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Abstract

In the last years, a number of contributions has argued that monetary – and, more gener-
ally, economic – policy is finally becoming more of a science. According to these authors,
policy rules implemented by central banks are nowadays well supported by a theoretical
framework (the New Neoclassical Synthesis) upon which a general consensus has emerged
in the economic profession. In other words, scientific discussion on economic policy seems
to be ultimately confined to either fine-tuning this “consensus” model, or assessing the ex-
tent to which “elements of art” still exist in the conduct of monetary policy. In this paper,
we present a substantially opposite view, rooted in a critical discussion of the theoretical,
empirical and political-economy pitfalls of the neoclassical approach to policy analysis. Our
discussion indicates that we are still far from building a science of economic policy. We
suggest that a more fruitful research avenue to pursue is to explore alternative theoretical
paradigms, which can escape the strong theoretical requirements of neoclassical models (e.g.,
equilibrium, rationality, etc.). We briefly introduce one of the most successful alternative
research projects – known in the literature as agent-based computational economics (ACE)
– and we present the way it has been applied to policy analysis issues. We conclude by
discussing the methodological status of ACE, as well as the (many) problems it raises.
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1 Introduction

In the last years, a number of contributions has argued that monetary – and, more generally,
economic – policy is finally becoming more of a science (Mishkin, 2007; Gaĺı and Gertler, 2007;
Goodfriend, 2007; Taylor, 2007). Nowadays, these authors maintain, both the academic world
and central banks have reached an overall consensus not only on the contingency rules to imple-
ment in alternative situations, but also on the fact that “the practice of monetary policy reflects
the application of a core set of scientific principles” (Mishkin, 2007, p.1). These scientific princi-
ples, in turn, derive from the so-called New Neoclassical Synthesis or the New Keynesian model
of monetary policy (Goodfriend, 2007), whose highly-sophisticated, brand-new reincarnation is
based upon the Dynamic Stochastic General Equilibrium (DSGE) model1.

What is more, the available toolbox of economic policy rules is deemed to work exceptionally
well not only for normative purposes, but also for descriptive ones. For example, Taylor (2007)
argues that “while monetary policy rules cannot, of course, explain all of economics, they can
explain a great deal” (p.1) and also that “although the theory was originally designed for nor-
mative reasons, it has turned out to have positive implications which validate it scientifically”
(abstract)2.

The resulting picture is an extremely reassuring, but also somewhat scaring, one. For it
envisages, for the next future, a situation where no matter the country under consideration and
the historic time a handful of simple, scientifically-sound, contingency rules will always be at
disposal of central banks and other economic decision makers. They will just need to program a
powerful-enough computer that, conditional to the state of the economy, will automatically and
carefully design the optimal policy to implement. The value added of economists and politicians
will then look like increasingly similar to that of an airliner pilot: the theoretical model, with
its technical sophistication, will do almost all the job, whereas the role of the policy maker will
soon become negligible. Scientific discussions on economic policy seem therefore to be ultimately
confined to either fine-tuning the “consensus” model, or assessing the extent to which elements
of art (appropriable by the policy maker) still exist in the conduct of monetary policy (Mishkin,
2007).

Strangely enough, all that resembles very closely two famous statements made, respectively,
by Francis Fukuyama (1992) about an alleged “end of history”, and by many physicists in the
recent debate on a purported “end of physics” (see, e.g., Lindley, 1994). Unfortunately to those
who promoted and supported them, both positions have been proven to be substantially wrong
by subsequent developments.

In this paper, we argue that this is likely to happen also with the view on economic policy
expressed by those supporting the “New Neoclassical Synthesis” approach. Our argumentation
is based on two related considerations.

First, we claim that policy rules actually implemented by central banks and other institutions

1For an introduction, see Woodford (2003) and Gaĺı and Gertler (2007). Cf. also Colander (2006c) for an
historical perspective.

2This stance strongly contrasts with that of many policymakers. For example, Alan Greenspan has argued
that “despite extensive effort to capture and quantify what we perceive as the key macroeconomic relationships,
our knowledge about many of the important linkages is far from being complete and, in all likelihood, will always
remain so” (Greenspan, 2004, p. 37). An extremely pessimistic view on the possibility of taking any economic
model seriously econometrically is in Summers (1991). On these points see also Mehrling (2006).
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are seldom backed up by sound theoretical models. As recently discussed at length in Aghion
and Howitt (2007) in the context of growth policies, the most frequent situation faced by an
advisor asked to deliver policy recommendations is one where standard textbook recipes turn
out to be useless. A case-by-case approach, where one relies primarily on instincts and common
sense, is instead to be preferred (Aghion and Howitt, 2007, p.2). As far as monetary and fiscal
policies are concerned, things are not that different. As Section 2 shows, the state-of-the-art
theoretical apparatus employed to provide scientific support to policy rules (i.e., DSGE-based
models) turns out to be a juxtaposition of separate modules, namely a real business cycle
backbone, a monopolistic competition framework, nominal imperfections and a monetary policy
rule. Therefore, it hardly represents a unified (and unifying) framework. The set of policy rules
that is deemed to uphold may have been derived separately by different single modules or simply
as rules of thumb. In this perspective, the elements of art still existing in the job of policy maker
are far from becoming negligible.

Second, the DSGE policy apparatus is plagued by a long list of serious problems3. These
include theoretical issues (i.e., having to do with formal inconsistencies of the model – given
its assumptions), empirical difficulties (i.e., related to empirical validation of DSGE models)
and political-economy problems (i.e., concerning the absence of any justification for the often
unrealistic and over-simplifying assumptions used to derive policy implications).

As the discussion of Section 2 indicates, this should prevent any open-minded economist
from unfalteringly declaring that DSGE models are the end point of research on economic policy.
Rather, we suggest that a more fruitful research avenue to pursue is to explore alternative theo-
retical paradigms, which can escape the strong theoretical requirements of the New Neoclassical
Synthesis (e.g., equilibrium, rationality, etc.). Among those alternative paradigms, one of the
most successful research project is the one known in the literature as agent-based computational
economics (ACE). In a nutshell, ACE is the computational study of economies thought as com-
plex evolving systems (Tesfatsion, 2006a). Bounded rationality, endogenous out-of-equilibrium
dynamics, direct interactions are some of the keywords defining this approach (see Section 3
for more details). Due to the extreme flexibility of the set of assumptions regarding agent be-
haviors and interactions, ACE models (often called agent-based models, ABMs) represent an
exceptional laboratory to perform policy exercises and policy design. Despite this approach is
still in its infancy (at least as compared to the neoclassical one), many policy applications have
been already devised and explored. Of course, also ACE models are affected by methodological
problems. The most important ones concern empirical validation, over-parametrization, estima-
tion and calibration. Nevertheless, the success of ACE models in delivering policy implications
while simultaneously explaining the observed stylized facts surely prompts for further research
in this field.

The rest of the paper is organized as follows. Section 2 surveys the approach to policy of the
New Neoclassical Synthesis, and it discusses its many theoretical and empirical difficulties. In
Section 3 we instead introduce the ACE paradigm and we briefly review some policy applications
in this field. Section 4 concludes by telegraphically accounting for some methodological issues
related to policy in ACE models and the ensuing research avenues that these problems open up.

3For a thorough discussion of the limits of the DGSE synthesis we refer the reader to Colander (2006b) and
articles therein.
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2 Policy in the Neoclassical Framework

Let us begin by presenting how policy analysis is usually carried out in a neoclassical framework.
More precisely, we restrict our attention to macroeconomics, in particular to short-run business
cycle models. Our choice is motivated by two reasons. First, in business cycle and monetary
economics there is now a wide consensus among neoclassical economists on the model and on
the methodology to employ to perform policy analysis exercises. Second, business cycle and
monetary economics are probably the fields of research where the neoclassical paradigm has
developed the most sophisticated and rigorous models and techniques to assess the impact of
different policies on the economic welfare of agents4. In the next sections, we first present the
neoclassical model and methodology. We then consider the major weaknesses and problems of
the neoclassical approach to perform policy analysis.

2.1 The Dynamic Stochastic General Equilibrium Model

The clash between the two competing business cycle theories – the Real Business Cycle (RBC)
perspective (see e.g. King and Rebelo, 1999) and the New Keynesian paradigm (cf. Mankiw and
Romer, 1991) – ended in the last decade with the development of a New Neoclassical Synthesis
(NNS)5. In a nutshell, the canonical model employed by the NNS paradigm is basically a RBC
dynamic stochastic general equilibrium (DSGE) model with monopolistic competition, nominal
imperfections and a monetary policy rule (see Woodford, 2003; Gaĺı and Gertler, 2007; Gaĺı,
2007, for a more detailed exposition of the NNS approach).

