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Abstract

This paper studies an agent-based model that bridges Keynesian theories of demand-
generation and Schumpeterian theories of technology-fueled economic growth. We
employ the model to investigate the properties of macroeconomic dynamics and
the impact of public polices on supply, demand and the “fundamentals” of the
economy. We find that the complementarities between factors influencing aggregate
demand and drivers of technological change affect both “short-run” fluctuations
and long-term growth patterns. From a normative point of view, simulations show
a corresponding complementarity between Keynesian and Schumpeterian policies in
sustaining long-run growth paths characterized by mild fluctuations and acceptable
unemployment levels. The matching or mismatching between innovative exploration
of new technologies and the conditions of demand generation appear to suggest the
presence of two distinct “regimes” of growth (or absence thereof) characterized by
different short-run fluctuations and unemployment levels.
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1 Introduction

This work studies an agent-based model (ABM) of endogenous growth and business cycles

and explores its properties under different public policies impacting on supply, demand,

and the “fundamentals” of the economy. We extend the model presented in Dosi et al.

(2006, 2008), which we use also as a sort of “policy laboratory” where both business-cycle

and growth effects of alternative public interventions may be evaluated under different

techno-economic scenarios.

A fundamental feature of the model is that it bridges Keynesian theories of demand

fluctuations and Schumpeterian theories of economic growth. The model also allows to

experiment with an ensemble of policies, related to the structural features of the economy

(concerning e.g., technology, industry structure and competition) on the one hand and to

demand macro-management, on the other.

Historically, a major divide has emerged in macroeconomics theories. Long-run ap-

proaches have traditionally dealt with growth issues in a strict sense, trying to account

for (broken-linear or stochastic) trends present in macro time series, while leaving to

“short-run” models the task of explaining economic fluctuations around the trend. An

early example is the way the IS-LM interpretation of Keynes (Hicks, 1937) and the mod-

els rooted in Solow (1956) found their division of labor addressing business cycles and

growth, respectively1.

Since then, the balance has been shifting over time. At one extreme, the “new classical

economics” has boldly claimed the irrelevance of any “Keynesian” feature of the economy.

New Keynesian models have defended the turf of “non-fundamental” fluctuations most

often on the grounds of informational and behavioural frictions (an insightful overview is

in Blanchard, 2008), with just a minority holding the view that such “imperfections” are

in fact structural, long-term characteristics of the economy (see Akerlof and Yellen, 1985;

Greenwald and Stiglitz, 1993a,b; Akerlof, 2002, 2007, among them). Lacking a better

name, let we call the latter Hard New Keynesians, HNK henceforth.

More recently, the new neoclassical synthesis between real business cycle (RBC) and a

major breed of New Keynesian models has refined the interactions and the territorial divi-

sions between “fundamental dynamics” and higher frequency, “non-fundamental” shocks

within the Dynamic Stochastic General-Equilibrium (DSGE) theoretical family (cf. the

classic Woodford, 2003; Gaĺı and Gertler, 2007). In fact, DSGE models feature a core

with an RBC engine to which one may easily add sticky prices, imperfect competition,

monetary policy (Taylor-like) rules, and whatever can be imaginatively squeezed into

the underlying “structural model”2. Indeed, there is hardly any Schumpeter in term of

1For an interesting reconstruction of the econometric counterpart of such a divide in the 30’s and 40’s
debate, see Louca (2001).

2As Blanchard (2008) puts it, “To caricature only slightly: a macroeconomic article today follows
strict, haiku-like, rules: it starts from a general equilibrium structure, in which individuals maximize
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endogenous innovation in DSGE models.

From a quite different angle, endogenous growth models, notwithstanding very dif-

ferent features (from Romer, 1990 to Aghion and Howitt, 1992 and Dinopoulos and

Segerstrom, 1999), possess an implicit or explicit Schumpeterian engine: innovation and

thus the dynamics in the “technological fundamentals” of the economy is endogenous.

At the same time, “non-fundamental” (e.g. demand-related) fluctuations do not appear

in this family of models. Refinements, such as Aghion and Howitt (1998)3, do entail

equilibrium fluctuations wherein Keynesian features do not play any role4.

Somewhat similarly, evolutionary models, as pioneered by Nelson and Winter (1982),

are driven by a Schumpeterian core with endogenous innovation, but do largely neglect

too any demand-related driver of macroeconomic activity5.

The model which follows, shares evolutionary roots, but in tune with HNK insights (cf.

for example Stiglitz, 1993) tries to explore the feedbacks between the factors influencing

aggregate demand and those driving technological change. By doing that we begin to offer

a unified framework jointly accounting for long-term dynamics and higher frequencies

fluctuations.

The model is certainly post-Walrasian (Colander, 2006; Colander et al., 2008) meaning

that it goes beyond the purported Walrasian foundations squeezed into the representa-

tive agent assumption nested in DSGE models and the general commitment to market

clearing. In that, well in tune with the growing literature on agent-based computational

economics (ACE; see Tesfatsion and Judd, 2006; LeBaron and Tesfatsion, 2008), the

model meets Solow’s plea for micro heterogeneity (Solow, 2008): a multiplicity of agents

interact without any ex ante commitment to the reciprocal consistency of their actions6.

Furthermore, the model — alike most evolutionary ABMs — is “structural” in the

sense that it explicitly builds on a representation of what agents do, how they adjust, etc.

In that, it is as far as the DSGE perspective from “old Keynesian” models studying the

relations amongst aggregate variables without any explicit microfoundation. At the same

time, our commitment is to “phenomenologically” describe microbehaviours as close as

one can get to available micro evidence. Akerlof’s advocacy of a “behavioural microe-

conomics”, we believe, builds on that notion (Akerlof, 2002). In fact, this is our first

fundamental disciplining device. A second, complementary one involves the ability of the

model to jointly account for an ensemble of stylized facts regarding both “micro/meso”

the expected present value of utility, firms maximize their value, and markets clear. Then, it introduces
a twist, be it an imperfection or the closing of a particular set of markets, and works out the general
equilibrium implications. It then performs a numerical simulation, based on calibration, showing that
the model performs well. It ends with a welfare assessment.” (p. 26).

3See also Aghion et al. (2005); Aghion and Marinescu (2007); Aghion et al. (2008).
4Ironically, given the lack of stability of “new growth” trajectories, “Keynesianism” could show its

full force: see also below.
5See however Dosi et al. (1994) and Fagiolo and Dosi (2003) for exceptions.
6For germane ABMs with both some Keynesian and Schumpeterian elements see Verspagen (2002),

Ciarli et al. (2008), Saviotti and Pyka (2008), and the discussion in Silverberg and Verspagen (2005).
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aggregates such as indicators of industrial structures (e.g. firm size distributions, produc-

tivity dispersions, firm growth rates) together with macro statistical properties (including

rates of output growth, output volatility, unemployment rates, etc.).

