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Abstract

We consider an economy in which a heterogeneous population of agents have to choose among a
common set of alternatives. The utilities associated to the different alternatives posses a common
component and an individual component, which reflect differences in the underlying structure of
agents preferences. The common components are characterized by a fixed term which describe the
intrinsic utility of each choice, and by a social component which depends on the actual distribution
of agents across the different alternatives. In particular, we analyze the case of linear positive
externalities. Assuming a simple Markovian process for the revision of the selection process, we
derive the equilibrium distribution of the population of agents. We analyze in details the extremal
cases of few choices and large population of agents. The proposed models can be applied to
different domains of economics, like technological adoption, location of production activities, co-
evolution of business models or financial decision rules. The resulting self-reinforcing dynamics can
be considered an alternative formulation of the Polya urn scheme developed by Brian Arthur et al.
(1986) when the possibility of choice revision is taken into account. We analyze the differences and
similarity of the two approaches.

JEL codes: C1, L6, R1

Keywords: Industrial Location, Agglomeration, Dynamic Increasing Returns, Markov Chains,
Polya Urns.

1 Introduction

Over the last decades economists have increasingly recognized that individuals, even in choosing among

fixed alternatives, very often experience uncertainties and inconsistencies. Hence, the ideal situation

in which individuals have perfect discriminatory power, unlimited information and are able to rank all

the alternatives in a well-defined and consistent way is not an adequate description of human behavior

(cfr. Anderson et al. (1992) and the references therein).

These natural constraints to a full and complete exertion of the rationality of agents suggest to

interpret the outcome of their choice procedure as a random variable. Indeed, the idea that the choice

behavior of agents is better described in term of probabilistic processes has a very old tradition in

the psychological literature. At the beginning of the past century, Thurstone, in a seminal work

(Thurstone, 1927), suggests to describe the perceived values associated to different alternatives as

“discriminal processes”, that are stochastic variables agents compare in order to produce their choice.

In economics, the probabilistic nature of individual choice behaviors has been acknowledged

through two diverse classes of models, resting on two different interpretations of the underling cogni-

tive mechanism. The first tradition considers models in which the agents decision rule is stochastic
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while their utility function is deterministic (Luce, 1959; Tversky, 1972). The second family of models

takes the opposite approach: here the decision rule is deterministic while the utility associated with a

given alternative is stochastic (McFadden, 1984).

The main objective of the present paper is to formulate a discrete choice model with social in-

teractions in which agents repeatedly choose among several alternatives whose perceived utilities are

influenced by the choices of other agents. We model a simple economy in which a population of agents

has to choose among a finite set of alternatives. In the spirit of Thurstone (1927) and McFadden (1984)

the perceived utility of each alternative is stochastic and it is composed by two terms: a term which

captures the common, to all agents, benefits associated to the observable characteristics of the vari-

ous alternatives and an idiosyncratic term which accounts for all the unobservable and agent-specific

characteristics of the different alternatives. The effect of other agents’ decision on that made by each

single agent is modeled assuming that the common component in the utility function contains a social

term according to which the attractiveness of a given alternative increases linearly with the number

of times it has been chosen in the past. Moreover, using a simple random selection mechanism, we

allow the possibility for agents to revise their previous choices.

The introduction of social terms in individual utilities has recently proven fruitful in a variety of

contexts in economics. Different types of nonmarket interactions are incorporated in models illustrat-

ing the functioning of labor markets (cfr. (Montgomery, 1991; Topa, 2001)), in models describing the

diffusion of innovations (Brian Arthur, 1989), in endogenous growth models with human capital accu-

mulation (Benabou, 1996; Durlauf, 1996) and, also, in the vast literature on the localization choices

of firms (among many others see (Fujita et al., 1999; Bottazzi et al., 2007)).

Our approach extends the existing literature in two directions: we provide an explicit discrete

choice model that is valid for an arbitrary large number of possible alternatives and, together, we

introduce a random procedure of choice revision. Moreover, in departing from the original framework

proposed in Brian Arthur et al. (1986), we do not take any large economy limit and we solve the model

for a finite population of active agents. In this way, the aggregate state of the economy is uniquely

and completely specified, at each point in time, by a vector containing the number of agents who have

chosen any of the available alternatives.

Our model proves to have a number of interesting analytical properties. First, it generates a

stationary distribution of agents across alternatives that can be compared to empirical distributions

in order to estimate the parameters of the model. Second, it provides an explicit expression for the

transition probabilities between different states of the economy at equilibrium which can be used to

assess the degree of short term stability of the observed distribution. Third, the ergodic nature of

the model allows to run comparative static exercises to investigate the effects, on the equilibrium

probability of the different possible states of the economy, of changes both in the number of active

agents and in the long term structural parameters of the model.

One may interpret our model as a multi-choice dynamic extension of the framework developed

in Brock and Durlauf (2001). In their analytic approach they describe a binary choice problem

that is ”genuinely” static, since it amounts to find the equilibrium distribution of agents across two

alternatives given a set of interdependent utility functions. No explicit reference is made to any choice

procedure. In our case, instead, we model a dynamic choice procedure in which a population of agents

may choose among an arbitrary large number of alternatives.

In a slightly different perspective, the model discussed in this paper may be considered an ergodic

reformulation of the non-Markovian urn processes proposed in the literature originated by Brian Arthur
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et al. (1986). In particular, since then, the formal tool of Generalized Urn Schemes has been applied

to a variety of situations characterized by the interactions of individual behaviors of agents who have

incomplete information about their environment and its mechanisms of evolution (among others cfr.

Brian Arthur (1994); Dosi et al. (1994); Dosi and Kaniovski (1994)). Formally the generalized Urn

Schemes represent non stationary Markov Chains with a growing number of states enabling one to

handle positive and/or negative feedbacks possibly coexisting in the same process. In this case an

explicit choice structure is in general presented, but the derived results only refer to the asymptotic

distribution generated by an infinite stream of choices with progressively decreasing marginal relevance.

Conversely, in our model we consider a Markov process with a finite number of alternatives and with

reversability of choices. In this framework we are able to derive the ergodic equilibrium distribution

generated by the cumulative effect of repeated choices of the agents. This provide a simple approach

to the estimation of the magnitude of the externality effects induced by social interactions.

The remainder of the paper is organized as follows. Section 2 sets the stage presenting the basic

assumptions underlying the model and shows that the outcome of the decision process does not

depend, in probabilistic terms, from the idiosyncratic component of agents preferences. In Section 3

we describe how we specify the common term in the utility function to introduce social interactions

effects and we derive the main analytical properties of the model. In order to allow comparisons with

the existing literature Section 3 studies the effects of switching off the choice revision process in the

model. Section 4 concludes and suggests lines for further investigations.

2 The model

In this section we present a model of individual choice which incorporates social effects. We study

an economy in which a population of heterogeneous and boundedly rational agents has to choose a

single alternative among a set of predetermined possibilities. At each time step new agents enter

the economy while incumbents may leave it. Each agent, when entering the economy, chooses the

alternative which is expected to provide him the highest utility. The description of the dynamics of

such an economy requires the preliminary specification of two fundamental aspects of the decision

process: the mechanism selecting at each time step the agent called to choose and the utility function

on which his choice is based.

