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Abstract

This paper is based on the acknowledgment that NK models are an extremely
useful tool in order to represent and study the complexity stemming from interactions
among components of a system. For this reason NK models have been applied in many
domains, such as Organizational Sciences and Economics, as a simple and powerful tool
for the representation of complexity. However, the paper suggests that NK suffers from
un-necessary limitations and difficulties due to its peculiar implementation, originally
devised for biological phenomena.

We suggest that it is possible to devise alternative implementations of NK that,
though maintaining the core aspects of the NK model, remove its major limitations
to applications in new domains. The paper proposes one such a model, called pseudo-
NK (pNK) model, which we describe and test. The proposed model appears to be
able to replicate most, if not all, the properties of standard NK models, but also to
offer wider possibilities. Namely, pNK uses real-valued (instead of binary) dimensions
forming the landscape and allows for gradual levels of interaction among components
(instead of presence-absence). These extensions provide the possibility to maintain the
approach at the original of NK (and therefore, the compatibility with former results)
and extend the application to further domains, where the limitations posed by NK are
more striking.
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1 Introduction

Borrowing ideas developed for a specific purpose and applying them to a completely dif-
ferent domain is a widely used and generally successful operation, to such a point that
one may sustain copying and mixing different ideas is the main driver of human creativity.
Economics, just to make an example, has “stolen” the concept of equilibrium from classical
physics and, more recently, the concept of evolution from biology.

The use of metaphor and concepts developed in different domains, however, runs the
risk of mis-adaptation. Though the core of the original idea can be useful in the new
domain, it is frequently necessary to make some adaptations, removing some parts that
are no longer necessary, and adding new elements necessary for its novel application.
Witness, for example, the attempts to imitate the wings’ design of birds to build flying
machines. As long as the imitations were too close (moving wings, for both functions of
supporting the weight and propelling), the attempts continued to fail. Only when the core
idea was revised, separating the function of propelling from the function of supporting,
then the (revised) imitation succeeded.

Concerning the study of complexity, biologists have developed the NK model (Kauffman,
1993) representing, in very stylized and elegant way, the effects of fitness improving mu-
tations. NK has been particularly successful because it provides a simple instrument to
generate an abstract representation of a problem (the probability of survival of a species)
that, contrary to other modelization techniques, could be easily tuned to make the problem
harder or simpler. The representation of the problem relies on the core of complexity, that
is, interdependency, using (ironically) an extremely simple representation. In other terms
NK can represent complexity as a pure product of interdependency, since the rest of the
model makes use of a large number of uniformly distributed random numbers, therefore
avoiding any spurious property. The result is that NK fitness landscapes show statistical
properties depending on the interaction levels only, which are very robust to the choice of
the set of random numbers used (see, e.g. Weinberger, 1991; Durret and Limic, 2003; Skel-
lett et al., 2005; Kaul and Jacobson, 2006).

In a biological perspective NK is very useful because it is well known that genes’ effects
on phenotypes are strongly influenced by their interactions. NK poses the interaction
explicitly at the center of the analysis, and carefully avoids to make any further assumption,
being able to derive interesting results concerning the expected characteristics of a species,
its pattern of evolution, and even the reasons for the spontaneous emergence of modularity
(e.g., Wagner and Altenberg, 1996; Altenberg, 1995).

However, biologists are not the only ones interested in the modelization of complexity
through interaction. Economists and scientists of the organizations have had a long-time
interest on the study of the effects of interaction (Simon, 1969). Therefore, many re-
searcher from these fields have adopted NK as their instrument of choice to represent and
study properties of organizational structures, technological innovation, etc. Originally
devised as a metaphor for how nature deals with complex problems, NK-inspired mod-
els have been used to study artificial systems, organizations, technological developments,
industrial dynamics, and much more. In such applications typically NK represents a com-
plex problem, where performance depends on the interactions among several components.
Simulated agents (say a firm or a person) is engaged in solve the problem on the base of
local and myopic information, and the researchers are interested in assessing the results as
a function of the complexity of the task and the limited capacities of the agent. Simula-
tion models in Economics and Management have been eager adopters of variations of NK
models, with dozens of papers in top journals (see, for example, Levinthal, 1997; Frenken
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et al., 1999; Kauffman et al., 2000; Rivkin and Siggelkow, 2002; Lenox et al., 2006).
This work is based on the assumption that, however successful, the diffusion of NK,

and the quality of the results produced so far have been hampered by a mis-adaptation
of this tool in its passage from biology to other domains. Tellingly, many models use a
NK-inspired settings to study the expected performance of, e.g., different types of orga-
nizations, but no model exists, to our knowledge, integrating in a single model a NK-like
complex environment and other activities, like production, sales, etc. For example, it
would be logical to plug a NK fitness landscape representing the space of technological
possibilities into an economic model representing innovating firms. However, such models
are very difficult to implement. The reason, as would be argued in the following, lies in
the heavy constraints posed by the original NK implementation when applied to a dif-
ferent domain. For example, NK models rely on random mutations as one may expect
to find in natural environment, but human organizations are likely to include at least a
bit of intentional, purpose-driven behavior, however limited by informational constraints.
Modellers willing to include intentional strategies of search with NK would need to know
where the optimum is located, and possibly also have the opportunity to determine a
specific location. Given the structure of NK models this is impossible, unless one limits
himself to extremely simple landscapes or to heavily modified versions lacking the core of
NK properties.

The diffusion of NK is making more evident its limitations. For example, a recent paper
proposes an extension of NK relaxing some of its strongest assumptions (Li et al., 2006).
The goal of the present paper is to propose an even more radical alternative implementa-
tion of the core features of NK in such a way to make the model more flexible and adapt
for the novel applications it is increasingly put at work. The next section discusses the
core elements and properties of NK, concluding that there are severe shortcomings for its
application in fields different from biology. The third section proposes a possible alterna-
tive, describing what we call a pseudo-NK model (pNK), that is, a model that replicates
all the relevant properties of NK but removes, or at least relaxes, the major shortcoming
identified. Note that the implementation proposed for pNK can also be considered as
an instance of a class containing many other variations of the proposed model, possibly
with better characteristics than those proposed here. The fourth section put the proposed
pNK model to test. We present an extended series of experiments in order to evaluate the
capacity of pNK of adequately provide the original properties of NK without the limita-
tions discussed in section two. The concluding section summarizes the paper and indicates
possible directions to explore more throughly the properties of pNK.