Our work shares many ingredients with (and in many ways is complementary to) the re-

search project carried on within the European project EURACE (http://www.eurace.org),

which features a large-scale ABM aiming at capturing the main characteristics of the

European economy and addressing European-policy analyses (Deissenberg et al., 2008;

Dawid et al., 2008). Unlike EURACE models, however, we keep the scale of the system

relatively small, in line with traditional macroeconomic ABMs with little overall cali-

bration exercises, albeit with attention to empirically sound micro rules and interaction

mechanisms.

The model below describes an economy composed of firms, consumers/workers and

a public sector. Firms belong to two industries. In the first one, firms perform R&D

and produce heterogeneous machine tools. Firms in the second industry invest in new

machines and produce a homogenous consumption good. Consumers sell their labor to

firms in both sectors and fully consume the income they receive. The government levies

taxes on workers’ wages and firms’ profits and it provides unemployed workers with a

fraction of the market wage.

As customary in evolutionary/ACE perspectives, the policy framework studied here

is explored via computer simulations. To overcome the well-known problems related to

sensitivity to the choice of parameters, possibly arising in ABMs7, we look for policy im-

plications that: (i) are robust to reasonable changes in the parameters of the model; (ii)

refer to model setups and parametrizations wherein the output of the model is empirically

validated (i.e., simulated microeconomic and macroeconomic data possess statistical prop-

erties similar to those empirically observed in reality). We consider this as a value added

of our study, as very often in the literature policy experiments are performed without

imposing any ex-ante empirical-validation requirement on the model (Fukac and Pagan,

2006; Canova, 2008; Fagiolo and Roventini, 2008). Policy configurations are captured by

different “control” parameters and different institutional, market or industry setups. The

impact of different policies is then quantitatively assessed in terms of ensuing aggregates

such as average output growth, output volatility, average unemployment, etc.

One of the main insights stemming from our extensive policy-simulation exercises is

a vindication of a strong complementarity between Schumpeterian policies addressing in-

novative activities and Keynesian demand management policies. Both types of policies

seem to be necessary to put the economy into a long-run sustained growth path. Schum-

peterian policies potentially foster economic growth, but they do not appear to be able

7See Fagiolo et al. (2007) for a discussion; more on that in Section 3. The potential for policy exercises
in ABMs is discussed in the special issue on “Agent-Based Models for Economic Policy Design” of the
Journal of Economic Behavior and Organization, 2008 (vol. 67, no. 2), edited by Herbert Dawid and
Giorgio Fagiolo.
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alone to yield sustained long-run growth. In a broad parameter region, “fundamental”

(indeed, endogenously generated) changes in technology are unable to fully propagate in

terms of demand generation and ultimately output growth. By the same token, demand

shocks (in the simplest case, induced by government fiscal policies) bear persistent effects

upon output levels, rates of growth, and rates of innovations. In that, Keynesian policies

not only have a strong impact on output volatility and unemployment but seem to be

also a necessary condition for long-run economic growth.

In fact, our results suggest that the matching or mismatching between innovative ex-

ploration of new technologies and the conditions of demand generation appear to yield two

distinct “regimes” of growth (or absence thereof), also characterized by different short-run

fluctuations and unemployment levels. Even when Keynesian policies allow for a sustained

growth, their tuning affects the amplitude of fluctuations and the long-term levels of un-

employment and output. Symmetrically, fluctuations and unemployment rates are also

affected by “Schumpeterian policies”, holding constant macro demand management rules.

The rest of the paper is organized as follows. Section 2 describes the model. In Section

3 we perform empirical validation checks and in Section 4 we present results on policy

exercises. Finally, Section 5 concludes and discusses future extensions.

2 The Model

As already mentioned, our simple economy is composed of a machine-producing sector

made of F1 firms (denoted by the subscript i), a consumption-good sector made of F2

firms (denoted by the subscript j), LS consumers/workers, and a public sector. Capital-

good firms invest in R&D and produce heterogenous machines. Consumption-good firms

combine machine tools bought by capital-good firms and labor in order to produce a

final product for consumers. The public sector levies taxes on firms’ profits and pay

unemployment benefits. Innovations is clearly endogenous to our economy. It is the

uncertain outcome of the search efforts of the producers of capital equipment and exerts

its impact throughout the economy via both the lowering of the production costs of

such equipment and its diffusion in the “downstream” consumption-good sector. Before

accurately describing the model, we briefly provide the timeline of events occurring in

each time step.

2.1 The Timeline of Events

In any given time period (t), the following microeconomic decisions take place in sequential

order:

1. Machine-tool firms perform R&D trying to discover new products and more effi-

cient production techniques and to imitate the technology and the products of their
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competitors.

2. Capital-good firms advertise their machines with consumption-good producers.

3. Consumption-good firms decide how much to produce and invest. If investment is

positive, consumption-good firms choose their supplier and send their orders.

4. In both industries firms hire workers according to their production plans and start

producing.

5. Imperfectly competitive consumption-good market opens. The market shares of

firms evolve according to their price competitiveness.

6. Entry and exit take places. In both sectors firms with near zero market shares and

negative net liquid assets are eschewed from the two industries and replaced by new

firms.

7. Machines ordered at the beginning of the period are delivered and become part of

the capital stock at time t+ 1.

At the end of each time step, aggregate variables (e.g. GDP, investment, employment)

are computed, summing over the corresponding microeconomic variables.

Let us now turn to a more detailed description of the model and of the agents’ be-

haviours, which — to repeat — we try to keep as close as we can to what we know they

actually do as distinct from what they ought to do under more perfect informational

circumstances.

2.2 The Capital-Good Industry

The technology of a capital-good firms is (Aτi , B
τ
i ), where the former coefficient stands for

the labor productivity of the machine-tool manufactured by i for the consumption-good

industry (a rough measure of producer quality), while the latter coefficient is the labor

productivity of the production technique employed by firm i itself. The positive integer

τ denotes the current technology vintage. Given the monetary wage w, the unit cost of

production of capital-good firms is:

ci(t) =
w(t)

Bτ
i

. (1)

With a fixed mark-up (µ1 > 0) pricing rule8, prices (pi) are defined as:

pi(t) = (1 + µ1)ci(t). (2)

8Survey data evidence summarized in Fabiani et al. (2006) show that European firms mostly set
prices according to mark-up rules .
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The unit labor cost of production in the consumption-good sector associated with each

machine of vintage τ , produced by firm i is:

c(Aτi , t) =
w(t)

Aτi
.

Firms in the capital-good industry “adaptively” strive to increase their market shares

and their profits trying to improve their technology both via innovation and imitation.