Regarding the first aspect, there are, at least in principle, many ways to design the procedure

to single out the agent allowed to make his choice and each one may describe a different economic

situation. One can imagine that the different agents are called to choose according to a pre-determined

and fixed list, organized for example in alphabetical order, or based on age, weight or other peculiar

characteristic identifying each agent. Diversely one may relate the probability of picking a given agent

to the outcome, in terms of utility, of the previous choices. Again one has many possibilities ranging

from situations in which who got more utility from the past choices has also higher probabilities to be

called for a new choice to other situations in which the probability of picking a given agent depends

(positively or negatively) on the number of times the same agent has been selected in the past. Finally

one may assume more complicated settings in which a topology is defined over the set of available

agents and the probability of choosing a particular individual is defined as a function of his distance

from the agent selected in the last time step. In what follows, in order to isolate the properties of our

model due to individual choice behaviors from the ones induced by the selection mechanism, we decide

to describe the latter in the simplest way: we assume it as a pure stochastic selection mechanism.
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Formally we consider a framework in which N different agents choose among a set of L distinct

alternatives, labeled by integers between 1 and L and we assume

Assumption 1. At each time step one agent is randomly selected to exit the economy. All incumbent

agents have the same probability to be selected.

Regarding the second aspect, as mentioned in the Introduction, we choose to follow the approach

inspired by the work of Luis L. Thurstone. Agents are considered heterogeneous with respect to their

preferences due to problems of asymmetric information or cognitive biases. Since we are interested in

the aggregate dynamics of the economy, this heterogeneity is, at this stage, modeled as a probabilistic

effect. We assume that the preference structure of different agents over the available alternatives

builds on two terms: a common factor and an idiosyncratic component. The common factor affects

the decision of any possible agent and is meant to represent the common “perceived” advantage of

picking a certain alternative. The idiosyncratic component captures the individual preferences of that

particular agent.

Formally, we assume the following

Assumption 2. Let F be the population of potential entrants and let cl ≥ 0, l ∈ {1, . . . , L} stand for

the common (to all agents) benefits from selecting the alternative l.

When a new agent enters the economy is selected at random from F and chooses the alternative l

which satisfies

l = argmax
j

{cj + ej|j ∈ {1, . . . , L}} ,

where (e1, . . . , eL) represents the individual preferences of the agents.

To sum up, at each time step an agent leaves the economy according to Assumption 1 and, after

such an exit, a new single agent is allowed to enter according to Assumption 2. Notice that the new

entrant may well choose an alternative different from the one chosen by the agent who left. Thus, the

model is designed to capture both the genuine entry of new agents as well the reversability of decisions

of incumbent agents.

Essentially, Assumption 2 postulates that the choice dynamics is defined by the probability distri-

bution F (e) of individual preferences e = (e1, . . . , eL) on the population of agents F . The probability

pl that the next agent called to the choice, chooses location l is indeed

pl = Prob {cl + el ≥ cj + ej∀j 6= l|c, F (e)} .

The dynamical process implied by this assumption1 is essentially undetermined until one provides

a precise definition of the distribution F , a difficult task as it requires to model the (private and

unexpressed) preferences of the whole population of agents.

However, it is possible to substantially simplify this problem without restricting too much the

generality of our approach. Indeed, either by introducing a minimal degree of structure in the decision

process or, alternatively, by assuming a simple but plausible structure of the economy it suffices to

show that the decision is, in probability, only driven by the common component of the utility function.

The first approach is recovered by interpreting the value of the available alternatives as “discriminal

processes” which agents compare to determine their preferred alternative (Thurstone, 1927). In this

1Notice that this is exactly the same entry process assumed in Brian Arthur (1990).
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case, it seems plausible to assume that the resulting choice is invariant under a uniform expansion of

the choice set itself: if we increase the number of alternatives in the economy, by adding, for each

alternative, an identical number of new possibilities of the same type, then the probability of choosing

a given alternative of each type should be invariant. This simple assumption is enough to guarantee

a notable (and desirable) simplification of the problem.

Formally one has

Proposition 2.1. Consider an economy E with L alternatives and a population of agents F . Now

consider an expanded economy, obtained by adding to E, for each alternative l, k − 1 new identical

possibilities. The obtained economy, denoted with Ek, has exactly kL alternatives. Let pkl the proba-

bility that a “type l” alternative (that is, an alternative identical to l) is selected by an agent according

to the rule in Assumption 1 and Assumption 2. Then if

pkl = pl ∀k ∈ N

it is

pl =
cl

∑

j cj
. (2.1)

Proof. The proof essentially amounts to show that the only discriminal process compatible with the

uniform expansion of the choice set is the one that assumes double-exponentially distributed random

utilities. An elegant proof of this property is provided in Yellot (1977), Theorem 6, Section 4. It is then

known that a double-exponential distribution of relative utilities assures that the choice probability

follows Luce’s Choice Axiom (2.1) (Luce, 1959).

An analogous result can be obtained by looking at the problem from a different perspective.

Assume that each available alternative l is actually composed of a number of sub-alternatives. All

the sub-alternatives of l possess the same common expected utility cl, but different agents have, in

general, different preferences for the different sub-alternatives. When the number of sub-alternatives

becomes large, irrespectively of the particular distribution of individual preferences F , the probability

that each alternative is chosen is given by (2.1). Formally we have

Proposition 2.2. Consider an economy with L alternatives and a population of agents F . Let Ml be

the number of sub-alternatives of l and el,j , with j ∈ {1, . . . ,Ml}, the individual preferences associated

to sub-alternative j. Moreover, agents choose the sub-alternative j of l if

cl + el,j = max {ci + ei,h|i ∈ {1, . . . , L}, h ∈ {1, . . . ,Mi}} .

Then, if the individual preferences (e1,1, . . . , eL,ML
) are i.i.d. random variables which follow a common

distribution F and this distribution has an upper tail which decays sufficiently fast when min {M1, . . . ,ML} →

∞, then the probability that alternative l is chosen follows (2.1).

Proof. The general proof, and a complete discussions of the assumptions, is in Jäıbi and ten Raa

(1998). The “sufficiently fast” of the proposition means faster than exponential (for instance, a

Gaussian distribution).

The two previous results are sufficient to guarantee that, from a probabilistic point of view, the

result of the decision process of heterogeneous agents is completely characterized by the vector of
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common attractiveness c. Notice that the two approaches just outlined get to the same conclusion

even if they start from highly different premises. In either case the information processing abilities of

the agents and, together, their abilities to specify their “fine-grained” preferences are different. Still it

is reassuring to notice that both approaches simplify our dynamical process in exactly the same way,

thus adding plausibility to the assumptions underling equation (2.1).

3 Linear externalities

To recall, the model we have introduced in the previous section attempts to describe the distribution

of choices of a population of heterogeneous agents among a set of alternatives allowing for different

regimes of (positive or negative) social externalities. We have shown that, under plausible simplifying

assumptions, the outcome of the decision process does not depend, in probabilistic terms, from the

idiosyncratic component of agents’ preferences but, on the contrary, is completely characterized by

the vector of common attractiveness c of the various alternatives. Hence in order to complete the

specification of the model one has to provide an analytic expression for cl, the common attractiveness

component of the alternative l.

We assume that the choice of agents is affected by two factors: by the “intrinsic benefit” associated

with each alternative and by a “social benefit” representing the effect of the actual distribution of the

entire population among all the possible alternatives on the individual choice.

For sake of tractability, we begin by describing the social effect with a simple linear relationship

and we assume the following

Assumption 3. The common expected utility cl from choosing the alternative l at time t is given by

cl = al + blnl ,

where nl represents the number of agents that have already selected l at the time of choice and al ≥ 0,

bl ≥ 0.

