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Abstract

The study of firms’ default has attracted wide interest among both practitioners
and scholars. However, attention has often been limited to a relatively small set of
financial variables. In this work, we try to increase the scope of analysis extending the
investigation to other possible determinants of default. In particular, we rely on credit
ratings to summarize firms’ financial conditions, and we address the potential predictive
power of a set of economic dimensions – size, growth, profitability and productivity
– which industrial economics suggest to be meaningful determinants of survival. We
present novel results based on a large Italian dataset reporting credit ratings for all
the firms in the sample. As far as financial conditions and default are concerned, we
find that the firms displaying the worst credit ratings are quite turbulent, but also
exhibit non-negligible chances to recover. Moreover, the analysis of the distribution of
firms’ economic performance reveals that profitability stands up as the only relevant
economic variable telling apart defaulting firms from ‘surviving’ ones, at different time
distance to default. Finally, probit and logit estimation of default probabilities, testing
for the simultaneous effect of economic and financial dimensions, suggest that growth,
in addition to credit ratings, significantly affects the likelihood of default, albeit in a
positive (and as such unexpected) way in the manufacturing industry.

JEL codes: C14, C25, D20, G30, L11

Keywords: Default probability, Credit ratings, Firm growth dynamics, selec-
tion

∗The authors gratefully acknowledge the financial support for this research by Unicredit-Banca d’Impresa
and the precious help received by the members of the Research Office “Pianificazione, Strategie e Studi” at
Unicredit itself. Support from ”Common Complex Collective Phenomena in Statistical Mechanics, Society,
Economics, and Biology (CO3)” (EU Contract no. 012410, FP6) is gratefully acknowledged.

†Corresponding author: LEM, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, 56127, Pisa,
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1 Introduction

Credit rating agencies have been playing an increasingly important role in debt and financial
markets market, publishing credit ranking especially for large bonds’ issuers. Ratings are
employed both by private and institutional investors to get a concise picture of the financial
soundness of the covered firms. As such, ratings play a relevant role under many respects,
likely affecting the cost and the extent of access to credit of firms, and also contributing
to shape firms’ financial structure (Sengupta, 1998). More recently, banks are even more
concerned with ratings, and credit risk in general, due to the need to cope with the capital-
risk requirements of Basel II Accord (Altman and Sabato, 2005). As a result, a large body of
academic literature has flourished within financial economics relating firms’ default probability
to financial indicators and credit rating. Drawing from the classical works by Beaver (1966)
and Altman (1968), particular attention has been devoted to bankruptcy prediction based
on financial variables such as leverage, liquidity or financial ratios, while much of the present
effort is directed to estimation of credit migration matrices (see Crouhy et al. (2000), Jafry
and Schuermann (2004), Schuermann (2007)).

In this paper, exploiting a confidential information on credit ratings and default events
occuring in a large panel of Italian firms, we present an analysis of firm default taking a
twofold perspective.

First, we exploit the informative content of credit ratings as a synthetic measure of firms’
financial soundness. Whereas rating agencies typically produce their rankings for medium-
big and listed firms, we instead have access to a database reporting credit ratings for all the
included firms, irrespective of their size and of their being publicly-traded or not. Our study
therefore offers an unprecedented - for breadth - account of the overall financial soundness of
a broadly defined (Italian) ‘economic system’.

Second, the fundamental contribution pursued in this article is an attempt to bridge two
stream of research which have typically proceeded without interacting much, especially from
an empirical viewpoint. On the one hand, the aforementioned financial studies, bankruptcy
prediction in particular, are mainly concerned with relating firms’ default with financial indi-
cators and credit ratings, and only rarely consider non-financial factors. On the other hand,
the large body of research – both theoretical and applied – conducted in the domain of indus-
trial economics tend to pose the attention on economic, rather than financial determinants of
firm dynamics, eventually stressing those factors which more closely relate with the ultimate
economic activity of the firms, producing goods or services.

One is however aware that financial and economic conditions alone cannot offer but a
partial account of firms’ performance. It is indeed unquestioned that the financial stability
as well as the probability to stay in the market are at least closely intertwined with, if not
resulting from, firms’ ability to perform well along the economic dimension of its operation.
Despite these are commonly accepted considerations, the attempts to address the simultaneous
effect of economic and financial performance on default probability are typically left aside
(Grunert et al. (2005) is maybe a first exception).

From the theoretical side, although various and competing views are coexisting, most of
the modern conceptualizations of firm dynamics share a common tenet whereby it is the
action of some sort of selection mechanism, operating on the economic characteristics of
heterogeneous firms, which ultimately determines firms’ exit or, alternatively, growth and
survival on the market. In Jovanovic (1982)’s model, selection operates on heterogeneous
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efficiency/productivity levels and through a process of passive learning by doing which en-
ables firms to uncover their specific level of efficiency, randomly assigned to them from the
beginning and assumed constant along the discovery process. Over time, those firms who
realize to be efficient enough survive and grow, whereas the others exit. In Ericson and Pakes
(1995), instead, the dynamics are driven by the active efforts of the firms themselves, who
are allowed to ‘choose’ their own efficiency level through R&D investments. Then, selection
operates on the resulting level of relative profitability which, in turn, is affected by the un-
certainty inherently characterizing the exploration of different technological opportunities. In
both the models, however, the decision to exit is conceived as an equilibrium solution for
rational, profit maximizing firms. The models presented in Nelson and Winter (1982) and, to
some extent, the whole stream of evolutionary flavored research (see Winter, 1971; Nelson and
Winter, 1982; Dosi and Nelson, 1994; Metcalfe, 1998; Dosi, 2000; Bottazzi and Secchi, 2006)
start from completely different premises. In this tradition, growth and exit events continu-
ously occur in the course of a dynamic disequilibrium process where firm choose a satisfying,
rather than an optimal, efficiency level. The latter, in turn, depends on asymmetries in the
distribution of the basic building blocks of firm idiosyncratic characteristics (knowledge, ca-
pabilities, routines) and, similarly to Ericson and Pakes (1995), on the firms’ effort to perform
innovative (or imitative) activity. Then, competition forces create a powerful market selection
mechanism whose complex interplay with efficiency and uncertainty of innovation determines
an associated level of (satisfying) profitability and, ultimately, the relative balance between
exit and growth. Whatever the specific model one might discuss, the implications in terms of
the suggested key determinants of firm dynamics are rather similar: efficiency, profitability,
size and growth are the key ingredients, all positively affecting the likelihood of success and
survival in the market.

From the empirical side, size and growth, together with age, have been those variables re-
ceiving greatest attention by the studies investigating the dynamics of entry/exit and survival.
The findings usually agree with the theory that they positively correlate with the probabil-
ity of persisting in the market (see, among the many examples, the evidence reported in
Evans, 1987; Hall, 1987; Dunne et al., 1988; Geroski, 1995; Agarwal, 1997; Sutton, 1997; and
Caves, 1998). The same has been repeatedly documented also with respect to technological
characteristics, either measured in terms of innovative inputs such as R&D (Hall, 1987; and
Doms et al., 1995) or proxied via innovative output, such as patents (Cefis and Marsili, 2005).
Remarkably, less work has been done to test for the existence of the selection mechanism
itself, through a direct exploration of the relationship between survival, on the one hand, and
efficiency or profitability, on the other, possibly under the implicit assumption, corroborated
by theory but untested, that these variables are highly correlated with the other relevant
economic characteristics.

