


Laboratory for Simulation Develpment - LSD∗

Marco Valente

LEM, Pisa

and

Università dell’Aquila

valente@ec.univaq.it

Abstract

LSD is one of many programming languages designed to develop agent-based mod-
els. LSD implements time-driven models expressed in formats equivalent to discrete
systems of equations, where each equation computes the value of a generic instance of
a variable at a generic time step. LSD models are therefore extremely parsimonious
in terms of details that users must provide to the system. When a model has been
described, the system automatically generates a working program implementing the
model, endowed with a complete set of interfaces for any possible operation on the
model.

The major feature of is that users can rely on an automatic scheduling system
and on automatic retrieval of data required for the equations. Such features are
particularly attractive in complex, multi-herarchical models. They permit even non-
expert programmers to develop even relatively complex models with minimal training.
The system’s interfaces guarantee the complete control of the model at building, at
run-time and at post-simulation analysis, facilitating debugging, revisions and detailed
analysis of model results, which are useful properties especially when developing large
models for ambitious projects.

The design of LSD is based on an “open architecture”, so that LSD can be used
to implement any type of model, including even-driven models and models based on
customized data structures. The intrinsic modularity of LSD models make them easily
scalable facilitating the development of highly complex models by demanding users.
The underlining layer of C++, accessible by the users, allows the inclusions of external
libraries or of complex data structures, besides an extreme speed and dimensions of
the model.

This work reports on the major features of the design of LSD outlining its most
prominent advantages for users of simulation models in research, particularly for agent-
based simulations.

Keywords: Simulations models, programming languages

∗The LSD project started in 1995 in IIASA, Laxembourg (Vienna), as part of the TED project led by
Prof. G.Dosi. The project benefited initially by comments of other members of the project: F.Chiaromonte,
W.Fontana, Y.Kaniovski, L.Marengo and G.Silverberg. Later, I continued to develop the system while
studying for my PhD in Economics under the supervision of E.S.Andersen, who provided extremely valuable
comments and suggestions. LSD has been developed following the needs encountered by myself, students
and other users in our own research. Particularly demanding users, such as T.Ciarli and A.Lorentz who
also assists me in teaching LSD, have to be therefore particularly acknowledged. Finally, all the students
of SIME, a one week workshop on simulations with LSD organized for several years in Strasbourg by
P.Llerena, have been extremely useful in testing and improving the system.



Introduction

Simulation models must obviously be implemented as computer programs, and there is,
therefore, the need to identify a programming language. Although in principle any lan-
guage can implement every possible computational structure, in practice different lan-
guages have different features, providing advantages and costs that may be relevant for
different users and projects.

It is common to represent languages in a space represented by two hypothetical dimen-
sions. A first dimension, let’s call it simplicity, indicates how easy it is to develop a model
with the language. For example, a language is simpler when it provides a large library of
data structures and functions that users can choose and re-use, and the construction of a
model requires minimal programming skills. Conversely, a language is more difficult when
the user must learn a complex grammar and build every single piece of the model from
very basic programming components.

A second dimension is the power of the language, represented by speed of execution,
dimension of the resulting models, and flexibility of representation. A language is more
powerful if it permits to build very fast simulations composed by large models, and allowing
a large set of computational structures. Conversely, it is less powerful if it produces slow
simulations, limits strongly the number of elements within a configuration, and makes
hard to represent models different from a limited range of pre-determined computational
structures.

The community of programmers represents languages along a trade-off between sim-
plicity and power: simple to use languages have, in general, limited power, while powerful
languages are very demanding in terms of skills and implementation time. LSD is an
attempt to break this trade-off, offering the possibility to generate powerful simulation
programs and requiring the programming skills implicit in expressing their own model.

The overall approach of LSD consists in keeping separate the simulation model from
the simulation program implementing the model. The model, in LSD, consists in requir-
ing the users to describe the model in terms close to the popular format of difference
equations. From the set of equations the system automatically generates a powerful simu-
lation program complete with an extensive set of graphical interfaces. The computational
core of LSD models is extremely powerful, since it makes use of possibly the most effi-
cient language, C++, therefore allowing the optimal exploitation of the computational
power available. Moreover, the resulting program is automatically endowed with a large
set of interfaces permitting to initialize, execute, investigate and, in general, exploit the
model in order to satisfy any possible need that may require the use a simulation model.
Users are therefore no required to provide any code concerning interfaces, files, memory
management. Nor they are required to explicitly give instructions already implicitly con-
tained in the equations; for example, the scheduling of computation for the equations is
automatically generated at run time.