Each alternative l ∈ {1, . . . , L} is then characterized by an “intrinsic attractiveness” parameter al

and by a “social externality” parameter bl. The coefficient al captures the intrinsic gains that an agent

obtains by choosing alternative l, net of any social externality effects. The parameter bl captures the

strength of the externality effect, induced by social interactions, of the alternative l: it is the amount

by which the advantages obtained by choosing l increases as a function of the number of agents already

chose the same alternative l. The larger is the value of bl the higher is the incentive for agents to

select l as the number of agents that have already chosen the same alternative increases.

Let us summarize assumptions and results discussed above in the following

Proposition 3.1. At the beginning of each time period t an agent is chosen among the N incumbents to

leave the economy according to Assumption 1. Let m ∈ {1, . . . , L} be the alternative previously chosen

by the exiting agent. After the exit takes place a new agent enters the economy. The probability pl

to pick alternative l conditional to the exit occurred in m, according to Assumption 3 and (2.1), is

defined as

pl =
al + bl (nl,t−1 − δl,m)

A+ b · n− bm
, (3.1)

where A =
∑L

l=1 al, b · n =
∑L

l=1 bl nl and the Kronecker delta δx,y is 1 if x = y and 0 otherwise.
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In (3.1) nl,t−1 is the number of agents who selected l at the previous time step t−1 while Kronecker

delta δl,m in (3.1) implies that it is the number of agents choosing l after the revision that affects the

probability that the new choice of the agent will be l. Notice that the assumption of non negative

b coefficients introduces in our model a “tendency for conformity” similar, in the spirit, to the one

discussed in Brock and Durlauf (2001). The assumption of non-negative b coefficients implies non-

decreasing dynamic returns and, whenever b > 0, linearly positive externalities.

If nl,t is the number of agents choosing l at time t (with
∑L

l=1 nl,t = N, ∀t) the occupancy vector

nt = (n1,t, ..., nL,t) completely defines the state of the economy at this time. Due to the stochastic

nature of the dynamics (as implied by Proposition 3.1), the only possible description of the evolution of

the economy is in terms of probability of observing, at a given point in time, one particular occupancy

vector among the many possible ones. Let a = (a1, . . . , aL) and b = (b1, . . . , bL) be the L-tuples

containing the parameters for intrinsic attractiveness and for the externality strength of alternative

{1, . . . , L}. The characterization of the stochastic dynamics of the model is formally provided by the

following

Proposition 3.2. The dynamics of the system described in Assumption 3.1 is equivalent to a finite

Markov chain with state space

SN,L = {n = (n1, . . . , nL)|nl ≥ 0,

L
∑

l=1

nl = N} .

If pt(n;a, b) is the probability that the economy is in the state n at time t, the probability that the

economy is in state n′ at time t+ 1 is given by

pt+1(n
′;a, b) =

∑

n∈SN,L

P (n′|n;a, b)Pt(n;a, b) ,

where P (n′|n;a, b) represents the generic element of the Markov chain transition matrix.

Let δh = (0, ..., 0, 1, 0, ...0) be the unitary L-tuple with h-th component equal to 1. Then

P (n′|n;a, b) =











nm

N
al+bl (nl−δl,m)

C(n,a,b) if ∃l,m ∈ (1, . . . , L) s.t. n′ = n− δm + δl

0 otherwise ,

(3.2)

where

C(n,a, b) = A+ (1−
1

N
)b · n . (3.3)

Proof. See Appendix A.1.

The state space of the Markov chain that describes the evolution of the model is the set of all the

L-tuples of non-negative integers whose sum of elements is equal to N . The number of elements of

the state space, i.e. the dimension of the Markov chain, is

dim SN,L =

(

N + L− 1

N

)

.

Note that when the number of alternatives L and/or of agents N increase, the dimension of the Markov
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chain becomes soon very large. For instance, for N = 50 and L = 10 the state space contains more

than a billion states. On the other hand, according to Assumption 3.1, at most one agent is allowed

to choose at each time steps. This implies that the transition matrix of the chain contains many zeros

and all transitions happen between very similar states, i.e. states that differ by the location of a single

agent. The number of non-zero possible transitions from a given state are at most2 L(L− 1)+ 1. The

fraction of non-zero entries in the transition matrix goes to zero when L,N → +∞.

Assumption 3 allows for an alternative l to have zero intrinsic attractiveness (al = 0). This kind of

alternative is peculiar because, if at some point in time nobody is choosing it, it will never be chosen

again. Indeed, according to (3.1), if al = 0 and nl = 0 the probability of alternative l to be selected

by an agent is pl = 0. One can think of this alternative as if it had disappeared from the economy.

Since the probability that any chosen alternative looses an agent is always positive, one should expect

that, asymptotically, all alternatives with zero intrinsic attractiveness become empty. This is actually

the case. More formally, the following applies

Proposition 3.3. Consider the set of states S ′
N,L ⊂ SN,L obtained considering only occupancy vectors

with no agents choosing alternatives with attractiveness equal to 0

S ′
N,L = {(n1, . . . , nL)|nl ≥ 0, nl = 0 if al = 0,

L
∑

l=1

nl = N}

and let TN,L = SN,L/S
′
N,L be its complement. Then all states in T are transient. The set S ′ is

connected and all its states are persistent.

Proof. See Appendix A.2.

The set T contains occupancy vectors with at least one agent who prefers an alternative with zero

attractiveness. In the case in which the values of the intrinsic attractiveness parameters are positive

for all alternatives, i.e. al > 0 ∀l, then the set T is empty and S ′ is equal to S. Otherwise, assume that

the alternatives with attractiveness strictly greater than zero are labeled by the first L′ ≤ L integers.

In order to present the main result of the paper let us define the 1-step transition coefficient Tl→m

using the definition of transition probabilities in (3.2)

Definition 3.1. The 1-step transition coefficient Tl→m between n,n − δl + δm ∈ S ′ reads

Tl→m(n) =
P (n− δl + δm|n)

P (n|n− δl + δm)
=

J(nm, am, bm)

J(nl − 1, al, bl)

C(n− δl + δm,a, b)

C(n,a, b)
(3.4)

with

J(n, a, b) =
a+ n b

n+ 1
.

Then a complete characterization of the “equilibrium” condition of the present model is provided

by the following

Proposition 3.4. The finite dimensional Markov chain described in Proposition 3.2 admits a unique

stationary distribution π(n;a, b).

On S ′ the Markov chain is symmetric under time reversal and satisfies the detailed balance condi-

tion π(n′) = Tn→n′π(n) between two generic states n, n′ ∈ S ′.

2This happens when none of the locations is empty.
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Figure 1: Two examples of the behavior of the “marginal attractiveness” parameter J as a function
of the number of agents n for b > a and b < a.

On T ⊂ S the stationary distribution is zero: if n ∈ T it is π(n) = 0.

If n ∈ S ′ the stationary distribution π(n) reads

π(n;a, b) =
N !C(n,a, b)

ZN (a, b)

L′

∏

l=1

1

nl!
ϑnl

(al, bl) , (3.5)

where

ϑn(a, b) = bn
Γ(a/b+ n)

Γ(a/b)
=

{

∏n
h=1[a+ b(h− 1)] n > 0

1 n = 0
(3.6)

and ZN (a, b) is a normalization coefficient depending on the number of firms N and on the L-tuples

a and b.

Proof. See Appendix A.3.

The above theorem contains one of the main results of our analysis and deserves some discussion.