Both are costly processes: firms invest in R&D a fraction of their past sales (Si):

RDi(t) = νSi(t− 1), (3)

with 0 < ν < 1. R&D expenditures are employed to hire researchers paying the market

wage w(t)9. Firms split their R&D efforts between innovation (IN) and imitation (IM)

according to the parameter ξ ∈ [0, 1]10:

INi(t) = ξRDi(t)

IMi(t) = (1− ξ)RDi(t).

We model innovation as a two steps process. The first one determines whether a

firm obtains or not an access to innovation — irrespectively of whether it is ultimately

a success or a failure — through a draw from a Bernoulli distribution, whose parameter

θini (t) is given by:

θini (t) = 1− e−ζ1INi(t), (4)

with 0 < ζ1 6 1. Note that according to 4, there are some scale-related returns to R&D

investment: access to innovative discoveries is more likely if a firm puts more resources into

R&D. If a firm innovates, it may draw a new machine embodying technology (Aini , B
in
i )

according to:

Aini (t) = Ai(t)(1 + xAi (t))

Bin
i (t) = Bi(t)(1 + xBi (t)),

where xAi and xBi are two independent draws from a Beta(α1, β1) distribution over the

support [x1, x1] with x1 belonging to the interval [−1, 0] and x1 to [0, 1]. Note that the

notional possibilities of technological advance — i.e. technological opportunities — are

captured by the support of the Beta distribution and by its shape. So, for example,

9In the following, we assume all capital-producing firms to be identical in their R&D propensity. This
is not too far from reality: R&D intensities are largely sector specific and associated with the sector-wide
nature of innovative opportunities and modes of innovative search (more in Pavitt, 1984; Dosi, 1988;
Klevorick et al., 1995).

10Firms on the technological frontier, lacking anyone to imitate, obviously invest all their R&D budget
in the search for innovations.
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with low opportunities the largest probability density falls over “failed” innovations —

that is potential capital goods which are “worse” in terms of costs and performances

than those already produced by the searching firm. Conversely, under a condition of rich

opportunities, innovations which dominate incumbent technologies will be drawn with

high probability. As we shall show below, a crucial role of “Schumpeterian” technology

policies is precisely that of influencing opportunities and micro capabilities.

Alike innovation search, imitation follows a two steps procedure. The possibilities of

accessing imitation come from sampling a Bernoulli(θimi (t)):

θimi (t) = 1− e−ζ2IMi(t), (5)

with 0 < ζ2 6 1. Firms accessing the second stage are able to copy the technology of one of

the competitors (Aimi , B
im
i ). We assume that firms are more likely to imitate competitors

with similar technologies and we use a Euclidean metrics to compute the technological

distance between every pair of firms to weight imitation probabilities.

All firms which draw a potential innovation or imitation have to put it on production

or keep producing the incumbent generation of machines. Comparing the technology

competing for adoption, firms choose to manufacture the machine characterized by the

best tradeoff between price and efficiency. More specifically, knowing that consumption-

good firms invest following a payback period routine (see Section 2.3), capital-good firms

select the machine to produce according to the following rule:

min
[
phi (t) + bch(Ahi , t)

]
, h = τ, in, im, (6)

where b is a positive payback period parameter (see Eq. 10 below). Once the type of

machine is chosen, we capture the imperfect information pervading the market assuming

that each firm sends a “brochure” with the price and the productivity of its offered

machines to both its historical (HCi) clients and to a random sample of potential new

customers (NCi), whose size is proportional to HCi (i.e., NCi(t) = γHCi(t), with 0 <

γ < 1).

2.3 The Consumption-Good Industry

Consumption-good firms produce a homogenous goods using capital (i.e. their stock of

machines) and labor under constant returns to scale. Firms plan their production (Qj)

according to adaptive demand expectations (De
j):

De
j(t) = f(Dj(t− 1), Dj(t− 2), . . . , Dj(t− h)), (7)
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where Dj(t−1) is the demand actually faced by firm j at time t−1 (h positive integer)11.

The desired level of production (Qd
j ) depends on the expected demand as well as on the

desired inventories (Nd
j ) and the actual stock of inventories (Nj):

Qd
j (t) = De

j(t) +Nd
j (t)−Nj(t− 1), (8)

with Nd
j (t) = ιDe

j(t), ι ∈ [0, 1]. The output of consumption-good firms is constrained by

their capital stock (Kj). If the desired capital stock (Kd
j ) — computed as a function of

the desired level of production — is higher than the current capital stock, firms invest

(EIdj ) in order to expand their production capacity12:

EIdj (t) = Kd
j (t)−Kj(t). (9)

The capital stock of each firm is obviously composed of heterogenous vintages of

machines with different productivity. We define Ξj(t) as the set of all vintages of machine-

tools belonging to firm j at time t. Firms scrap machines following a payback period

routine. Through that, technical change and equipment prices influence the replacement

decisions of consumption-good firms13. More specifically, firm j replaces machine Aτi ∈
Ξj(t) according to its technology obsolescence as well as the price of new machines:

RSj(t) =

{
Aτi ∈ Ξj(t) :

p∗(t)

c(Ai,τ , t)− c∗(t)
≤ b

}
, (10)

where p∗ and c∗ are the price of and unit cost of production upon the new machines.

Firms compute their replacement investment summing up the number of old machine-

tools satisfying Equation 1014.

Consumption-good firms choose their capital-good supplier comparing the price and

productivity of the currently manufactured machine-tools they are aware of. As we men-

tioned above (cf. Section 2.2) the capital-good market is systematically characterized by

imperfect information. This implies that consumption-good firms compare “brochures”

describing the characteristics of machines only from a subset of equipment suppliers.

Firms then choose the machines with the lowest price and unit cost of production (i.e.,

pi(t) + bc(Aτi , t)) and send their orders to the correspondingly machine manufacturer.

11For maximum simplicity, here we use the rule De
j (t) = Dj(t− 1). In Dosi et al. (2006) we check the

robustness of the simulation results employing more sophisticated expectation-formation rules. We found
that increasing the computational capabilities of firms does not significantly change either the average
growth rates or the stability of the economy. These properties still hold in the model presented here.

12We assume that in any give period firm capital growth rates cannot exceed a fixed maximum thresh-
old consistent with the maximum capital growth rates found in the empirical literature on firm investment
patterns (e.g. Doms and Dunne, 1998).

13This in line with a large body of empirical analyses (e.g., Feldstein and Foot, 1971; Eisner, 1972;
Goolsbee, 1998) showing that replacement investment is typically not proportional to the capital stock.

14Moreover, they also scrap the machines older than η periods (with η being a positive integer).
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Machine production is a time-consuming process: capital-good firms deliver the ordered

machine-tools at the end of the period15. Gross investment of each firm (Ij) is the sum of

expansion and replacement investment. Pooling the investment of all consumption-good

firms one gets aggregate investment (I).