2 NK models: advantages and limitations

A NK model1 can be considered as composed by two, distinct, components: a problem
specification and a search algorithm scanning the space of the potential solutions. The
problem is composed by a set of potential solutions represented as binary strings, each
associated to a fitness value, that is, the pay-off of that solution. The search algorithm
consists in a routine meant to scan the space of solutions starting from a (normally ran-
domly chosen) initial string, or point in the N-dimensional binary space. The search
routine is defined in terms of rules on how to move from any one point to the next. For
example, the typical routine, originally proposed, consists in choosing randomly a string

1For reasons of space we skip a detailed description of NK models, providing only a short verbal summary
of its basic mechanisms. For readers unfamiliar to NK models, who found insufficient the information in
the text, formal definitions can be found one of the cited works.
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by mutating one of the bits in the current string; in case the mutated string has higher fit-
ness than the current one, the new routine is accepted, conversely, it is rejected. Applying
the algorithm repeatedly it is generated a pattern in the space of potential solutions. The
pattern terminates when the rule reaches a string from which all possible strings within
reach are rejected. The search routines are evaluated according to the expected solution
it is able to identify at the end of the pattern.

Two aspects make NK particularly attractive. Firstly, it is possible to determine how
complex should be the space of solutions, or fitness landscape. Building a landscape with no
or few interactions (represented by the value of K ) it is possible to generate the equivalent
of simple problems, while increasing K generates “harder” problems.

The second aspect of NK is the representation of the search algorithm. NK assumes a
search to be local and myopic. Local because the search implies the impossibility to observe
the space beyond the current neighbourhood. Myopic because it prevents collecting past
information or predict future events, focusing on the immediate goal of just improving the
current condition.

The two aspects (complexity through interaction, and local and myopic search) pro-
vide together a simplified, and therefore manageable, representation of many real world
situations. NK allows the modeller to play the role of God in a mini-universe, setting the
basic properties of a world inhabited by (again controlled) agents. In the following we
analyse, firstly, the major advantages of NK and then its more prominent shortcomings
for a large number of applications.

2.1 NK features

The most attractive aspect of NK models is the algorithm used to associate the fitness
values to the strings representing the solutions. This algorithm mandates the generation
of 2K+1 random values for each bit of a string (call them the fitness contributions for each
element of the string), for a total of N × 2K+1 random draws. The fitness of a string is
then obtained by averaging the fitness contributions from each bit of the string. The set
of strings and their fitness define a landscape, a generic representation of problem with a
pre-determined complexity level (the parameter K).

The earliest literature on NK models used a single search algorithm, representing a
random search in the space of solutions by means of the so-called one-bit mutation. The
search algorithm is based on the initial choice of a random solution, and a routine meant
to find better and better ones (i.e. strings associated with higher fitness). At each step
of the routine the fitness of the current solution is compared with the fitness of a string
identical over all the elements but one, randomly chosen. If the mutated string shows
higher fitness, it is adopted as a new string, otherwise, the search remains on its current
location.

Applying the one-bit mutation search strategy to the set of strings whose fitness is
determined as above for a given K, one can obtain several general properties. For example,
it is possible to determine whether the search strategy can eventually reach the highest
fitness string, or if it is bound to get stuck in a dominated string, a local maximum whose
fitness is not the highest one, but that it is surrounded by strings with lower fitness. Other
properties concern the average fitness of local peaks, their number and distribution.

With the application of NK models to domains different from biology, the blind, one-
bit mutation strategy looked increasingly inadequate to represent the behaviour of human
problem solvers. The most recent literature has proposed different search algorithms, more
sensible for specific applications. For example, it has been proposed to consider search
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algorithms mutating more than one bit at any one time. Obviously, changing the search
routines modifies the very definition of local peak, since the mutation strategy determines
the very definition of the neighbourhoods, and therefore the topology of the search space,
i.e. which strings can be accessed from any given string. Changing the topology therefore
alters the structure of local peaks. In theory, very “smart” routines are able to include
in their neighbourhood the whole space of possibilities, though this, has been shown,
eventually generates a trade-off between the level of expected final results and the time
requested to reach a final state.

Although the diffusion of NK to different research applications has suggested modifica-
tion of the research algorithm, the basic structure of the landscape (the set of strings and
their associated fitness) has never been questioned, because it offers, up to date, the best
way to represent a system composed by (partially) interdependent components. Given the
growing interest in the study of complex, interdependent systems, NK has become the de

facto standard for such studies. Let’s see in some detail the most attractive features NK,
and, following, its major drawbacks.

2.2 NK advantages

The literature on complexity can be interpreted as concerned in two large classes. One
class comprises studies on the properties of complex set or complex problems, such as
chaotic functions or the traveller salesman problem. The second class studies features of
problem solving tools, like genetic algorithms or neural networks.

The NK model is an attractive tool because provides the opportunity for the modeller
to represents and control both aspects of problem solving: the degree of complexity of
the problem and the degree of the skills available for its searching a solution. Modellers
can therefore use NK to generate and assess the space formed by the two dimensions of
problems’ complexity and skills in solving strategies in order to represent both aspects of
a real world system on a scaled down version. The NK model’s attraction stems from the
possibility to determine a sort of ratio between the relative skills of the problem solver
and the relative difficulty of the task. In this case, it is no more relevant that the problem
modelled is far simpler than real ones, since also the solution strategies modelled are far
less sophisticated. Controlling both aspects one can expects that the properties of the
set comprising the solutions generated in the model are similar to the set of the actual
solutions generated in real systems with equivalent ratios of task difficulty to solving skills.

We can summarize the most prominent features of NK as follows.

• Measuring complexity. With the increasing popularity of the term, what exactly
means “complex” is hard to define, and frequently this adjective is used as a byword
for “don’t understand”. NK provides formal definitions distinguishing elements of
the complex studies pertaining the environment and those related to the problem
solvers, which is the necessary pre-condition to assess the effects of the interaction
among the two domains. A problem, per se, cannot be neither hard nor simple,
unless a solution method is, at least implicitly, specified. After all, a hard problem
for someone can be a simple one for someone else. NK offers a simple and easy
method to tune a desired level of complexity in respect of a given research strategy.

• Complexity as interdependency. NK explicitly identifies the source for com-
plexity: interdependency. The higher the interaction among elements of a structure,
the more difficult is to use “local” information (i.e. gathered within a short range) to
gain general knowledge of the whole structure. While this concept is not new to the
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literature (e.g., Simon’s work), NK offers a simple and intuitive way to implement
interdependencies.

• Intuitive fitness landscapes. The most interesting feature of NK is that the mod-
eller can tune a landscape from a smooth, single peaked, highly correlated landscape
up to an extremely rugged, multi-peaked, uncorrelated one. This provides a very
intuitive representation of how a fitness climbing strategy is likely to score, offering
a powerful visual metaphor for the effects of different degrees of complexity.

• Problem solving as local search. The problem solving strategy to be applied
by simulated agents on a NK fitness landscape was originally proposed as a one-bit
random mutation, representing mutations of genes of incumbent species. However,
different search strategies can easily be devised to represent the behaviour of different
types of agents, giving the possibility to “tune” the smartness of agents, for example
when NK is used as a metaphor of intentional agents. In any case, the fitness
climbing strategy, based on local information and generating a fitness increasing
path on the landscape, is a highly attractive metaphor for many types of problem
solving strategies.