First, notice that all alternatives with zero intrinsic attractiveness, labeled by indices greater than L′,

disappear from expression (3.5). Second, the 1-step transition coefficient (3.4) between “near” states

can be used to gain some insights into the behavior of the model. In equilibrium, the occupancy vector

n− δl + δm is more probable than the occupancy vector n if the 1-step transition coefficient Tl→m(n)

of an agent from l to m is greater than 1. The transition coefficient, in turn, depends on the ratio

of the coefficients J of the two alternatives: the one that looses and the one that gains the generic

agent under scrutiny. One can interpret this result by saying that, in our stochastic equilibrium, an

agent is more likely to move from an alternative with a low J to an alternative with an high J . Thus,

J(n, al, bl) can be thought as a measure of the “marginal” attractiveness of alternative l when it is

preferred by n agents. It is immediate to check that J is a monotone function of n, increasing if

b > a and decreasing if b < a. Indeed dJ/dn ∼ b − a. Then, comparing the values of a and b, it
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is possible to define two classes of alternatives. An alternative with b > a is, in equilibrium, more

attractive than other alternatives if it contains more firms. On the other hand, the attraction strength

of an alternative with b < a decreases when the number of agents choosing it increases, even if the

externality parameter b is greater than zero. This seemingly counterintuitive conclusion derives from

the fact that the stationary distribution of agents across alternatives depends on two effects: (i) the

increase in the number of agents choosing a given alternative due to its ability to attract agents from

the whole economy; (ii) the reduction in the number of agents picking a given alternative due to

the random exit process. Our model postulates that these effects are both linear and the coefficient

J captures their overall impact. In Figure 1 an example of the behavior of J as a function of n is

reported, for the two cases a > b and a < b.

The transition coefficient T contains also the ratio of the terms C computed in the final (numerator)

and initial (denominator) state. After simplification, the ratio of the C’s reduces to

C(n− δl + δm,a, b)

C(n,a, b)
= 1 +

bm − bl
N/(N − 1)A+ b · n

.

This term provides a correction to the ratio of factors J ’s that depends only on the difference of

social externality strengths between any two alternatives and, for N sufficiently large, it is in general

close to 1. In Proposition (3.4) an explicit expression for the normalization coefficient ZN is not pro-

vided. A formal expression can be straightforwardly obtained by imposing a normalization condition
∑

n∈S π(n) = 1 for (3.4). This procedure, however, is not, in general, very informative. One can

obtain a more useful representation of the normalization coefficient by using the generating function

of the stationary distribution.

Proposition 3.5. Let s = (s1, . . . , sL) an L-tuple of real numbers. The generating function π̃(s) of

the stationary distribution π(n) defined as

π̃(s) =
+∞
∑

n1,...,nl=1∑
l nl=N

sn1

1 . . . snL

L π(n1, . . . , nL) (3.7)

admits the following representation

π̃(s) =
1

ZN (a, b)

(

L
∑

l=1

sl
d

dxl

)N−1 L
∑

l=1

(A+ (N − 1)bl) sl
d

dxl

L
∏

l=1

(1− xl bl)
−al/bl

∣

∣

∣

∣

∣

∣

x=0

, (3.8)

where x = 0 stands, with usual notation, for the set of conditions x1 = 0, . . . , xL = 0.

Proof. See Appendix A.4.

As a first application of (3.8) we can obtain an expression for the normalization coefficient ZN .

Proposition 3.6. The normalization coefficient ZN (a, b) that appears in (3.5) admits the following

representation

ZN (a, b) =

(

L
∑

l=1

d

dxl

)N−1 L
∑

l=1

(A+ (N − 1)bl)
d

dxl

L
∏

l=1

(1− xl bl)
−al/bl |x=0 . (3.9)
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Proof. From the definition of the generating function in (3.7) one has

π̃(1, . . . , 1) = 1

that reduces to

π̃(1) =
1

ZN (a, b)

(

L
∑

l=1

d

dxl

)N−1 L
∑

l=1

(A+ (N − 1)bl)
d

dxl

L
∏

l=1

(1− xl bl)
−al/bl

∣

∣

∣

∣

∣

∣

x=0

so that (3.9) follows.

Common externality coefficient

Our model allowed for different social externality coefficients b for different alternatives. However, as

a first approximation, one might also think of the social externality effect as a force acting with a

strength which does not depend from the specific alternative. In our notation this means assuming

a constant b across all available alternatives. As showed above, this assumption is also suitable to

describe cases in which social externalities are, to some extent, alternative-dependent but the size of

the economy is large. In this case, only the alternative with the highest coefficient b’s will be chosen

by a relevant number of agents so that one can assume all other sectors as having a = b = 0, that is

remove them from the dynamics.

Formally let us consider a situation in which we assume different intrinsic attractiveness al for

each different alternative l. On the contrary the strength of the social externality is represented by

a single parameter b, equal for all alternatives. Since one may have alternatives with zero intrinsic

attractiveness we assume that the first L′ ≤ L integers label the alternatives with strictly positive

intrinsic attractiveness a. Then we have the following

Proposition 3.7. If bl = b ∀l ∈ {1, . . . , L} with constant b > 0, the stationary distribution defined in

(3.5) reduces to

π(n;a, b) =
N !Γ(A/b)

Γ(A/b+N)

L′

∏

l=1

1

nl!

Γ(al/b+ nl)

Γ(al/b)
. (3.10)

Proof. See Appendix A.5.

In this case alternatives do, in general, differ and are characterized by their specific attractiveness

parameter al. In order to define a marginal distribution, one has to specify the parameter a of the

alternative of interest.

Proposition 3.8. The marginal distribution π(n, al) of the number of agents choosing an alternative

with intrinsic attractiveness al for the model in (3.10) reduces to the Polya distribution

π(n;N,L, al, A, b) =

(

N

n

)

Γ(A/b)

Γ(A/b+N)

Γ(al/b+ n)

Γ(a/b)

Γ((A− al)/b+N − n)

Γ((A− al)/b)
(3.11)

and the average occupancy of site l ∈ {1, . . . , L} with attractiveness al reads

< nl >= N
al
A

(3.12)
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Figure 2: Polya marginal distributions (for different values of b). All distributions are computed for
N = 20000, L = 800, and intrinsic attractiveness a = 1.

Proof. See Appendix A.5.

The marginal distribution in (3.11) depends on the total number of agents N , the total number of

alternatives L, the two global parameters A =
∑L

j=1 aj and b and the alternative-specific parameters

al. Figure 2 reports the marginal distribution (3.11) for different values of the parameter b. As

we observed before, an increase in the value of b induces an apparent change in the shape of the

distribution and, in particular, an increase in the size of its support again hinting at more turbulent

dynamics of choice.

No externality coefficient

Among the many specifications one can derive from (3.5) a natural benchmark case emerges assuming

that there are no social externalities in agents’ choices, that is assuming that bl = 0 ∀l. In this case it

is straightforward to prove the following

Proposition 3.9. If bl = 0 ∀l ∈ {1, . . . , L} the stationary distribution defined in (3.5) reduces to a

Multinomial distribution

π(n;a, 0) =
N !

AN
∏L′

l=1 nl!

L′

∏

l=1

anl

l . (3.13)

The corresponding marginal distribution π(n, al) of the number of agents choosing an alternative with

intrinsic attractiveness al reduces to the Binomial distribution

π(n;N,L, al, A, 0) =

(

N

n

)

(al
A

)n
(

A− al
A

)N−n

. (3.14)
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No revision and large economy limits

In the present section we study the properties of the dynamic of our model when we neglect the possi-

bility for the agents to revise their choices and we allow the population of agents to grow indefinitely.