For that matters in the context of our analysis, the message one can draw is that, at
a rather general level, the likelihood of default is expected to be lower for firms displaying
relatively sounder economic performance. Within such a perspective, we identify four basic
relevant economic dimensions - size, growth, profitability and productivity - and relate them
with a rather peculiar form of exit from the market, that is a declaration of default, and pose
two interrelated research questions. One concerns the heterogeneities possibly existing both
within and across defaulting vis a vis continuing firms. Relatedly, one wants to investigate the
intertemporal patterns experienced by the two groups along the various economic dimensions
considered. To take a fresh look on these issues, we will adopt a non parametric approach to
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estimate the empirical distribution of size, growth, profitability and productivity, and compare
their characteristics during the transition to default for the two groups of firms.

What is more, the availability of credit ratings allows to shed light on more than the mere
interaction between economic and financial dimensions. It also allows to provide novel evi-
dence on the extent to which credit rationing types of mechanisms interact with the predicted
effect of economic variables on survival. Indeed, starting from the seminal work of Fazzari et
al. (1988), the empirical studies concerned with the identification of liquidity constraints in
investment and growth dynamics have pervasively relied on cash flow as a proxy for capital
markets imperfections (for reviews, see Hubbard, 1998; Fagiolo and Luzzi, 2006; and Whited,
2006). There are however reasons to suggest that liquidity may not be a good indicator for
that kind of mechanisms (Kaplan and Zingales, 1997 and 2000). Eventually, it is a measure
of the ability to generate ready to spend, merely internal resources, whereas capturing the
existence of non-neutralities in the workings of financial markets would require to measure if
external resources are rationed to certain types of firms. Credit ratings, embodying a fore-
cast of firms’ ability to pay back loans, represent a much more direct indicator of investors’
(banks) propensity to bet on each firm, thereby offering a more reliable picture of heterogenous
chances to access credit, in different amounts and at different costs. Noticeably, some peculiar
characteristics of the credit ratings included in our dataset makes this attempt particularly
promising.

The work is organized as follows. In Section 2 we present a short description of the
dataset. Section 3 focuses on default and credit rating transition probabilities. Then, Section 4
investigates the interplay between economic variables and default. A formal (probit and logit)
model estimating the impact of both economic and financial variables on default probability
is presented in Section 5, while in Section 6 we sum up the results and suggest some possible
interpretations.

2 Data sources and sample selection

The data come from the Centrale dei Bilanci (CeBi) database. Together with the information
collected by the Italian national statistical office (ISTAT), this database represents the most
detailed source of firm level information on Italy. This fact is due to the peculiar nature and
history of CeBi. Nowadays a private company involved in services for financial analysis, it was
instituted in 1983 by the Bank of Italy as a public agency with the assigned task of providing
financial analyses to support the Bank of Italy itself within its activity of supervision of the
banking system. It is in this perspective that CeBi is engaged in data collection, harmonization
and cleaning since its foundation, in close relationship with leading Italian commercial banks.

Starting from the early 80’s, the database contains the time series of balance sheets data of
all the Italian limited liability firms, since these are the entities which face a legal obligation
to make their annual accounting publicly available at the Chambers of Commerce. Initial
reliability checks are performed by CeBi, and only balance sheets complying with the principles
laid down by the IV EEC directive are considered reliable enough to enter the dataset. As
a result, included firms operates in all the sector of activity and, contrary to what it often
happens with other firm level panels (not only Italian ones) there are no thresholds imposed
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on firm size, in terms of number of employees. As such, the dataset is rich and detailed, and
seems particularly suitable for the analysis of both large and small-medium sized firms.

Thanks to a collaboration between the Research Office “Strategie e Studi” of Unicredit
Bank Group and the Laboratory of Economics and Management at Scuola Superiore Sant’Anna,
we had access to a sub-sample of the CeBi database which covers about 50.000 firms operat-
ing in between 1996 and 2003. The way we have obtained the data is particularly important,
since it contributed to shape some limitations of the analysis, but also opened up unique op-
portunities to exploit novel pieces of information which were never explored before by other
studies making use of the same dataset.

On the one hand, the major limitation lies in the fact that we only have access to a subset
of variables, rather than to the entire accounting book. Available items are: Total Sales
(TS), Value Added (VA), Gross Operating Margins (GOM), Number of Employees (L), Gross
Tangible Assets (K), Return on Investment (ROI), Leverage (Total Debt over Shareholders’
Equity), Interest Expenses (IE), and the Debt over Revenues ratio. We sometimes had to face
some problems in terms of freedom to choose the theoretically best proxy for the economic
phenomenon one is willing to study. Still, the list is sufficiently rich and enabled us to check
the results across some alternative way of capturing most of the dimensions considered in this
work, such as size, efficiency, profitability, financial structure, and so on and so forth.

On the other hand, the collaboration with Unicredit Group is responsible for the two
mostly remarkable features of our data, those which ultimately allow us to link the economic
and the financial side of firms’ structure and operation.

First, we have been provided with a dummy variable telling whether a group of firms,
which were Unicredit customers during the period under analysis, incurred default at the end
of the sample time window, in either 2003 or 2004. These firms (henceforth defaulting firms)
were 155 in Manufacturing and 104 in Service, respectively. Second, Unicredit specific rights
to access the database gave us the chance to exploit the credit ratings produced by CeBi.1

Technically, this is an index issued once per year and allowed to change over time. The firms
present in the database result ranked with a score ranging from 1 to 9, in increasing order of
financial fragility: 1 is attributed to highly solvable firms, while 9 identifies firms displaying a
serious risk of default. Table 1 reports the definitions given by CeBi itself to the the 9 classes.
The actual methodology employed in computing the index has not been disclosed to us, as
it is proprietary of CeBi. Though, it provides the same informative content of credit ratings
issued by internationally well known agencies such as Moody’s or Standard and Poor’s. A
large body of literature on credit rating engineering suggests that this kind of rankings should
include many aspects characterizing the financial side of firms operations, including variables
such as liquidity, leverage, debt structure and the associated maturity, and so on and so forth.
CeBi ratings therefore convey a concise picture of the current financial conditions of a firm as
well as a forecast of future sustainability.

There are however some specific characteristics which make the CeBi index particularly
interesting as compared to ratings produced by international agencies. A remarkable feature
is that the rating is assigned to each firm, rather than to single debt issues, justifying an
interpretation as a proxy for firms’ overall ability to meet debt positions on due time. In

1These informations, as well as the rest of the dataset, was provided to us thanks to a collaboration with
the Research Office “Pianificazione, Strategie e Studi” of Unicredit Group, a large Italian bank. They are
strictly confidential and have been provided under the mandatory condition of censorship of any individual
information.
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Number of firms

Class Rating Definition 1998 2000 2002

L
ow

1 high reliability 1114 1396 1531

2 reliability 1293 1602 1664
3 ample solvency 1483 1698 1671

M
id

4 solvency 4170 4549 4310
5 vulnerability 2360 2621 2405
6 high vulnerability 1969 2016 2083
7 risk 2249 2691 2311

H
ig
h 8 high risk 350 433 457

9 extremely high risk 93 121 130
Total 15081 17127 16562

Table 1: Number of firms, total and by rating classes in 1998, 2000 and 2002 - Manufacturing.

addition to that, and more interestingly, the index seems a particularly reliable measure of
actual (Italian) banks’ propensity to invest in each firm, to be exploited as a measure of
access to external financing. Indeed, due to the role played by CeBi as an institutional actor,
the index has been for long a confidential information only available to the Bank of Italy
and to the Italian banking system. One can therefore reasonably claim that (Italian) banks
have a long experience in using CeBi credit ratings as a synthetic indicator, or at least as a
benchmark, when deciding to open credit lines up. Finally, a third difference with respect to
other ratings is that the latter usually apply to firms listed on the stock exchange. The CeBi
index, on the contrary, is assigned to all the business firms present in the database, which
might be either listed or not, with no particular limitations in terms of their size, sector of
activity, and so on and so forth.