2.3 NK limits

Given the power of NK models in representing a complex problem, it is natural that
many researchers were tempted to plug a NK system into larger and more comprehensive
representations. For example, a model studying the economics of technological innovation
containing, say, equations representing production, investment, demand etc. would be
greatly enhanced by using NK to represent the technological space and the R&D efforts
by firms.

However, this and many similar attempts in organisational theory, biology, etc., have
been frustrated by a few, severe limitations of NK models. In the following we review and
comment the most prominent difficulties preventing a wide-spread use of NK model not
as stand-alone package, but when it is plugged into a wider context.

• Memory limitation. The computational representation of a NK model is rather
straightforward, such that even relatively inexperience programmers can easily im-
plement programs for NK models. However, the construction of even relatively small
NK landscapes require a huge memory space, if N and, especially, K are large (say
above 20 or 30). We mention this problem because of its popularity, but, in effect,
it is the least serious. In fact, although realistic problems involving hundreds of
interdependent components would require, in theory, an amount of memory several
dimensions larger than those available on any computer, there are many program-
ming tricks that can simulate such landscapes on a normal computer. For example,
a complete NK representation of a system composed by N = 100 elements, each
interacting with K = 50 other elements would require about 1.13× 1017 memory lo-
cations, or more than 6 million gigabytes, well beyond the limits of every computer.
The technical solution is to implement a partial representation of the landscape, us-
ing only the memory necessary to calculate the tiny portion of the landscape actually
explored in a search path. Still, the combinatorial requirements of NK landscapes
prevents the full exploration of the landscape to determine, for example, the identi-
fication of the maximum fitness string or the full representation of the distribution
of the local peaks.
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• Binary interdependence. More serious is the impossibility to determine a degree

of interdependence. In a NK model two dimensions are either interdependent or not,
without the possibility to tune gradually interdependency levels. Worse, the actual
effects of interdependence can be determined only statistically, and only ex-post,
once the landscape has been built, given its dependence on random draws (at least
in theory, since in practice it is a highly challenging task). In fact, a given link can
pose a more or less serious obstacle to a fitness climbing strategy, depending on the
set of random values. There is therefore no way to pre-determine from the outset the
importance of an interdependence link between two elements, or, at least, determine
the relative importance of the different links.

• Binary dimensions. The components representing the module of a system in the
NK metaphor are binary variables, whose values are restricted to the {0, 1} set.
Though formally any real valued variable can be represented by binary strings, the
complication requested in practice prevents the adoption of multi-valued (real or
discrete) variables. In fact, what matters in a NK representation is the Hamming
distance between two strings. For example, the strings 01111 is on the opposite
location than 10000. Therefore, a binary representation if a multi-valued variable
(say, assumed to represent natural numbers) would not work: in the example, we
would have that number 17 is very far from 18, while the latter is close to 19. This
restriction forces modellers to apply a NK model only to components made of two
states, instead to implementing a complex system made of multi-valued variables.

• Randomness. NK models allow to determine the statistical properties of the land-
scape, but not its overall shape. That is, we can control the average frequency and
levels of local peaks, but their exact location depends on random draws, changing
at each generation of a new landscape. Though this is not a relevant issue for the
abstract study of complexity which NK is originally directed to, it becomes a prob-
lem when the modeller wants to study a specific complex environment. That is we
would like to know where the local peaks are located, in order to properly assess the
behaviour of the simulated agents engaged in a local and myopic search.

• Problem specification. In many cases researcher have some knowledge of the real
world problem they want to model, and they would like to include these aspect in
their studies. For example, they may have some knowledge of the relative strength
of interaction. Or, they have some information concerning the location, distribution
of values and overall density of local peaks. NK makes impossible to use such in-
formation to generate a landscape including the available information, forcing the
problem space to be totally random (but for the interdependency structure), since,
otherwise, the properties of the system are lost.

• Difficulty to use in agent-based models. Given the highly attractive features
of NK one may have expected to find many applications in models where agents
representing, for example, firms engaged in technological competition use NK to im-
plement the technological environment, along, say, a demand and a capital sector.
However, every attempt of this sort has been frustrated, and most of the models,
though using NK as a metaphor for a given complex environment, keep clear from
implementing it together with the other aspects of the model. The reason is that
NK models provide their powerful results in statistical terms, as averages of many
individual searches or over many starting points, but a very large volatility is ob-
served concerning the single experiments. For example, one may assess the expected
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fitness of agents moving on a given landscape, but the actual results produced by a
single search run (i.e., the actual fitness pattern obtained by any given agent on a
given landscape), will vary considerably depending on the initial step and the ran-
domness of the landscape. Worse, even for relatively large landscapes, any search by
agents is made by very few fitness-improving steps in between of long series of failed
mutations. Timing the rate of landscape exploration with the rate of other events
in an integrated model becomes therefore extremely difficult.

Considering the combined effect of the volatility and type of fitness increasing path
generated make NK practically unusable to represent entities involved a search sup-
posed to produce continuous, gradual improvements co-ordinated with other activi-
ties.

• Representation of fitness landscapes. We noticed above that NK models provide
an intuitive representation of the difficulty of a problem solving task, but this comes
at the price of easy misinterpretations of the actual content of the model. In fact,
when speaking of “valleys” and “hills” of a landscape, the image one has in mind is
of a geographical space (a plane with co-ordinates (X,Y )) with the third dimension
representing fitness. Therefore, one may feel entitled to image a fitness climbing
strategy as moving around climbing the hill closest to the current position. This
metaphor is reliable up to a crucial point: NK dimensions are only binary, and
therefore there are only two values available for any one dimension, while the power of
NK properties stems from the use of many dimensions, something that our experience
and skills are not trained to deal with. The difference between an environment with
a small number of multi-valued dimensions and one with a large number of binary
dimensions is critical. For example, the shape of the landscape depends in NK on
the algorithm used to represent the search strategy. What may be a rough shape or a
smooth one depends on the “length” of the steps allowed, measured by the number
of dimensions one may mutate at once. While this is not a problem when fixing
the mutation strategy (as in the original proposal), this problem is relevant in the
(many) application where modellers tweak the search strategy for specific purposes.

In conclusion, in this section we sustained that NK deserves its popularity because of
several factors that make it uniquely suitable to study the result of an arbitrary “intel-
ligent” search strategy applied on an arbitrary “complex” problem. However, NK is far
from an ideal tool. Mainly because of the original context it was supposed to be used for
(evolution of a metaphorical biological species), it carries on a number of limitations and
problems when transferred in different contexts, as it is increasingly the case.

The following section is devoted to propose an alternative implementation close to NK
that, in our intention, is a step toward a model retaining all the positive features of NK
while relaxing the constraints its implementation poses.

