patent classes in which firm n is present.7

A complementary definition of firm coherence suggested by Teece et al. (1994) is the
weighted average relatedness of neighbors (WARN). Consider the n-th firm with a total num-
ber of patent classes equal to vn. There are vn (vn − 1) /2 possible pairs of such classes.
Nevertheless only vn − 1 have to be chosen in order to produce a graph that connect all the
firm’s activities. Such graph becomes a weighted graph once each pair has been associated
with the corresponding relatedness. For these reasons it is usally referred as a weighted span-

ning tree. Its total weight is defined as the sum of the relatednesses of all its pairs. The
maximum spanning tree of firm n is the weighted spanning tree whose total weight is greater
or equal than those of all other weighted spanning trees. Let Mn

i,j be the adjacency matrix
representation of the maximum spanning tree defined as:

Mn
i,j =

{

1 if i, j ∈ maximum spanning tree,
0 otherwise,

where i, j = 1, ..., I. Now one can compute the weighted average relatedness between a patent
class i and its nearest neighbors in the maximum spanning tree, and take the mean values

7Note that in our case the “weight” of a patent class is proxyed by the number of patents the firms has
obtained in that class, while Teece et al. (1994) consider the total workforce employed in the sector.
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Figure 4: Empirical probability density of WAR+
n (N) (left panel) and WAR−

n (N) (right panel)
for different null hypotheses.

including only those pairs that belong to the MSTn:

WARNn =
1

vn

∑

i

Cn,i

(

∑

j 6=i qn,j M
n
i,j t̂i,j

∑

j 6=i qn,j M
n
i,j

)

, (14)

In Figure 3 we report a scatter plot of WARn and WARNn vs. firm scope vn. The progressive
reduction of WAR when the scope of the firm increases is broadly in accordance with Teece
et al. (1994). If one looks only at the activities constituting the core of the company, that is
those activities in which the firm is more specialized, as captured by the WARN, the picture
changes. We find that the relatedness of the core activities increases the broader the scope of
the firm. In other terms, as a firm get more diversified, the coherence across all its activities
decreases, but, at the same time, the coherence of its core increases. Conversely, the result
in Teece et al. (1994) seems to suggest a constant level of core coherence. Consider however
that the span of firms’ scope is much lower in their data than in our case. Estimating a linear
relationship8:

yn = α vn + β + ǫn, (15)

with OLS gives α = −8.85 10−4 for WAR and a much higher 1.63 10−2 for WARN, both
significant at 1%. The root mean squared error (RMSE) is 0.19 for the regression on WAR
and 0.72 for WARN.

Are the previous result robust with respect to the use of different measure of relatedness?
What if one consider a different null hypothesis? As described in the Section 3, we will
consider the p-score associated to different statistics (co-occurrences, odds-ratio or normalized
co-occurrencies) as a measure of association and we will build both positive and negative
relatedness. Starting from a measure A and a null model H one can define both a positive
measure of coherence and a negative one (anti-coherence) by considering:

WAR±
n (A,H) =

1

vn

∑

i

Cn,i

(

∑

j 6=i qn,j p
±
i,j (A,H)

∑

j 6=i qn,j

)

. (16)

8In expression (15) the dependent variable yn can be either WARn or WARNn.
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The distribution of WAR±
n (N,H) for the population of firms are reported in Figure 4 taking

normalized occurrencies Ni,j in (5) as the relatedness statistics. The impact of the choice
of the null is huge: while in the cases of H1 and H2 firm’s coherence distribution is peaked
around its maximum value, a more diversified structure appears when testing against H3 and
this result is drastically amplified in the full constrained hypothesis H4. In the latter case
firm’s distributions for both positive and negative coherence are spread through nearly the
entire range [0, 1]. This confirms the idea suggested in Section 2 that neglecting some data
constraints overestimates pair relatednesses, pushing the firm’s coherence distribution toward
its maximum value.