In order to do that we switch off the exit process and retain only the entry dynamics described in

Assumption 3.1. This implies that the number of agents in the economy will increase linearly with

time. Assuming that the process starts with no agents present in the economy, if nl(t) is the number

of agents choosing the alternative l at time t, one has
∑

l nl(t) = t. Let n(t) = (n1(t), . . . , nL(t)) be

the occupancy vector at time t, the probability that the next agent chooses location l is

pl(n(t)) =
al + blnl(t)

A+ b.n(t)
, (3.15)

with the same notation used in Proposition 3.1. This pure entry dynamics belongs to the family

of Generalized Urns schemes discussed, for instance, in Dosi and Kaniovski (1994). In terms of the

“fractional occupancy” x, where xl(t) = nl/t, the previous probability defines what is typically called

an “urn function”

ql(x, t) =
al/t+ blxl
A/t+ b · x

. (3.16)

In this case, the urn function describes the probability that the new entrant agent select the alternative

l, given the time t in which it enters the economy and the actual fractional occupancy x. Notice that

the urn function ql depends on t both explicitly and implicitly - trough the dependence on the fractional

occupancy x.

Now let βl(x, t) be a random variable which takes value one with probability ql(x, t) and value

zero otherwise. One can write

xl(t+ 1) = xl(t) +
1

t+ 1
(βl(x(t), t)− xl(t)) .

The expected value of variable βl(x, t) is, by construction, equal to ql(x, t), so that the previous

equation can be rewritten as

xl(t+ 1)− xl(t) =
1

t+ 1
(ql(x(t), t)− xl(t)) +

ǫl(x(t), t)

t+ 1
, (3.17)

where ǫl(x(t), t) = βl(q(t)) − ql(x(t), t) is a random variable with expected value equal to zero. In

equation (3.17) the increment of the population share who prefers l is driven by two components: a

deterministic one, proportional to the difference between the urn function ql and the actual fraction

of firms xl, and a random term, captured by ǫl.

We will provide below a formal result necessary to analyze the limit of the dynamics described by

(3.17) when the number of agents t becomes large. First, however, consider a simple heuristic analysis

which, albeit incomplete, can be useful to understand what happens in the general case. Since the

expected value of the second term of the right hand side in equation (3.17) is zero, one could say that

on average, the element of the equation which actually drives the dynamics is the deterministic one.

Indeed, considering the expected value conditional on the occupancy at the previous time step

x̄l(t) = E [xl(t)|x(t− 1)] ,

13



after some algebra one obtains

x̄l(t+ 1)− xl(t) =
1

t+ 1

1
A
t + b · x(t)





1

t
(al −Axl(t)) +

L
∑

j=1

xj(t)xl(t)(bl − bj)



 , (3.18)

where we substituted ql with its expression in (3.16) and made use of the fact that E [ǫ|x(t− 1)] = 0.

Such an expression can be tentatively used to derive some properties of the asymptotic behavior of

the system. First of all, consider the case in which at least one b is different from zero. In this case,

the first term inside the square brackets vanishes, with respect to the second term, proportionally to

t−1. The same applies to the first term of the denominator in front of the square brackets. In this

case, retaining only the leading terms in the asymptotic expansion one has

x̄l(t+ 1)− xl(t) ∼
1

t+ 1

1

b · x(t)

L
∑

j=1

xj(t)xl(t)(bl − bj) . (3.19)

Notice that the coefficients a have completely disappeared from this expression and the asymptotic

behavior seems completely driven by the coefficients b. In particular, if there exists an alternative l

which possesses a social externality coefficient greater than any other alternative, that is bl > bj,∀j 6= l,

then, for this alternative, the right hand side of (3.19) is always positive, that is E[fl(t+ 1)] > fl(t).

This means that the expected value of the fraction of agents in l at the next time step is always higher

than the presently realized value. This seems to suggest that, with probability one, fl(t) → 1 when

t → ∞.

We will see below that this is actually the case. In order to derive more general conclusions,

however, we need a few formal definitions. Consider a model with non-null social externality strength,

b > 0. Let Q(x) be the large t limit of the urn function, so that for each component Ql(x) one has

lim
t→∞

ql(x, t) = Ql(x) =
blxl
b · x

(3.20)

and let B(b) ⊆ (SL−1) stand for the set of fixed points of (3.19), that is

B(b) = {x ∈ SL−1|Q(x) = x} . (3.21)

Using (3.20), it follows that the set B(b) contains all the points x which satisfy the following relation

xl (bl − x · b) = 0 ∀l ∈ 1, . . . , L .

This means that if two components of the vector x ∈ B are different from zero, they should be

associated to alternatives with the same b. If we group equal elements of b, the point in B takes the

form (0, . . . , xk, . . . , xk+h, . . . , 0), where the indices from k to k + h are associated with vertex with

the same social externalities coefficient. In other terms, the points in B are linear combinations of

vertices with the same b. One has the following

Theorem 3.1. Consider a model with non-null social externality strength, b > 0. Then when t goes

to infinity, the vector x(t) is almost surely inside the set B(b), that is

lim
t→∞

Prob {xt ∈ B(b)} = 1
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Proof. See Appendix A.6.

The basic meaning of the theorem is that fractional occupancies which are linear combinations of

vertices with different values of b can never be observed when t is large. In other terms, when the

number of agents in the economy diverges, only two types of distributions can possibly be observed:

either all the agents choose the same alternative or they split choices across alternatives with the same

coefficient b. Then, the set B contains at least L points, the vertices of the L− 1 simplex. In general,

the previous theorem does not provide any clue about what outcome, among the many possible, is

actually selected. The following result is useful to further reducing the set of possible limit states

Theorem 3.2. Consider a model with non null social externality strength, b > 0. Without loss of

generality, we can imagine to sort the components of b in such a way that b1 ≥ b2 ≥ . . . ≥ bL. Suppose

that the first K ≤ L components are equal and let C(b) ⊆ SL−1 be the set of fractional occupancies in

which only the first K site are occupied

C(b) =







(x1, . . . , xK , 0, . . . , 0) |
K
∑

j=1

xj = 1







then

lim
t→∞

Prob {xt ∈ C(b)} = 1

Proof. See Appendix A.6.

Theorem 3.2 tells us that only the alternatives with the largest social externality coefficients are

populated in the limit. This finally proves our heuristic conclusion: if there exists an alternative

whose b is larger than any other b, then, when the number of agents becomes large, the economy

finds itself having all the agents choosing the same single alternative. On the other hand, if there

are several alternatives which share the highest coefficient b, Theorem 3.2 predicts a constant positive

(in probability) flows of agents moving from the alternative with lower b’s toward the alternative

with higher b’s. Consequently, when t increases, agents increasingly concentrate among the latter

alternatives and, in the limit, only these alternatives retain a positive fraction of agents. Theorem 3.2,

however, does not give any hint on the way in which the population of agents is distributed across

these possible alternatives.

The (partial) solution of the previous problem will be presented in the next Section. For the time

being, in order to complete our analysis, let us analyze the case in which all coefficient b’s are equal to

zero, that is the economy lacks any social externality effect for any alternative. Following our heuristic

approach and setting b = 0 in (3.17) one has

x̄l(t+ 1)− xl(t) =
al −Axl(t)

t+ 1
. (3.22)

The right hand side of (3.22) becomes zero when

xl =
al

∑L
j=1 aj

, (3.23)

so that, as expected, each alternative contains, asymptotically, a number of agents proportional to its

intrinsic attractiveness. In this case, indeed, the process retains no history: the choice of each agent is
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identical. At each time t, the distribution of occupancies follows a multinomial laws, with probabilities

given by (3.23), so that the trivial result follows.