3 Design of a Pseudo-NK model

In this section we propose a model, called pseudo-NK (pNK) model, that replicates the
same useful properties of the original NK model but lacks the limitations listed above. In
particular, pNK offers the following features:

• Functional representation of fitness: The fitness function is defined as a deter-
ministic function of a multidimensional vector. Therefore, it can be implemented as
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a routine, without need to store any (large or small) data set, simplifying the coding
of very fast implementation for even large landscapes.

• Multidimensional real-valued landscape: the landscape of pNK is composed
by the set of ~x = {x1, x2, ..., xN} ∈ ℜN , with fitness represented by a real-valued
function f(~x). Both domain and co-domain can be freely determined by the modeller.

• User determined maximum and landscape’s overall shape: f(~x) has a max-
imum2 in a point ~x∗ (such that f(~x∗) ≥ f(~x)) determined by the user. The shape of
the landscape is a well-behaving function, so that the modeller can easily evaluate
every single point of the landscape, determining, for example, areas of local peaks,
probability of a random search strategy to end up in the global optimum, etc.

• User determined interdependency: for any given couple of dimensions i and j

the user can set a varying degree of interdependence ai,j, ranging from full indepen-
dence to maximum interdependence. But it is also possible to define intermediate
levels of interdependency, so as, for example, to define landscapes where a dimension
depends strongly on some dimensions and weakly on others.

The definition of interdependency used in pNK remains the same as the one used in
the NK model: dimension i is dependent on dimension j if, for at least some value of
the other N-2 variables, the derivative of f(~x) in respect to xi changes signs for different
values of xj. It is worth to notice that in NK (and pNK, too), interdependence does not
simply imply that modifications xj affects how xi impact on the fitness function f(~x). In
fact, it may be possible that such influence is strictly monotonic, that is, for different xj

we observe that xi has different impacts on the overall fitness value, but they always have
the same sign. Though in this case we do have interdependency, in a sense, this is not
affecting the possibility to identify the optimal value for xi independently from xj. Only

when ∂f(~x)
∂xi

changes sign for different values of xj , than the fitness-optimizing value of xi

is a function of xj . Only in this case any hill-climbing strategy based on varying xi only
is liable to be stuck in a local peak determined by the specific value of xj .

3

In the following we describe a fitness function providing the desired properties, which
will be used in the rest of the paper for a series of tests, replicating the results of standard
NK models and extending them to include potentially useful new features.

3.1 Implementation of pNK

There is a whole class of mathematical functions providing the properties discussed above,
and each of them may suit particular needs. Here we propose one of these functions, as
an example of how pNK may be implemented.

pNK, as NK, consists of a fitness function defined on a set of N variables and a search
algorithm. The fitness function proposed here for pNK borrows heavily from the NK
implementation, with three notable differences. Firstly, it considers real-valued variables
(instead of binary); secondly, it is a deterministic function, rather than stochastic; thirdly,
it allows for different levels of interdependence, instead of presence/absence.

The overall fitness value of a point of the landscape domain (i.e. a point of ℜN) is, as
in NK, the average of N fitness contributions for each of the variables:

2Actually, it is possible to extend the model to admit multiple global maxima, though we will ignore
this aspect.

3We wish to thank Luigi Marengo for having raised this relevant point.
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f(~x) =

∑N
i=1 φi (~x)

N
(1)

where φi(...) is the fitness contribution function for dimension i. While in NK φi is a
random value, in NK this is a deterministic function defined as:

φi(~x) =
Max

(1 + |xi − µi(~x)|)
(2)

where Max is a user-determined parameter indicating the maximum of the function. φi

is a decreasing function of the distance between the variable’s value and another function
µi(~x), defined as:

µi(~x) = ci +
N∑

j=1

ai,jxj (3)

The values µi’s define a sort of “target” that, when hit by xi, determines the maximum
level of contribution of the variable to the overall fitness function. However, the value of
xi maximising φi may not be the most desirable, concerning the overall fitness value. In
fact, xi influences also all contributions φj for the variables whose aj,i 6= 0. Therefore, it
is well possible that moving xi to maximise φi actually decreases the overall fitness value
because of the deterioration generated in other fitness contributions φj’s where aj,i 6= 0.

The fitness function here proposed allows for ample flexibility. In particular, it is
possible to determine features of the landscape that are not available in NK models:

• Set maximum fitness. Simply setting Max determines the maximum value of the
fitness function.

• Set the global optimum. For any dimension i it is possible to compute ci such
that the maximum fitness is obtained at a desired point ~x∗ : ci = x∗

i −
∑

j 6=i ai,jx
∗
j .

• Set interdependencies. Varying the values of ai,j it is possible to make more or
less relevant the interdependency between two dimensions.

The first two properties are useful to exploit pNK in a context where the modeller
is interested in determining a specific maximum fitness value at a specific point of the
landscape4. We will, however, concentrate on the last property. Besides replicating the NK
results with pNK, we will also test the effects of changing the degrees of interdependency,
an option not available in NK.

Before reporting on the tests performed we describe below the definition of a search
strategy in a pNK context.

3.2 Search strategy on pNK

Having modified the landscape’s definition, we need also to provide the equivalent defini-
tion of one-bit mutation for a real-valued landscape. As we will see, this definition will be
much closer to one’s intuition of a search strategy.

On a real-valued fitness landscape the one-bit mutation strategy consists of the follow-
ing steps:

4Also, it may be possible to shift the maximum fitness and/or the optimal point defining appropriate
functions.
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1. Choose randomly one dimension.

2. Make a step ∆ in one direction on the chosen dimension.

3. If the fitness increases, move to the new point.

4. If the fitness decreases, stay in the same point5.

The routine is repeated until no change of step ∆ is able to produce a fitness increment,
i.e. the routine reaches a (local or global) peak. Note that pNK offers also further flexibility
on ∆, which may be set to different values to emulate a finer or rougher research strategy,
as well as to be implemented as a function (e.g. a random value). For example, pNK
allows to distinguish two different types of “long jumps” (Levinthal, 1997): one made
of modifications of many dimensions, and another made of a large change on a single-
dimension.

For our purposes we will consider ∆ as a constant parameter represented by a small
value, in effect determining only the discretization of the real-valued space supporting the
fitness function. Tests performed changing the value of this parameter show that it does
not affect the results presented.

In the next section we test the pNK model (under a few conditions) for replicating the
same results of NK models and extending them as suggested above.

4 Testing pNK

We test the properties of pNK by running a set of simulations on a sub-set of all the
possible configurations of the proposed model. We will limit to consider the φ(...) function
as described above, so that the landscape presents a single global peak producing fitness
of MAX = 1. For all the simulations presented below we set the optimal point at ~x∗ =
(100, 100, ..., 100). Moreover, for reasons of readability of the results, we also constrain the
interdependency coefficients to be symmetrical: ai,j = −aj,i and 0 ≤ |ai,j| ≤ 1. Obviously,
these constraints may be removed to implement specific versions of pNK, but for the
present purposes they allow an easier testing of the properties of pNK.