Keeping the same statistics N , one can investigate the relationship between coherence
level and firm’s scope. The result are reported in Figure 5 for positive coherence and in
Figure 6 for the negative version. Inspection of Figure 5 reveals that, in the case of the partial
constrained hypotheses H1-H2-H3, the linear regression (15) still produces a good agreement
with the observed WAR+, with a highly significant and negative slope (see Table 1 for details).
A clear advantage in using measure of coherence based on p-scores is that the relationship
appears more clearly. Indeed the regression is less noisy having a RMSE which is one order of
magnitude lower than those obtained using t-statistics. Even in this case, however, we observe
a constant de-coherence rate. According to H1, H2 and H3, the effect of diversification on
firm’s coherence is essentially scale invariant. A diffrent picture emerge if one uses the fully
constrained null model H4. In this case a linear fit would poorly describe the behaviour of
WAR+ as a function vn. Conversely the logarithmic regression

yn = α log vn + β (17)

fits surprisingly well with the data. This empricial result has a natural economic interpretation:
if heterogeneity in firm’s scope and patent classes’ size is properly accounted for, then the
addition of a new activity to small firms reduces coherence much more than in large firm.

A specular behaviour is found for the mean weighted average negative relatedness (or anti-
relatedness) reported in Figure 6. A pair of patent classes is strongly anti-related whenever the
presence of a firm in one class of the pair strongly reduces the probability that the same firm
is active in the other class. As a consequence, an high level of WAR−

n for firm n corresponds to
a diversification strategy that requires a large number of capabilities. Not surprisingly, Figure
6 shows that WAR−

n is an increasing function of the firm scopes, with a linear behaviour
when relatedness is measured against H1, H2 or H3 and a logarithmic trend for H4. As
expected small firms maintain a low level of mean anti-relatedness, while larger firms tend to
invade classes that are based on very different knowledge. This diversification pattern is again
saturated in hypothesis H4, revealing that such a mechanism is increasingly reduced when
increasing the firm size.

Concerning the use of different statistics, as long as one bases the definition of coherence on
the associated p-score, the choice does not seem important. Figure 7 reports the relationship
between firm’s scope vn and positive coherence WAR+

n computed, under H4, using normalized
co-occurrencies, co-occurrences or odds-ratio together with their log-linear fit (17). As can
be seen the curves are basically identical. The same applies irrespectively of the chosen null
model. 9

A positive and negative version of WARN can be defined, similarly to what done for WAR,

9The plots relative to other nulls and the associates estimates are available upon request.
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Figure 5: Scatter plot of WAR+
n (N) vs. vn for different null hypothesis together with the

estimated regression. The number of normalized co-occurrencies N is used as a relatedness
statistics. Regressions estimates are reported in Table 1.
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Figure 6: Scatter plot of WAR−
n (N) vs. vn for different null hypothesis together with the

estimated regression. The number of normalized co-occurrencies N is used as a relatedness
statistics. Regressions estimates are reported in Table 1.
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Figure 7: WAR+ as a function of vn in the case of H4 computes using the three proposed
relatedness statistics.

in the following way:

WARN±
n (A,H) =

1

vn

∑

i

Cn,i

(

∑

j 6=i qn,j M
(±,n)
i,j p±i,j (A,H)

∑

j 6=i qn,j M
(+,n)
i,j

)

, (18)

for given relatedness statistics A and null hypothesys H. Notice that in general the maximum
spanning tree M (±,n) associated with the diversification structure of a firm is different for
positive and negative relatedness.

The observed behaviour for WARN± is reported in Figures 8 and 9. As shown in the former
figure, firms display a bunch of core activities where they are completely positively coherent
(i.e. with a maximum WARN+ level) independently of their scope. Essentially we find a
constant level of positive coherence which is well in tune with the intuition proposed in Teece
et al. (1994) and with their findings. The difference with respect to the results obtained with
the t-statistics, and reported in the left panel of Figure 3, is also related to the compact nature
of the p-score. It is worth to notice that a measure of relatedness must be, in fact, bounded.
When every possible value of the relatedness statistics generated by the null happens to be
below the observed one, we have to conclude that the pair has reached its maximum achievable
level of association: an higher value would be meaningless from a null-analysis perspective.