Consumption-good firms have to finance their investments as well as their production,

as they advance worker wages. In line with a growing number of theoretical and empirical

papers (e.g. Stiglitz and Weiss, 1992; Greenwald and Stiglitz, 1993a; Hubbard, 1998)

we assume imperfect capital markets. This implies that the financial structure of firms

matters (external funds are more expensive than internal ones) and firms may be credit

rationed. More specifically, consumption-good firms finance production using their stock

of liquid assets (NWj). If liquid assets do not fully cover production costs, firms borrow

the remaining part paying an interest rate r up to a maximum debt/sales ratio of Λ. Only

firms that are not production-rationed can try to fulfill their investment plans employing

their residual stock of liquid assets first and then their residual borrowing capacity16.

Given their current stock of machines, consumption-good firms compute average pro-

ductivity (πj) and unit cost of production (cj). Prices are set applying a variable markup

(µj) on unit costs of production:

pj(t) = (1 + µj(t))cj(t). (11)

Markup variations are regulated by the evolution of firm market shares (fj)
17:

µj(t) = µj(t− 1)

(
1 + υ

fj(t− 1)− fj(t− 2)

fj(t− 2)

)
,

with 0 6 υ 6 1.

The consumption-good market too is characterized by imperfect information (an-

tecedents in the same spirits are Phelps and Winter, 1970; Klemperer, 1987; Farrel and

Shapiro, 1988; see also the empirical literature on consumers’ imperfect price knowledge

surveyed in Rotemberg, 2008). This implies that consumers do not instantaneously switch

to products made by more competitive firms. However, prices are clearly one of the key

determinants of firms’ competitiveness (Ej). The other component is the level of unfilled

demand (lj) inherited from the previous period:

Ej(t) = −ω1pj(t)− ω2lj(t), (12)

15Among the empirical literature investigating the presence of gestation-lag effects in firm investment
expenditures see e.g. Del Boca et al. (2008).

16If investment plans cannot be fully realized, firms give priority to capital stock expansion, as com-
pared to the substitution of old machines.

17This is close to the spirit of “customer market” models originated by the seminal work of Phelps
and Winter (1970). See also Klemperer (1995) for a survey and the exploration of some important macro
implications by Greenwald and Stiglitz (2003).
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where ω1,2 are positive parameter 18. Weighting the competitiveness of each consumption-

good firms by its past market share (fj), one can compute the average competitiveness of

the consumption-good sector:

E(t) =

F2∑
j=1

Ej(t)fj(t− 1).

Such variable represents also a moving selection criterion driving, other things being

equal, expansion, contraction and extinction within the population of firms. We parsimo-

niously model this market setup letting firm market shares evolve according to a “quasi”

replicator dynamics (for antecedents in the evolutionary camp cf. Silverberg et al., 1988;

Metcalfe, 1994a):

fj(t) = fj(t− 1)

(
1 + χ

Ej(t)− E(t)

E(t)

)
, (13)

with χ > 019.

The profits (Πj) of each consumption-good firm reads:

Πj(t) = Sj(t)− cj(t)Qj(t)− rDebj(t),

where Sj(t) = pj(t)Dj(t) and Deb denotes the stock of debt. The investment choices of

each firm and its profits determine the evolution of its stock of liquid assets (NWj):

NWj(t) = NWj(t− 1) + Πj(t)− cIj(t),

where cIj is the amount of internal funds employed by firm j to finance investment.

2.4 Schumpeterian Exit and Entry Dynamics

At the end of each period we let firms with (quasi) zero market shares or negative net

assets die and we allow a new brood of firms to enter the markets. We keep the number

of firms fixed, hence any dead firm is replaced by a new one.

In line with the empirical literature on firm entry (Caves, 1998; Bartelsman et al.,

2005), we assume that entrants are on average smaller than incumbents, with the stock

of capital of new consumption-good firms and the stock of liquid assets of entrants in

18Recall that consumption-good firms fix production according to their demand expectations, which
may differ from actual demand. If the firm produced too much, the inventories pile up, whereas if its
production is lower than demand plus inventories, its competitiveness is accordingly reduced.

19Strictly speaking, a canonic replicator dynamics evolves on the unit simplex with all entities having
positive shares. Equation 13 allows shares to become virtually negative. In that case, the firm is declared
dead and market shares are accordingly re-calculated. This is what we mean by a “quasi-replicator”
dynamics. Note that an advantage of such formulation is that it determines at the same time changes in
market shares and extinction events.
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both sectors being a fraction of the average stocks of the incumbents20. Concerning the

technology of entrants, new consumption-good firms select amongst the newest vintages

of machines, according to the “brochure mechanism” described above. The process- and

product-related knowledge of new capital-good firms is drawn from a Beta distribution,

whose shape and support is shifted and “twisted’ according to whether entrants enjoy

an advantage or a disadvantage vis-à-vis incumbents21. In fact, the distribution of op-

portunities fro entrants vs. incumbents is a crucial characteristics of different sectoral

technological regimes and plays a role somewhat akin to the distance from the technolog-

ical frontier of entrants discussed in Aghion and Howitt (2007).

2.5 The Labor Market

The labor market is certainly not Walrasian: real-wage does not clear the market and

involuntary unemployment as well as labor rationing are the rules rather than the ex-

ceptions. The aggregate labor demand (LD) is computed summing up the labor demand

of capital- and consumption-good firms. The aggregate supply (LS) is exogenous and

inelastic. Hence aggregate employment (L) is the minimum between LD and LS.

The wage rate is determined by institutional and market factors, with both indexation

mechanisms upon consumption prices and average productivity, on the one hand, and,

adjustments to unemployment rates, on the others:

∆w(t)

w(t− 1)
= g

(
∆cpi(t)

cpi(t− 1)
,

∆AB(t)

AB(t− 1)
,

∆U(t)

U(t− 1)

)
, (14)

where cpi is the consumer price index, AB is the average labor productivity, and U is the

unemployment rate22.

2.6 Consumption, Taxes, and Public Expenditures

An otherwise black boxed public sector levies taxes on firm profits and worker wages or

on profits only and pays to unemployed workers a subsidy (wu), that is a fraction of the

current market wage (i.e., wu(t) = ϕw(t), with ϕ ∈ (0, 1)). In fact, taxes and subsidies

20The stock of capital of a new consumption-good firm is obtained multiplying the average stock of
capital of the incumbents by a random draw from a Uniform distribution with support [φ1, φ2], 0 < φ1, <
φ2 6 1. In the same manner, the stock of liquid assets of an entrant is computed multiplying the average
stock of liquid assets of the incumbents of the sector by a random variable distributed according to a
Uniform with support [φ3, φ4], 0 < φ3, < φ4 6 1.

21More precisely, the technology of capital-good firms is obtained applying a coefficient extracted from
a Beta(α2, β2) distribution to the endogenously evolving technology frontier (Amax(t), Bmax(t)), where
Amax(t) and Bmax(t) are the best technology available to incumbents.