In the rest of this section we test, firstly, pNK implemented over two dimensions only
(N = 2). This will provide a better understanding of the main difference with NK, since
we have the possibility of a clear visual representation for the fitness produced by pNK,
the results of search strategies, and their pattern through the landscape. Secondly, we
will test pNK on several dimensions, testing pNK for the replication of the most relevant
features of NK.

4.1 pNK fitness landscape

As a first exercise figure 1 shows a fitness landscape built on two dimensions, setting the
global optimum at x∗ = (100, 100), maximum fitness to MAX = 1, and a high, but not
maximum, level of symmetric interdependency |ai,j | = 0.7.

The landscape is composed by a single peaked surface with monotonically decreasing
fitness for points farther from the optimum. However, points with the same distance from
the optimum have different fitness. The surface is composed by four “ridges”, separated
by “valleys”, leading to the global optimum. The angles of the ridges between themselves

5The case of neutrality is not relevant for our purposes, though it may be relevant for certain applica-
tions.
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Example of fitness landscape
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Figure 1: Fitness landscape for N = 2 with symmetric and relatively strong interdepen-
dency. Global optimum set at (100,100) with maximum fitness set to 1, and |ai,j| = 0.7.
A hill-climbing strategy based on one-dimensional mutation corresponds to moves parallel
to one of the axes. If, as in the figure, the ridges of the landscape are diagonal to the
axes, they represent areas of local optima for one-dimensional search strategies. In fact,
any vertical or diagonal step would force to “step down” from the ridge resulting in a fall
of fitness. Only if the ridges are parallel to the axes (ai,j | = 0) a one-dimensional search
strategy can walk on the ridges and will always reach the global maximum.

and in respect of the axes are controlled by the interdependency parameters ai,j. The
example shows a symmetric landscape, composed by orthogonal edges, built imposing the
same interdependency level of X1 on X2 and of X2 on X1. This is obtained by setting
a1,2 = −a2,1; in the rest of the paper we will keep on assuming symmetric landscape in
order to simplify the study of the model properties. The angles in respect of the axes are
determined by the absolute values of the parameters |ai,j|, in this case set to a large, but
not maximum, value.

The next paragraph shows different landscapes for different values of interdependency.

4.2 Varying complexity of fitness landscapes

This paragraph shows how the coefficients ai,j affect the fitness landscape. Limiting the
number of dimensions to two, we can represent the fitness as the dependent variable on
three dimensional graphs, visualizing the shape of the landscape.

The graphs reported in figure 2 describe five different landscapes generated by pNK
for |ai,j| = 0, 0.25, 0.5, 0.75, 1. For |ai,j| = 0 the two ridges leading to the global maximum
are parallel to the axes. For |ai,j| = 1 the ridges run on the diagonals, at 45 degrees in
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respect of the axes. For intermediate values they have increasing angles6.
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Figure 2: Fitness landscapes for N = 2 and different values of |ai,j|.

The angle of the ridges in respect of the axes is crucial to determine the properties of
pNK. A one-dimensional search strategy means to explore vertically or horizontally the
points surrounding the currently held one. If the ridges run parallel to the axes, than such
strategy will surely bring to the global optimum. Conversely, for landscapes with large
angles, search patterns leading to points on the ridges risk to get stuck in local optima.

In fact, if the ridges are diagonal, moving parallel to the axes in the direction of the
optimal point generates two opposite variation of fitness. Firstly, since the step will bring

6The simulation programs producing the results presented in the paper (code, parameterization and
graphs) are implemented in Laboratory for Simulation Development-Lsd. The Lsd platform is available
for download at www.business.aau.dk\ ∼mv\Lsd. The code for the models, together for the instructions
on their use, can be requested to the author.
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away from the ridge, the fitness of the new point will tend to be lower than the starting
point on the ridge. Secondly, since one direction of the step brings necessarily closer to
the optimal point (because of the angle of the ridges), the fitness will tend to increase.
The net effect is uncertain in general, and depends on which segment of the ridges the
pattern has reached, besides their angle in respect to the axes. Given the functional form
chosen, the slope of the ridges is gentler the farther away from the global optimum, and
therefore, in these areas, the positive effect on fitness by getting closer to the maximum
will be weaker. Conversely, segments of the ridges near the global optimum have steeper
fitness and shallower valleys, and therefore it is more likely that the fitness loss caused by
stepping off the ridge is smaller than the gain in getting closer to the maximum. In the
next paragraph we explore how one-dimensional search strategies score on different pNK
fitness landscapes.

4.3 Local peaks for one-dimensional search strategies on pNK land-

scapes

A one-dimensional search strategy consists in starting from a randomly chosen point and
then selecting randomly among the four possible steps along the two dimensions. The step
is accepted in case the new point has higher fitness, otherwise, the strategy remains on
the current point. A local maximum is a point whose four surrounding points have all a
lower fitness, and therefore the fitness increasing search strategy is trapped there.
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Figure 3: Final fitness produced by random one-dimensional search strategy for landscapes
with N = 2 and different values of |ai,j|. The graphs report the average final fitness in
correspondence with each starting point. The average is computed from an expected
number of about 5 searches from each point.
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We ran 30,000 independent searches starting from randomly chosen points. Each search
consists in steps performed by adding or subtracting ∆ to a randomly chosen direction,
and moving to the new point in case the change generates higher fitness7. For each search
it is recorded the starting point and final fitness of the point eventually reached when the
search terminates (i.e. local or global maximum). Graphs reported in figure 3 show the
final fitness values for each search in correspondence of the initial point. The graph for
|ai,j| = 0 is not reported, since it consists of a uniform plane of value 1, meaning that all
searches starting from every point of the landscape manage to reach the global maximum.
The remaining cases show that, while |ai,j |’s increase, the area of starting points bringing to
the global optimum shrinks. Under the most challenging case (|ai,j | = 1) we obtain a Fuji-
like figure: only the searches starting close to the global optimum are able to reach the top
spot. In this setting, any initial point far from the global peak generates a pattern leading
to final fitness values orderly distributed according to the distance from the optimum. The
reason is that on this maximum-complexity landscape movements parallel to the axes lead
to a point on the ridges with a probability increasing with the distance from the global
optimum. The fitness values of the ridges also have decreasing fitness farther from the
global peak, and this is why the final fitness of a search started far from the optimum is
generally lower.

For intermediate values of complexity we observe “propeller”-like figures. The farther
from the global peak the search starts, the lower the probability of reaching the global
optimum, but the probability is not uniformly distributed according to the distance only.
In fact, there are “special” areas that, in respect of other ares with the same distance from
the global peak, lead with (almost) certainty to the maximum fitness point. The shape of
these areas depends, obviously, on the shape of the fitness landscape, that is, the position
of the landscape ridges in respect of the axes. Starting from the “lucky” areas a fitness
climbing path ends at or near the global maximum. Conversely, the “unlucky” points are
pushed through a pattern that hits earlier on an ridge, a local peak far from the optimum.