In line with the RBC tradition, the starting point of the new vintage models is a stochastic
version of the standard neoclassical growth model with variable labor supply: the economy is
populated by an infinitely-lived representative household, who maximizes its utility under an
intertemporal budget constraint, and by a large number of firms, whose homogenous production
technology is hit by exogenous shocks. The New Keynesian flavor of the model stems from
three ingredients: money, monopolistic competition and sticky prices. Money has usually only
the function of unit of account and its short-run non-neutrality is guaranteed by the nominal
rigidities introduced by sticky prices. As a consequence, the central bank can influence the real
economic activity in the short run by manipulating the interest rate. The RBC scaffold of the
model allows one to compute the “natural” level of output and of the real interest rate, that
is the equilibrium values of the two variables under perfectly flexible prices. The “natural”
output and interest rate constitute a benchmark for monetary policy: the central bank cannot
persistently push the output and the interest rate away from their “natural” values without
creating inflation or deflation. Note that the assumption of imperfect competition (and of other
real rigidities) implies that the “natural” level of output is not socially efficient.

Analytically, the NNS model can be represented by three equations6: the expectation-
4For example, neoclassical economics is still far from developing a common model where different policy issues

related to economic growth may be evaluated (an alternative view is discussed in Aghion and Howitt (2007)). For
these reasons we chose not to consider here long-run macro-economic issues.

5This term was first introduced by Goodfriend and King (1997). Woodford (2003) labeled the approach as
“Neo Wicksellian”. As stated by Gaĺı and Gertler (2007) the term “New Keynesian” is the most used, even if
earlier New Keynesian models were very different from the ones of the New Neoclassical Synthesis.

6For a formal derivation of the NNS model see Goodfriend and King (1997); Clarida, Gaĺı, and Gertler (1999);
Woodford (2003); Gaĺı (2007).
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augmented IS equation, the New Keynesian Phillips (NKP) curve, and a monetary policy rule.
The expectation-augmented IS equation constitutes the aggregate-demand building block of the
NNS model. Assuming perfect capital markets and taking a log-linear approximation around
the steady state, one can derive the IS equation from the goods market-clearing condition and
the Euler equation of the representative household:

ỹt = Etỹt+1 − σ(it − Etπt+1 − rn
t ), (1)

where ỹ is the output gap (i.e., the percentage gap between real output and its “natural” level),
σ is the intertemporal elasticity of substitution of consumption, i is the nominal interest rate, π

is inflation, rn is the “natural” interest rate and Et stands for the expectation operator taken
at time t. Note that in line with the traditional IS-LM model, the IS equation postulates a
negative relation between the output gap and the interest rate gap.

The aggregate-supply building block of the NNS model boils down to a New Keynesian
Phillips curve. Starting from the Dixit and Stiglitz (1977) model of monopolistic competition
and the Calvo (1983) model of staggered prices (with constant probability of price adjustment),
one gets that in any given period firms allowed to adjust prices fix them as a weighted average
of the current and expected future nominal marginal cost. The NKS curve can be obtained by
combining the log-linear approximation of the optimal price-setting choice, the price index and
the labor-market equilibrium:

πt = κỹt + βEtπt+1 + ut, (2)

where β is the subjective discount factor of the representative household and κ depends both on
the elasticity of marginal cost with respect to output and on the sensitivity of price adjustment
to marginal cost fluctuations (i.e., frequency of price adjustment and real rigidities induced by
price complementarities). The term u is usually considered a “cost-push shock”: it captures
the fact that the natural level of output may not coincide with the socially efficient one for the
presence of real imperfections such as monopolistic competition, labor market rigidities, etc. The
presence of u implies that inflation does not depend only on the presence of a positive output
gap, but also on other factors affecting firms’ real marginal costs (the output gap appears in
equation 2 because in the underlying model there is a positive relation between ỹ and the log
deviation of real marginal cost from its natural level).

The model just sketched leads to a system of two difference equations (cf. eqs. 1 and 2) and
three unknowns: the output gap, inflation, and the nominal interest rate. In order to solve the
system, one has to append a rule to determine the nominal interest rate. This is the role reserved
to monetary policy. The choice of a monetary policy rule is usually carried out adopting a welfare
criterion: taking a second-order Taylor series approximation of the utility of the representative
household, one can derive a welfare loss function for the central bank that is quadratic in inflation
and in deviations of output from its socially efficient level (see Rotemberg and Woodford, 1999;
Woodford, 2003). Even if optimal monetary policy rules could be in principle derived (see e.g.
Giannoni and Woodford, 2002a,b), the NNS model is often closed with “simple” rules such as
the Taylor (1993) rule (more on that in Section 2.2.3):

iτt = rn
t + φππt + φyỹt, (3)
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where iτ is the interest rate target of the central bank, φy > 0 and φπ > 1. Before performing
policy exercises with the model, one should assess its empirical performance and calibrate its
parameters.

When taken to the data (see e.g. Christiano, Eichenbaum, and Evans, 2005; Smets and
Wouters, 2003), canonical DSGE models like the one presented above are usually expanded to
account for investment dynamics. Moreover, different type of shocks are added to both the IS
equation, assuming for instance government spending and private consumption disturbances,
and the monetary policy rule. Finally, standard DSGE models have also to be modified because
they are too much forward-looking to match the econometric evidence on the co-movements
of nominal and real variables (e.g., impulse-response functions of output and inflation as to a
monetary policy shock). Hence, in order to reproduce the inertia and persistency found in real
data, the DSGE models are extended introducing a great deal of “frictions” – often not justified
on the theoretical ground – such as predetermined price and spending decisions, indexation of
prices and wages to past inflation, sticky wages, habit formation in preferences for consumption,
adjustment costs in investment, variable capital utilization, etc..

From an econometric perspective, the equations 1-3 of the DSGE model are naturally rep-
resented as a vector auto-regression (VAR) model. The estimation of the resulting econometric
model is usually carried out either with a limited information approach or by full-information
likelihood-based methods.

Limited information approach. The strategy of the limited information approach to estimate and
evaluate DSGE models is usually the following (e.g., Rotemberg and Woodford, 1999; Christiano,
Eichenbaum, and Evans, 2005):

1. Specify the monetary policy rule and the laws of motion for the shocks.

2. Split the parameters in two sets and calibrate the parameters in the first set providing
some theoretical or empirical justifications for the chosen values.

3. Fix the timing of the endogenous variables in order to allow the interest rate to respond
to contemporaneous output and inflation, while the latter variables are only affected by
lagged interest rate. Under this assumption one can estimate via OLS the coefficients of
the monetary policy rule and the impulse-response functions of the three variables to a
monetary policy shock.

4. Recover the second set of parameters by minimizing the distance between the model-
generated and empirical impulse-response functions.

5. Finally, given the structural parameter values and the VAR, identify the other structural
shocks by imposing, if necessary, additional restrictions.

The empirical performance of the model is then measured by comparing the impulse-response
functions generated by the model with the empirical ones.

Full information approach. The full information approach was initially discarded to estimate
DSGE models because maximum likelihood methods deliver implausible estimates. However,
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with the introduction of Bayesian techniques, the full information approach regained popularity
and it is now commonly employed (see e.g. Smets and Wouters, 2003). Bayesian estimation is
carried out according to the following steps:

1. Place some restrictions on the shocks in order to allow later identification.

2. Employ the Kalman filter to compute the likelihood function of the observed time series.

3. Form the prior distribution of the parameters by choosing their initial values through
calibration, preliminary exploratory exercises, and/or to get some desired statistical prop-
erties.

4. Combine the likelihood function with the prior distribution of the parameters to obtain
the posterior density, which is then used to compute parameter estimates.

One can then assess the empirical performance of the estimated DSGE model comparing its
marginal likelihood with the one of standard VAR models and the model-generated cross-
covariances vis-á-vis the empirical ones.

Once one has recovered the parameters of the model by estimation or calibration and has
identified the structural shocks, policy-analysis exercises can finally be carried out. More specifi-
cally, after having derived the welfare loss function, one can assess the performance of the subset
of “simple” policy rules that guarantee the existence of a determinate equilibrium or the more
appropriate parametrization within the class of optimal monetary policy rules. This can be
done via simulation, by buffeting the DSGE model with different structural shocks and com-
puting the resulting variance of inflation and the output gap and the associated welfare losses
of the different monetary policy rules and parameterizations employed (see e.g. Rotemberg and
Woodford, 1999; Gaĺı and Gertler, 2007). In practice, assuming that the DSGE model is the
“true” data generating process of the available time series, one is evaluating how the economy
portrayed by the model would react to the same structural shocks observed in the past if the
monetary policy followed by the central bank were different.

2.2 Policy with DSGE Models: A Safe Exercise?

DSGE models are plagued by at least three classes of problems which could potentially under-
mine the usefulness of performing policy-analysis exercises in such a framework. More specifi-
cally, DSGE models are subject to theoretical, empirical, and political-economy problems that
we shall discuss in the next sections.

2.2.1 Theoretical Issues

From a theoretical perspective, DSGE models are general equilibrium models (GE) rooted in the
Arrow-Debreu tradition with some minor non-Walrasian features (e.g., sticky prices). Hence,
they share with traditional GE models their same problems and weaknesses. Even if there is a
vast and widely-known literature within the neoclassical paradigm dealing with the theoretical
issues affecting GE models (see e.g. Kirman, 1989), we briefly recall what are the major problems
at hand.
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To begin with, sufficient conditions allowing for the existence of a general equilibrium do not
ensure neither its uniqueness nor its stability. In addition, the well-known results obtained by
Sonnenschein (1972), Debreu (1974) and Mantel (1974) show that one can never restrict agents’
characteristics (e.g., endowments, preferences, etc.) in such a way to attain uniqueness and
stability. What is more, Kirman and Koch (1986) show that even if agents are almost identical
(i.e., same preferences and almost identical endowments), uniqueness and stability cannot be
recovered.