22For simplicity, we assume in the following that ∆w(t)
w(t−1) = ∆AB(t)

AB(t−1)
. Simulation results are robust to

wage dynamics involving adjustment to inflation and unemployment. For more detailed modelizations
of the labor market in a evolutionary/ACE framework see e.g. Tesfatsion (2000); Fagiolo et al. (2004);
Neugart (2008).
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are the fiscal leverages that contribute to the aggregate demand management regimes

(we shall explore this issue in more detail below). Note that a “zero tax, zero subsidy”

scenario is our benchmark for a pure Schumpeterian regime of institutional governance.

Aggregate consumption (C) is computed by summing up over the income of both

employed and unemployed workers:

C(t) = w(t)LD(t) + wu(LS − LD(t)). (15)

The model satisfies the standard national account identities: the sum of value added of

capital- and consumption goods firms (Y ) equals their aggregate production since in our

simplified economy there are no intermediate goods, and that in turn coincides with the

sum of aggregate consumption, investment and change in inventories (∆N):

F1∑
i=1

Qi(t) +

F2∑
j=1

Qj(t) = Y (t) ≡ C(t) + I(t) + ∆N(t).

The dynamics generated at the micro-level by decisions of a multiplicity of heteroge-

nous, adaptive agents and by their interaction mechanisms is the explicit microfoundation

of the dynamics for all aggregate variables of interest (e.g. output, investment, employ-

ment, etc.). However, as the model amply demonstrates, the aggregate properties of

the economy do not bears any apparent isomorphism with those micro adjustment rules

outlined above. And a fundamental consequence is also that any “representative agent”

compression of micro heterogeneity is likely to offer a distorted account of both what

agents do and of the collective outcomes of their actions — indeed, well in tune with the

arguments of Kirman (1992) and Solow (2008).

3 Empirical Validation

The foregoing model does not allow for analytical, closed-form solutions. This general

ABM distinctive feature stems from the non-linearities present in agent decision rules

and their interaction patterns, and it forces us to run computer simulations to analyze

the properties of the stochastic processes governing the coevolution of micro and macro

variables23. In what follows, we therefore perform extensive Monte-Carlo analyses to

wash away across-simulation variability. Consequently, all results below refer to across-

run averages over one hundred replications and their standard-error bands24.

23Some methodological issues concerning the exploration of the properties of evolutionary/ACE models
are discussed in e.g. Lane (1993); Pyka and Fagiolo (2007); Fagiolo et al. (2007); Fagiolo and Roventini
(2008).

24Preliminary exercises confirm that, for the majority of statistics under study, Monte-Carlo distri-
butions are sufficiently symmetric and unimodal to justify the use of across-run averages as meaningful
synthetic indicators.
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Let we start from a sort of “benchmark” setup for which the model is empirically

validated, i.e. it is studied in its ability to replicate a wide spectrum of microeconomic

and macroeconomic stylized facts. Initial conditions and parameters of the benchmark

setup are presented in Table 1.

As it should be clear from the forgoing presentation of the model, it embodies both a

Schumpeterian engine and a Keynesian one. The former rests in the generation of innova-

tions by an ensemble of equipment producers which expensively search and endogenously

differentiate in the technology they are able to master. The Keynesian engine has two

parts: a direct one — through fiscal policies — and an indirect one — via investment de-

cisions and workers’ consumption. Hence, the benchmark model appropriately embodies

all such Schumpeterian and Keynesian features.

Next we tune so to speak “up” and “down” the key policy variables (e.g. tax rates and

unemployment benefits) and we experiment with different conditions affecting the access

to and exploitation of new technological opportunities (e.g. the patent regime, anti-trust

policies).

Let us explore the ability of the model to reproduce the major stylized facts regarding

both the properties of macroeconomic aggregates and the underlying distribution of micro

characteristics (more on both in the direct antecedents to this model: [cf. Dosi et al., 2006,

2008).

Growth and Fluctuations. The model robustly generates endogenous self-sustained

growth patterns characterized by the presence of persistent fluctuations (cf. Figure 1). At

business cycle frequencies, bandpass-filtered output, investment and consumption series

(Bpf, cf. Baxter and King, 1999) display the familiar “roller-coaster” dynamics (see Figure

2) observed in real data (e.g. Stock and Watson, 1999; Napoletano et al., 2006). Moreover,

in tune with the empirical evidence, both consumption and investment appear to be

procyclical variables with the latter series being also more volatile than GDP.

Output, consumption and investment display strictly-positive average growth rates25

(cf. Table 2) and, according to Dickey-Fuller tests, they seem to exhibit a unit root. After

detrending the series with a bandpass filter, we compute standard deviations and cross-

correlations between output and the other series. In line with the empirical literature on

business cycles (cf. Stock and Watson, 1999), also in our model investment is more volatile

25The average growth rate of variable X (e.g. GDP) is simply defined as:

GRX =
logX(T )− logX(0)

T + 1
,

where T = 600 is the econometric sample size. This value for T is a quite conservative choice, as the
first iterative moments of growth statistics converge to a stable behavior well before such a time horizon.
This means that the model reaches a relatively (meta) stable behavior quite soon after simulations start.
Our experiment show that choosing larger values for T does not alter the main economic implications of
the paper.
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than output, whereas consumption is less volatile; consumption, investment, change in

inventories, and employment are procyclical; unemployment is countercyclical26.

The model is also able to match the business-cycle properties concerning productivity,

price, inflation and markups: productivity is procyclical, prices are countercyclical and

leading; inflation is procyclical and lagging; markups are countercyclical (for the empirics

and discussion cf. Stock and Watson, 1999; Rotemberg and Woodford, 1999).

Finally, the aggregate growth rates of output display fat-tailed distributions well in

tune with the empirical evidence (cf. Table 4; see Castaldi and Dosi, 2008; Fagiolo et al.,

2008). Informally, that means that both in our model and in reality relatively big “spurs

of growth” and recessions occur much more frequently than it would be predicted on the

grounds of normally distributed shocks (see also below on firm growth patterns).

Distributions of Microeconomics Characteristics. Together with the ability of the

model to account for a rich ensemble of macro phenomena, how does it fare in its matching

with the evidence on the ubiquitous micro heterogeneity? Let us consider the regularities

concerning firm-size and growth-rate distributions, firm-productivity dynamics and firm-

investment patterns which are generated by the model.

To begin with, well in tune with the empirical evidence (Dosi, 2007), rank-size plots

and normality tests suggest that cross-section firm (log) size distributions are skewed

and not log-normal (see Figures 3 and 4 and Table 5). Moreover, the estimation of the

shape parameters of exponential-power (Subbotin) distributions27 shows that pooled firm

growth-rate distributions are “tent-shaped” with tails fatter than the Gaussian benchmark

(see Table 4 and, for a comparison with the empirical evidence and some interpretation,

see Bottazzi and Secchi, 2003, 2006).