Finally, we find that weighted average anti-relatedness of neighbors (WARN−) is well
described, for all the null models, by an exponential law of the type

WARN−
n = α (1− exp (−β vn)) . (19)

This result suggests the existence of an activation threshold. For small firms both WARN−

and WAR− are very low. When the scope of the firm increases, WAR− slowly increases with
it, while WARN− is characterized by a rapid saturation. In the H4 case, its maximum value
is already reached for vn ∼ 100.
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Figure 8: Scatter plot of WARN+
n (N) vs. vn for different null hypothesis together with the

estimated regression. The number of normalized co-occurrencies N is used as a relatedness
statistics. Regressions estimates are reported in Table 1.
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Figure 9: Scatter plot of WARN−
n (N) vs. vn for different null hypothesis together with the

estimated regression. The number of normalized co-occurrencies N is used as a relatedness
statistics. Regressions estimates are reported in Table 1.
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α β RMSE Model

WAR+ −2.294320e− 04 9.842853e− 01 1.860130e− 02 linear
[2.006207e+ 01] [4.806972e+ 02]

H1 WAR− 9.842485e− 05 3.538272e− 03 8.969300e− 03 linear
[1.784885e+ 01] [3.583651e+ 00]

WARN− 9.862520e− 01 7.106452e− 03 1.191080e− 01 exp
[2.927760e+ 01] [1.420152e+ 01]

WAR+ −4.422043e− 05 9.919780e− 01 1.051270e− 02 linear
[6.841834e+ 00] [8.571967e+ 02]

H2 WAR− 6.948663e− 06 2.673725e− 03 4.665510e− 03 linear
[2.422512e+ 00] [5.206076e+ 00]

WARN− 9.270066e− 01 1.099867e− 03 6.412200e− 02 exp
[2.451838e+ 00] [2.114068e+ 00]

WAR+ −4.837426e− 04 9.105250e− 01 4.261910e− 02 linear
[1.846181e+ 01] [1.940800e+ 02]

H3 WAR− 3.236429e− 04 3.862268e− 02 2.792940e− 02 linear
[1.884814e+ 01] [1.256244e+ 01]

WARN− 1.007200e+ 00 2.938008e− 02 5.768390e− 02 exp
[1.882406e+ 02] [4.010970e+ 01]

WAR+ −9.181099e− 02 1.016809e+ 00 5.882380e− 02 log
[2.404566e+ 01] [5.658533e+ 01]

H4 WAR− 5.538015e− 02 −2.211615e− 02 5.447480e− 02 log
[1.566224e+ 01] [1.329020e+ 00]

WARN− 9.932689e− 01 6.650294e− 02 3.244760e− 02 exp
[4.080911e+ 02] [5.419234e+ 01]

Table 1: Reports OLS estimates of Figures 5, 6 and 9. The last column indicates the model
used for regression, linear (15), logarithmic (17) or exponential (19). For each parameter
estimate the corresponding t-statistics is reported in brackets.
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6 Conclusions

The analysis of the technological scope and structure of corporate activities has become in-
creasingly common in recent times. It has been applied at very different scales, from the study
of managerial behaviour pertaining to the theory of the firm to the empirical investigation of
sectoral dynamics. As discussed inside a broad theoretical tradition, and shown by several
empirical studies, it is not only the scope of the technological diversification of a firm that
matters, but rather the degree of complementarity, or the strength of externalities, existing
among the activities in which it diversifies. This idea led to the notion of corporate coherence:
a company is more coherent if its activities take place (mainly) in fields which are more strictly
related. Despite its relevance, the design of appropriate statistical tools apt to measure the
degree of corporate coherence did not received much attention. Lacking any reliable external
(and exogenous) definition of a notion of “proximity” among technical activities, the literature
mainly explored the possibility of building a notion of topology starting from the observed
diversification structure of the firms themselves. The approach is similar to the one used by
ecologists, who measure the relatedness among different species by observing the pattern of
their geographical distribution. Following the seminal work of Teece et al. (1994), this paper
proposes several methodological improvements with respect to the tools presently adopted in
the field. First, we show that irrespectively of the statistics chosen to asses the degree of relat-
edness among activities, the appropriate measure to use is the p-score of the statistics itself, as
it neutralizes spurious effects generated by the nature of the distribution of the underlying vari-
ables. Indeed, irrespectively of the measure adopted (patents, products, lines of business,. . . )
and the relative definition of technological fields, the distribution of business units across these
fields, and the distribution of fields across business units, is likely to be extremely uneven.
The result is that any adopted statistics will display an highly skewed distribution, making
measures based on central tendency, like mean and variance, unreliable. Moreover the use of
the p-score naturally leads to a notion of positive and negative coherence, allowing for the
contemporaneous (and complementary) analysis of two likely asymmetric phenomena, taking
place in the core of the firm: the development of competencies along related fields, facilitated
by the existence of positive technological spillover, and the push toward diversification and
exploration of new fields.