Recovering the Polya approach

We stressed that Theorem 3.2 does not give any hint on the way in which the population of agents

is distributed across different alternatives when they are characterized by the same social externality

parameter b. In the present section, taking a different approach, we show that it is possible to

partially overcome this limitation. Indeed, the dynamical process described above admits an analogous

representation in terms of a simple “entry” process in which agents choose their preferred alternative

once for all according to a given probabilistic rule. In particular, the expression in (3.10) can be

obtained via a Polya urn process.

Let us consider a urn containing balls of L different colors. The initial number of balls of color l is

ul. For each extraction, s balls of the extracted color are added. After N extractions, the probability

of finding n = (n1, . . . , nL) balls of the L colors is

π(n,u, s) =
N !
∏

l nl!

∏L
j=0 uj(uj + s) · · · (uj + (nj − 1)s)

U(U + s) · · · (U + (N − 1)s)
, (3.24)

with U =
∑

j uj (for a derivation cf. for instance Johnson and Kotz (1977)). If we interpret the

extraction of different colors as a the choice of different alternatives it is easy to show (substitute

uj/s = aj/b) that equation (3.24) reduces to (3.10) (and the process is immediately extended also

to non integer s and u’s). Notice that the initial number of balls uj (i.e. the initial “relevance”

of the alternative) and the number of balls added at each extraction s (i.e. the strength of the

social externality effect) enter in the definition of the “intrinsic benefits” aj/b. Since the equilibrium

distribution with N agents and L alternatives is equivalent to the distribution of Polya urns with

L colors after N extractions, we can use theorems derived for the latter to derive the asymptotic

properties of the former. In particular, applying a result in Polya (1931) and Johnson and Kotz

(1977), one can conclude that the distribution of fractional occupancy span, in equilibrium, the entire

simplex and follows generalized beta distribution.

4 Conclusions

In this paper we present a discrete choice model with social interactions. We describe a simple

economy in which a population of heterogeneous agents choose among a set of several alternatives

facing a stochastic utility function. The utility function depends on two terms capturing respectively

the common, to all agents, characteristics of each alternatives and the ones that are idiosyncratic to

each agent. The effects induced by social interactions among agents are captured simply assuming

that the utility associated with a given alternative increases linearly with the number of times the

alternative has been chosen in the past.

The essential novelty of our approach is the introduction in such a framework of a randomic revision

mechanism of agents choices. This allows us to describe the dynamics of our economy as a Markov

process with a finite number of states. We prove that such a process possesses a unique stationary

distribution of agents across alternatives and we show how it looks like in some simple instantiations

of the model. This distribution can be compared to empirical distributions to directly estimate the

magnitude of the externalities associated with social interactions among agents. Moreover we are able
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to derive expressions for the transition probabilities between different states of the economy which can

be used to perform comparative static exercises in order to explore the structural properties of the

model.

There are many directions in which our analyses can be extended. Two, in particular, deserve to

be mentioned. In the present version of the model, the agent allowed to revise his choice at each time

step is randomly selected. It would be interesting to investigate what are the consequences of changing

this hypothesis and assuming other mechanisms along the lines discussed in the introduction. Another

important extension concerns the role of social interactions. For the sake of simplicity in this paper

we assume that social interactions generates a positive linear externality, a sort of conformity effect,

in individual choices. Exploring different implementations of the social term in the utility function

assuming non-linearities or negative, instead of positive, effect of previous choices is surely worthwhile

both at theoretical and empirical level.
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APPENDIX

A Proof of Propositions

A.1 Proof of Propositions 3.2

Proof. From Assumption 3.1 it is clear that the state of the system at time t+1 only depends on the
state of the system at times t, and no memory is retained of the previous entry/exit events, so that
the ensuing stochastic process possesses a Markovian nature. Since the number of agents N and of
alternatives L is kept constant, the first part of the theorem immediately follows. Let us thus focus
on the derivation of (3.2).

Assumption 3.1 postulates that at each time period, one and only one agent exits the economy
and quits from the alternative previously chosen and, subsequently, only one agent chooses one of the
L alternatives (including also the one in which exit has occurred).

Therefore, if the state of the economy at time t is n = (n1, . . . , nL), the state of the economy at
time t+ 1 can be n′ if either

1. there exist two alternatives, say l and m, l 6= m such that n′
l,t+1 = nl,t − 1, n′

m,t+1 = nm,t + 1,
and n′

h,t = nh,t for any h, h 6∈ (l,m). In this case an agent is removed from alternative l and an
agent chose alternative m; or

2. n = n′. In this case the entrant has chosen the same alternative of the exiting agent.

If the two occupancy vectors differ by more than one agent, i.e. n′ 6= n + δm − δl for all l,m =
{1, . . . , L}, the transition probability is zero and the second row of (3.2) follows.
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Given two indexes l,m ∈ {1, . . . , L}, consider the couple of “near” states n and n′ = n+ δm − δl.
The probability of transition between these two states can be written as

P (n′|n) = Pr {n+ δm − δl|n} =

Pr {agent rejects alternative l} Pr {agent chooses alternative m|agent rejected alternative l}
(A.1)

where we drop the explicit mention of the parameters a and b in P . The probability of transition
is expressed as a product of the probabilities of two events, denoted with Pr{. . . }. This structure
reflects the two-step nature of the exit/entry process, as described in Assumption 3.1. In particular,
the probability of choosing j is conditional on the previous exit event associated with the rejection of
alternative i. Let us now look more closely at these probabilities. Since the exiting agent is chosen at
random from all incumbent agents it must be that

Pr {agent rejects i} =
nl

N
.

On the other hand, from Assumption 3.1, the probability of the entrant firm to locate in j can be
written as

Pr {agent chooses alternative m|agent rejected alternative l} =
am + bm (nm − δm,l)

H

where H is a suitable normalization constant to be determined. Notice that the outcome of the exit
event affects the subsequent entry event via the Kronecker term δ . The final transition probability
can then be written as

P (n+ δm − δl|n) =
nl

N

am + bm (nm − δm,l)

H
.

By imposing the normalization condition

L
∑

l,m=1

P (n+ δm − δl|n) = 1

one obtains

H =

L
∑

l=1

al + (1−
1

N
)

L
∑

l=1

bl nl (A.2)

that proves the proposition.

A.2 Proof of Proposition 3.3

Proof. Suppose that a1 = 0 and that the system is in state (1,nL−1), where nL−1 stands for a vector
of length L − 1. If, at the next time step, alternative 1 looses an agent and the system jumps to a
state of the type (0,n′

L−1) it can never return, later, to the previous state (1,nL−1). Since the jump
from state (1,nL−1) to state (0,n′

L−1) has a finite probability, there is a finite probability that the
state (1,nL−1) will never be reached again. That is, this state is transient.

Consider now a state (n1,nL−1) in which there are n1 > 1 agents choosing 1 with a1 = 0. Starting
from this state, the system has a positive probability of reaching a state of the type (0,n′

L−1) in n1

steps. At this point, the system can never return back to (n1,nL−1). Then, this state is transient
as well. It is easy to see that the previous reasoning can be repeated for all the alternatives l with
al = 0. Therefore, all the states where one or more agents chooses an alternative with zero intrinsic
attractiveness are transient.

Consider now the states in S′. An alternative with strictly positive al and positive bl has a strictly
positive probability of being chosen by an entering agent (see Assumption 3.1). Therefore, any state
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n ∈ S′, is reachable in a finite number of steps starting from any other state n′ ∈ S′, with a positive
probability. The set S′ is then connected and, consequently, made of persistent states (Feller, 1968,
Theorem 3, p.392).