In this framework, the strategy followed by neoclassical economists to get stable and unique
equilibria is to introduce a representative agent (RA). If the choices of heterogeneous agents
collapse to the ones of a representative individual, one can circumvent all the problems stem-
ming from aggregation and provide GE macroeconomic models with rigorous Walrasian micro-
foundations grounded on rationality and constrained optimization. However, the RA assump-
tion is far from being innocent: there are (at least) four reasons for which it cannot be defended
(Kirman, 1992). First, individual rationality does not imply aggregate rationality: one cannot
provide any formal justification to support the assumption that at the macro level agents be-
have as a maximizing individual. Second, even if one forgets the previous point and uses the
RA fiction to provide micro-foundations to macroeconomic models, one cannot safely perform
policy analyses with such models, because the reactions of the representative agent to shocks
or parameter changes may not coincide with the aggregate reactions of the represented agents.
Third, even if the first two problems are solved, there may be cases where given two situations
a and b, the representative agent prefers a, whereas all the represented individuals prefer b.

Finally, the RA assumption introduces additional difficulties at the empirical level, because
whenever one tests a proposition delivered by a RA model, one is also jointly testing the RA
hypothesis. Hence, the rejection of the latter hypothesis may show up in the rejection of the
model proposition that is being tested. This last point is well corroborated by the works of
Forni and Lippi (1997, 1999), who show that basic properties of linear dynamic micro-economic
models are not preserved by aggregation if agents are heterogeneous. To cite some examples,
micro-economic co-integration does not lead to macroeconomic co-integration, Granger-causality
may not appear at the micro level, but it may emerge at the macro level, aggregation of static
micro-equations may produce dynamic macro-equations. As a consequence, one can safely test
the macroeconomic implications of micro-economic theories only if careful and explicit modeling
of agents’ heterogeneity is carried out.

The fact that solving DSGE models leads to a system of difference equations may potentially
add another problem to those discussed above. More specifically, one has to check whether the
solution of the system of equilibrium conditions of a DSGE model exists and is determinate. If
the exogenous shocks and the fluctuations generated by the monetary policy rule are “small”,
and the “Taylor principle” holds (i.e., φπ > 1, see eq. 3), one can prove existence and local
determinacy of the rational expectation equilibrium of the DSGE model presented in Section 2.1
(Woodford, 2003)7. This result allows one to perform comparative-statics exercises in presence
of “small” shocks or parameter changes and to safely employ log-linear approximations around
the steady state. Unfortunately, the existence of a local determinate equilibrium does not rule

7Of course, also other monetary policy rules different from the Taylor rule (cf. eq. 3) can lead to a local
determinate rational-expectation equilibrium.
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out the possibility of multiple equilibria at the global level (see e.g. Schmitt-Grohé and Uribe,
2000; Benhabib, Schmitt-Grohé, and Uribe, 2001).

2.2.2 Empirical Issues

The second stream of problems is related to the empirical validation of DSGE models. As
remarked by Canova (2008), estimation and testing of DSGE models are performed assuming
that they represent the true data generating process (DGP) of the observed data. This implies
that the ensuing inference and policy experiments are valid only if the DSGE model mimics the
unknown DGP of the data.

As mentioned in Section 2.1, DSGE models can be represented as a VAR of the form:

A0(φ)xt = H1(φ)xt−1 + H2(φ)Et, (4)

where x are both endogenous and exogenous variables, φ is the vector of the parameters of the
model and E contains the errors. If the matrix A0 is invertible, one can obtain a reduced-form
VAR representation of the DSGE model.

Following Fukac and Pagan (2006), the econometric performance of DSGE models can be
assessed along the identification, estimation and evaluation dimensions. Before going in depth
with this type of analysis, two preliminary potential sources of problems must be discussed.
First, the number of endogenous variables contemplated by DSGE models is usually larger than
the number of structural shocks. This problem may lead to system singularity and it is typically
solved by adding measurement errors. Second, H1 and H2 are reduced rank matrixes. This
problem is circumvented by integrating variables out of the VAR (eq. 4) as long as H1 and H2

become invertible. This process leads to a VARMA representation of the DSGE model. This
is not an innocent transformation for two reasons: i) if the moving average component is not
invertible, the DSGE model cannot have a VAR representation; ii) even if the VAR representation
of the DSGE model exists, it may require an infinite number of lags (more on that in Fernandez-
Villaverde, Rubio-Ramirez, and Sargent, 2005; Ravenna, 2007; Alessi, Barigozzi, and Capasso,
2007).

Identification. Given the large number of non-linearities present in the structural parameters (θ),
DSGE models are hard to identify (Canova, 2008). This leads to a large number of identification
problems, which can affect the parameter space either at the local or at the global level. A
taxonomy of the most relevant identification problems can be found in Canova and Sala (2005)8.
To sum them up: i) different DSGE models with different economic and policy implications could
be observationally equivalent (i.e., they produce indistinguishable aggregate decision rules); ii)
some DSGE models may be plagued by under or partial identification of their parameters (i.e.,
some parameters are not present in the aggregate decision rules or are present with a peculiar
functional form); iii) some DSGE may be exposed to weak identification problems (i.e., the
mapping between the coefficients of the aggregate decision rules and the structural parameters
may be characterized by little curvature or by asymmetries), which could not even be solved by
increasing the sample size.

8See also Beyer and Farmer (2004).

9



Identification problems lead to biased estimates of some structural parameters and do not
allow to rightly evaluate the significance of the estimated parameters applying standard asymp-
totic theories. This opens a ridge between the real and the DSGE DGPs, depriving parame-
ter estimates of any economic meaning and making policy analysis exercises useless (Canova,
2008). In most of the cases, identification problems can only be mitigated by appropriately
re-parameterizing the model9.

Estimation. The identification problems discussed above partly affect the estimation of DGSE
models. DSGE models are very hard to estimate by standard maximum likelihood (ML) meth-
ods, because ML estimator delivers biased and inconsistent results if the system is not a satisfying
representation of the data. This turns out to be the case for DSGE models (see the evaluation
section) and it helps to explain why ML estimates usually attain absurd values with no economic
meaning and/or they are incompatible with a unique stable solution of the underlying DSGE
model.

A strategy commonly employed when the DSGE model is estimated following the limited-
information approach (cf. Section 2.1) consists in calibrating the parameters hard to identify
and then estimating the others. Given the identification problems listed above, Canova (2008)
argues that this strategy works only if the calibrated parameters are set to their “true” values.
If this is not the case, estimation does not deliver correct results that can be used to address
economic and policy questions (see also Canova and Sala, 2005).

As we mentioned in Section 2.1, Bayesian methods are now commonly employed to estimate
DSGE models. They apparently solve the problems of estimation (and identification) by adding
a (log) prior function to the (log) likelihood function in order to increase the curvature of the
latter and obtain a smoother function. However, this choice is not harmless: if the likelihood
function is flat – and thus conveys little information about the structural parameters – the
shape of the posterior distribution resembles the one of the prior, reducing estimation to a more
sophisticated calibration procedure carried out on an interval instead on a point (see Canova,
2008; Fukac and Pagan, 2006). Unfortunately, the likelihood functions produced by most DSGE
models are quite flat (see e.g. the exercises performed by Fukac and Pagan, 2006). In this case,
informal calibration is a more honest and internally consistent strategy to set up a model for
policy analysis experiments (Canova, 2008).

All the estimation problems described above stem also from the fact that DSGE models are
not conceived to simplify the estimation of their parameters (Canova, 2008). As a consequence
DSGE models put too much stress upon the data, using for instance more unobservable that
observable variables (Fukac and Pagan, 2006). This requires strong assumptions about the
variances in order to get identification and to employ Kalman filter to obtain the likelihood
function. The likelihood functions produced by the Kalman filter are correct only if observations
are Gaussian, but macroeconomic time series are typically not normally-distributed (Fagiolo,
Napoletano, and Roventini, 2007).

Evaluation. Evaluating DSGE models means assessing their capability to reproduce as many
empirical stylized facts as possible. For instance, following Fukac and Pagan (2006), one can

9Fukac and Pagan (2006) also argue that identification problems are usually partly mitigated by arbitrarily
assuming serially correlated shocks.
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check: i) whether variables with deterministic trend cotrend; ii) whether I(1) variables co-
integrate and the resulting co-integrating vectors are those predicted by the model; iii) the
consistency (with respect to data) of the dynamic responses (e.g., autocorrelation, bivariate
correlations); iv) the consistency of the covariance matrix of the reduced form errors with the
one found in the data; v) the discrepancies between the time series generated by the model and
real-world ones.