Besides being a powerful and easy to use language, LSD contrasts with other languages
because of other features. Firstly, LSD models are “open” in the sense that users can
constantly peek into the mechanisms of a simulation run observing every single event
and accessing every detail of model at any time. Secondly, models implemented in LSD
are extremely easy to revise, scale up and re-use. Thirdly, LSD permits to express very
intuitively hierarchical models, composed by entities made of other entities generating
many layers at different aggregate levels.

These three features make LSD models ideally suited for agent-based models aimed at
research projects. Such models, in fact, pose particularly complex programming problems.

1



Such models are built, in fact, in order to study properties that normally cannot be assessed
only observing a few data series. Modellers should be able to back their scientific claims by
providing robust support based on the analysis of intra-simulation events. Failing to do so
risks to strongly decrease the convincing power of simulation modelling as scientific tool.
Also, as argued below, simulation models for research are intrinsically more uncertain in
respect of normal programs developed for specific purposes. For this reason, it is very
important to be able to trace an unexpected result to a bug in the code or to scientifically
relevant properties of the model.

A second problem of simulation models for research consists in the need to frequently
revise the model. By definition a researcher develops a model on the basis of conjectures
and intuitions, without a perfectly clear understanding of the features that the model will
need to include. For example, an element of the modelled system initially considered as
irrelevant may turn out necessary, or a functional form may need to be heavily modified
in the later stage of the research project. Consequently, the model must be constantly
revised, modifying marginal details or the whole structure. The intrinsic modularity of
LSD models makes extremely simple to edit a component of an existing version of the
model minimising the effects to other parts of the model. For the same reason, a model
in LSD can easily be upgraded adding new elements or new features without the need to
adjust exiting ones. Also, it is very easy, and actually encouraged, to re-use portions of
different models that will automatically be adapted by the system to new contexts.

Lastly, agent-based models make difficult to indexing the different copies of a given
entity, because of the large sets of indexes required to identify entities at different levels of
the model hierarchy. LSD offers an extremely simple system to solve the problems related
to ensuring that the proper values are used in every computation.

LSD users need to know sufficient programming as necessary to express the equations
of their model, while the system automatically generates all the rest of the required code.
Since, in general, most of the models’ code concerns a few simple logical-mathematical
operations, LSD permits even poorly trained programmers to develop and exploit rather
elaborated models. The use of the interfaces can be learned in few hours, and users need to
concentrate on the limited set of programming structures directly relevant for the model
content, ignoring completely core aspects of standard programming courses such as file
and memory management, interfaces, etc. The scalability features of LSD implies that it
is an ideal teaching tool for the logic of computation, allowing to ignore the difficulties
programming languages.

However, LSD is by no means limited to be an educational tool. In fact, the features
mentioned above make LSD uniquely qualified to develop large and highly complex models.
In particular, LSD favors a gradual approach to modelling, adding few elements at a
time, testing them, evaluating the scientific correctness, and adding further extensions.
Using a standard programming language such approach, together with the uncertainty on
future extensions, implies the reaching of a stage in which prior design choices and the
complexity of the model prevent further changes. Actually, one is likely to discover that,
somehow, a bug had been introduced in earlier versions, but there is no way to identify
exactly the faulty lines or to fix the error without a complete rewriting of the model. LSD
avoids these problems, permitting a total control of even extremely complex models. Such
characteristic, together with its computational efficiency, make LSD very useful even for
expert programmers.

This document aims at providing a brief overview of the main features of LSD. The first
section provides a definition of a model as required by LSD. This is the only information
that users must enter in the system to generate a simulation program and, as will be seen,

2



it is a definition very close to the abstract representation of a model and far from an actual
programming structure. The second section describes how the LSD system manages to
turn the model definition into a simulation run. Such section briefly outlines the major
features of the simulation engine of the system that analyses the user provided information
and generates the implicit programming steps. The third section reviews some of the most
relevant tools automatically provided by the system and allowing users to exploit the
model. The concluding section summarizes the paper and comments on the limitation
and future development of the system.