The cleaning procedures implemented in order to obtain an homogeneous dataset follow
two strategies. On the one hand, we noted that the the first two years of the sample recorded
a substantially lower number of non-missing observations, for reasons out of our control. We
prefer working with similar sample sizes for the different years under analysis and, accordingly,
we limit the study to the period 1998-2003. On the other hand, even if the raw data do not
impose any threshold on the size of the firms considered, we tried to identify business units
characterized by a minimum level of organizational structure and operation. We therefore
discarded all those firms with only one employee, and all those reporting less than one million
of euro of Total Sales in each year.

The specific cut imposed on the number of employees is chosen on the basis of prelimi-
nary investigations conducted on the properties of the original database. Indeed, explorative
exercises conducted by Bottazzi et al. (2006) and Bottazzi et al. (2008) on the very same
dataset has revealed that firms with one employee and firms with more than one employee
fall into two categories representative of two different worlds, characterized by different prop-
erties which, from a statistical point of view, it would be safer to analyse separately. The
economic rationale is simply that firms with only one employee capture all the phenomena
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connected to self-employment, a quite peculiar universe of economic activities/organizations,
which we want to ignore here. The threshold imposed on annual revenues works along the
same direction of working with “true firms”, but it is also motivated by informal evidence
emerged during discussions with Unicredit, suggesting that a threshold of one million of euro
on Total Sales was a reasonable proxy for average Unicredit customers’ size. This way we try
to accomplish the specific need of enhancing comparability between the overall sample and
the sub-sample of defaulting firms.

At the end of the day, we are left with around 15000 firms active in Manufacturing and
10000 operating in the Services, depending on the year. Table 1 shows, by way of example, the
precise number of Manufacturing firms in three different years of the sample period, divided
by CeBi rating classes.2 The small number of defaults observed in the data prevents as simply
unfeasible any attempt to look at finer levels of sectoral aggregation.

3 Transition to default and financial performance

In general, one would tend to argue that a positive relationship should be in place between
sound financial records, on the one hand, and probability of survival, on the other: the lower
the cost of debt, the more balanced the financial structure, for instance, and the lower the
likelihood to incur default. Relatedly, it seems reasonable that time plays a role, as it is likely
that an event as extreme as complete financial distress does not occur suddenly. Rather, one
would expect to observe a deterioration of financial conditions, and therefore of the ratings,
somewhere before.

In this section we exactly focus on such kind of dynamics, exploring the way in which
overall financial conditions of firms, as summarized by their credit ratings, behave during
the transition to default. One main point will be to understand how fast such a process
occurs, and how well it is anticipated by the ratings. To do so, we first present descriptive
evidence following how credit ratings of defaulting firms evolve over time. Then, we estimate
the transition probabilities of moving across different rating classes or ending up defaulting.
Comparative exercises will be run distinguishing firms active in Manufacturing and firms
active in Service, allowing for a (minimum) control for possible industry specific differences.

A necessary first step concerns to understand where defaulting firms stand in terms of
credit rating in the years before default. In Figure 1 we take a picture of the distribution
of defaulting firms into the 9 rating classes as it appears in 1998 and 2002, that is at the
beginning of the sample period and in the very proximity of the default event, respectively.

Though simple, the exercise is quite informative about the length of the time horizon
bringing firms to default. Indeed, look at Manufacturing, for instance, and compare the
values computed for each class over time. In 2002, the number of firms is increasing with the
rating, i.e. it is higher for badly rated firms, but not as much as one would expect to observe
at a so short time distance to complete distress. Indeed most of the firms lies in between class
4 (solvency) and class 7 (risky), while only few experience severe financial troubles and fall
into category 8 (high risk) and 9 (extremely high risk), those classes where one imagine to
find the majority of defaulting firms, given that the default occurs just 1 to 2 years later. In

2In the CeBi database firms are classified in terms of the Ateco industrial classification, which is the stan-
dard adopted by the Italian statistical office, and substantially corresponding to the ISIC Rev 3.1 taxonomy.
Codes 15-36 define the Manufacturing industry, whereas codes 50-74 identify the Service sector.
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Figure 1: Number of Defaulting Firms in 1998 and 2002, by rating class - Manufacturing (left) and
Service (right).

1998, 5 to 6 years before default, the credit ratings are slightly better, but the overall situation
does not differ much: classes from 1 to 5 are more crowded than in 2002, but most of the
firms still fall in between classes 4 and class 7, and none of them is receiving a 9. Looking at
Services yields quite the same conclusion: credit ratings do deteriorate as the default event
approaches, but jumps from solvency to default are not much less frequent than jumps from
very bad financial conditions to complete distress.

A second interesting issue regards a comparison between defaulting firms and the rest of
the sample. In Figure 2 we look again at defaulting firms broken down by rating classes in
1998 and 2002, but we now show their percentage over the overall number of firms (defaulting
plus non-defaulting) active in each class in the same years. The picture emerging here is
much more similar to the story one would guess a priori, that is to observe (i) an increasing
percentage of defaulting firms when moving from class 1 to class 9, in each year; and (ii) an
increasing relevance of the worst rating classes, as the time of default approaches. Consistently
with such conjectures, we find that, in both sectors, the percentage of defaulting firms is much
higher in classes from 6 (or 7) to 9 than in the other categories, and a clear rightward shift of
mass does appear over time.

To improve the statistical reliance of the exercises performed so far, we estimate the
transition probabilities of observing firms moving across the different rating classes, and from
each of them into default. For ease of presentation of the results, we assign the firms included
in the sample to three classes only, which we name Low Risk (with CeBi rating 1-3), Mid Risk
(rated 4-7) and High Risk (rated 8-9). Notice that the term ’Risk’ is just a shortcut for ’risk of
default’ and should not mislead the reader towards interpretations in terms of other definitions
of risk which are more conventional to mean-variance frameworks of financial economics, such
as, for instance, variability of prices, growth rates or stock returns. Rather, the particular
grouping employed in this work is only intended to gather firms with similar financial profiles
according to their original rating.3

Table 2 shows the “long-medium run” (5 to 6 years) transition matrix for Manufacturing.

3Following Bottazzi et al. (2006) and Bottazzi et al. (2008) we check robustness of results with respect to
including class 7 into the High Risk category, since this is suggested to have lower discriminatory power as
compared to the other classes. Yet, findings were never significantly affected.
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Figure 2: Percentage of Defaulting Firms in 1998 and 2002, by rating class - Manufacturing (left)
and Service (right).

2003

Low Mid High Default

1
9
9
8 Low 0.6969 0.2974 0.0048 0.0009

Mid 0.1327 0.8247 0.0330 0.0096
High 0.0909 0.6970 0.1991 0.0130

Table 2: Long-medium run transition to default - Manufacturing.