Fukac and Pagan (2006) perform such exercises on a popular DSGE model. First, they find
that co-trending behaviors cannot be assessed because data are demeaned (a practice commonly
followed by DSGE modelers). However, the computation of the technology growth rates com-
patible with the observed output growth rates shows that the possibility of technical regress
is very high. Second, there are no co-integrating vectors, because output is the only I(1) vari-
able. Third, the model is not able to successfully reproduce the mean, standard deviations,
autocorrelations, bivariate correlations observed in real data. In addition, the DSGE model
predicts the constancy of some “great” ratios (in line with the presence of a steady state of
the economy), but this is not confirmed by real data. Fourth, many off-diagonal correlations
implied by the covariance matrix of the errors are significantly different from zero, contradicting
the DSGE model assumption of uncorrelated shocks. Finally, the tracking performance of the
model depends heavily on the assumed high serial correlation of the shocks.

The results just described seem to support Favero (2007) in claiming that modern DSGE
models are exposed to the same criticisms advanced against the old-fashioned macroeconometric
models belonging to the Cowles Commission tradition: they pay too much attention to the
identification of the structural model (with all the problems described above) without testing the
potential misspecification of the underlying statistical model (see also Johansen, 2006; Juselius
and Franchi, 2007)10. In DSGE models, “restrictions are made fuzzy by imposing a distribution
on them and then the relevant question becomes what is the amount of uncertainty that we
have to add to model based restrictions in order to make them compatible not with the data
but with a model-derived unrestricted VAR representation of the data” (Favero, 2007, p. 29).
There are many signals of the potential misspecification of the statistical model delivered by
DSGE models: the presence of many persistent shocks, the fact that theory-free VAR models of
monetary policy need to include additional variables such as commodity price index to match the
data, the absurd estimates produced by standard maximum likelihood estimation, etc. (Fukac
and Pagan, 2006; Favero, 2007). If the statistical model is misspecified, policy analysis exercises
loose significance, because they are carried out in a “virtual” world whose DGP is different from
the one underlying observed time-series data.

2.2.3 Political-Economy Issues

Given the theoretical problems and the puny empirical performance of DSGE models, one cannot
accept the principles of the positive economics approach summarized by the “as if” argument of

10On the contrary, the LSE-Copenhagen school follows a macroeconometric modeling philosophy orthogonal
to the one followed by DSGE modelers. Scholars of the LSE-Copenhagen approach have concentrated their efforts
on improving the statistical model in order to structure data with an identified co-integrated VAR that could
then be used to produce stylized facts for theoretical models (Johansen and Juselius, 2006; Juselius and Franchi,
2007).
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Milton Friedman (1953). The assumptions of DSGE models can no longer be defended invoking
arguments such as parsimonious modeling or matching the data. This opens a Pandora’s box,
forcing us to consider how policy-analysis exercises performed with DSGE models are influenced
and constrained by the legion of underlying assumptions.

DSGE models presume a very peculiar and un-realistic framework, where agents endowed
with rational expectations take rational decisions by solving dynamic programming problems.
This implies that: i) agents perfectly know the model of the economy; ii) agents are able to
understand and solve every problem they face without making any mistakes; iii) agents know
that all other agents behave according to the first two points. In practice, agents are endowed
with a sort of “olympic” rationality and have free access to the whole information set. Moreover,
the implicit presence of a Walrasian auctioneer, which sets prices before exchanges take place,
coupled with the representative-agent assumption, rule out almost by definition the possibility of
interactions carried out by heterogeneous individuals. Besides being responsible for the problems
analyzed in Sections 2.2.1 and 2.2.2, these assumptions strongly reduce the realism of DSGE
models. This is not a minor issue when one has to perform policy analyses (on this point cf. also
Colander, 2006a, p. 5). For instance, if agents have imperfect knowledge about the economy,
assuming rational expectations instead of adaptive ones (with or without some form of learning)
may lead central banks to pursue monetary policies that could destabilize the economy (Howitt,
2006).

More generally, within the Neoclassical-DSGE paradigm there is a sort of internal contradic-
tion. On the one hand, strong assumptions such as rational expectations, perfect information,
complete financial markets are introduced ex-ante to provide a rigorous and formal mathematical
treatment of the problems and to allow for policy recommendations. On the other hand, many
imperfections (e.g., sticky prices, rule-of-thumb consumers) are introduced ex-post without any
theoretical justification only to allow DSGE model to match the data11. Adopting less strin-
gent assumptions may contribute to jointly solve many empirical puzzles without introducing
an army of ad-hoc imperfections.

There are a couple of other internal inconsistencies which could potentially undermine the
reliability of the policy prescriptions developed following the DSGE approach. The first one is
related to the role of money. DSGE models are specifically designed to perform monetary policy
analyses, but money is almost never explicitly modeled. This choice is usually justified by: i)
assuming that money is not an asset and it has only the function of unit of account (cf. Section
2.1); ii) introducing money in the utility function of consumers with the caveat that transactions
requiring money are sufficiently unimportant, and arguing that for “reasonable” calibrations,
the enriched model delivers almost the same results of the standard DSGE model presented in
Section 2.1 (Woodford, 2003, chapter 2). Of course, the unimportance of transactions requiring
money, the calibration reasonability and the quantitative discrepancies between standard and
money-augmented DSGE models is debatable and subject to the judgement of policymakers.

The second potential inconsistency concerns how business cycles arise in the DSGE frame-
work. DSGE models con be employed to assess the impact of different monetary policies because
they are genuine business cycle models. However, the theory of business cycles embedded in

11Citing a very provocative sentence of a famous evolutionary economist, this way of theorizing is like claiming
that biology stems from thermodynamics equilibrium with some imperfections.
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DSGE models is exogenous: the economy rests in the steady state unless it is hit by a stream
of exogenous stochastic shocks. As a consequence, DSGE models do not explain business cy-
cles, preferring instead to generate them with a sort of deus-ex-machina mechanism. This could
explain why DSGE models are not able to match many business cycle stylized facts or have to
assume serially correlated shocks to produce fluctuations resembling the ones observed in reality
(cf. Zarnowitz, 1985, 1997; Cogley and Nason, 1993; Fukac and Pagan, 2006). How policymakers
can assess the impact of countercyclical policies in models not explaining business cycles is an
open issue.

Moving to the normative side, one supposed advantage of the DSGE approach is the possi-
bility to derive optimal policy rules. However, policymakers adopting optimal policy rules face
certain costs – the strict assumptions at the root of DSGE models – but uncertain benefits. As
argued by Gaĺı (2007), optimal monetary policy rules cannot be used in practice, because they
require the knowledge of the “true” model of the economy, the exact value of every parameter,
and the real time value of every shocks. Moreover, Brock et al. (2007) show that when the
“true” model of the economy and the appropriate loss function are not know, rule-of-thumb
policy rules may perform better than optimal policy rules.

2.3 Any Ways Out?

Given the theoretical and empirical problems of DSGE models discussed above, the positive
economics approach advocated by Milton Friedman would suggest to remove or change the
plethora of underlying assumptions in order to improve the performance of the model.

This recommendation is reinforced by two related observations. First, the assumptions
underlying DSGE models become a sort of strait jacket that preclude the model to be flexible
enough to allow for generalizations and extensions. Second, the un-realism of these assumptions
prevent policymakers to fully trust the policy prescriptions developed with DSGE models.

It is far from clear why within the mainstream DSGE paradigm there is a widespread con-
servative attitude with no significative attempts to substitute the “Holy Trinity” assumptions
of rationality, greed and equilibrium (Colander, 2005) with more realistic ones. For instance,
Akerlof (2007) argues that a broader definition of agents’ preferences which take into account
the presence of realistic norms can violate many neutrality results of neoclassical economics
without recurring to imperfections. Moreover, introducing heterogeneous agents or substituting
the rationality assumption with insights coming from behavioral economics could substantially
change the working of DSGE models, “making monetary policy more of a science” (Mishkin,
2007).

In any case, if neoclassical economists truly enlist themselves among those advocating an
instrumentalist approach to scientific research, they should agree that when models display
estimation and validation (descriptive) problems such as those exhibited by DSGE ones, the
only way out would be to modify the models’ assumptions. A fortiori, this should be the
recommendation that an instrumentalist researcher would provide if, in addition, the model, as
happens in the DSGE case, would also display problems on the normative side.

This is exactly the research avenue that a growing number of scholars have been pursuing
in the last two decades. Dissatisfied with standard macroeconomic, micro-founded, general-
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equilibrium-based neoclassical models like those discussed above, they have begun to devise an
entirely new paradigm labeled as “Agent-Based Computational Economics” (ACE)12. The basic
exercise ACE tries to perform is building models based on more realistic assumptions as far
as agent behaviors and interactions are concerned, where more realistic here means rooted in
empirical and experimental micro-economic evidence. For example, following the body of evi-
dence provided by cognitive psychologists (see for example, among a vast literature, Kahneman
and Tversky, 2000), the assumptions of perfect rationality and foresight are replaced with those
of bounded rationality and adaptive behavior. More generally, ACE scholars share the view
that agents in the model should have “the same information as do the economists modeling the
economy” (Colander, 2006a, p. 11). Similarly, insights from network theory (e.g., Albert and
Barabasi, 2002) and social interactions (e.g., Brock and Durlauf, 2001) suggest to move away
from the unrealistic and oversimplifying assumptions concerning agents interactions typically
employed in neoclassical models and allow for direct, non-trivial interaction patterns. Finally,
the widespread evidence on persistent heterogeneity and turbulence characterizing markets and
economies indicate to abandon crazy simplifications such as the representative agent assumption,
as well as the presumption that economic systems are (and must be observed) in equilibrium,
and to focus instead on out-of-equilibrium dynamics endogenously fueled by the interactions
among heterogenous agents.