Second, we discuss the relevance of the correct choice of the null-hypothesis, that is the
benchmark against which the observed degree of coherence is measured. We show that, lacking
any specific reason not to do so, the correct choice is the fully constrained null hypothesis. The
distribution of the statistics cannot be in general computed under this null, but we present
efficient and easy-to-implement numerical methods which can be effectively used to obtain
Monte Carlo estimates of the desired quantities.

We illustrate our methods applying them to the analysis of data from the NBER patent
data project. We show that, when the appropriate null is used, the actual degree of relatedness
among sectors is not strongly influenced by a possible cut-off on firm’s size. Concerning the
relationship between firm’s scope and coherence, our empirical findings broadly confirm the
original intuition in Teece et al. (1994).

The degree of corporate coherence, when measured using all the activities in which a firms
is involved, tends to decrease with the scope of the activities themselves. This is testified by
the contemporaneous decrease of positive coherence and increase of negative coherence, when
more diversified firms are considered. The effect is however non linear: the marginal reduction
of coherence due to the addition of new fields decreases with the number of fields in which the
firm is active.
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On the other hand, if one only considers the degree of coherence existing among the core
activities of the firm, this turns out to be a non decreasing function of firm’s scope. In this
case we observe a clear threshold effects: while for firms active in very few sectors the degree
of core coherence increases with the number of active fields, as soon as a sufficiently diversified
structure is reached the effect of scope on coherence disappears.
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A APPENDIX A

A.1 Fire-and-Place Algorithm

Suppose that both ui =
∑

n Cn,i (i.e. the number of firms active in sector i) and vn =
∑

i Cn,i

(i.e. the number of industrial sectors chosen by firm n) are random quantities. In this scenario
only the total number of links

M
def
=
∑

i

u0
i =

∑

n

v0n =
∑

i,n

C0
i,n, (20)

is a fixed quantity. The random assignment coincides with the random placement of balls in
boxes. Each Cn,i represents the success (Cn,i = 1) or the failure (Cn,i = 0) of placing the i-th
ball in the n-th box (both firms and patent classes can be interpreted as balls or boxes).

The generation of the random sample shows no particular difficulties in this case. For each
replication we start from an empty matrix, i.e. a matrix whose entries are all set to zero.
Thereafter the matrix is filled by means of a fire-and-place algorithm.

At each step a pair of indexes (n∗, i∗), with n∗ ∈ {1, ..., N} and i∗ ∈ {1, ..., I}, is extracted
from a flat distribution.

If the corresponding element Cn∗,i∗ is empty (i.e., equal to zero) then a 1 is placed. Oth-
erwise a new ”bullet” is fired. The procedure is repeated until M bullets are placed. This
allows to obtain a random replication generated according to H1.

A similar approach is taken for the generation of random paths according to H2 and H3:
in the case of H2 (resp. H3) a 1-element is placed in the matrix at the uniformly extracted
entry (n∗, i∗) (provided that the entry is empty). The coulum sum (resp. row sum) constraint
is imposed subtracting 1 from the number ûi∗ (resp. v̂n∗ ), i.e.

ûi∗ ⇒ ûi∗ − 1 (resp. v̂n∗ ⇒ v̂n∗ − 1 ). (21)

If the extracted pair (n∗, i∗) is such that ûi∗ = 0 (resp v̂n∗ = 0) we ignore the extraction and
the algorithm chooses another pair.