On the main diagonal one can read the estimated probability that a firm belonging to a
specific rating class in 1998 ends up into the same class at the end of the sample period,
whereas off-diagonal values capture the frequency of jumping from one class to another one,
or to default. So, for instance, the first row tells that a firm classified as Low Risk at the
beginning of the period has a probability of around 0.7 of remaining Low Risk five years later,
an approximate 0.3 probability of becoming a Mid Risk firm, and negligible probabilities of
either moving into the High Risk group or defaulting. Mid Risk firms, on the second row,
display an even more stable pattern. The estimated probability of remaining in the same class
is around 0.8, while they display an approximate 0.13 probability of improving their initial
financial conditions and ending up into the Low Risk class, but a probability of only 0.03 and
0.01 to either move into the High Risk group or to default, respectively. However, the most
interesting result emerge for those firms which were classified as High Risk in 1998. Indeed,
we obtain that with a probability of around 0.7 and 0.09 they become Mid Risk and Low Risk
firms, respectively, whereas the probability of either remaining High Risk or incurring default
is much lower, 0.2 and 0.01 respectively. As a result, the estimated probability of recovering
from a risky situation of bad financial conditions is much higher than the estimated probability
of either remaining in the same bad situation or defaulting.

Even more surprisingly it is the fact that we face a quite similar result also when we look
at the estimates of the “short run” (1 to 2 years) transition matrix, reported in Table 3. Given
the quite short time span between the initial and the final instant of time considered, one
would expect to observe a high degree of stability, with very few jumps across rating classes.
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2003

Low Mid High Default

2
0
0
2 Low 0.8219 0.1768 0.0013 0.0000

Mid 0.0567 0.9064 0.0291 0.0078
High 0.0064 0.4957 0.4742 0.0236

Table 3: Short run transition to default - Manufacturing.

2003

Low Mid High Default

1
9
9
8 Low 0.7017 0.2847 0.0121 0.0014

Mid 0.1589 0.7972 0.0381 0.0057
High 0.1144 0.6617 0.2139 0.0100

Table 4: Long-medium run transition to default - Service.

Moreover, it would be hard to imagine bad firms to recover in only one or two years: our
ex-ante conjecture is that, if jumps happened to occur for the High Risk firms, they should
lead to default. Though, the results only partially meet our hypotheses. On the one hand,
the probabilities on the main diagonal are all higher than they were for the long-medium
run transition: not surprisingly, the probability of changing rating class is lower than what
observe above. On the other hand, however, we still observe that, exactly as before, High
Risk firms display a probability of switching to better financial conditions which is not much
different (roughly 0.5) than that of either remaining in the same group or defaulting.

Note however that such a turbulence does not prevent to identify a clearcut and expected
result about the relationship between financial conditions and default probabilities. The
estimates reported in the last column of the two matrices indeed reveal that a precise mapping
characterizes the data, with the probability of default decreasing as the quality of the initial
financial conditions increases: default is more likely for High Risk firms than for the other
two groups, then Mid Risk firms come second, and Low Risk firms are those least likely
to incur complete distress. Such a ranking shows up in both the matrices, but a closer
comparison between them reveals that the time distance to default does anyway play a role.
Indeed, while the default probabilities estimated for Low Risk and Mid Risk firms are quite
comparable between the two transitions considered, the probability that High Risk firms end
up defaulting almost doubles when one looks at the short run transition matrix.

In spite of some difference in the values, the estimates for Service firms, reported in Table 4
and Table 5, are substantially in accordance with the results just outlined for Manufacturing.
We again observe that credit ratings are more stable along the short run transition than along
the long-medium run transition, but also a strikingly high probability that High Risk firms
experience an inter-temporal improvement of their conditions, irrespective of the time span
considered. As compared to Manufacturing, the only difference emerges with respect to the
estimated transition probabilities of ending up into default, which in Service are comparable
across time not only for Low and Mid Risk firms, but also for the High Risk group.
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2003

Low Mid High Default

2
0
0
2 Low 0.8178 0.1795 0.0021 0.0006

Mid 0.0750 0.8838 0.0361 0.0051
High 0.0219 0.5570 0.4101 0.0110

Table 5: Short run transition to default - Service.

Summarizing, we robustly observe that the credit ratings for Low Risk and Mid Risk firms
are very stable, meaning that, both along the short and the medium-long run transition, there
is a very small probability that these groups experience changes in the quality of their financial
conditions. On the contrary, the dynamics of the credit rating of firms classified as High Risk
are much more turbulent, in a rather unexpected way: especially over the medium-long rum,
but also very close to default, they display a surprising tendency to recover from initially bad
financial records, with an estimated probability of jumping back to better ratings which is
comparable or even higher as compared to the estimated probability of remaining High Risk.
Nevertheless, it always holds true that the firms rated as High Risk in the initial year have
an higher probability to end up defaulting than the other firms in the sample: CeBi credit
ratings still retains an informative content in terms of firms’ expected ability to meet their
financial obligations.

4 Transition to default and economic performance

Looking at the credit rating allowed to carry on a concise analysis of how the diverse financial
conditions of firms are related with default. In this section we pursue a different, real rather
financial, perspective. We now ask how the event of default correlates with, and to some
extent is determined by, some dimensions of firms’ economic operation and performance as
crucial as size-growth dynamics, profitability and productive efficiency.

In parallel with the perspective adopted above in exploring the linkages between financial
conditions and default probabilities, we will be addressing two specific research questions.
On the one hand, we follow the intertemporal patterns experienced along such economic
dimensions by the defaulting firms, in the years before default. The issue will be tackled
comparing the statistical properties of the empirical distribution of size, growth, productivity
and profitability measured at the beginning of the sample period (in1998) with those emerging
1 to 2 years before the default event (in2002). On the other hand, a second point concerns
whether, and to what extent, defaulting firms differ from the other firms present in the sample.
For this purpose, we will estimate the empirical distribution of the same economic variables
for all the firms present in the database in 1998 and 2002, and we will try to identify how
defaulting firms rank within the entire sample.

From a methodological point of view, a common characteristic with respect to both the
research questions resides in the choice of adopting non parametric (kernel) techniques which
focus on the entire distribution of the different economic dimensions, rather than more tradi-
tional, parametric approaches which are mainly concerned with estimating average behavior.
Such a decision avoids to impose any structure to the data, allowing to take a fresh look
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Mean V.C.

Variable Sample 1998 2002 1998 2002

Total Sales
Defaulting 24681 34482 2.26 2.18

Aggregate 23882 27314 3.94 6.29

Growth
Defaulting 0.11 -0.17 4.02 -1.80

Aggregate 0.03 -0.01 6.87 -17.11

Profitability
Defaulting 0.07 0.02 1.64 5.67

Aggregate 0.10 0.09 0.95 1.16

Productivity
Defaulting 46.68 44.58 0.55 1.29

Aggregate 55.80 59.00 0.66 0.80

Table 6: Mean and Variation Coefficient (VC) of Total Sales, Growth, Profitability and Labour
Productivity, in 1998 and 2002. Defaulting firms and entire sample, Manufacturing.

on the heterogeneities possibly existing both within and across defaulting vis a vis surviving
firms.