In other words, ACE can be defined as the computational study of economies thought as
complex evolving systems (Tesfatsion, 2006a). Notice that neoclassical economics, on the con-
trary, typically deals with economies conceived as simple, linear, homogeneous and stationary
worlds. It should not come as a surprise that the class of models used by ACE to explore the
properties of markets, industries and economies (called agent-based models, ABMs) are far more
complicated – and harder to analyze – objects than their neoclassical counterparts. In the fol-
lowing Section we will therefore begin by outlying the basic building blocks of ABMs. Next, we
will address the question how ABMs can be employed to deliver normative implications. Then,
we will briefly review some examples of policy exercises in ABMs. Some final remarks about
pro and cons of using ABMs for policy analysis will be left for the concluding section.

3 Agent-Based Models and Economic Policy

3.1 Building Blocks of ABMs

The last two decades have seen a rapid growth of agent-based modeling in economics. An
exhaustive survey of this vast literature is of course beyond the scope of this work13. However,
before proceeding, it is useful to introduce the main ten ingredients that tend to characterize
economics AB models.

12The philosophical underpinnings of ACE largely overlap with those of similar, complementary, approaches
known in the literature as “Post Walrasian Macroeconomics” (Colander, 2006b) and “Evolutionary Economics”
(Nelson and Winter, 1982; Dosi and Nelson, 1994). The overlap is often so strong that one might safely speak
of an emerging “heterodox synthesis”. Historically, the first attempt to develop agent-based economics can be
traced back to Marshall (Leijonhufvud, 2006).

13This and the following subsections heavily draw from Pyka and Fagiolo (2007) and Fagiolo, Moneta, and
Windrum (2007). For further details see, among others, Dosi and Egidi (1991), Dosi, Marengo, and Fagiolo
(2005), Lane and Maxfield (2004), Tesfatsion and Judd (2006), Colander (2006a) and Tesfatsion (2006b).
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1. A bottom-up perspective. A satisfactory account of a decentralized economy is to be ad-
dressed using a bottom-up perspective. In other words, aggregate properties must be
obtained as the macro outcome of a possibly unconstrained micro dynamics going on at
the level basic entities (agents). This contrasts with the top-down nature of traditional
neoclassical models, where the bottom level typically comprises a representative individ-
ual and is constrained by strong consistency requirements associated with equilibrium and
hyper-rationality.

2. Heterogeneity. Agents are (or might be) heterogeneous in almost all their characteristics.

3. The evolving complex system (ECS) approach. Agents live in complex systems that evolve
through time. Therefore, aggregate properties are thought to emerge out of repeated inter-
actions among simple entities, rather than from the consistency requirements of rationality
and equilibrium imposed by the modeler.

4. Non-linearity. The interactions that occur in AB models are inherently non-linear. Addi-
tionally, non-linear feedback loops exist between micro and macro levels.

5. Direct (endogenous) interactions. Agents interact directly. The decisions undertaken today
by an agent directly depend, through adaptive expectations, on the past choices made by
other agents in the population.

6. Bounded rationality. The environment in which real-world economic agents live is too
complex for hyper-rationality to be a viable simplifying assumption. It is suggested that
one can, at most, impute to agents some local and partial (both in time and space) prin-
ciples of rationality (e.g., myopic optimization rules). More generally, agents are assumed
to behave as boundedly rational entities with adaptive expectations.

7. The nature of learning. Agents in AB models engage in the open-ended search of dynami-
cally changing environments. This is due to both the ongoing introduction of novelty and
the generation of new patterns of behavior; but also on the complexity of the interactions
between heterogeneous agents (see point 5 above).

8. “True” dynamics. Partly as a consequence of adaptive expectations (i.e., agents observe
the past and form expectations about the future on the basis of the past), AB models
are characterized by true, non-reversible, dynamics: the state of the system evolves in a
path-dependent manner14.

9. Endogenous and persistent novelty. Socio-economic systems are inherently non-stationary.
There is the ongoing introduction of novelty in economic systems and the generation of
new patterns of behavior, which are themselves a force for learning and adaptation. Hence,
agents face “true (Knightian) uncertainty” (Knight, 1921) and are only able to partially
form expectations on, for instance, technological outcomes.

14This has to be contrasted with the neoclassical approach, where agents hold rational expectations and, as
Mehrling (2006, p. 76) puts it, ”the future, or rather our ideas about the future, determines the present”.
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10. Selection-based market mechanisms. Agents typically undergo a selection mechanism. For
example, the goods and services produced by competing firms are selected by consumers.
The selection criteria that are used may themselves be complex and span a number of
dimensions.

3.2 The Basic Structure of ABMs

Models based on (all or a subset of) the ten main ingredients discussed above typically possess
the following structure. There is a population – or a set of populations – of agents (e.g.,
consumers, firms, etc.), possibly hierarchically organized, whose size may change or not in time.
The evolution of the system is observed in discrete time steps, t = 1, 2, . . . . Time steps may
be days, quarters, years, etc.. At each t, every agent i is characterized by a finite number of
micro-economic variables xi,t (which may change across time) and by a vector of micro-economic
parameters θi (that are fixed in the time horizon under study). In turn, the economy may be
characterized by some macroeconomic (fixed) parameters Θ.

Given some initial conditions xi,0 and a choice for micro and macro parameters, at each
time step t > 0, one or more agents are chosen to update their micro-economic variables. This
may happen randomly or can be triggered by the state of the system itself. Agents selected
to perform the updating stage collect their available information about the current and past
state (i.e., micro-economic variables) of a subset of other agents, typically those they directly
interact with. They plug their knowledge about their local environment, as well as the (limited)
information they can gather about the state of the whole economy, into heuristics, routines, and
other algorithmic, not necessarily optimizing, behavioral rules. These rules, as well as interaction
patterns, are designed so as to mimic empirical and experimental knowledge that the researcher
may have collected from his/her preliminary studies.

After the updating round has taken place, a new set of micro-economic variables is fed
into the economy for the next-step iteration: aggregate variables Xt are computed by simply
summing up or averaging individual characteristics. Once again, the definitions of aggregate
variables closely follow those of statistical aggregates (i.e., GDP, unemployment, etc.).

The stochastic components possibly present in decision rules, expectations, and interac-
tions will in turn imply that the dynamics of micro and macro variables can be described by
some (Markovian) stochastic processes parameterized by micro- and macro-parameters. Hov-
erer, non-linearities which are typically present in decision rules and interactions make it hard
to analytically derive laws of motion, kernel distributions, time-t probability distributions, etc.
for the stochastic processes governing the evolution of micro and macro variables.

This suggests that the researcher must often resort to computer simulations in order to
analyze the behavior of the ABM at hand. Notice that in some simple cases such systems allow
for analytical solutions of some kind. Needless to say, the more one injects into the model
assumptions sharing the philosophy of the building blocks discussed above (cf. Section 3.1),
the less tractable turns out to be the model, and the more one needs to resort to computer
simulations. Simulations must be intended here in a truly constructive way, e.g. to build and
“grow” a society “from the bottom up”, in the spirit of object-oriented programming.
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Figure 1: A schematic procedure for studying the output of an AB model

3.3 Descriptive Analysis of ABMs

When studying the outcomes of ABMs, the researcher often faces the problem that the economy
he/she is modeling is by definition out-of-equilibrium. The focus is seldom on static equilibria or
steady-state paths. Rather, the researcher must more often look for long-run statistical equilibria
and/or emergent properties of aggregate dynamics (that is, transient statistical features that
last suffficiently long to be observed and considered stable as compared to the time horizon of
the model; see Lane, 1993a,b, for an introduction). Such an exploration is by definition very
complicated and it is made even more difficult by the fact that the researcher does not even
know in advance whether the stochastic process described by its ABM is ergodic or not and, if
it somehow converges, how much time will take for the behavior to become sufficiently stable.

Suppose for a moment that the modeler knows (e.g., from a preliminary simulation study or
from some ex-ante knowledge coming from the particular structure of the ABM under study)
that the dynamic behavior of the system becomes sufficiently stable after some time horizon
T ∗ for (almost all) points of the parameter space. Then a possible procedure that can be
implemented to study the output of the ABM runs as the one synthetically depicted in Figure
1.