Turning to firm productivity, again in line with the empirical evidence (cf. the surveys

in Bartelsman and Doms, 2000; Dosi, 2007), firms strikingly differ in terms of labor

productivity (cf. standard deviations of labor productivities across firms plotted in Figure

5) and productivity differentials persist over time (cf. firm productivity autocorrelations

reported in Table 6)28.

Finally, we have analyzed firm investment patterns. The model is indeed able to gen-

erate as an emergent property investment lumpiness (Doms and Dunne, 1998; Caballero,

1999). Indeed, in each time step, consumption-good firms with “near” zero investment

26Consumption and net investment are also coincident variables matching yet another empirical reg-
ularity on business cycles. Changes in inventories are instead slightly lagging.

27We estimate a distribution of the form:

f(x; b, a,m) =
1

2ab
1
b Γ(1 + 1

b )
e−

1
b |

x−m
a |b .

In a Subbotin distribution one parameter — b, in Table 4 — governs the fatness of the tails. The Normal
distribution is recovered when b = 2, the fatter Laplace distribution when b = 1.

28In the last 200 periods of the simulations, we consider the autocorrelation of firms that survived for
at least 20 periods and we compute the industry average.
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coexist with firms experiencing investment spikes (see Figure 6 and relate it to Gourio

and Kashyap, 2007).

4 Policy Experiments: Tuning Schumpeterian and

Keynesian Regimes

The model, we have seen, is empirically quite robust in that it accounts, together, for a

large number of empirical regularities. It certainly passes a much higher “testing hurdle”,

as Solow (2008) puts it, than simply reproducing “a few of the low moments of observed

time series: ratios of variances or correlation coefficients, for instance” (p. 245) as most

current models content themselves with. Encouraged by that empirical performance of

the model, let we experiment with different structural conditions (e.g. concerning the

nature of innovative opportunities) and policy regimes, and study their impact on output

growth rates, volatility and rates of unemployment29.

4.1 Alternative Innovation and Competition Regimes

Consider first the Schumpeterian side of the economy, holding the “Keynesian engine”

constant as compared with the benchmark scenario30: Table 7 summarizes the results.

Let us start by turning off endogenous technological opportunities. In this case, the

model collapses onto a barebone 2-sector Solow (1956) model in steady state, with fixed

coefficients and zero growth (absent demographic changes).

Opportunities and Search Capabilities. What happens if one changes the opportunities

of technological innovation and the ability to search for them? Experiment 1 (Table 7)

explores such a case. As compared to the benchmark, we shift rightward and leftward the

mass of the Beta distribution governing new technological draws (i.e. the parameters α1

and β1, cf. Section 2.2). Note that the support of the distribution remains unchanged, so

that one could informally states that the notional possibilities of drift in the technological

frontier remain unchanged, too. However, the “pool” of opportunities agents actually face

get either richer or more rarefied. We find that higher opportunities have a positive impact

on the long-term rate of growth, reduce average unemployment and slightly increase GDP

volatility (a mark of Schumpeterian “gales of creative destruction”?).

Somewhat similarly, higher search capabilities approximated by the possibilities of ac-

cessing “innovations” — no matter if failed or successful ones — (cf. the ζ1,2 parameters in

29Interestingly, most other statistical regularities concerning the structure of the economy (e.g. size
distributions, fatness of firms growth rates, etc.) appear to hold across an ample parameter range, under
positive technological progress, even when policies undergo the changes we study in the following.

30The full list of parameters under different policy scenarios is available from the authors on request.
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Equations 4 and 5) positively influence the rates of growth and lower unemployment. To-

gether, business cycle fluctuations are dampened possibly because a population of “more

competent” firms entails lower degrees of technological asymmetries across them and in-

deed also lower degrees of “creative destruction”. See experiment 2, Table 7.

Note that such role of innovative opportunities and search capabilities is in princi-

ple equivalent to that blackboxed into the more aggregate notions of “human capital”

(Nelson and Phelps, 1966; Benhabib and Spiegel, 1994) and of “appropriate institutions”

(Acemoglu et al., 2006)31.

Appropriability Conditions. In many current models with a (neo) Schumpeterian engine,

appropriability conditions play a key role via their assumptions on the forward look-

ing rationality of the agent(s) investing into uncertain innovative search: the degrees of

monopoly appropriation of the economic benefits from successful search parametrize the

equilibrium relation between investment in R&D and rates of innovation. In this model,

we took a much more behavioural route and assumed a fixed propensity to invest in R&D

— again, quite in tune with the evidence displaying relatively sticky and sectoral specific

propensities. Granted that, how do changes in appropriability conditions affect aggregate

dynamics?

We first studied an extreme condition (albeit rather common in the theoretical lit-

erature), turning off the possibility of imitation, and assuming that all R&D is invested

in innovative search. Interestingly (and admittedly to the surprise of the authors) we

basically find no differences vis-à-vis the benchmark scenario: compare experiment 3.1

with experiment 0, Table 7.

Let we then try to mimic the effect of a patent system. Under a “length only” patent

scenario, the innovative technology cannot be imitated for a given number of periods

determined by the patent length (cf. experiment 3.2, Table 7). Such patenting possibility

is detrimental to long-run growth and also augments the average rate of unemployment.

The negative aggregate impact of the patent system is reinforced if each firm cannot

innovate in some neighborhood of the other firms’ technologies — i.e. in presence of a

patent breadth: see experiment 3.3, Table 7.

Entry and Competition Policies. Important dimensions of distinct Schumpeterian regimes

of innovation regard, first, the advantages/disadvantages that entrants face vis-à-vis in-

cumbents and, second, the market conditions placing economic rewards and punishments

upon heterogenous competitors.

The first theme cuts across the evolutionary and neo-Schumpeterian literature and

sometimes is dramatized as a “Schumpeterian Mark I” vs. a “Schumpeterian Mark II”

scenarios, meaning systematic innovative advantages for entreprenurial entrants vs. cu-

31In fact, given the increasing availability of micro data one can start thinking of disaggregates em-
pirical proxies for our variables. The issue is however well beyond the scope of this work.
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mulative advantages of incumbents (cf. Malerba and Orsenigo, 1995; Dosi et al., 1995).

In our model, technological entry barriers (or advantages) are captured by the probabil-

ity distribution over the “technological draws” of entrants. Again, we hold constant the

support over which the economy (i.e. every firm thereof) may draw innovative advances,

conditional on the technology at any t. In this case we do it for sake of consistency:

results, even more so, apply if different regimes are also allowed to entail different proba-

bility supports. Let us first tune the Beta distribution parameters α2 and β2 (cf. Section

2.4). Our results are broadly in line with the evidence discussed in Aghion and Howitt

(2007): other things being equal, the easiness of entry and competence of entrants bears

a positive impact upon long-term growth, mitigates business cycles fluctuations and re-

duces average unemployment. See experiments 4.1 and 4.2, Table 7. However, the ceteris

paribus condition is equally important: the same aggregate growth patterns can be proved

to be equally guaranteed by competent cumulative learning of incumbents (see, above,

the exercises on search capabilities).