We continue the pairs extraction until the number of placed 1 is equal toM or, equivalently,
until:

∀i, ûi = 0 (resp. ∀n, v̂n = 0 ). (22)

Following these procedures we generate 102 adjacency matrices, in order to span a large number
of configurations.

A.2 Swap Algorithm

We indicate by S (û, v̂) the space of N × I binary matrices whose column and row sums are
given by (ûi){i=1,...,I} and (v̂n){n=1,...,N} respectively.

The generation of a random sample in S (û, v̂) is not a trivial problem. For large and
sparse matrices the fire-and-place algorithm usually reaches a locked-in state.

Sanderson et al. (1998) propose a modification of the well-known knight’s tour algorithm
in order to produce a sequence of matrices in S (û, v̂) such that each matrix is produced once
and only once. Null-matrices are generated just iterating the fire-and-place algorithm untill a
locked-in state is reached. Thereafter the algorithm is moved backward to the last unlocked
state and iterated again. However this procedure is not suitable for our case where a large and
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Figure 10: Reports the correlation coefficient between the observed adjacency matrix Ĉ and
one obtained from it after an increasing number of random swaps.

sparse matrix must be produced. Only a relative small part of the entire matrix is completed:
the algorithm moves forward and backward without reaching a final state.

In order to generate Monte Carlo replications of matrix with fixed column and row sums
we adopt a swap algorithm. The algorithm starts with the observed matrix and looks for 2×2
diagonal or anti-diagonal sub-matrices, i.e. it looks for sub-matrices of the form

(

1 0
0 1

)

, or

(

0 1
1 0

)

. (23)

and thereafter change one into the other. Note that the sub-matrix elements can belong to
non-adjacent columns or rows, i.e. their distance in the original matrix can be as large as the
matrix dimensions.

It is evident that the swap trasformation preserves both row and column sums.
Starting from the original observed matrix Ĉ we perform a Nswp number of swaps obtaining

a new matrix Ĉ [1]. We then re-start the algorithm with the new matrix Ĉ [1]. After performing
Nrep iterations we have at our disposal a Monte Carlo chain of matrices Ĉ [1] , Ĉ [2] , ..., Ĉ [Nrep],
where each nodes of the chain is obtained from the previous one performing Nswp random
swaps.

If Nswp is large enough the Monte Carlo chain can be considered at equilibrium and cor-
relations among matrices can be neglected, i.e. the chain can be considered as Markovian.
Similarly the larger the value of Nrep the larger the space spanned by the algorithm.

How much large should be chosen Nswp in order to consider the chain Markovian? Let Ĉ [k]

be a matrix obtained form the observed adjacency matric Ĉ with k random swaps. Markovian
properties of the chain can be checked computing the correlation coefficient:

ρ
(

Ĉ, Ĉ [k]
)

=

∑

n,i

(

Ĉn,i − µ
) (

Ĉn,i [k]− µ
)

√

∑

n,i

(

Ĉn,i − µ
)2
√

∑

n,i

(

Ĉn,i [k]− µ
)2

, (24)

where µ = M/(N ∗ I) is the mean value of matrix, which is not modified by swaps. Figure 10
reports the correlation coefficients (24) as a function of k. We find that after approximately
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3× 105 swaps the correlation coefficient reaches its minimum value. Note that at equilibrium

ρ
(

Ĉ, Ĉ [k]
)

≈ 30%, this is due to the fact that several constraints link Ĉ with Ĉ [k].

Therefore we assume that after 3×105 swaps the chain is at equilibrium. Our routines are
very fast and we can obtain Monte Carlo replications in reasonable time even with Nswp = 106,
which is our final choice. Similarly for the null models H1, H2 and H3 we produce 102

replications of the adjacency matrix.
Swaps are not the unique transformations that map S (û, v̂) into itself. However they are

the simplest ones. Moreover any two matrices in S (û, v̂) can be transformed one into another
by swaps, as demonstraed in the paper of Ryser (1960). Therefore the entire space S (û, v̂)
can be spanned by simply iteratively swapping one matrix of the set.
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