1 Elements of LSD models

The goal of LSD is to request modellers to provide all and only the information concerning
exclusively the content of the model, and then the system automatically generates all the
necessary technical code required by the simulation program, e.g. interfaces, file manage-
ment, scheduler, etc. In so doing LSD proposes a sort of a normal form for simulations,
defining all (and only) the elements affecting the model results. The elements of a model
as devised by LSD are: objects, variables, functions and parameters1.

1.1 Objects and model structure

LSD defines objects as containers of other elements of the model2. Objects should be
considered as representations of entities of the real system represented by the model. The
model structure is composed by the set of objects composing the model. Since objects can
contain other objects, a model structure should be thought as a hierarchical tree made of
objects, where each object has a unique container (parent object) and can contain many
different types of objects, each expressed in multiple instances.

For example, a model may contain as top-objects entities called Country, containing
three types of objects: Supply, Demand and Gov. Object Supply can then contain several
instances of the same-type objects called Sector, in turn containing objects Firm, etc.

The role of objects consists in storing other elements, that is variables, functions and
parameters, besides, possibly, other objects. Since every element must necessarily be
stored in an object, the model structure determines how many instances of each variable,
function or parameter will be present in the model. Multiplying the copies of an object
the system automatically generates as many number of copies of the contained elements,
since LSD forces each object of the same type to have the same structure.

The design of a model structure may be less than obvious, although a few rules of
thumb generally lead quickly to a settled definition. In general, “larger” objects must
be high in the hierarchy of a model and “small” ones should be lower. The role of the
objects during a simulation run consists in directing the search of data required by the
computation of variables (see section 2 on the Lsd model manager below). If the equation
of variable X requires the value of, say, parameter α, and all the copies of this variable must
use a common copy of this parameter, than α is likely to be located in an ascending object
in respect of the object containing X. Conversely, if the equation of X requires to use
several copies of α, than the sets of objects containing this parameter will be descending

1Since modellers can access directly the underlining C++ layer it is possible to extend a model with
any programming structure that such language can express, including external libraries. In this document,
however, we do not provide details on these features.

2LSD is not an object oriented language, in that the LSD objects do not have features such as inheritance.
It should possibly be defined an object-based language.

3



(i.e. contained into) the object containig X. Lastly, if each X must use a specific copy of
α, than the two elements will likely be stored in the same object.

LSD models stores all the required information independently, and only at run time
the system assembles all elements and produces the necessary computation. This means
that moving an element (say a variable) from one object to another does not necessarily
affect the code for the equation of that variable, nor that of other variables using that
element. Therefore, it is very easy to follow a gradual approach to model development,
trying a given structure, observing the results, revising the structure and so on.

1.2 Variables, functions and parameters

Variable at the core elements of a LSD model, since modellers can express a computation
exclusively by inserting code as the equation for a variable. They are defined a label and
a piece of LSD-C++ code used to compute the value of the variable at each time step.
The system ensures that each variable executes the code corresponding to the its equation
once and only once, generating a value associated to the time step.

The procedure to write the code for a variable is extremely simple, at least for the
vast majority of variables in models. In fact, the user is not requested to use indexes to
specify the location of the values used in the equation, but simply refers to them by using
their labels, much as the standard format of difference equations systems. For example,
suppose that the equation for variable Q expressing the quantity produced by a firm is a
function of the price p. The equation will be the LSD code equivalent to Q = f(p) and will
remain identical independently on whether the model defines the price as being contained
in the objects for firms or, conversely, it is a market price contained in another object.
In general, variables’ code consists in an extremely simple and intuitive equivalent of the
mathematical expression of a difference equation model, extended to include every legal
computational structure like logical statements (e.g. IF-THEN-ELSE), cycles etc.

Variables can also contain statements overwriting model elements (e.g. to replace
the value of a parameter), adding and removing objects, sorting objects, etc. The most
frequently used computations can be expressed with a macro language so that coding
equations for most of the cases can be easily learned in few hours even by non-expert
programmers.