What about competitive conditions? An idea broadly shared across neoclassical and

evolutionary tradition is that “more competition is generally good”. In our model, that

translates somewhat narrowly into a less imperfect access to information to prices by

multiple heterogenous customers. In this case, in principle quite similar to the formally

slimmer Phelps and Winter (1970), higher competition is reflected by the higher replicator

dynamics parameter χ in Eq. 13. Simulation results suggest that a fiercer competition

has negligible effects on growth but it appears to reduce output volatility and average

unemployment (cf. exps. 5.1 and 5.2, Table 7).

Finally, we introduce antitrust policies by forbidding capital-good firms to exceed a

given market share (75% in experiment 6.1 and 50% in experiment 6.2, Table 7): the out-

come is a lower unemployment rate, smaller business cycle fluctuations and also higher

GDP growth (on this point see also Fogel et al., 2008). Note that such a property have

little to do with any static “welfare gains” — which our model does not explicitely con-

templates — but rather with the multiplicity of producers, and thus of innovative search

avenues, which antitrust policies safeguard32.

4.2 The Keynesian Engine, or is Schumpeter Enough?

So far we have explored the effects of different means of “Schumpeterian” policies and

organizational setups over the long term (i.e. over the rate of growth of the economy) and

on unemployment rates and output volatilities. We did find significant effects both on the

long and short terms. However, to repeat, such results are conditional on a “Keynesian

machine” well in place. What happens if we switch that off? Remarkably, the system

dramatically slows down in terms of rates of growth, unemployment shoots up to utterly

32The thrust of our results on policies affecting entry, competition, and variety preservation are indeed
broadly in tune with the advocacy for “evolutionary technology policies” in Metcalfe (1994b).
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unrealistic levels and volatility increases. Note that it does so even if we consider a regime

with simultaneously “high opportunities” and “high search capabilities” (experiment 7,

Table 7). So for example, for the same richness of innovative opportunities, the long-term

rate of growth falls to around a third (compare experiments 7 and 1.2).

Let us further explore the role of fiscal policies over both the short- and long-term

properties of the economy. Consider the experiments presented in Table 8. We begin

with eschewing the public sector from the economy by setting both tax rate and unem-

ployment benefits to zero while keeping the benchmark Schumpeterian characteristics in

place. In such a scenario, the economy experiments wilder fluctuations and higher un-

employment rates in the short-run, but also an output growth in the long-run not far

from nil. Countercyclical Keynesian policies, as in the common wisdom, act indeed like

a parachute during recessions, sustaining consumption and, indirectly, investment on the

demand side. However, they also bear long-term effects on the supply side: in particular

on the rates of growth of productivity and output. Such a vicious feedback loop goes from

low output to low investment in R&D, low rates of innovation (cf. Equation 3) similar to

that pointed out by Stiglitz (1993)33. In fact, in the latter as well as in our model, the

system may be “trapped” into a low growth trajectories which cannot be unlocked from

by a “Schumpeterian jumpstart”. Indeed, as we have seen above (experiment 7, Table 7)

Schumpeterian policies alone are not able to sustain high growth patterns and, even less

so, mild business cycle fluctuations and low unemployment.

Let us then allow for Keynesian demand macro-management policies and repeatedly

increase both the tax and the unemployment benefit rates. Tuning up fiscal demand man-

agement does delock the economy from the “bad” trajectory and brings it to the “good”

(high growth) one, which also our benchmark scenario happens to belong (cf. Table 8

and Figure 7). If one further increases the size of fiscal measures, average output growth

rates do not change as compared to the benchmark scenario, but output volatility and

unemployment significantly fall, and the economy spends more time in full employment

(cf. again Table 8 and Figure 7)34.

5 Concluding Remarks

In this work we have studied the properties of an agent-based model that robustly repro-

duces a wide ensemble of macro stylized facts and distributions of micro characteristics.

The model entails the explicit account of search and investment decisions by popula-

tions of firms that are heterogeneous in the technologies which they master and, possibly,

in their decision rules. Aggregate macro properties are emergent from the thread of inter-

33On the negative links between macroeconomic volatility, R&D investment, and long-run economic
growth in presence of financial market imperfections, see also Aghion et al. (2005, 2008).

34On the long-run growth-enhancing effects of countercyclical macroeconomic policies, see the empir-
ical evidence provided by Aghion and Marinescu (2007).
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actions among economic agents, without any ex-ante consistency requirements amongst

their expectations and their actions. In that sense, the model may be considered an ex-

ercise in general disequilibrium analysis. Firms in the model endogenously generate new

technologies — embodied in new types of “machines” — via expensive and mistake-ridden

processes of search. Inventions then diffuse via the adoption decisions of machine users.

Hence, in the current statistical jargon, agents generate micro technological shocks and,

together, micro demand shocks which propagate through the economy.

In this respect, an important feature of the model is that it bridges Schumpeterian

theories of technology-driven economic growth with Keynesian theories of demand gener-

ation.

A central question that we address in the work is whether the “Schumpeterian engine”

by itself is able to maintain the economy on a high-growth / near full-employment path.

Broadly speaking, the answer is negative. Such an endogenous innovation engine is able

to do that only in presence of a “Keynesian” demand-generating engine, which in the

present model takes the form of public fiscal policies.

Our results also throw deep doubts on the traditional dichotomy between variables

impacting the long-run (typically, technology-related changes) and variables with a short-

term effect (traditional demand-related variables). On the contrary, technological inno-

vations appear to exert their effects at all frequencies. Conversely, Keynesian demand-

management policies do not only contribute to reduce output volatility and unemployment

rates, but for a large parameter region, they affect also long-run growth rates insofar as

they contribute to “delock” the economy from the stagnant growth trajectory which is

indeed one of the possible emergent meta-stable states.

The model appears to be a quite broad and flexible platform apt to perform a long

list of experiments, few of which have been presented above, studying the outcomes of

different policies and different institutional setups. An obvious direction of development

ought to address an explicit account of credit and financial markets (a somewhat germane

attempt in this direction is in Delli Gatti et al. (2005), broadly along Stiglitzian lines).

This is also a natural step in order to also analyze the real impact of monetary policies.