4.4 Length of search strategies

In order to better understand the shape of the local peaks distribution, as well as their
basins of attraction, figure 4 shows the number of steps employed by the search strategies
to reach the final peak (global or local maximum). For each initial point the graphs
report the (average) number of steps employed by the search strategy before stopping.
For |ai,j| = 0 these values generate a sort of “funnel”: the further the starting point, the
longer the path, as obviously can be expected by searches all ending at the global optimum.

The second graphs, for |ai,j | = 0.25, provides a more detailed intuition of the paths
implied by the landscape. In fact, we see that not all the points on the ridges constitute
local peaks, but only those far from the global peak. For a clearer intuition of the reason
for this result, consider that an ridge is defined by two relevant aspects. Firstly, its angle
in respect of the axes, and, secondly, its slope in respect of the maximum fitness point.
Consider a step ∆ made from a point right on the ridge; the fitness of the new point, in
respect of the fitness of the starting point on the ridge, tends to decrease because the angle
causes the new point to be necessarily off the ridge. However, if the step gets closer to the

7Tests with different values of ∆ showed the irrelevance of the value chosen for this parameter, but for
the level of detail of the graphs. The value used for the simulations is 0.05, so that the portion of the graphs
shown (from 98 to 102 on both dimensions) is turned in a square lattice made of 80 units on each side
and composed of 6,400 points. Therefore, the 30,000 runs generate, on average, almost 5 random searches
started from each point of the landscape. The graph report the average values across all the strategies for
each starting point.

15



optimum, the fitness tends to increase.
The combined effect depends on the slope of the area around the starting point. The

segments of the ridges far away from the global peak have a gentle slope, so that the fitness
increments provided by getting closer to the global optimum are dwarfed by the fitness
decrements forced by getting away from the ridges. Therefore, these segments tend to
trap a search strategy more easily, representing local peaks. Conversely, the ridges close
to the global peak have a steep slope, allowing a criss-crossing strategy to evade the ridge
getting closer and closer to the global optimum on a fitness increasing path.

This property affects larger segments of the ridges the lower is the angle with the axes
(because this decreases the costs of “jumping” down an ridge) and the closer is the point
to the global peak (which makes the ridges steeper). Therefore, the basin of attraction of
the global peak includes also the segments of the ridges closer to the global optimum, and
the landscapes with larger |ai,j | have smaller basins of attractions to the global peak, as
suggested by larger parts with shorter searches, ending more frequently on local peaks.

These results show that pNK offers the possibility to represent the equivalent of local
peaks by means of hyperplanes (sub-spaces of dimension N − 1), that, in case of N = 2
means lines. Moreover, we can determine the dimension and position of the basins of
attraction of the local peaks in a deterministic way, depending, besides the functional
form chosen, on the coefficients used for the level of interdependency. Finally, the patterns
followed by search strategies have a clear and intuitive interpretation.

These exercises show that pNK offers modellers the possibility to implement intuitive
results even using two dimensions only, and therefore without requiring large structure to
generate the basic properties of complex systems.

4.5 Greedy vs. Random strategies

As a further test for pNK we show the results in using the proposed fitness landscape
when matched by alternative research strategies. The goal of this exercise is to show that
pNK is not only able to generate intuitively sensible results, but, given it simplicity, it
allows also to explore the mechanisms generating the results, allowing modellers to have
a detailed account of the phenomena simulated.

We use again the simplest pNK (two dimensions only) to make the classical comparison
of a random vs. a greedy research strategy. Random strategies are those that choose
the dimension (and direction) of a change randomly. The greedy strategy is based on
the assumption that, since there are only two dimensions, an agent may able to test
all the four available steps. While in the random search strategy the simulated agent
chooses randomly among the fitness increasing steps, the greedy strategy mandates to
choose systematically the direction providing the largest fitness increment. Given the
simplicity of the computations involved, we could perform a relatively intense series of
tests, for landscape having |ai,j | = 0.0, 0.1, ..., 1.0. For each of landscapes with the 11
different interdependency values we performed both the random search and the greedy
one, testing, as before, 30,000 random points for each landscape, and starting from each
a random and a greedy search. We then computed the average fitness produced by the
two types of strategies on each landscape. Figure 5 reports the average fitness obtained at
the end of the two research strategies in respect of the coefficients determining the level
of interdependency.

As expected for low values of |ai,j|’s both strategies manage to systematically reach
the global maximum, as indicated by the first values equal to 1 for both strategies. Also
expected, when |ai,j | approaches 1 the greedy strategy manages to obtain a higher average
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fitness. In these landscapes the best that can be obtained is a relatively high local peak,
given that there are no chances to reach the global peak by means of fitness increasing
movements parallel to the axes. Interestingly, the greedy strategy is surpassed by the
random one for low-intermediate values of |ai,j|, from about 0.2 to 0.4.

To explain this result we need to consider the pattern generated by the greedy strategy.
Figure 6 reports the final fitness reached by the greedy research strategy in correspondence
of the coordinates of the starting point. These graphs are the equivalent, for the greedy
strategy, to those reported in figure 3 for the random strategy.

The comparison of the results between the greedy and the random strategy reveals
the difference between the two. When |ai,j | is close to 1, the greedy strategy manages to
develop a path at the “bottom” of the valleys formed by the diagonal ridges of the fitness
function (see last graph in figure 2). This is practically impossible for the random search,
since, wandering randomly, it will be easily captured by the basin of attraction of a local
peak located on one of the ridges. However, the very first graph of figure 6, referring to
the case with |ai,j| = 0.25, shows that the greedy strategy misses conspicuously to gain
the global peak from the extreme corners of the space, while the random search can. The
reason is that in those regions, with those values of the parameters, the highest gains are
obtained moving toward the closer ridge, that, once reached, is a trap that cannot be
escaped. Instead, a random search will very likely (practically always), alternate steps
toward the ridge to step in the direction of the global peak, since both provide positive
fitness gains. In this way it will easily enter the basin of attraction of the global peak,
avoiding the trap capturing the greedy search strategy.

This exercise is an example of the risks of early optimization. Choosing the highest
gains when far from the optimum risks getting to a local peak that cannot be escaped.
Instead, random movements produce a path that is more likely to bring into the basin of
attraction of the global optimum, providing, eventually, a better final performance. This
well-known result does not deserve more comments here, but for supporting the claim
that pNK works on spaces with topologies closer to everyday intuition. Also, the example
shows the flexibility and simplicity of use of pNK, stemming from its low computational
requirements. We will further use this advantage in the following tests exploring properties
of multidimensional pNK landscapes.