A.3 Proof of Proposition 3.4

To build the proof it is useful to set two preliminary results. First, recall that a Markov chain which
posses a stationary distribution is in general not required to satisfy the detailed balance condition.
However, if one is able to find a distribution that satisfies all the detailed balance conditions arising
between any possible pair of states of the system, then the chain is said to be reversible and the
distribution is invariant (see, for instance, Feller (1968, p.414)).

The second result is summarized in the following

Lemma A.1. The 1-step transition coefficients in (3.4) between states in S ′ commute, i.e. for two
couples (i, j) and (h, k) if n,n− δi + δj ,n− δh + δk ∈ S′ it is

Ti→j(n)Th→k(n− δi + δj) = Th→k(n)Ti→j(n − δh + δk) (A.3)

Proof. Since the transition coefficient from an alternative to itself is 1, if i = j or h = k the Lemma
is easily proved.

If i 6= j and h 6= k, substituting in (A.3) the definition for T in (3.4) and after simplifying the C
coefficients defined in (3.3), one obtains

Jj(nj)

Ji(ni − 1)

Jk(nk − δk,i + δk,j)

Jh(nh − 1− δh,i + δh,j)
=

Jk(nk)

Jh(nh − 1)

Jj(nj − δj,h + δj,k)

Ji(ni − 1− δi,h + δi,k)
,

where the notation Jk(n) for J(n, ak, bk) is employed. One can directly check that for all possible
cases the relation is satisfied noting that, due to the requirements i 6= j and h 6= k, the values of the
Kronecker delta’s are not all independent.

We are now able to undertake the proof of Proposition 3.4.

Proof. Proposition 3.3 states that the Markov chain possesses a single connected set of persistent
states S ′ and, if there exists at least one alternative l with al = 0, also a set of transient states T .
Since the persistent states are all connected, the chain possesses a unique stationary distribution.

The stationary distribution will have probability 0 on all the states in T .
Conversely, in order to compute the expression for the stationary distribution on the states of S ′ we

make use of the first preliminary result above and we build the invariant density for our model using
the detailed balance condition. The transition coefficient Tn→n′ from an occupancy configuration n

to any other occupancy n′defined as

π(n′) = Tn→n′π(n) (A.4)

can be computed using any suitable series of single-step “jumps” which go from n to n′. Since (A.3)
holds, as long as these jumps start from n and lead to n′, the particular series of jumps one takes is
irrelevant and the final transition coefficient reduces to the product of the coefficients T generated by
the series of 1-step jumps. The factors C(n,a, b) present in successive 1-step transition coefficients T
cancel out, so that only the first and last ones are left. Moreover, at each jump in which the site l
is involved, a term J(n, al, bl) is generated, with n equal to the number of agents choosing l at that
time. Since Tl→m = T−1

m→l this term is at the numerator if a firm chooses l, and at the denominator if
he rejects it. With these rules in mind, by applying recursively the definition of T in (3.4), one can
see that

Tn→n′ =
C(n′,a, b)

C(n,a, b)

L
∏

l=1
δnl 6=0

∆(|δnl|, nl, al, bl)
δnl/|δnl| (A.5)
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with

∆(δn, n, a, b) =
n+δn−1
∏

h=n

J(h, a, b) δn > 0 . (A.6)

In principle, given the generic transition coefficient Tn→n′ and using (A.4) it is possible to compute
the probability distribution π(n) for any occupancy vector n, starting from a given occupancy n0.
Since the number of states of the Markov chain is finite and the T terms are neither zero nor infinite,
this procedure define a proper probability distribution for any n0.

In order to obtain π(n) there exists, however, a simpler approach. Indeed, noting that, according
to the definition in (A.6),

∆(n+ h, 0, a, b)

∆(n, 0, a, b)
= ∆(h, n, a, b) n > 0, h ≥ 0 , (A.7)

even if the null vector 0 does not represent a proper occupancy vector, we can use T0→n to obtain

π(n) =
N !C(n,a, b)

ZN (a, b)

L
∏

l=1

∆(nl, 0, al, bl) (A.8)

where the ZN (a, b) represents a suitable and unknown normalization constant and N ! has been fac-
tored out to simplify following computations. Using (A.7) it is immediate to check that (A.8) satisfies
(A.4) for any couple of states in S′. Finally, notice that

∆(n, 0, a, b) =
ϑn(a, b)

n!

so that (A.8) reduces to (3.5) and the Theorem is proved.

A.4 Proof of Proposition 3.5

First, it is useful to introduce the generating function of the coefficients ϑ defined as

ϑ̃(x; a, b) =
∞
∑

n=0

xn

n!
ϑn(a, b) . (A.9)

With this definition comes the formal property

ϑn(a, b) =
dn

dxn
ϑ̃(x, a, b)|x=0 . (A.10)

From the expression of ϑ in terms of Γ functions in (3.6) it follows that

ϑn(a, b) ∼
n→+∞

n!

so that (A.9) possesses a finite radius of convergence and (A.10) is meaningful.
In what follows we use the following property

Lemma A.2. The generating function of the coefficient ϑ defined in (A.9) admits the representation

ϑ̃(x; a, b) = (1− x b)−a/b . (A.11)

Proof. Using (3.6) the definition (A.9) becomes

ϑ̃(x; a, b) =

∞
∑

n=0

xn bn

n!

Γ(a/b+ n)

Γ(a/b)
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which, as from definition 15.1.1 in Abramowitz and Stegun (1964, p.556), reduces to a hypergeometric
function

ϑ̃(x; a, b) = 2F1(a/b; 1, 1, x b)

and equation 15.1.8 in Abramowitz and Stegun (1964, p. 556) proves the assertion.

Using the previous lemma we can obtain the representation of the stationary distribution in (3.7).

Proof. Substituting the relation (A.10) in the definition of π in (3.5), from (3.7) one has

π̃(s) =
N !

ZN (a, b)

+∞
∑

n1,...,nl=1∑
l nl=N

C(n,a, b)

L
∏

l=1

snl

l

nl!

dn

dxnl
ϑ̃(xl, a, b)|xl=0 . (A.12)

In this equation one can introduce the following substitution

C(n,a, b) →

(

A+

(

1−
1

N

) L
∑

l=1

blsl
d

dsl

)

and move this differential operator at the beginning of the expression to obtain

π̃(s) =
1

ZN (a, b)

(

A+

(

1−
1

N

) L
∑

l=1

blsl
d

dsl

)









+∞
∑

n1,...,nl=1∑
l nl=N

N !

L
∏

l=1

snl

l

nl!

dn

dxnl









L
∏

l=1

ϑ̃(xl, a, b) .

The third factor of the expression is a multinomial expansion. Once this expansion is collected one
obtains

π̃(s) =
1

ZN (a, b)

(

A+

(

1−
1

N

) L
∑

l=1

blsl
d

dsl

) (

L
∑

l=1

sl
d

dxl

)N L
∏

l=1

ϑ̃(x, a, b)|xl=0 .

Consider the two factor between parentheses. Expanding the derivatives with respect to s in the first
factor and recollecting terms one has

(

A+

(

1−
1

N

) L
∑

l=1

blsl
d

dsl

) (

L
∑

l=1

sl
d

dxl

)N

=

(

L
∑

l=1

(A+ (N − 1) bl) sl
d

dxl

)(

L
∑

l=1

sl
d

dxl

)N−1

which substituted in the previous expression gives (3.8) once the expression for θ̃ in (A.11) is consid-
ered.

A.5 Proof of Proposition 3.7 and 3.8

Lemma A.3. Let fl(x) with l ∈ (1, . . . , L) be a collection of L real functions infinitely differentiable
at x = 0. Then the following applies

(
L
∑

l=1

d

dxl
)N

L
∏

l=1

fl(xl)|x=0 = (
d

dx
)N

L
∏

l=1

fl(x)|x=0

for any integer N .