The only necessary requirement for the equation of a variable consists in providing as
output one single value. At each time step that value will be associated to the variable.
Obviously, the same code will be re-computed for each copy of that variable, where results
will be produced because of the values used in the equations’ computation.

Functions are essentially identical to variables, but are treated differently by the system.
While variables are automatically updated by the system once and only once at each time
step, functions are computed only (and always) when requested by other computations in
the model. Therefore, while variables generates always a single value for each time step,
functions may generate several values, or none, depending on how many times their value
is requested.

Parameters are equivalent to variables whose equations consists in returning the value
already stored.

1.3 Initialization and options

The initialization of a LSD model consists in the quantity of objects and in the initial
values for variables, functions and parameters, if necessary.

4



The number of objects can be assigned either identically for each branch of the model or
differently. Determining the number of objects correspondly determines also the number of
copies of the elements contained in them. For example, consider a model with a structure
composed by an object Market containing a set of objects Firm. Defining three markets
generates three sets of Firm’s, contained in each copy of Market, whose numbers can be
set to different values. In so doing, it is also determined how many copies of the elements
contained in Firm are present in the model.

Variables and functions require initial values in case they are requested with lagged
values in at least one equation. For example, suppose that a variable is requested with lag
2 in one equation (i.e. the equation uses the value of the variable at two preceding time
steps). In this case, when the simulation starts, at time step 1, there are no past values
for this variable, and the user must provide the value for the variable at the fictitious time
step -1. At step 2, equivalently, the variable will be used with the value at time 0. From
step 3 onwards the system will use the values computed at earlier steps.

Functions also can be used with a lag (and therefore may require initial values). Only,
the “lags” for functions concern times of activation, and not time steps.

Users need to provide also other options affecting the model’s behaviour, such as the
number of time steps for each simulation run, the “seed” for the pseudo-random series,
the list of the elements whose values must be saved for post-simulation analysis. It is also
possible to instruct the system to compute a sequence of independent simulation runs,
each using a different pseudo-random seed, whose results will be saved in files. In this
way it is possible to perform robustness tests, since all the files can be loaded into the
post-simulation module and the results compared.

2 LSD simulation manager

The core feature of LSD consists in allowing the users to provide only a very minimal
description of their model, while the system automatically assembles all available informa-
tion and generates a complete simulation program. A simulation step can be thought as
the sequence of equations computed according to an appropriate order and using, for their
computation, the appropriate values. Obviously, it is the user that ultimately determines
the operations in a simulation step, but the system allow to express these decisions in an
extremely simplified and intuitive way, avoiding redundant and complex instructions.

Expressing a model using a difference equation model there are two major decisions to
be made when the simulation step must be computed. Firstly, it is necessary to determine
the order in which the equations are executed. Secondly, in general equations use data
from other elements in the model present with many copies, and it is necessary to choose
a specific copy for each equation computed. In a standard program the first problem is
solved by requiring users to provide a complete schedule of the order of updating for the
equations. The second by using an indexing of the elements. Both solutions require the
user to give global instructions, indicating when each and every equation must be executed,
and giving the precise indication on which elements to use for each equation.

The approach used by LSD consists in requiring users to provide only local instructions
within an equation’s code, and relying on the system to generate a global solution to both
problems by assembling all the implicit information scattered in the equations’ code and
the structure of the model. For example, concerning the scheduling of the equations, the
user only indicates (implicitly) if there is the need of a specific priority among a some of
the equations. Similarly, the user can specify which data to use within an equation using
searching rules, not giving the exact address of the required element. In both cases, the

5



system adopts a default procedure by following the indications of the modeller, if they
exists, and relying on the most obvious choice otherwise.

Such approach has two advantages. Firstly, minimize the amount of instructions re-
quired by the modeller. Secondly, makes the model easy to scale up and revise, since the
same code will be automatically adapted to a revised model. The LSD simulation manager
(LSM) is the system’s module responsible to fill the users’ supplied information with the
implicit information contained in the model as a whole. In the rest of this section we
give some detail on the mechanisms used by the system to solve the scheduling and data
retrieval problems.