4.6 Testing pNK on Multiple Dimensions

Let’s move now to consider the behaviour of pNK in respect of multiple dimensions. We
test the model for N = 24 dimensions. This choice for N allows to remove a potential
source of disturbance. The original Kauffman’s NK model prescribes that each bit is
linked to K different bits. However, the choice of the K bits, or dimensions, is made
randomly, implying that some dimensions may be chosen frequently (influencing many
dimensions) and other less frequently (with a lower impact). In other words, dimensions
may differ radically on their effect on fitness, since the number of dimensions depending
on a change of a single bit cannot be known in advance. To avoid this problem (and
therefore increase the reliability of our tests), we adopt the convention that landscape’s
dimensions are divided in equally large groups. All the dimensions in a group influence
each other, but have no link to dimensions outside their group (the same convention is
adopted in Frenken et al., 1999). Setting N = 24 we can therefore build landscapes with
groups composed by K = {1, 2, 3, 4, 6, 8, 12, 24} dimensions8.

8Note that in our case the equivalent of K represent the number of dimensions in a group, and therefore
corresponds to K + 1 in Kauffmann’s sense, which refers to the links among dimensions.

17



We use this setting to, firstly, test whether pNK is able to replicate the basic results
provided by NK, setting |ai,j = 1| when a link exists (i.e. i and j are in the same group),
and ai,j = 0 when there is no influence between the two dimensions9. Secondly, we will
see how the results change introducing intermediate values for ai,j ’s.

4.6.1 Local Peak’s Fitness and K

The basic property of NK is that a fitness climbing search strategy is more likely to end
up in a low fitness local peak when K is large, that is, with on a landscape with strong
interdependency among dimensions. To test whether pNK can replicate this property
we generated 300 random points and applied independently the search algorithm until a
local peak is found. We replicate this exercise for all landscapes with different K values,
and register the average fitness provided by the 300 searches for each landscape. Figure 7
reports these values, confirming the capacity of pNK to replicate this basic property of NK.
The reason behind this results are the same as for the NK model: higher interdependence
makes more likely that a strategy based on single-dimension movements ends up in a local
peak.

Having shown that pNK generates, on average, lower fitness the higher the K value
of a landscape, we may explore the average levels of local peaks, their distribution and
so on. However, these results have no particular relevance here, for two reasons. Firstly,
the statistical properties of the set of local peaks depend on the functional forms used.
If necessary, it may be possible to search specific functional forms of the pNK fitness
function such to satisfy determined conditions. Secondly, the distributions’ properties of
NK depend themselves on the peculiar implementation of NK, which does not reflect any
particular property of a natural or artificial real-world system. Therefore, we skip this
particular analysis and move to consider properties specific to pNK.

4.6.2 Graded interdependency

pNK can implement different levels of complexity not only by varying the number of
connections, but also by setting a different strength for the interdependency links. That
is, we can change, besides K, also the values for the |ai,j |’s. When such values are positive
but lower than 1 we expect the average fitness reachable by a search to be higher, other
things being equal (i.e. same K), because of the weaker interdependency. In fact, the closer
the coefficients to zero, the weaker the effects of interdependency, increasing the probability
to find a path to areas closer to the global maximum. Figure 8 reports the average fitness
for the same K’s and for a set of intermediate values of |ai,j|, ranging from 0.0 to 1.0. The
hypothesis is fully confirmed, showing how the degradation of fitness generated by higher
K values is lower the smaller are the interdependency strength coefficients |ai,j |.

The tests made so far showed that pNK can, both, replicate the standard results pro-
duced by NK models and extend sensibly these results considering the additional aspects
of pNK: real-valued dimensions and variable interdependency strength. In addition, pNK
is also able to provide a measure of distance between two points which is not limited to
the number of dimensions differing between the two points (Hamming distance), as in NK,
but is defined in the more intuitive Euclidean distance defined on real-valued variables.

As a last exercise we abandon the assumption of “one-bit” search strategy and test
pNK in replicating results obtained from a variation of NK with multi-bit search strategies.

9As before we assume that ai,j = −aj,i| expressing negative interactions.
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4.7 Search Strategies and “K”

The most prominent feature of NK (and, we have seen, pNK) is that, as the interdepen-
dence grows, limited mutation strategies fail to reach the global peak, and that the “costs”
of lower fitness increases with increasign interdependency. However, it has been shown that
suitable mutation strategies can exploit particular structures of interdependence to avoid
the trap of local peaks (Frenken et al., 1999).

We implemented a series of pNK fitness landscapes where dimensions either interact
fully (|ai,j| = 1) or don’t interact at all (|ai,j | = 0). As in the last exercise, dimensions
are assigned to different groups, having links with all dimensions within those in the same
group and no link with dimensions in other groups. However, instead of representing
agents with search routines based on the one-bit (i.e. one-dimension) mutation strategy,
we allow for agents using different search strategies.

We generate a population of agents exploring these landscape each endowed with spe-
cific mutation strategy. Agents member of a given class C divide the whole research space
(i.e. all the set of dimensions) in blocks containing C dimensions each. To perform an
attempted mutation, these agents choose randomly one the blocks, and then mutate one or
more dimensions contained in the block. This exercise in a NK setting shows that agents
in classes containing the same number of dimensions as the interdependency structure (i.e.
when C = K) manage to avoid local peak and systematically reach the global optimum.
Classes managing a smaller number of dimensions (C < K) are instead doomed to be
trapped in local peaks. Classes containing more dimensions than those actually interact-
ing (C > K), though able to reach the global optimum, are far slower in their path to
the global optimum. Moreover, it was also shown that, though eventually limited in their
path to the global peak, smaller classes are faster to reach relatively high fitness areas of
the search space.

We tested a similar settings in pNK. We consider a pNK model with N = 24 dimen-
sions. We implemented 8 different interdependency structures for K ={1,2,3,4,6,8,12,24},
meaning that each dimension i has K − 1 dimensions j for which |ai,j| = 1, while the
rest of the coefficients is 0. On each of these landscapes we generated 7 populations of
agents applying a research strategy of class C = {1, 2, 3, 4, 6, 8, 12}. We located then all
the agents (we used 100 agents for each class) on a randomly chosen starting point of the
landscape (the same point for all the agents), and observed the average fitness of the agents
in each population for 30,000 time steps. At each time step each agent tries a mutation
as described above, mutating one or more dimensions within a randomly chosen group.

The results are shown in the graphs in figure 9, where we report the average fitness
computed over the agents adopting the same strategies across time. We may interpret
each experiment as if agents were facing problems with different levels of modularization:
overmodular agents (C < K) divide the search space in too small modules, in respect of
the true modularization of the environment (K). Optimal agents adopt a modularization
coherent with that of the environment. Finally, “over-integrated” agents assume in their
research strategies interdependencies that do not actually exist (C > K). The results
produced using pNK are essentially identical to those generated with a standard NK
model.