A note is also due on measurement issues. Indeed, for all of the relevant economic variables
we will be discussing, several different proxies have been proposed in the literature. The
findings presented in Bottazzi et al. (2006) and Bottazzi et al. (2008) on the very same dataset
which is used in the present work, however, suggest that the use of alternative measures is
not very likely to significantly affect the results. Therefore, we consider here one single proxy
for each of the economic dimensions. Firm size is measured in terms of Total Sales (TS),
and, accordingly, the simple log-difference of Total Sales, gTS, is used to measure firm growth.
Then, we proxy profitability with the Returns on Sales (ROS), that is the ratio between
operating margins and revenues. Finally, efficiency in production is captured by a standard
proxy of Labour Productivity, i.e. in terms of value added per employee. Descriptive statistics
on these variables are shown in Table 6 for defaulting firms vis a vis the entire sample of firms.
Note that here, as well as in the rest of the section, we show results only for Manufacturing,
since the evidence from Service firms, which we did explore, was supportive of very similar
conclusions.

Let us start with the analysis of firm size distributions. In the two panels of Figure 3 we
plot, on a double logarithmic scale, the kernel density of TS estimated for defaulting firms and
for the overall sample in 1998 and in 2002. To help comparability between the two groups, in
the bottom part of each figure we also depict the actual values of TS for each defaulting firm.

First look at 1998. The most apparent feature is that the two distributions are very
similar in both the supports spanned and in the shapes, which is remarkably right-skewed,
a property repeatedly found in the literature of firm size distribution. Together, these two
characteristics tell us that, somewhat contrary to what one might conjecture on the basis of
theory and empirical research on firm survival, defaulting firms are neither less heterogeneous
nor smaller with respect to the entire sample. Actually, we find that default events could even
be more frequent among medium-big sized firms, rather than at small sizes: consistently with
the figures in Table 6, the mean seems even higher for defaulting firms, and their density turns
out to be even more concentrated in the right part of the support, as compared to the others.
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Figure 3: Empirical density of Total Sales (TS) in 1998 (left) and 2002 (right): Defaulting Firms
and entire sample - Manufacturing.

This kind of story is robust across time: if anything, the right tail of the defaulting firms’
distribution is even heavier in 2002, when it takes only 1 to 2 years to the default event, as
compared to 1998, 5 to 6 years before default. The actual values of TS attained by defaulting
firms clarify that the sort of second modes appearing in the right tails are essentially due
to a limited number of very big firms. Still, the overlap in the central part of the densities,
where most of the observations are placed, is almost perfect, so that, if not bigger, defaulting
firms are for sure not smaller than the others, at least on average. This is enough to conclude
that there is a lack of a clearcut relationship between size and the event of default: operating
above a certain size threshold does not seem to be a relevant warranty in preventing default.

Next we focus on firms’ growth rates. Figure 4 shows the kernel density of gTS estimated
in deviation from the annual sectoral (Manufacturing) average, that is in terms of market
shares. Again, we propose a comparison between defaulting firms and the overall sample in
both 1998 and 2002, and report actual values for the growth rates of defaulting firms below
the estimated densities.

As far as the central part of the distribution is concerned, that is where one finds the
most of the probability mass (approximately in [−1, 1]), the shape estimated for defaulting
firms is not very different from the estimates obtained for the entire sample. This is clearly
the case, for both the years, in the right part of this portion of support (consider the interval
[0, 1], i.e. at above average values of growth rates), while at below average values (about
the interval [−1, 0]) defaulting firms are more concentrated in 2002, in accordance with the
lower mean reported in Table 6. Though, when one considers the entire distribution, rather
than the central part, a distinctive feature emerges: the support spanned are indeed different,
with defaulting firms displaying a considerably lower degree of heterogeneity than the overall
sample. This fact is reflected in both the left and the right tail, where the presence of
defaulting firms is much less relevant, when not nil. Indeed, on the one hand, only ‘non-
defaulting’ firms are present at extremely bad growth records in both the years. On the
other, only few defaulting firms are responsible for the peaks observed at the top extreme in
1998, whereas extremely good performances in 2002 are attained only by firms which will not
default one or two years later.
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Figure 4: Empirical density of Total Sales Growth (gTS) in 1998 (left) and 2002 (right): Defaulting
firms and entire sample - Manufacturing.
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Figure 5: Empirical density of Profitability (ROS) in 1998 (left) and 2002 (right): Defaulting Firms
and entire sample - Manufacturing.

The conclusion one can draw is that, overall, defaulting firms do not grow systematically
slower than the other firms, independently from the distance to default: similarly to what
we observed with size, we do not find clearcut peculiarities characterizing this sub-sample of
firms as a particularly suffering group, as compared to the rest of the sample.

We then explore if similar results emerge also with respect to profitability, looking at the
kernel densities of the ROS. Figure 5 reports estimates and actual values for defaulting firms
in 1998 and 2002. Once again, we compare the latter with the densities estimated for the
entire population of firms active in Manufacturing in the very same years.

In 1998, the two distributions display very similar shapes, and are substantially overlapping
in the negative part of the support, whereas there are clear differences for what concerns the
extent of heterogeneity and the weight of positive performances. Indeed, apart from few single
cases on the far left end of the support, defaulting firms have shorter tails, meaning that they
are less heterogenous than the overall sample. Moreover, their distribution lies below the
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Figure 6: Empirical density of Labour Productivity (VA/L) in 1998 (left) and 2002 (right): De-
faulting firms and entire sample - Manufacturing.

aggregate one in the positive part of the support, as reflected in the lower mean shown in
Table 6. The same differences are present, and somewhat reinforced, in the estimates for
2002. The profitability density of defaulting firms turns out to be clearly shifted towards the
left of the density estimated for the overall sample: the latter is more symmetric, whereas
much of the probability mass of defaulting firms is concentrated at negative values. As a
result, the distance between the two distributions in the right part of the support is even
more apparent than in 1998, and a significantly heavier left tail for defaulting firms also
emerges. Despite negative performance is experienced also by non-defaulting firms, there is
nevertheless sufficiently robust evidence to conclude that defaulting firms are, on average, less
profitable than the rest of the sample.

In this respect, the conjectures put forward by the theories of firm dynamics are confirmed
by the analysis: some sort of selection on profitability seems to be at work. Interestingly, time
plays an important role in the story, as defaulting firms are not different from surviving firms
five years before default, but, rather, their performances seem to worsen over time until they
become quite weak in the very short run (1-2 years) before default.

As a final step, we ask whether selection operates also on productive efficiency. The
densities of Labour Productivity, estimated in (log) deviations from sectoral average, suggest
that this might not be the case: efficiency does not act as a sharp discriminatory factor
telling apart defaulting firms from surviving ones. Indeed, as Figure 6 shows, we observe
something similar to what we noted above for size and growth. That is, defaulting firms
are substantially identical to the entire sample in the most relevant part of the support
(approximately in [−1.5, 1.5]), where one nets out the effect of some outliers possibly present
among both extremely inefficient and extremely efficient firms. Again, the time distance to
default does not play any role: the same picture is emerging both in 1998 and in 2002.
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5 Estimation of default probabilities

The analysis conducted in the previous section on the distribution of economic performance
has suggested that profitability stands up as the only relevant economic variable which is
able to definitely discriminate between defaulting firms and surviving ones. Size, growth and
productive efficiency, on the contrary, do not display any clearcut relationship with default,
in spite of the major role attributed to these dimensions in theoretical and applied research.

To gain in statistical precision about how economic performance affect firm distress, we
now turn to a more standard parametric analysis of default probabilities. This exercise, at
the same time, will allow to control for the way the economic and financial dimensions of firm
dynamics interact in explaining, or determining, firm default.