2.1 Automatic scheduler

Users describe equations as independent pieces of code resembling a system of a differ-
ence equation model. By independent is meant that, in the equations’ code, there is no
explicit instruction on the global order of execution of an equation. It is the system that
ensures that the resulting simulation program will follow the implicit order as it can be
reconstructed by the equations’ code, on the basis of the lags’ notation.

For example, consider a model made of only two variables, whose equations are Xt =
f(Yt−lagy

) and Yt = g(Xt−lagx
), where lagx,y are the lags, that can take the values 0 or

1. There are three legal possibilities for the order of computation of these two variables,
and an illegal one. The table below lists all the possible cases and the resulting implicit
indication on the order of execution of the variables.

Eq. for X Eq. for Y Order

Xt = f(Yt) Yt = g(Xt−1) Compute firstly Y and then X

Xt = f(Yt−1) Yt = g(Xt−1) Irrelevant order

Xt = f(Yt−1) Yt = g(Xt) Compute firstly X and then Y

Xt = f(Yt) Yt = g(Xt) Illegal model, generates a dead-lock

Concerning the illegal model, this is due to the fact that LSD is a programming lan-
guage, not a mathematical problem solver. Therefore, the equations are actual steps that
must be performed by the processor, not conditions to satisfy. Therefore the system of
equations Xt = f(Yt) and Yt = g(Xt) is a valid mathematical statement (i.e.“find the
values X and Y such as to satisfy the stated conditions”) but an illegal computational
structure, representing an infinitely looped chicken-egg problem (compute X after the
computation of Y and compute Y after the computation of X).

Technically, LSD uses a stack system. At the beginning of a step, it start scanning all
the variables of the model, trying to compute each of them, and then deciding, depending
on the state of the variable and of the required values in its equation, whether to complete
the computation or performing preliminary other tasks. For example, suppose that it tries
to compute X in the model represented by the first row in the table above. If variable
Y had been already computed at the current time step, the system supplies the resulting
value without re-computing again its equation, and the equation for X can be safely
completed. If, conversely, variable Y had not been computed as yet at the current time
step, then the system suspends the computation for X, and executes the equation for Y

immediately. Once Y is updated the execution of the equation for X continues from the
point where it had been interrupted. In this latter example, when the scanning reaches Y

the system will find that the variable had been already updated and does not re-compute
it again.

6



In case the system finds a model like those described in the last row above, then the
simulation is interrupted, and a error message it issued specifying the variables concerned.

The system works because LSD attaches to the variables’ values the time step when
it have been computed. For functions, instead, there is no such association, and therefore
their equation is re-computed every time their value is requested in other equations. If a
function is requested with a lag (its “past” value), the system returns the value from the
previous computation.

2.2 Automatic data retriever

LSD equations normally do not specify where the elements required for their computation
are stored, that is which object contains them. This may potentially generate ambiguities
when there are many copies of the elements involved. For example, consider the equation
Q = f(p) in a model where Q is a variable defined in object Firm. The equation’s code
makes no reference to where p is located, nor which copy of p should be used if many exist
in the model. Indeed, the same identical code may be used in different models where p

could be located in Firm or Market, obviously generating the intended result.
For example, imagine that p is located in the same object Firm as Q. The equation’s

interpretation will therefore be: every Q must use the p stored in the same copy of Firm
containing the computing Q. Consider, conversely, that p is located in object Market
(parent of Firm), and that the model has three copies of Market. In this case, the inter-
pretation of the equation becomes: for every Q uses the copy of p stored in the copy of
Market containing the copy of Firm storing the computing Q.

In general the LSM adopts the following rule when searching the copies of the element
to be used for the computation of a variable: use the copy of the element stored in the
closest object to the object containing the computing variable.

2.3 Overruling LSD default

The automatic decisions taken by the system allow to express a model with minimal
requirements of code and permits easy scalability. For example, in order to reverse com-
pletely the scheduling of operations a modeller can simply insert a lag in one equation.
However, there are cases in which the modeller needs to perform operations different from
the default behaviour. For example, a model may require that a variable of a firm in the
first market access the price of the third market. In this case the default data retrieval
would not work, since also the first market has a copy of the variable price, which, without
specific instructions, would be used. Similarly, the automatic scheduler may need to be
disabled in some special cases. For example, in certain conditions a variable may need to
execute its equation twice at the same time step, replacing its result produced at the first
computation.