Besides replicating the same results, pNK can easily admit more flexible research strate-
gies, since it allows not only to deal with different directions, but also with the extensions
of the steps in the local exploration. Moreover, pNK uses a fraction of the memory
and computational capacity required for similar exercises in NK, greatly simplifying the
implementation and the computational time required even for large landscapes and inter-
dependency structure.
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4.8 pNK and agent-based models

In our review of the limitation of NK we included also the difficulty in using NK as a model
for complexity to plug into a wider model of, say, organizations, markets, etc. The reason
we mentioned is that the NK properties are statistical, while each single run of a landscape
exploration is ill adapt to represent an actual exploration process. In practice, the pattern
actually generated by a simulated agent on a NK landscape is composed by very few fitness
increasing steps in between a long series of failed attempts. This features prevent the use
of NK in order to represent agents that, for example, are engaged in competition, since, in
practice, NK imposes its own timing of events and limits the number of fitness “jumps”.

Such limitations do not affect pNK. The proposed model represents a fitness increasing
pattern on the landscape as composed both by twists and turns (looking for the right
direction, as in NK), but also as actual steps, required to move across a Euclidean space. To
highlight the difference between NK and pNK in this respect figure 10 shows a comparison
between 1,000 searches (one-bit mutations) on a NK landscape (K = 3) starting from the
same location. On both cases the graphs represent the scatter plot between the value of
the local peak found by the search and the number of fitness increasing mutations leading
to it. The left graph (NK) presents a random cloud of points, indicating that there is no
relation between the number of steps and the fitness of the final destination. Moreover, the
largest number of steps of a search is only 16. Conversely, the right graph shows that pNK
reports a more credible positive correlation between the number of positive mutations and
final fitness of a search path. In addition, the search strategies in pNK manage to make
between 160 and 300 steps, a far more sensible representation of gradual improvements.

This feature of pNK, though not concerning the inner properties of the system, is highly
relevant for applications of the system in agent-based models. Using a model of complexity
to represent the pattern of improvement of an agent, the modeller does not want to have
a system allowing agents to make a few steps scattered in a huge time span. Rather, it
is much more sensible to have agents exploring their space by means of patterns made of
frequent and small steps. Only in this way it is possible to synchronize the modelling of
the search activities with other agents’ activities represented in the model.

For example, Ciarli et al. (2007) and Ciarli et al. (2008) use an elaboration of pNK to
express the technological race of innovative firms. In these models firms undergo several
economic activities (e.g. sell final and/or intermediate products, collect revenues, set price,
etc.) as well research activities (searching for better technologies on a complex techno-
logical landscape). In these works the relative timing between the results of research (i.e.
better technologies) and their economic impact (i.e. higher competitiveness) is crucial. A
NK model, implying a slow and erratic pattern of “discoveries”, would not have worked to
represent the intended functions. pNK, besides providing the same intuition of complex-
ity, gives also the flexibility to represent highly realistic search patterns. Moreover, the
functional form of gives also the opportunity to extend the representation of the complex-
ity space. In these works a technological innovation consists in improving the quality of a
product on a shifting landscape, representing the exogenous movement of the technological
frontier. As the red-queen, firms must invest in research even to just maintain the current
quality level. This feature is easily represented in pNK by imposing a slow dynamics on
the location corresponding to the maximum fitness. In general, pNK has be shown to be
a very flexible tool to model a continuous stream of innovations, more adapt than the few
volatile “jumps” produced by a standard NK model.
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5 Conclusions and further research

NK is a very valid model to represent complexity, and has become quite popular to model
complex systems different from its original biological metaphor, such as management of
organisations and economic values of technological innovations. However, a number of
limitations have hindered a wider diffusion of NK among scholars interested in a model
representing complex systems, such as economists, organizational and social scientists. We
sustain that these limitations are due to the origins of the system (biological metaphor),
that suggested features, such as binary variables for system components and a stochastic
fitness function, ill adapt to other domains. We propose a new model implementing the
core elements of NK but removing, or at least relaxing, its major limitations. Namely,
the proposed model, pNK, generates a complex landscape by means of the (controlled)
interaction among the dimensions of the landscape. However, pNK considers real-valued
dimensions (instead of the binary ones of NK), allows for grades of interaction (instead
of presence/absence), and it is implemented by means of a deterministic function, greatly
simplifying the implementation of the model and the interpretation of the results, signifi-
cantly extending the potential applications, particularly in agent-based models.

The paper shows that pNK successfully replicates the core properties of NK: higher
interactions generate more stringent constraints to a local search, forcing a simulated agent
to get stuck in low fitness local peaks. Moreover, pNK offers many advantages in respect of
the standard NK. Some of these are technical, for example, pNK is far simpler to implement
and the landscape properties, stemming from a deterministic function instead of a huge
set of random values, can be easily evaluated. Furthermore, and more importantly, the
interaction structure depends not only on the number of interdependent dimensions, but
also on the level, or strength, of these interdependencies. Finally, being composed by
deterministic functions, pNK is, besides easier to implement, liable to parameterizations
incorporating specific data, such as those derived from empirical evidence.

The paper presents a list of tests for pNK, showing how the core properties of com-
plex fitness landscapes are maintained in a more familiar context of a real-valued space.
The first tests explore the properties on a two dimensional space, providing a simple vi-
sual representation of the properties of pNK, showing how both the representation of the
landscape and the search strategies conform more easily to the intuition in respect to the
NK metaphor. Given its simplicity, it is possible to determine the properties of search
strategies in complex landscapes by analysing the functional shape of the model. Thus,
for example, it is possible to assess (and therefore to control) the basins of attraction of
the different local peaks, or to explain the properties of different search strategies. The
following tests show the equivalence of pNK to NK in representing a multidimensional
landscape. Finally, it is shown that pNK offers far better possibilities of applications of
complex landscapes in agent-based models, where the stochastic nature of NK make it
unsuitable for applications requiring continuous improvements.
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Figure 4: Number of steps before hitting a local or global peak in respect of the starting
point. Average values from a sample of 30,000 searches (almost 5 searches per point on
average) on fitness landscapes for N = 2 and different values of |ai,j |.
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Figure 5: Average final fitness over 30,000 searches (random and greedy) on 11 landscapes
with ai,j’s ranging from 0.0 to 1.0.
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Figure 6: Final fitness produced by the greedy search strategy for different values of |ai,j |.
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Figure 7: Average fitness produced at the end of 300 searches for each of the eight land-
scapes with K = {1, 2, 3, 4, 6, 8, 12, 24}. Interdependent dimensions have |ai,j = 1| while
independent ones have ai,j = 0
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Figure 8: Average fitness produced at the end of 300 searches for each of the eight land-
scapes with K = {1, 2, 3, 4, 6, 8, 12, 24} and for various value of ai,j. Interdependent di-
mensions have |ai,j | from 0.0 to 1.0 while independent ones have ai,j = 0
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Figure 9: Average fitness across time for classes of agents mutating blocks made
of C ={1,2,3,4,6,8,12} dimensions. Simulations reported for landscapes with
K={1,2,3,4,6,8,12,24}.
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Figure 10: Values of fitness and number of successful mutations for NK and pNK. In both
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each starting from the same location. Values collected at the end of exploration, when a
local peak is reached.
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