Given some choice for initial conditions, micro and macro parameters, assume to run our
system until it relaxes to some stable behavior (i.e., for at least T > T ∗ time steps). Suppose
we are interested in a set S = {s1, s2, . . . } of statistics to be computed on micro and macro
simulated variables. For any given run the program will output a value for each statistic. Given
the stochastic nature of the process, each run will output a different value for the statistics.
Therefore, after having produced M independent runs, one has a distribution for each statistic
containing M observations, which can be summarized by computing its moments.
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Recall, however, that moments will depend on the choice made for initial conditions and
parameters. By exploring a sufficiently large number of points in the space where initial condi-
tions and parameters are allowed to vary, computing the moments of the statistics of interest
at each point, and by assessing how moments do depend on parameters, one might get a quite
deep descriptive knowledge of the behavior of the system (see Figure 1).

3.4 Model Selection and Empirical Validation

From the foregoing discussion it clearly emerges that in agent-based modeling (as in many other
modeling endeavors) one often faces a trade-off between descriptive accuracy and explanatory
power of the model. The more one tries to inject into the model “realist” assumptions, the
more the system becomes complicated to study and the less clear the causal relations going
from assumptions to implications are. ABM researchers are well aware of this problem and have
been trying to develop strategies to guide the process of assumption selection. For example, one
can try to solve the trade-off between descriptive capability and explanatory power either by
beginning with the most simple model and complicate it step-by-step (i.e., the so-called KISS
strategy, an acronym standing for “Keep It Simple, Stupid!”) or by starting with the most
descriptive model and simplify it as much as possible (i.e., the so-called KIDS strategy, “Keep It
Descriptive, Stupid!”). A third, alternative strategy prescribes instead to start with an existing
model and successively complicate it with incremental additions (this strategy might be labeled
TAPAS, which stands for “Take A Previous model and Add Something”).

In all these procedures, the extent to which the ABM is able to empirically replicate existing
reality should play a crucial role in discriminating the point at which any procedure should
stop15.

Notice that the very structure of ABMs naturally allows one to take the model to the data
and validate it against observed real-world observations. Indeed, an ABM can be thought to
provide a family of DGPs, which we think real-world observations being a realization of. More
precisely, let us suppose that we believe that observed data are generated by an unknown (to
us) colossal DGP, with an almost infinite number of parameters, which we can label as real-
world DGP (rwDGP). Suppose further that such rwDGP can be broken in reasonable smaller
weakly-exogenous components, each one with a reasonable number of parameters, and each one
describing a small set of variables that we are interested in, on the basis of a small set of other
variables. Building an ABM means attempting to approximate one of those small rwDGPs.
Due to its stochastic structure, an ABM actually mimics the small rwDGP we are studying by
a theoretical DGP that generates the same variables each time we run the model. Of course, we
only have one observation generated by the rwDGP, and this makes any inference very difficult
(but this has to do with another story, which philosophers call the problem of induction. . . ).

Many approaches to empirical validation (and selection) of ABMs can be in principle taken,
and the debate is very open here. For example, one might select among ABMs (and within dif-
ferent parameter setups of the same ABM) with respect to the number of stylized facts each of
them is able jointly to replicate. A typical procedure to be followed starts with asking whether a

15For a more in-depth discussion of empirical validation in ABMs, we refer the reader to Fagiolo, Birchenhall,
and Windrum (2007) and papers therein.
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particular model can simultaneously reproduce some set of stylized facts for a given parametriza-
tion (a sort of “exercise in plausibility”); then explore what happens when the parameter setup
changes; finally, investigate if some meaningful causal explanation can be derived out of that
step-by-step analysis. Alternatively, one can first select among parameters by calibrating the
model (e.g., by directly estimate parameters, when possible, with micro or macro data) and then
judge to which extent the calibrated model is able to reproduce the stylized facts of interest.
Notice that, unlike economists supporting the NNS approach — who hold strong theoretical
priors rooted in the DSGE model — ACE scholars are more interested in developing plausible
theories, which however are not dogmatically deemed to be the“correct” ones (on this point, see
also Colander, 2006a).

No matter the empirical validation procedure actually employed, its basic goal is often to
restrict the size of the set of free parameters. In fact, over-parameterized models are difficult
to interpret and analyze, because no one knows whether the same conclusions could have been
obtained in a simpler, less parameterized model. Even if empirical validation allows one to
restrict the set of free parameters to a reasonably-sized one, many methodological problems still
remain when the model is used to perform policy experiments. If any parametrization represents
an alternative world, which one should be employed to assess policy performance? What is the
role of initial conditions? We shall briefly go back to these issues in the concluding remarks.

3.5 Policy Experiments in ABMs: Some Considerations

ABMs configure themselves as a very powerful device to address policy questions in more real-
istic, flexible and modular frameworks. Indeed, as far as economic policy is concerned, ABMs
have many advantages as compared to neoclassical tools as the DSGE model, which we organize
in what follows into two classes: theory and empirics.

Theory. ABMs, contrary to neoclassical ones, do not impose any strong theoretical consistency
requirements (e.g., equilibrium, representative individual assumptions, rational expectations).
This is because they are not required ex-ante to be analytically solvable. Such no-strait-jacket
condition allows for an extremely higher flexibility in model building. If this is coupled with a
serious empirical-validation requirement (see below), we are in presence of a semi-instrumentalist
approach, where bad (but empirically-plausible) assumptions can be replaced with better (and
empirically-plausible) ones if the model does not perform as expected. Notice also that in ab-
sence of strong consistency conditions, assumptions can be replaced in a modular way, without
impairing the analysis of the model. Indeed, in standard neoclassical models one cannot simply
replace the optimization assumption with another one just because the model does not behave
well, as that would possibly destroy its analytical solvability. This is not so in ABMs: assump-
tions – or simply small elements of them – can be taken out of the shelf and easily implemented
in the model thanks to the flexibility of computer programming languages.

Empirics. As discussed above, ABMs can be thought as generators of alternative worlds, i.e.
theoretical DGPs that approximate the unknown one. Contrary to neoclassical models, the
structure of ABMs allows more easily to take them to the data. This can be done in two ways.
First, one can validate the inputs of ABMs, i.e. fine-tune modeling assumptions about individual
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behaviors and interactions to make them more similar to the observed ones. Second, one can
validate the model on the output side, by e.g. restricting the space of parameters, individual
behaviors and interactions, and initial conditions to those that allow the model to replicate the
stylized facts of interest. This allows for a degree of realism that is much higher than that
exhibited by e.g. DSGE models. Furthermore, thanks to the theoretical flexibility discussed
above, the set of stylized facts that one can target can include more than one piece of evidence,
as instead happens in neoclassical models. In other words, each neoclassical model is typically
build – in order to retain analytical solvability – to explain one or two single stylized facts (see
the discussion in Aoki, 2006, for more details). On the contrary, each ABM can easily explain
a great deal of pieces of empirical evidence.

But how can one actually conduct policy experiments in ABMs? In a very natural way,
indeed. Take again the procedure for ABM descriptive analysis outlined in Figure 1. Recall
that micro and macro parameters can be designed in such a way to mimic real-world key policy
variables like tax rates, subsidies, interest rates, money, etc. and other key behavioral measures
affecting individual incentives in growth, innovation or technologically-related policies. More-
over, initial conditions might play the role of initial endowments and therefore describe different
distributional setups. In addition, interaction and behavioral rules employed by economic agents
can be easily devised so as to represent alternative institutional, market or industry setup. Since
all these elements can be freely interchanged, one can investigate a huge number of alternative
policy experiments and rules, the consequences of which can be assessed either qualitatively or
quantitatively (e.g., by running standard statistical tests on the distributions of the statistics
in S). For example, one might statistically test whether the effect on the moments of the indi-
vidual consumption distribution (average, etc.) will be changed (and if so by how much) by a
percentage change in any given consumption tax rate. Most importantly, all this might be done
while preserving the ability of the model to replicate existing stylized facts, e.g. some time-series
properties of observed aggregate variables (e.g., persistence of output growth-rate fluctuations)
or some relation existing between them (e.g., Phillips curve).

3.6 Policy in ABMs: A Telegraphic Survey

The extreme flexibility of ACE modeling has recently motivated researchers to extensively use
these approach to address economic policy experiments16. A general trend that can be observed
is that political decision makers seems more and more willing to believe in findings based on
rather detailed simulation models (such as ABMs), where they see a lot of the economic structure
they are familiar with17, rather than in general insights obtained in quite abstract mathematical
models (like the DSGE model).

The number of ABM models that have been recently addressing policy issues is becoming so
large that it would be impossible to survey them in a single paper section. We shall therefore
outline in a telegraphic way the main fields where these exercises have been performed and

16See for example the papers contained in the special issue “Agent-Based Models for Economic Policy Design”
edited by Dawid and Fagiolo (2008).

17Moss (2002) discusses the importance of involving the actual decision makers in the process of the generation
of agent-based models for policy evaluation.
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briefly discuss some specific examples.