Proof. The statement is straightforward and can be checked by explicitly taking the left and right
derivatives.

Making use of the Lemma then we can go back to the
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Proof of Proposition 3.7. Consider the expression for the normalization constant in (3.9). Under the
assumption of constant b it becomes

ZN (a, b) = (A+ (N − 1) b)

(

L
∑

l=1

d

dxl

)N L
∏

l=1

(1− xl b)
−al/b |x=0

and using Lemma A.3 it reduces to

ZN (a, b) = (A+ (N − 1) b)

(

d

dx

)N

(1− x b)−A/b|x=0 .

According to (A.10), the last part of the previous expression is the differential representation of a ϑ
function and one has

ZN (a, b) = (A+ (N − 1) b) ϑN (A, b) .

Substituting the expression above for the normalization constant in the definition of the stationary
distribution (3.5), one gets

π(n;a, b) =
N !

ϑN (A, b)

L
∏

l=1

1

nl!
ϑnl

(al, b)

that reduces to (3.10) whenever the representation of the ϑ in terms of Γ functions provided by (3.6)
is used.

Proof of Proposition 3.8. Using the expression for the normalization coefficient ZN derived above, the
generating function can be written

π̃(s) =
1

ϑN (A, b)

(

L
∑

l=1

sl
d

dxl

)N L
∏

l=1

(1− xl b)
−al/b

∣

∣

∣

∣

∣

∣

x=0

. (A.13)

Using the representation of the marginal distribution as a derivative of the generating function

π(n) =
1

n!

dn

dsnl
π̃(s)

∣

∣

∣

∣

s=1

and applying Lemma A.3 and (A.10), the expression in (A.13) becomes

π(n) =

(

N

n

)

ϑn(al, b)ϑN−n((A− al, b)

ϑN (A, b)
.

Using the representation of the ϑ in terms of Γ functions provided in (3.6) one can see that the last
expression is equivalent to (3.11).

The average number of agents choosing alternative j ∈ {1, . . . , L} can be computed as

< nm >=
d

dsm
π̃(s)

∣

∣

∣

∣

s=1

.

Using the expression in (A.13) one has

< nm >=
N

ϑN (A, b)

d

dxm

(

L
∑

l=1

d

dxl

)N−1 L
∏

l=1

(1− xl b)
−al/b

∣

∣

∣

∣

∣

∣

x=0

.
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Taking the derivative with respect to xm and using Lemma A.3 this reduces to

< nm >=
N aj

ϑN (A, b)

(

d

dx

)N−1 L
∏

l=1

(1− xl b)
−al/b−δm,l

∣

∣

∣

∣

∣

x=0

and finally, with the help of (A.10), one has that

< nm >= N am
ϑN−1(A+ b, b)

ϑN (A, b)
= N

am
A

.

A.6 Proof of Theorem 3.1 and 3.2

The proof of Theorem 3.1 is based on results obtained in Brian Arthur et al. (1986). Basically, we
need to identify a Lyapunov function associated with the dynamics described in (3.17) in which the
urn function is replaced with its large t limit. Moreover, some conditions related to the asymptotic
behavior of the cumulated random effects must be fulfilled. The Lyapunov function is introduced in
the following Lemma. Before, however, we need some formal definition.

Denote with b = maxl{bl} and b = minl{bl|bl > 0} the largest and smaller non-negative social
externality coefficient b and with a = maxl{al} the largest intrinsic attractiveness. One has the
following

Lemma A.4. The function ν(x) = b− b · x possesses the following properties

1. ν is twice differentiable

2. ν(x) ≥ 0 , ∀x ∈ SL−1

3. < Q(x)− x,∇ν(x) >

where < . . . > stands for the ordinary scalar product and ∇ indicates the gradient.

Proof. Point 1 and 2 are trivial. In order to prove point 3, rewrite the previous equation explicitly

L
∑

l=1

(Ql(x)− xl) ∂xl
ν(x)

which, substituting the expression for Ql(x) in (3.20), after some algebra reads

−
1

b · x

(

L
∑

l=1

b2l xl − (b · x)2

)

.

The numerator of the previous expression is nothing but the variance of the values b’s weighted with
probabilities x. Then, the assertion is proved.

Proof of Theorem 3.1. Consider the difference al(x, t) between the urn function ql(x, t) at a given
time step t and the asymptotic limit Ql(x)

al(x, t) = ql(x, t)−Ql(x) =
al b · x+Abl xl
(A+ t b · x) b · x

.

Then it is immediate to see that

0 ≤ al(x, t) ≤ a(t) =
(a+A)b

(A+ tb)b
∀x ∈ SL−1 and ∀l ∈ {1, . . . , L} ,
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so that one has

sup
x

||al(x, t)|| ≤ a(t)

and the series {a(t)/t} admits a finite limit

∞
∑

t=1

a(t)

t
= (a+A)

b

b

(

γE +Ψ

(

A+ b

b

)

1

A

)

. (A.14)

According to Theorem 3.1 in Brian Arthur et al. (1986), the finite limit of the summation in
(A.14), the existence of the Lyapunov function ν(x) introduced in Lemma A.4, and the fact that the
set B(b) defined by (3.21) is made of a finite number of connected components is sufficient to prove
the assertion.

The proof of Theorem 3.2 is based on results obtained in Pemantle (1990). The basic intuition
is to think to the deterministic part of (3.17), with ql replaced by its limit Ql, as a continuous time
dynamical system. The points in B(p) are fixed points of this system and can be classified as stable
or instable. The following applies

Lemma A.5. The point x ∈ B(p) is asymptotically stable or non hyperbolic only if all its non-zero
components xl > 0 are relative to the vertices with the largest value of social externality coefficient,
bl = b. Otherwise, the point is asymptotically unstable.

Proof. Consider the Jacobian matrix of the dynamical system

Jl,j =
∂

∂j
(Ql(x)− xl) = δj,l

(

bl
b · x

− 1

)

− xl
blbj
b · x

.

For each x ∈ B(p) there exits a b⋆ such that only alternatives with social externality coefficients equal
to b⋆ posses a non zero firms share. Without loss of generality we can assume that these alternatives
are the first K ≤ L alternatives, so that x = (x1, . . . , xK , 0, . . . , 0) and the Jacobian computed in that
point reads

Jl,j =

{

−xl
bj
b⋆ if l ≤ K

δl,j

(

bl
b⋆ − 1

)

if l > K .

The matrix posses a (L − K) × (L − K) lower-right diagonal block. Consequently bl/b
⋆ − 1 ar all

eigenvalues of the Jacobian. If there exists an l such that bl > b⋆, the associated eigenvalue is positive.
This proves the second part of the theorem. If b⋆ is the largest social externality coefficient, then all
these eigenvalues are negative, but it remains to analyze the upper-left K ×K block. This block is
proportional to the tensorial product of the first K elements of the two vectors x and b. Then, it
possesses an eigenvalue −x · b/b∗ with multiplicity one and eigenvalue 0 with multiplicity L− 1. This
proves the first part of the assertion.

Proof of Theorem 3.2. It is immediate to verify that the process described in (3.17) satisfies all the
requirements of Theorem 1 in Pemantle (1990). Then, according to that theorem, the probability to
converge to (asymptotically) unstable fixed points in B(b) is zero. Hence, since the probability to
converge to B(b) is 1, the convergence must be with probability one toward the non-unstable fixed
points. Using Lemma A.5 the propositions follows.
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