Given the dichotomous nature of the event which we are focusing on, namely the occurrence
of default, binary choice models must be chosen in order to study the response probability
of observing the outcome, conditional upon a set X of k explanatory variables. Let y be a
binary index so that y = 1 when a certain event (default, in our case) occurs, and 0 otherwise.
Then, a binary choice model reads

P (X) = P (y = 1 | X) = P (y = 1 | x1, x2, . . . , xk) . (1)

The interest lies primarily in estimating the partial (or marginal) effect of each xj on the
response probability, that is the approximate change in P (y = 1 | X) when xj increases,
holding all the other variables constant. For continuous variables, this is given by

∂P (X)

∂xj

=
∂P (y = 1 | X)

∂xj

. (2)

If, instead, xj is a discrete variable (for instance, a 0-1 covariate), one is interested into

P (x1, x2, . . . , xj−1, 1, xj+1, . . . , xk)− P (x1, x2, . . . , xj−1, 0, xj+1, . . . , xk) . (3)

which tells us the difference in the response probability computed when xj switches from 0 to
1, keeping all the other variables fixed.

Traditionally, binary choice response models have been estimated via two alternative ways,
namely probit and logit models. They both specify (1) as

P (X) = P (y = 1 | X) = F (Xβ) , (4)

that is, they assume P (X) is a function of the covariates X only through a linear combination
of the latter, Xβ, which, in turn, is mapped into the response probability via a certain function
F . Then, the probit model is a special case of (4) with F given by

F (z) = Φ(z)

=
∫ x

−∞

φ(v)dv , (5)

where Φ(z) is the cumulative distribution function of a standard normal variable, and φ(z)
the associated density. The logit model, on the other hand, assumes F to follow a logistic
distribution

F (z) = Λ(z)

=
exp(z)

1 + exp(z)
. (6)
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In practical applications, however, it is very uncommon to observe that the two alternative
models yield contrasting results in terms of estimated partial effect of the covariates on the
response probabilities. This indeed holds true for all the analyses we will be performing in
this section and, accordingly, we limit the discussion to probit estimation. For completeness,
the results of logit regressions are reported in the Appendix at the end of the work.

In order to understand what binary choice actually estimate, a crucial point concerns a
proper interpretation of the coefficients βj and, more importantly, their relationship with the
ultimate object of interest, that is the partial (or marginal) effect of each covariate on the
response probability P (X). For the probit model, when the explanatory variable is continuous,
one can compute

∂P (X)

∂xj

= φ(Xβ)βj , (7)

which clarifies that the partial effect of xj depends on all the other covariates through φ(Xβ).
Therefore, if one is interested into the magnitudes of the effects, a choice is required in order
to evaluate the latter expression at some meaningful value of X , for instance at the sample
average of the covariates, φ(X̄β). On the contrary, if the interest only lies in the sign of
the effects, the estimates of the βj’s alone are able to tell what is needed. Indeed, since the
standard normal distribution has a strictly increasing cumulative distribution function, one
has that φ(z) > 0 for all z and, thus, the sign of the partial effect is just the same as the sign
of βj .

4

To see how this framework can apply in the context of our exercise, it is essential, recall
that we have information about default only for 2003, the last year in the sample. This means
that, unfortunately, we are not able to apply panel data versions of the probit model, where
one would exploit the time dimension of the data to control for firms unobserved heterogeneity.
Rather, we will focus on a model of the form

P (X) = P (Default03 = 1 | X) = F (Xβ) , (8)

and attempt several specifications with X including different sets of explanatory variables.
The time dimension will be used to explore the possible lagged effect of the explanatory

variables on default. Specifically, in order to facilitate comparison with the evidence presented
so far, we will pay attention to the predictive ability of variables measured in 2002, 1 to 2 years
before default, and at the beginning of the sample period, that is in 1998, 5 to 6 years before
default. In the same spirit of reproducing what done in the previous sections, we will also keep
the distinction between Manufacturing and Service firms, running separate estimation within
each of these two ‘macro-sectors’. In addition, all the specifications we will be presenting
include a full set of 2-digit sectoral dummies, intended to capture sector specific effects at a
finer level of aggregation.5

The first two columns of Table 7 present our first specification of equation (8), where
the effect of the economic variables alone is investigated. In this case the set of explanatory

4Something similar holds also true when xj is a discrete variable.
5Due to consideration of space and to enhance readability, we will not present the corresponding estimates

in the reported tables. Obviously, for some industries it was not possible to estimate the corresponding
coefficient due to a relatively small, or null, number of default, and to collinearity problems. Though, when
we were able to get an estimate, some of the dummies were indeed found to be statistically significant,
suggesting industry effects might play a role.
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Economic Variables Economic Variables,

Independent and Lags Lags and Rating

Variables Manufacturing Services Manufacturing Services

TS02 0.000 0.000 0.000 0.000

(0.865) (0.722) (0.854) (0.849)

TS98 0.000 0.000 0.000 0.000

(0.988) (0.301) (0.678) (0.280)

PROD02 0.000 -0.00002 0.000 0.000

(0.931) (0.027) (0.212) (0.941)

PROD98 -0.0001 0.000 0.000 0.000

(0.053) (0.693) (0.525) (0.388)

PROF02 -0.0246 0.0011 -0.0008 0.00105

(0.000) (0.368) (0.696) (0.275)

PROF98 0.0080 -0.0014 0.0017 -0.0004

(0.380) (0.532) (0.712) (0.616)

GROWTH02 -0.0023 -0.0111 -0.0002 -0.0023

(0.480) (0.003) (0.684) (0.029)

GROWTH98 0.0029 0.000 0.0010 0.000

(0.000) (0.848) (0.001) (0.597)

RATING02 0.0024 0.00114

(0.000) (0.000)

RATING98 -0.0001 0.00027

(0.673) (0.101)

Pseudo R2 0.076 0.065 0.194 0.192

Obs. 12266 7840 12199 7786

Table 7: Probit estimates of default probabilities, marginal effects. Coefficients significant at 5%
level are in bold. P-value for each coefficient in parenthesis.

variables X includes, for 1998 and 2002, the values of size (measured in terms of Total Sales,
TS in the Table), efficiency (Labour Productivity, PROD in the Table), profitability (PROF,
measured through the ROS), and growth (in terms of gTS, GROWTH in the Table). To give
a figure of the magnitudes, we report partial effects computed at the average values of the
covariates, together with the associated p-value derived applying heteroskedasticity-robust
standard errors.6

As already argued, theoretical models, supported by the extant empirical studies, tend to
predict that all of the variables should reduce the probability of default. Though, the analysis
of the empirical distribution of economic variables performed so far has suggested that such
an interpretation might not be so obvious when looking at the data. Indeed, drawing upon the
results obtained in Section 4, one would expect that, on average, only Profitability presents

6The same will apply throughout all the section.
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a clear inverse relationship with default.
The picture emerging from the present probit analysis partially corroborates such a con-

jecture, but also offers some novel insights. These mainly concern the role played by time
to default, and the comparison between the different patterns characterizing Manufacturing
(second column of Table 7) and Services (third column). In the latter we observe that Produc-
tivity and Growth, as of 2002, are the only significant variables, whereas Profitability is not.
The sign of the effects are coherent to what one might expect, as an increase in both these
variables entail a reduction (very small one for Productivity) in the probability of default.
Conversely, the estimates for Manufacturing suggest something very different. Here the effect
of profitability in the short run (PROF02) is significant, with the expected negative sign, but
a long-medium run role of growth (GROWTH98) also shows up, with a positive effect on
the probability of default. Two are the puzzles. A first one has to do with the sign, as one
would expect higher growth rates to be a signal of good performance in firms’ core operational
activities and, therefore, to observe a negative effect on default probabilities. Of course, an
important caveat applies at the present stage of the analysis. We are indeed neglecting the
possible impact of variability of growth rates, which might be related to another important
issue, namely firm age, unfortunately not measured in our data. Secondly, there is a matter
about the timing of the effect, since growth records at the beginning of the sample period are
the only significantly affecting default, whereas short run growth seems not enough to help
firms to recover.