Industrial policy and market design. ABMs offer a unique possibility for evaluating from a
comparative perspective alternative policies and institutional changes in rather specific models of
particular economic environments, such as particular markets and/or industries, specific auction
types, etc.. Indeed, the modeler can tailor his/her ABM so as to precisely mimic a particular
instance of the system he/she is interested in, by designing individual behaviors, interaction
rules, institutional and technological setups so as to match its empirical or anecdotic knowledge.
Examples include detailed models of the U.S. coffee market (Midgley, Marks, and Cooper, 1997)
or the pharmaceutical industry (Malerba and Orsenigo, 2002). Along similar lines, Malerba et
al. (2008) extend their previous work on “history-friendly” modeling of the evolution of the
computer and the semiconductor industry and use the developed simulation model to study
the effect of different types of policies (e.g., anti-trust policies, entry-support policies or public
procurement on the evolution of industry concentration and the rate of technological change).
The emergence of different types of bidding behavior in different market environments is instead
the main topic of Duffy and Unver (2008). They simulate the behavior of bidders in two
types of auctions – hard or soft close auctions – that differ with respect to the rule governing
when the auction is closed. The model is able to reproduce the stylized facts observed in
real-world internet auctions and, in addition, offers interesting insights into the features of the
bidding functions responsible for the resulting payoffs. The implications for market design
are therefore very important18. Sun and Tesfatsion (2007) focus instead on the very exciting
and promising area of market design. They report on the development and implementation
of an ABM framework (called AMES) for testing the dynamic efficiency and reliability of the
Wholesale Power Market Platform (WPMP, i.e. a market design proposed by the U.S. Federal
Energy Regulatory Commission for common adoption by all U.S. wholesale power markets). As
stated by the authors, AMES “models strategic traders interacting over time in a wholesale
power market that is organized in accordance with core WPMP features and that operates over
a realistically rendered transmission grid”. The usefulness of the AMES framework is illustrated
in the paper by presenting a simple static five-node transmission grid test case. AMES provides
an exemplar in its detailed specification and the use of open source software that opens up the
door for replication and detailed verification by the ABM community.

Fiscal Policy. The assessment of the impact of labor market policies at both the aggregate
and individual levels is addressed in Neugart (2008), who develops a multi-sector agent-based
model where firms belonging to different sectors require workers with different skills. Using his
ABM, Neugart shows that government-financed training measures increase the outflow rate from
unemployment, but reduce the outflow rate for those who do not receive subsidies. Therefore,
although at the aggregate level the unemployment rate decreases, at the individual level this
labor market policy may harm workers who do not receive government transfers19. Mannaro,
Marchesi, and Setzu (2008) look instead to financial markets and develop an ABM populated

18Ruperez-Micola, Banal-Estanol, and Bunn (2008) consider a stylized model of the value chain in electricity
markets and study the problem of the emergence of vertical market power.

19Happe et al. (2008) assess the effect of a regime switch in the way agricultural subsidies are paid on changes
in farm structure, prices and farm profits.
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by behaviorally-heterogeneous traders with limited resources. They challenge the idea that a
Tobin tax is able to stabilize foreign exchange and stock markets, and to reduce speculation.
Their simulations show that Tobin-like taxes may actually increase volatility and decrease trad-
ing volumes20. Russo et al. (2007) develop an ABM where transactions on the good and
labor markets take place through bilateral bargaining occurring between heterogenous firms and
consumers/workers. Besides reproducing many micro and macro regularities (e.g., sustained
growth and fluctuations, Beveridge, Phillips and Okun curves, etc.), they use the model as a
computational laboratory and find that aggregate output is non-monotonically linked to the
level of tax rate levied on corporate profits if revenues are employed to finance R&D investment,
whereas output is negatively affected if the money collected through taxes is used to provide
unemployment benefits.

Growth policy. Dosi, Fagiolo, and Roventini (2008) study a broad set of normative issues re-
garding the impact of alternative technological and knowledge scenarios on the rates of growth,
innovation and imitation of a given country. To do so, they build upon their previous model
of endogenous growth and business cycles (Dosi, Fagiolo, and Roventini, 2006) and develop a
broader, modular, agent-based framework21. They show that this broader model is even able
to robustly replicate a higher number of stylized facts than its “ancestor” concerning macroeco-
nomic dynamics (e.g., cross-correlations, relative volatilities) as well as micro-economic dynamics
(e.g., firm size distributions, firm productivity dynamics, firm investment patterns). Further-
more, they define different technological scenarios (e.g., exogenous or endogenous technology
frontier, imitation). Finally, they study the long-term impact of a range of different policies
considering long-run GDP growth rates, GDP growth-rate volatility and unemployment. Their
results show that: (i) patents appear to be detrimental to growth and to increase unemployment;
(ii) imitation spurs GDP growth especially in the endogenous technology frontier scenario; (iii)
increasing the expected productivity of entrant firms raise GDP long-run growth in the endoge-
nous technology frontier scenario; and (iv) Keynesian demand macro-management policies are
a necessary condition for robust GDP growth and reduce business cycle fluctuations. More gen-
erally, the results of Dosi, Fagiolo, and Roventini (2008) point to an existing complementarity
between Keynesian policies affecting demand and Schumpeterian policies affecting innovation22.

Social interactions. Given the importance of direct interaction in ABMs, many authors have
explored the impact of alternative network structures and dynamics upon aggregate outcomes.
For example, Carayol, Roux, and Yildizoglu (2008) study how properties of networks that emerge
due to uncoordinated individual link formation decisions compare to those of efficient networks.
Based on their insights policies might be designed with the goal to foster the emergence of
efficient networks. Wilhite and Allen (2008) explore the impact of several anti-crime policies

20Chen and Chie (2008) address the classical question of determining the tax revenue maximizing tax rate in
the framework of lottery markets and explain the puzzle why lottery tax rates vary substantially between different
countries and lotteries.

21In a nutshell, the model describes an economy composed of firms and consumers/workers. Firms belong to
two industries. Firms in the first industry perform R&D and produce heterogeneous machine tools. Firms in
the second industry invest in new machines and produce a homogenous consumption good. Consumers sell their
labor and consume their income.

22Dawid et al. (2008) study the impact of policies enhancing workers’ skills on economic growth and the
performance of the labor market.
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dynamically undertaken in societies composed of heterogenous interacting agents. The model is
able to explain several real-world patterns concerning the emergence and distribution of crime,
and the intertemporal behavior of criminals. For example, larger cities are shown to develop
higher crime rates because larger populations increase the incentives to free-ride on public goods.
Furthermore, despite crime decreases with protection spending, the impact of prison turn out
to be ambiguous, as a higher rate of imprisonment may lead to more crime in the long run.

4 Concluding Remarks

The recent debate on the scientific status of economic policy has prompted some authors to
conclude that the New Neoclassical Synthesis, armed with its sophisticated modeling tools, is
the ultimate and unsurpassable scientific achievement that we can hope for. In this paper, we
have tried to argue that the recent relative success of economic policies actually implemented
by central banks and other policymakers is not due to the power and sophistication of the
underlying theoretical modeling techniques, but rather to a mix of art and experience. Indeed,
as discussed in Section 2, DSGE-based models suffer from a series of dramatic problems and
difficulties concerning their inner logic consistency, the way they are taken to the data, the extent
to which they are able to replicate existing reality, and the realism of their assumptions. These
problems are likely to impair any policy exercise that can be devised within their realm. We
have also argued that such difficulties are so hard to solve within the neoclassical paradigm that
a different research avenue, which attempts to replace the basic pillars of neoclassical economics
(rationality, equilibrium, etc.), would be more fruitful.

This alternative paradigm does actually exist and it is called agent-based computational
economics (ACE). Section 3 has been devoted to a (necessarily) brief discussion of its philosoph-
ical underpinnings, building blocks and policy applications. As our synthetic survey shows, the
number of areas where ACE policy experiments have been already applied with success is rather
vast and rapidly increasing. The discussion of Section 3 has also outlined the most prominent
values added deriving from performing policy experiments within an ACE approach. These
include ACE’s extreme modeling flexibility; the friendly relation of agent-based models with
empirical data; the easiness of carrying out empirical-validation exercises; the almost infinite
possibility of experimentation; and, last but not least, the positive impact that a more realistic
and algorithmically-structured model can have on political decision makers – as compared to
obscure and un-intuitive mathematical neoclassical models.

Of course, as happens for the New Neoclassical Synthesis, many issues are still far from being
settled and the debate is very open. Here, by a way of conclusion, we recall just three of them.

The first issue – which we can label as the problem of over-parametrization – has to do
with the role played by micro and macro parameters in ABMs. As mentioned, ABMs are
often over-parameterized, for one typically injects in the specification of agents’ behavioral rules
and interaction patterns many ingredients in order to meet as much as possible what he/she
observes in reality. Suppose for simplicity that initial conditions do not matter. Even if empirical
validation can provide a way to reduce free parameters, the researchers are almost always left
with an ABM whose behavior depends on many free parameters. Many questions naturally
arise. How can one interpret these different parameterizations? Which one should be used if one
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employs the model to deliver policy implications? Should one perfectly calibrate (if possible)
the model using the data so that no free parameters are left? Should policy implications be
robust to alternative parameterizations instead? Notice that this issue is closely related to a
common critique that ABMs usually face: if an ABM contains many free parameters and it
is able to reproduce a given set of stylized facts, how can one be sure that it represents the
minimal mechanisms capable of reproducing the same set of stylized facts? This point reminds
the “unconditional objects” critique in Brock (1999) and it is certainly true for “oversized”
ABMs. In practice, however, ACE researchers are well aware of the problem and always try to
simplify as much as possible their model by using empirical validation techniques and a KISS
or TAPAS approach. Even if it is very difficult to show that a given ABM is the minimal model
describing a set of stylized facts, the more stylized facts a model can reproduce, the more one is
able to restrict the class of theoretical mechanisms that can do the job.