Another line of inquiry involves the comparison between alternative institutional speci-

fications of the ways technologies are accessed and the ways markets work, somewhat along

the lines of the “variety of capitalism” approach (Soskice and Hall, 2001). More generally,

we view this as an example of a broader research program whereby explicit behavioral mi-

crofoundations nest the exploration of the relations between innovative dynamics, demand

generation, and policies affecting both.
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Description Symbol Value
Number of firms in capital-good industry F1 50
Number of firms in consumption-good industry F2 200
R&D investment propensity ν 0.04
R&D allocation to innovative search ξ 0.50
Firm search capabilities parameters ζ1,2 0.30
Beta distribution parameters (innovation process) (α1, β1) (3,3)
Beta distribution support (innovation process) [x1, x1] [−0.15, 0.15]
New-customer sample parameter γ 0.50
Capital-good firm mark-up rule µ1 0.04
Desired inventories ι 0.10
Payback period b 3
“Physical” scrapping age η 20
Mark-up coefficient υ 0.04
Competitiveness weights ω1,2 1
Replicator dynamics coefficient χ 1
Maximum debt/sales ratio Λ 2
Interest Rate r 0.01
Uniform distribution supports [φ1, φ2] [0.10,0.90]
(consumption-good entrant capital)
Uniform distribution supports [φ3, φ4] [0.10,0.90]
(entrant stock of liquid assets)
Beta distribution parameters (α2, β2) (2, 4)
(capital-good entrants technology)
Tax rate tr 0.10
Unemployment subsidy rate ϕ 0.40

Table 1: Benchmark Parameters

Output Consumption Investment
Avg. growth rate 0.0254 0.0252 0.0275

(0.0002) (0.0002) (0.0004)

Dickey-Fuller test (logs) 6.7714 9.4807 0.2106
(0.0684) (0.0957) (0.0633)

Dickey-Fuller test (Bpf) −6.2564∗ −5.8910∗ −6.8640∗

(0.0409) (0.0447) (0.0905)

Std. Dev. (Bpf) 0.0809 0.0679 0.4685
(0.0007) (0.0005) (0.0266)

Rel. Std. Dev. (output) 1 0.8389 5.7880

Table 2: Output, Investment, and Consumption Statistics. Bpf: bandpass-filtered
(6,32,12) series. Monte-Carlo simulation standard errors in parentheses. (∗): Significant
at 5%.
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Series b Std.Dev. a Std.Dev. m Std.Dev.
Capital-good 0.5285 0.0024 0.4410 0.0189 -0.0089 0.0002
Consumption-good 0.4249 0.0051 0.0289 0.0037 0.0225 0.0001
Output 1.4673 0.0122 0.0775 0.0004 -0.0027 0.0003

Table 4: Growth-Rate Distributions, Estimation of Exponential-Power Parameters.

Industry Jarque-Bera Lilliefors Anderson-Darling
stat. p-value stat. p-value stat. p-value

Capital-good 20.7982 0 0.0464 0 4.4282 0
Consumption-good 3129.7817 0 0.0670 0 191.0805 0

Table 5: Log-Size Distributions, Normality Tests

Industry t-1 t-2
Capital-good 0.5433 0.3700

(0.1821) (0.2140)
Consumption-good 0.5974 0.3465

(0.2407) (0.2535)

Table 6: Average Autocorrelation of Productivity. Standard deviations in parentheses.

29



Exp. Description Avg. GDP GDP Std. Avg.
Growth Rate Dev. (Bpf) Unemployment

0 benchmark scenario 0.0252 0.0809 0.1072
(0.0002) (0.0007) (0.0050)

1.1 low technological opportunities 0.0195 0.0794 0.1357
(0.0001) (0.0008) (0.0050)

1.2 high technological opportunities 0.0315 0.0828 0.1025
(0.0002) (0.0007) (0.0051)

2.1 low search capabilities 0.0231 0.0825 0.1176
(0.0002) (0.0008) (0.0059)

2.2 high search capabilities 0.0268 0.0775 0.1031
(0.0002) (0.0008) (0.0048)

3.1 no imitation 0.0254 0.0693 0.1049
(0.0002) (0.0008) (0.0059)

3.2 patent (length only) 0.0242 0.0761 0.1132
(0.0002) (0.0008) (0.0060)

3.3 patent (breadth, too) 0.0163 0.0631 0.1329
(0.0001) (0.0007) (0.0067)

4.1 low entrant expected productivity 0.0183 0.0798 0.1402
(0.0003) (0.0012) (0.0084)

4.2 higher entrant expected productivity 0.0376 0.0697 0.0853
(0.0002) (0.0006) (0.0047)

5.1 weak market selection 0.0252 0.0840 0.1253
(0.0002) (0.0008) (0.0058)

5.2 strong market selection 0.0250 0.0755 0.1024
(0.0002) (0.0006) (0.0053)

6.1 weak antitrust 0.0265 0.0698 0.1036
(0.0002) (0.0006) (0.0043)

6.2 strong antitrust 0.0273 0.0508 0.0837
(0.0001) (0.0005) (0.0036)

7 Schumpeter-only, no fiscal policy 0.0110 1.5511 0.7855
(0.0018) (0.0427) (0.0274)

Table 7: Schumpeterian Regime Technological and Industrial Policy Experiments. Bpf:
bandpass-filtered (6,32,12) series. Monte-Carlo simulations standard errors in parentheses.

Tax Rate Unemployment Avg. GDP GDP Std. Avg.
Subsidy (in % of wages) Growth Rate Dev. (Bpf) Unemployment

0 0 0.0035 1.5865 0.8868
(0.0012) (0.0319) (0.0201)

0.05 0.20 0.0254 0.1539 0.1952
(0.0002) (0.0025) (0.0086)

0.10 0.40 0.0252 0.0809 0.1072
(0.0002) (0.0007) (0.0050)

0.15 0.60 0.0251 0.0630 0.0846
(0.0002) (0.0005) (0.0034)

0.20 0.80 0.0254 0.0584 0.0602
(0.0002) (0.0006) (0.0027)

0.25 1 0.0252 0.0564 0.0551
(0.0002) (0.0005) (0.0023)

Table 8: Keynesian Regime Fiscal Policy Experiments. Bpf: bandpass- filtered (6,32,12)
series. Monte-Carlo simulations standard errors in parentheses.
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Figure 1: Level of Output, Investment, and Consumption (logs)
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Figure 2: Bandpass-Filtered Output, Investment, and Consumption
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Figure 3: Pooled (Year-Standardized) Capital-good Firm Sales Distributions. Log Rank
vs. Log Size Plots.
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Figure 4: Pooled (Year-Standardized) Consumption-good Firm Sales Distributions. Log
Rank vs. Log Size Plots.
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Figure 5: Firms’ Productivity Moments (logs). First panel: capital-good firms. Second
panel: consumption-good firms.
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Figure 6: Investment Lumpiness. First panel: share of firms with (near) zero investment;
second panel: share of firms with investment spikes.
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Figure 7: Fiscal Policy Experiments. First panel: average output growth rate. Second
panel: bandpass-filtered output standard deviation. Third panel: average unemployment
rate (unemp.) and full-employment frequency (full emp.). In such policy experiments,
the unemployment subsidy rate (ϕ) is four times the tax rate.
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