Looking for additional insights, we propose a second specification wherein the CeBi rating
index is added to the covariates. This allows to apply a robustness check for the previous
results and, at the same time, provides a first attempt to see how the economic and financial
dimensions interact in explaining default. Since the index is purposedly built as a measure of
default risk, what we expect to observe is that it should take much of the explanatory power
of the model.

The estimation results, shown in the fourth and fifth column of Table 7 for Manufacturing
and Services respectively, tell us that this is indeed the case. The negative and significant
effect of PROF02 observed for Manufacturing in the first specification actually vanishes, as
well as the small effect of PROD02 observed for Services disappears. In addition, the partial
effect of the rating index turns out to be highly significant in the short run (RATING02),
and a considerable increase in the goodness of fit of the model (Pseudo R2 increases) is
achieved with respect to the first specification. The more interesting result, however, is
represented by the fact that growth keeps on playing a statistically significant role on default
probability, in the same directions estimated above. Indeed, we still obtain a negative short
term effect (GROWTH02) in Services, but a puzzling positive impact of GROWTH98 among
Manufacturing firms.

The relevance of the result is reinforced by its survival through the additional specifications
presented in Table 8. Here, we broaden the scope of our analysis to include a set of financial
indicators. As explained during the presentation of the dataset, we had the chance to access
yearly figures about Interest Expenses (IE), leverage (in terms of Total Debt/Shareholders’
Equity ratio, TD/SE), and Total Debt/Total Sales ratio (TD/TS). These are unfortunately
not enough to fully describe financial structures, and quite less numerous than the wide
number of financial variables or ratios traditionally used in bankruptcy prediction models.
Their inclusion here is essentially meant to integrate the information content of the CeBi
credit rating and, thus, to provide a wider account of the financial status of firms.
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Economic & Fin. Economic, Fin. &,

Independent Variables Rating

Variables Manufacturing Services Manufacturing Services

TS02 0.000 0.000 0.000 0.000

(0.168) (0.150) (0.239) (0.517)

TS98 0.000 0.000 0.000 0.000

(0.875) (0.115) (0.654) (0.394)

PROD02 0.000 -0.0001 0.000 0.000

(0.963) (0.046) (0.482) (0.944)

PROD98 -0.0001 0.000 0.000 0.000

(0.018) (0.170) (0.391) (0.333)

PROF02 -0.017 0.002 -0.001 0.000

(0.001) (0.839) (0.910) (0.370)

PROF98 0.006 0.001 0.001 0.000

(0.391) (0.862) (0.825) (0.906)

GROWTH02 -0.008 -0.009 0.000 -0.002

(0.534) (0.005) (0.698) (0.041)

GROWTH98 0.003 -0.001 0.001 0.000

(0.000) (0.213) (0.002) (0.247)

IE02 1.80e-06 8.24e-07 6.00e-07 0.000

(0.001) (0.049) (0.001) (0.074)

IE98 -9.06e-07 0.000 -3.00e-07 0.000

(0.046) (0.199) (0.034) (0.555)

TD/SE02 0.000 0.000 -5.5e-06 0.000

(0.094) (0.149) (0.020) (0.815)

TD/SE98 0.000 0.000 3.36e-06 0.000

(0.320) (0.485) (0.016) (0.999)

TD/TS02 0.0001 0.000 0.0001 0.000

(0.000) (0.386) (0.003) (0.943)

TD/TS98 0.000 0.000 0.000 0.000

(0.403) (0.120) (0.483) (0.167)

RATING02 0.002 0.001

(0.000) (0.000)

RATING98 0.000 0.000

(0.888) (0.148)

Pseudo R2 0.116 0.083 0.209 0.200

Obs. 12264 7836 12197 7782

Table 8: Probit estimates of default probabilities, marginal effects. Coefficients significant at 5%
level are in bold. P-value for each coefficient in parenthesis.

In the first specification presented (second and third columns of Table 8) the financial
indicators enter together with the economic variables, but without the credit ratings. This
should substantially mimic the exercise performed in our first specification (column 2 and 3
of Table 7 above) and, indeed, the results are quite the same. In Manufacturing, GROWTH98

displays again a strikingly positive sign and, in addition, we also get an expected negative
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effect of short run profitability, while in Services an equally expected negative sign is found
for both short run efficiency and short run growth. The magnitudes are also very similar to
the findings emerged from our first specification. Moreover, none of the financial variables
seem to play a role, with the minor exception of IE, whose effect is anyway fairly small.

Lastly, we perform probit estimates of a fourth specification, where we consider the wider
possible set of regressors, including both economic and financial variables, together with credit
rating.

As shown in the last two columns of the same Table 8, the basic conclusions are not
affected. Indeed, even if some of the financial variables turn significant in Manufacturing,
their effect is very small, so that the single major result concerns the fact that short run
credit ratings and growth are the only variables playing a role in predicting default. Once
again, however, the estimates obtained for growth in Manufacturing are quite intriguing, with
respect to both the negative sign and the medium-long run timing of the effect. Noticeably,
nothing changes if one tries to improve the modeling of growth dynamics: both the sign
and the timing of the effect of growth were preserved when we tried and re-estimate the last
column of Table 8 with all the possible additional lags of growth.

6 Conclusion

Economic models of firm dynamics put the greatest attention on the selection process which
results from the interactions of market pressures with heterogeneities in firms’ economic char-
acteristics such as size, growth, productivity and profitability. The effect of these variables
on default is, instead, much less explored in standard frameworks of bankruptcy prediction
originated within financial economics. The ultimate goal of this paper has been to try and
bridge the predictions coming from the two strands of research, focusing on the respective
role played by financial and economic dimensions of firm operations, in view of a multidi-
mensional and empirically driven description about the possible determinants of default. We
address important questions like: is it true that default is mainly a financial phenomenon, as
suggested by standard financial literature, or rather, some economic variable turns out to be
important? And, if it is so, are there economic dimensions where this is the case and other
which contradict such conjectures? How does time distance to default interplay with all of
these issues?

Some of the analyses have provided pieces of evidence which certainly agree with the
findings of previous studies and also with what theory suggests. At the same time, other
results, although still at a preliminary stage, are less expected and opens up space for further
research.

We proceeded in three steps. We first focused on how default relates with a credit rating
index associated to all the firms present in the database, which we use as a synthetic measure
of financial conditions. Transition probabilities of moving across different rating classes or
defaulting confirmed that the likelihood of default decreases with the quality of firms’ initial
financial conditions. Moreover, time distance to deafult seems also to act in the expected
direction. Indeed, consistently with what one might conjecture a priori, the probability that
financially unstable firms incur default increases as the default time approaches. However, the
unexpected finding was that the firms characterized by the worst financial situation display a
transition probability of improving their credit worthiness which is higher than the probability
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of either remaining in the same bad situation or defaulting. This finding is notably robust
across Manufacturing and Service firms.