In these, and many other cases, the user can overrule the system default behaviour using
one of the macro commands specifically designed to perform the operations on the LSD
models. A set of these commands concerns the most frequent cases in which users need to
violate the default choices. Moreover, when really complex programming is required, the
system can address directly the LSD internal representation and using C++ command to
manipulate it. For example, LSD admits only real-valued variables, but a user can create
customized C++ data structures and C++ routines operating on them, using the LSD
variables only to trigger and control the customized operation.

An example of data structures external to LSD models and experimentally included in
the LSD source code consists of lattices. These are windows composed by several square

7



cells posed in a grid. Lattices are defined, initialized and modified with C++ routines that
users can access within the code for one of the LSD equations, linking the model’s state
(e.g. a variable’s value) to the external data (e.g. the color of a cell).

Another example is the possibility to turn an element from one type into another. For
example a model may be defined as having initially a variable, which is then turn into a
parameter (so that its equation is no more computed), and, possibly, later re-turned again
into a variable.

Actually, the very development of LSD takes place when a model requires a violation of
the default behaviour. In these cases a customized solution to the problem is implemented
using the C++ layer. If the problem appears frequently, then a generalized solution is
devised (if possible) and a new macro command is added.

3 LSD automatic features

The main advantage of using LSD is that though modellers needs to insert a minimal
amount of information concerning the model, this is automatically endowed with a com-
plete set of interfaces allowing the full exploitation of the model results, even for the needs
of very large and complex models. This section reviews briefly the major tools embedded
automatically in LSD simulation programs.

3.1 LMM and Lsd Model Programs

The LSD system is composed by two programs, used to manage different aspects of the
model. The program used to initiate a model, organize several models, and every time the
equations must be revised, is called Lsd Model Manager (LMM). This program allows the
user to organize different models and contains a text editor specialized in dealing with the
equations of LSD files. The equations of a model are automatically stored by LMM in a
C++ source file and compiled to generate a LSD Model Program (LMP) along the source
code of the system.

The compilation process entails the usual makefile that can be customized freely by
users. Non-expert programmers can rely on the automatic options allowing the compilation
of a LMP with a single click. Compilation errors are reported so that illegal code can be
easily found and corrected.

While LMM is unique for each installation of LSD, every model generates its own
LMP, containing its specific equations and a common set of interfaces, identical for all
LSD models. Using the LMP’s the users can define the model structure, declare the
elements, initialize the values, running simulations, and, in general, every other operation
but those affecting the equations of the model.

3.2 Macros for equations

Every equation is a separate group of lines forming chunks of independent code within a
unique file. As said, the equations are written using LMM and are composed by keywords
from a macro language specific for LSD models, besides including the whole C++. For
example, the lines for the equation Xt = Yt + 3 could be expressed as:

EQUATION(’’X’’)

RESULT(V(’’Y’’)+3)

8



In general, an equation consists of a few lines collecting values from the model and
expressing a simple logical-mathematical operation returning a value. The equation, as in
systems of equation mathematical models, must express the computation required by the
generic copy of the variable at a generic time step of the simulation. Different copies will
make use of different values, therefore returning, for the same computation, also different
values.

LSD provides an extended set of commands expressing the most frequently used oper-
ations. The example above uses the most frequently used macro of all, V(’’Y’’), which
returns the value of the element called Y within the code of an equation. A similar macro
is VL(’’Y’’,1) which expresses the equivalent of Yt−1, that is, return the value of the past
value of an element. Since in LSD the modeller can only write code within an equation,
there are also commands to act on the model, for example adding, deleting or shifting
objects (for example when sorting). The editor in LMM provides graphical scripts assist-
ing in the use of the macros, requesting users to give model-specific information and then
inserting the complete text of the requested macro command, so minimising the number
of typing mistakes.