The second issue concerns the role played by initial conditions. Recall that (if random
ingredients are present in the model) any ABM can be considered as an artificial (stochastic)
data generation process (mDGP) with which we try to approximate the one that generated
the data that we observe (i.e., the rwDGP). The question is: is the rwDGP ergodic or not?
If the underlying real-world rwDGP is thought to be non-ergodic (as well as the theoretical
mDGP described in the AB model), then initial conditions matter. This raises a whole host of
problems for the modeler. The modeler needs to identify the “true” set of initial conditions in
the empirical data, generated by the rwDGP, in order to correctly set the initial parameters of
the model. Even if the “perfect database” would exist, this is a very difficult task. How far in
the past does one need to go in order to identify the correct set of initial values for the relevant
micro and macro variables? There is a possibility of infinite regress. If this is the case, then one
may need data stretching back a very long time, possibly before data started to be collected.

This issue is closely related to a third (and final) one, regarding the relation between simu-
lated and real-world data. While in principle we could generate as many theoretical observations
as we like, in practice we may only have a few of such empirical realizations (possibly only one!).
If we believe that the empirical observations come from an underlying DGP that could have
been “played twice” (i.e., could have generated alternative observations, other than the one we
have) the problem of comparing simulated with empirical data becomes very complicated.

It must be said that all three issues above are the subject of never-ending debates among
philosophers of science, since they raise fundamental questions related to probability, modeling,
inference, etc. (see, e.g., Fagiolo, Moneta, and Windrum, 2007). As such, they might (and do)
affect any stochastic, dynamic (economic) model, DSGE-based ones included. Nevertheless, the
large majority of those advocating the New Neoclassical Synthesis approach seems not to care
about them. In our view, the fact that they instead occupy center stage in the current ACE
debate is another signal of the vitality of this young but promising paradigm.
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Clarida, R., J. Gaĺı and M. Gertler (1999), “The Science of Monetary Policy: A New Keynesian Perspective”,
Journal of Economic Literature, 37: 1661–1707.

Cogley, T. and J. M. Nason (1993), “Impulse Dynamics and Propagation Mechanisms in a Real Business Cycle
Model”, Economic Letters, 43: 77–81.

Colander, D. (2005), “The Future of Economics: the Appropriately Educated in Pursuit of the Knowable”,
Cambridge Journal of Economics, 29: 927–941.

Colander, D. (2006a), “Introduction”, in Colander, D. (ed.), Post Walrasian Macroeconomics. Cambridge, Cam-
bridge University Press.

Colander, D. (ed.) (2006b), Post Walrasian Macroeconomics. Cambridge, Cambridge University Press.

Colander, D. (2006c), “Post Walrasian Macroeconomics: Some Historic Links”, in Colander, D. (ed.), Post
Walrasian Macroeconomics. Cambridge, Cambridge University Press.

Dawid, H. and G. Fagiolo (eds.) (2008), Special Issue on “Agent-Based Models for Economic Policy Design”. In
Journal of Economic Behavior and Organization, forthcoming.

Dawid, H., S. Gemkow, P. Harting, K. Kabus and K. Neugart, M.and Wersching (2008), “Skills, Innovation, and
Growth: An Agent-Based Policy Analysis”, Working paper, Bielefeld University.

Debreu, G. (1974), “Excess Demand Function”, Journal of Mathematical Economics, 1: 15–23.

25



Dixit, A. and J. Stiglitz (1977), “Monopolistic Competition and Optimum Product Diversity”, American Economic
Review, 67: 297–308.

Dosi, G. and M. Egidi (1991), “Substantive and Procedural Uncertainty: An Exploration of Economic Behaviours
in Changing Environments”, Journal of Evolutionary Economics, 1: 145–68.

Dosi, G., G. Fagiolo and A. Roventini (2006), “An Evolutionary Model of Endogenous Business Cycles”, Compu-
tational Economics, 27: 3–34.

Dosi, G., G. Fagiolo and A. Roventini (2008), “Patterns of Innovation and the Political Economy of Growth. An
Exploration of Different Policy Regimes”, Working paper, Laboratory of Economics and Management (LEM),
forthcoming.

Dosi, G., L. Marengo and G. Fagiolo (2005), “Learning in Evolutionary Environment”, in Dopfer, K. (ed.),
Evolutionary Principles of Economics. Cambridge, Cambridge University Press.

Dosi, G. and R. Nelson (1994), “An Introduction to Evolutionary Theories in Economics”, Journal of Evolutionary
Economics, 4: 153–72.

Duffy, J. and M. Unver (2008), “Internet Auctions with Artificial Adaptive Agents: A Study on Market Design”,
Journal of Economic Behavior and Organization, Special Issue on “Agent-Based Models for Economic Policy
Design”, edited by Dawid, H. and Fagiolo, G., forthcoming.

Fagiolo, G., C. Birchenhall and P. Windrum (eds.) (2007), Special Issue on “Empirical Validation in Agent-Based
Models”. In Computational Economics, Volume No. 30, Issue No. 3.

Fagiolo, G., A. Moneta and P. Windrum (2007), “A Critical Guide to Empirical Validation of Agent-Based Models
in Economics: Methodologies, Procedures, and Open Problems”, Computational Economics, 30: 195–226.

Fagiolo, G., M. Napoletano and A. Roventini (2007), “Are Output Growth-Rate Distributions Fat-Tailed? Some
Evidence from OECD Countries”, Journal of Applied Econometrics, forthcoming.

Favero, C. (2007), “Model Evaluation in Macroeconometrics: From Early Empirical Macroeconomic Models to
DSGE Models”, Working Paper 327, IGIER, Bocconi University, Milan, Italy.

Fernandez-Villaverde, J., J. F. Rubio-Ramirez and T. Sargent (2005), “A, B, C’s, (and D’s) for Understanding
VARs”, Technical Working Paper 308, NBER.

Forni, M. and M. Lippi (1997), Aggregation and the Microfoundations of Dynamic Macroeconomics. Oxford,
Oxford University Press.

Forni, M. and M. Lippi (1999), “Aggregation of Linear Dynamic Microeconomic Models”, Journal of Mathematical
Economics, 31: 131–158.

Friedman, M. (1953), “The Methodology of Positive Economics”, in Friedman, M. (ed.), Essays in Positive
Economics. Chicago, University of Chicago Press.

Fukac, M. and A. Pagan (2006), “Issues in Adopting DSGE Models for Use in the Policy Process”, Working Paper
10/2006, CAMA.

Fukuyama, F. (1992), The End of History and the Last Man. London, Penguin.
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Schmitt-Grohé, S. and M. Uribe (2000), “Price Level Determinacy and Monetary Policy under a Balanced-Budget
Requirement”, Journal of Monetary Economics, 45: 211–246.

Smets, F. and R. Wouters (2003), “An Estimated Dynamic Stochastic General Equilibrium Model of the Euro
Area”, Journal of the European Economic Association, 1: 1123–1175.

Sonnenschein, H. (1972), “Market Excess Demand Functions”, Econometrica, 40: 549–556.

Summers, L. (1991), “The Scientific Illusion in Empirical Macroeconomics”, Scandinavian Journal of Economics,
93(2): 129–148.

Sun, J. and L. Tesfatsion (2007), “Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-
Based Framework”, Computational Economics, 30.

Taylor, J. (1993), “Discretion versus Policy Rules in Practice”, Carnegie-Rochester Series on Public Policy, 39:
195–214.

Taylor, J. (2007), “The Explanatory Power of Monetary Policy Rules”, Working Paper 13685, NBER.

Tesfatsion, L. (2006a), “ACE: A Constructive Approach to Economic Theory”, in Tesfatsion, L. and K. Judd
(eds.), Handbook of Computational Economics II: Agent-Based Computational Economics. North Holland, Am-
sterdam.

Tesfatsion, L. (2006b), “Agent-Based Computational Modeling and Macroeconomics”, in Colander, D. (ed.), Post
Walrasian Macroeconomics. Cambridge, Cambridge University Press.

Tesfatsion, L. and K. Judd (eds.) (2006), Handbook of Computational Economics II: Agent-Based Computational
Economics. North Holland, Amsterdam.

Wilhite, A. and W. Allen (2008), “Crime, Protection, and Incarceration”, Journal of Economic Behavior and
Organization, Special Issue on “Agent-Based Models for Economic Policy Design”, edited by Dawid, H. and
Fagiolo, G., forthcoming.

Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton, NJ, Princeton
University Press.

Zarnowitz, V. (1985), “Recent Works on Business Cycles in Historical Perspectives: A Review of Theories and
Evidence”, Journal of Economic Literature, 23: 523–80.

Zarnowitz, V. (1997), “Business Cycles Observed and Assessed: Why and How They Matter”, Working Paper
6230, NBER.

28