Secondly, we turned the attention to economic variables, and compare the kernel densities
of size, growth, productivity and profitability estimated for a sub-sample of firms defaulting
at the end of the sample period, with the characteristics of those obtained for the entire
sample. The results were particularly intriguing, since the existing empirical evidence, based
on traditional regression approaches, tend to support the idea that, at least on average,
the likelihood of survival should be increasing in all the dimensions considered. Instead,
our analysis based on techniques concerned with the entire distribution of performances,
rather than with average effects, shows that selection operates more tightly on profitability
than on the other relevant dimensions, at least for the Italian case. Indeed, we found that
only the empirical distribution of profitability is much more concentrated around very poor
performances for the subsample of defaulting firms, as compared to the estimates obtained
for the entire sample. At the same time, defaulting firms were not found to display any
distinctive characteristic in terms of systematically smaller sizes, slower rates of growth, or
lower productivity. Interestingly, time distance to default, as well as the sector of activity
considered, did not add any remarkable insight on these points.

Finally, to gain in statistical precision, and also to recompose the picture about the si-

multaneous effect of both economic and financial indicators on firm default, we tackle a more
standard, parametric approach and estimate default probabilities via binary choice models.
A series of alternative specifications of probit and logit regressions, also controlling for 2-digit
industry effects, showed robust evidence supportive of the following conclusions. On the one
hand, as predicted by many studies in financial economics, we found that credit ratings and,
relatedly, financial conditions, are confirmed to significantly affect the probability of default.
Remarkably, their effect is relevant only in the very short run, that is 1 to 2 years before de-
fault occurs. On the other hand, the analyses revealed that growth, rather than profitability,
turns out as the only economic variable significantly affecting default, once financial fragility
are controlled for. Though, the way growth impinges on default might be more complex than
expected: the effect differs across sector of activity and over time, and presents a puzzling sign
in some instances. Indeed, short run growth (occurring 1 to 2 years before default) negatively
affects default probabilities in Services, but it is medium-long run growth (measured 5 to 6
years before default) which significantly impacts on default in Manufacturing, with a puzzling
positive sign.
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7 Appendix: logit analysis

For completeness, we report here the results obtained with logit estimation. Table 9 reports
the first and second specification of the model, that is including economic variables alone
and economic variables plus CeBi rating, respectively. In Table 10, instead, we show the two
alternative specifications which also include the financial indicators among the covariates.
In the logit specification the probability of the outcome y = 1 is modeled as

P (X) = P (y = 1 | X) = Λ(Xβ)

=
exp(Xβ)

1 + exp(Xβ)
, (9)

with corresponding marginal effect of the each covariate xj given by

∂P (X)

∂xj

= Λ (Xβ) [1− Λ (Xβ)] βj . (10)

Therefore, as we already noted for the probit model, the sign of the effects is directly given
by the sign of the estimated βj’s, whereas their magnitudes depend on the values of all the
explanatory variables. As for the case of probit estimation, a choice is required in order to
evaluate expression 10 at some meaningful value of X , for instance at the sample average
X̄ . The logit model, however, offers an alternative and convenient way to present the results
based on the odds of the outcome y = 1. Define the latter as

O(y = 1 | X) =
P (X)

1− P (X)
= eXβ . (11)

Then, given two realizations of X , say X0 and X1, one can define the odds ratio

O(y = 1 | X1)

O(y = 1 | X0)
= e(X1−X0)β , (12)

which captures a change in the odds of observing the outcome y = 1 induced by a change of
X from X0 to X1. Therefore, for each covariate xj , one has that eβj tells us how the odds of
y = 1 changes when xj changes by one unit

• if eβj > 1 the variable xj increases the odds of y = 1

• if eβj < 1 the variable xj decreases the odds of y = 1.

All the results in the Tables are reported in this format and must be read accordingly.
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Economic Variables Economic Variables,

Independent and Lags Lags and Rating

Variables Manufacturing Services Manufacturing Services

TS02 0.9999 0.9999 0.9999 0.9999

(0.967) (0.665) (0.608) (0.569)

TS98 1.0000 0.9999 1.0000 0.9999

(0.850) (0.387) (0.435) (0.516)

PROD02 0.9974 0.9969 1.0016 0.9998

(0.705) (0.066) (0.171) (0.924)

PROD98 0.9935 0.9998 0.9982 1.0003

(0.158) (0.959) (0.626) (0.555)

PROF02 0.1196 1.3025 1.2167 2.6028

(0.016) (0.135) (0.740) (0.198)

PROF98 2.2805 0.7187 1.7028 0.7219

(0.428) (0.296) (0.782) (0.468)

GROWTH02 0.7003 0.1001 0.9363 0.2791

(0.453) (0.003) (0.698) (0.069)

GROWTH98 1.3876 0.9768 1.3492 0.9693

(0.000) (0.795) (0.004) (0.732)

RATING02 2.2715 2.1771

(0.000) (0.000)

RATING98 0.9936 1.2051

(0.939) (0.091)

Pseudo R2 0.068 0.063 0.186 0.187

Obs. 12266 7840 12199 7786

Table 9: Logit estimates of default probabilities, odds ratios. Coefficients significant at 5% level are
in bold. P-value for each coefficient in parenthesis.
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Economic & Fin. Economic, Fin. &,

Independent Variables Rating

Variables Manufacturing Services Manufacturing Services

TS02 0.9999 0.9999 0.9999 0.9999

(0.165) (0.410) (0.210) (0.517)

TS98 1.0001 0.9999 1.0000 0.9999

(0.671) (0.385) (0.484) (0.394)

PROD02 0.9989 0.9969 1.0009 0.9996

(0.852) (0.014) (0.394) (0.944)

PROD98 0.9929 0.9991 0.9974 0.9994

(0.085) (0.330) (0.500) (0.333)

PROF02 0.1505 1.1138 1.4377 2.2228

(0.017) (0.761) (0.530) (0.370)

PROF98 2.1097 1.1271 1.2597 1.0530

(0.451) (0.899) (0.894) (0.906)

GROWTH02 0.8518 0.1086 0.9552 0.2843

(0.574) (0.004) (0.676) (0.041)

GROWTH98 1.4202 0.8155 1.3798 0.8183

(0.002) (0.491) (0.014) (0.247)

IE02 1.0002 1.0001 1.0002 1.0001

(0.001) (0.108) (0.000) (0.074)

IE98 0.9999 1.0001 0.9999 1.0000

(0.052) (0.148) (0.011) (0.555)

TD/SE02 0.9985 1.0004 0.9998 1.0000

(0.284) (0.140) (0.007) (0.815)

TD/SE98 1.0013 1.0001 1.0013 1.0000

(0.095) (0.396) (0.009) (0.999)

TD/TS02 1.0083 1.0005 1.0050 0.9998

(0.001) (0.443) (0.006) (0.943)

TD/TS98 0.9987 1.0017 0.9986 1.0015

(0.582) (0.126) (0.569) (0.167)

RATING02 2.1324 2.1593

(0.000) (0.000)

RATING98 1.0122 1.1868

(0.894) (0.148)

Pseudo R2 0.102 0.078 0.199 0.194

Obs. 12264 7836 12197 7782

Table 10: Logit estimates of default probabilities, odds ratios. Coefficients significant at 5% level
are in bold. P-value for each coefficient in parenthesis.
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