Given the possibility to ignore issues of data retrieving and of scheduling, the writing
of the equations code poses in most of cases no problems even to non-programmers. In
general, even complex models can be broken down to many variables, each having each a
very simple code. An extensive manual and many example models, furthermore, provide
blueprints for most operations usually necessary in the model.

3.3 Elements declarations

LMP’s contain the compiled code for the variables’ equations, and are used for remaining
operation concerning the model. The definition of the model structure (i.e. labels of
the objects, variables, etc.), as well as the initialization and other simulation options are
created using a LMP and stored into files. Such files, called configuration file, contain
all the information concerning a specific run: names and position of the model elements,
initial values, number of steps, etc. Consequently, every simulation run can be always
replicated by loading its configuration files into the same LMP.

The declaration of the model entities consists in the simple entering the text label and
the nature of the element, generating both a list-based and a graphical representation of
the model. Editing an existing configuration, such as moving one element in a different
object or suppressing elements, are also allowed.

3.4 Initialization interfaces

As said, there are two classes of initial values to be defined in order to launch a simulation
run: number of objects and values for parameters and lagged variables. The LSD programs
automatically detect the number of values that users must insert and generate suitable
interfaces where each entry cell is associated to an element to initialize. A multi-digit
coding system ensures that the user is always aware of which copy of an element the
initialization interface is dealing with. For example, a parameter contained in a third-layer
of the hierarchy of a model (e.g. stored in object Firm, contained in Market, contained
in Country), will be indicated with three digits for the copy of Country, of Market and of
Firm respectively. This feature makes LSD models are particularly suited for agent-based
models, and in general for micro-founded models, given that complicated multi-hierarchical
models can be easily initialized.

9



A further feature of LSD is that it exploits the full power of available hardware re-
sources. This means that it is easily available to test a model with a few dozens of elements,
and then, by simply entering one number, generating a model with millions of elements.
For such models manual initialization (entering the initial values one by one) is obviously
unfeasible. A separate set of interfaces allow to insert values automatically, using a large
set of initialization functions assigning automatically initial values to all the copies of an
element (or only to a specified sub-set as, for example, every second copy). Finally, for
very particular configurations requiring a specific set of values the system allows to upload
initial values from a text file.

3.5 Run time analysis

Another major feature of LSD models is that users can inspect and interpret models at
run time, using a variety of interfaces to observe results, spot particular conditions, and
edit model states in any respect (but for revising equations’ code). In this paragraph we
review some of these possibilities.

A simulation can be run in several modes. Listing them in increasing level of details
(and decreasing speed): batch mode (no graphics, no user access, results saved in file at
the end of the simulation run); graphical, no detail, accessible (no message issued); few
details (step completed); graphical results presented at run time. Apart from the first
mode, the user can always interrupt a simulation run and switch to another simulation
mode. Moreover, a simulation can be interrupted altogether and users can access the
model in a “debug mode”3.

The LSD debugging interfaces provide a complete report on the state of the model,
for example showing all the values for every element of the model, the updating time for
variables, number of objects, etc. The same interface permits to search specific elements,
modify the value of one or a set of element (manually or automatically, as for initialization),
force the computation of an equation, adding or removing objects. Moreover, the user can
enter in the post-simulation analysis module (see below), then return to the debug-mode
and continue the simulation.

The system can enter in debug mode by several means: clicking a button while observ-
ing a run; on an equation’s code request (using a one-line macro command in the code,
also passing textual and numerical messages); at a pre-determined time step; conditional
on specific values of an element (e.g. when variable X assumes values below 100).

3.6 Post-simulation analysis

A LSD model program is endowed with a module specifically designed to deal with data
produced by a simulation run. The module can manage data from a just-finished simula-
tion (or an ongoing one); load data previously saved from past simulation, even many files
at once; generate new data as elaboration of data present in the module; upload current
states of the model.

The module is particularly suited for dealing with the massive amount of data that
modern hardware is capable of producing. Actually, since large models produce far more
data than that can be contained even in large amount of memory units, LSD models allow
to select which data series from a model should be saved in a simulation run. Other data

3The name derived by the need for programmers to inspect the working of a program mainly to fix
bugs. However, for scientific purposes such activities are frequently requested also to investigate how a
given result is generated.

10



are maintained in memory only as long as required to complete the computations at the
current time step, and then discarded to make room for newly generated values.

Even limiting the selection of values, the analysis of a model may require tens of
thousands of series, which would be impossible to manage with a standard tools of lists
boxes. The analysis module provides interfaces able to scan quickly all the available data
set and select only the series satisfying a given criterion. For example, it is possible to
select all series for variable X contained in the same objects where Y was set at a specified
value.

Users can generate graphical plots (time series and cross-section), scatter plots and
a few descriptive statistics. The graphical output is represented windows that can be
turned into postscript files. Both graphs and statistics can be controlled in a variety of
ways: selecting time intervals, setting different scaling, choosing colors, adding labels, etc.
For more advanced analysis the module permits to export selected series as text files in a
variety of formats (e.g. tab-separated or fixed columns, with or without headers, etc.)

3.7 Documentation

Descriptions of simulation models’ content is always difficult due to the intrinsic interde-
pendency of each element with a number of others. LMP’s can be used to inspect any
aspect of the model elements, showing the equation of a variable, providing the list of the
elements used in the equation, or the list of the variables making use of the element. While
this is useful for modellers, it requires the use of the LSD interfaces, and cannot be used to
document the model to the general public, or for inclusion in a paper. For this purposes
the system automatically generates complete documents containing all elements of the
model, listed by the objects containing them, and reporting all relevant information for
each element: textual documentation (if available), equations’ code, initialization values,
links to related elements. The so-called LSD reports can be formatted in HTML, providing
hyperlinks for connections between elements, or formatted LATEXtables, for inclusions in
documents.

4 Conclusions

This work presents the major features of LSD, a language designed to easily produce
powerful simulation models. LSD is based on the assumption that modellers should be
requested to provide only model specific information: variables and the code required to
compute their values. From this information the system is able to organize the different
pieces of code into a coherent simulation cycle, automatically filling any remaining part
required to actually perform a simulation.

This approach simplifies extremely the generation of simulation programs, since mod-
ellers can neglect the global structure of the model and focus on each individual variable.
Moreover, since the system automatically assembles the sparse information into a program,
LSD models can be very easily revised and extended.

Simulation programs generated with LSD are automatically endowed with a complete
suite of interfaces allowing easily to inspect, initialize, run models, and manipulate the
results. The interfaces allow also to manage huge models, for example permitting the
initialization of parameters using a large and flexible set of initialization functions.

Though LSD provides advantage both for non programmers (because of its simplicity)
and skilled modellers (because of its computational power with large models), still it has
aspects that may decrease its appeal, at least apparently, for certain kind of users. LSD

11



major limitation concerns its nature of a programming language. Therefore it cannot be
used as problem solver; for example, it cannot be used to solve a system of equations
or any other problem (although, obviously, it is possible to implement and computational
routine). Also, since LSD is based on C++ it is possible to include in the code any external
library compatible with this language.

Expert programmers approaching LSD for the first time are initially puzzled by the
impossibility to impose explicitly a detailed control flow for the execution of variables’
equations. Although this is an advantage of LSD, users can still implement a sort of
main(...) cycle by generating it within one of the equations of the model. However,
after some time using the system, even trained programmers generally begin to appreciate
the redundancy of this operation, which generally poses a useless and rigid limitation to
the extendibility of models.

Currently, the development of LSD has reached a mature stage in which only cosmetic
and presentation issues are programmed, at least in the near future. Because of the need to
maintain its multi-platform nature (LSD is distributed as freeware for MS Windows, Linux
and Mac OS X platforms) the graphics make use of Tcl/Tk, one of the few languages that,
at the time of earliest design of the project, guarantee the legal and technical requirements.
Recently more efficient windowing systems have been developed, and the replacement of
this aspect is being considered.

LSD installation currently contains a number of disparate example models, that user
can study and copy for their needs. However, it would be useful to include a more for-
mal and coherent list of LSD implementation of the most commonly used computational
structure. Similarly, the current version of the system requires users to cut and past dif-
ferent pieces from existing models, namely the computational content and the elements’
definition are stored into separate files. It would be useful to link these related aspects in
order to facilitate the copying of relevant portions from models with a single operation.

12


