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Abstract

We propose a new method for multivariate forecasting which combines the Generalized
Dynamic Factor Model (GDFM) and the multivariate Generalized Autoregressive Condi-
tionally Heteroskedastic (GARCH) model. We assume that the dynamic common factors
are conditionally heteroskedastic. The GDFM, applied to a large number of series, cap-
tures the multivariate information and disentangles the common and the idiosyncratic
part of each series; it also provides a first identification and estimation of the dynamic
factors governing the data set. A time-varying correlation GARCH model applied on the
estimated dynamic factors finds the parameters governing their covariances’ evolution. A
method is suggested for estimating and predicting conditional variances and covariances
of the original data series. We suggest also a modified version of the Kalman filter as a
way to get a more precise estimation of the static and dynamic factors’ in-sample levels
and covariances in order to achieve better forecasts. Simulation results on different pan-
els with large time and cross sections are presented. Finally, we carry out an empirical
application aiming at comparing estimates and predictions of the volatility of financial
asset returns. The Dynamic Factor GARCH model outperforms the univariate GARCH.
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1 Introduction

Exploiting all the information contained in a large dataset may be troublesome, if an increase
in the cross-dimension corresponds to a much higher increase in the number of parameters.
This phenomenon cannot be avoided whenever many different links exist among the variables.
Indeed, it may become overwhelming when such links are operating not only at the level of
the first moment, but also at the covariance level. For example, a forecast of large covariance
matrices is needed for several financial tasks, including the construction of an optimal portfolio
and the price determination of options based on many underlying returns. Many procedures
have already been suggested in order to make estimation simpler for the case of many series
linked one another by a relation in their conditional second moments, and all of them have
to face the trade-off between the reduction of complexity and the strength of the simplifying
assumptions. The estimation and forecast method proposed here does not avoid this trade-off,
but suggests a way to model and predict conditional covariances for a large number of series
by simultaneously exploiting the information contained in the entire dataset. It represents a
possible way for forecasting multivariate volatility by means of a factor model in which the
dynamic factors are conditionally heteroskedastic and have a multivariate GARCH evolution.

The main pitfall of multivariate GARCH models in most specifications is the very large num-
ber of parameters, which rapidly makes the estimation unfeasible as the number of series
increases. Those specifications which bypass this problem, on the other hand, pay the price in
terms of a severe loss of generality.1 Neither multivariate SV models, although relatively more
parsimonious, are able to handle more than a few number of series because of their complexity
of estimation.2 For both streams of literature, the key for dimensionality reduction stands in
the idea of the existence of a few latent variables, the so called factors, as driving forces for the
whole dataset. Back to finance, models as CAPM explain theoretically why we may speak of
factors in the market. Indeed, the use of factor models allows to disentangle within each stock
the component which is directly linked to these common forces and the component which is
peculiar to the stock itself. Doing this way, the factor analysis makes use of co-movements
across stocks in order to improve forecasts.

Here we focus on the GARCH side of the story.3 After the original ARCH and GARCH
univariate specifications, respectively by Engle [1982] and Bollerslev [1986], many multivari-
ate versions have been proposed, notably the VECH model of Bollerslev et al. [1988], the
constant correlation model of Bollerslev [1990], the BEKK model of Engle and Kroner [1995]
and the dynamic conditional correlation model by Engle [2002b]. The idea of a factor approach
to conditional heteroskedasticity has first been suggested by Engle [1987]. Soon after, Diebold
and Nerlove [1989] have developed a static one-factor model on return series where the co-
variance matrix of factors is conditionally heteroskedastic, while the conditional covariance of
the idiosyncratic part is homoskedastic. The estimation of the model is pursued by using a
Kalman filter whose errors are found by maximizing the likelihood function. The authors pre-
fer this simultaneous method to a two-step one in which static factors are extracted from the
unconditional covariance matrix before being modelled as univariate GARCH processes. This
latter method, with some modifications, is instead used by Engle et al. [1990] for a more com-
plex model in the asset pricing context; Sentana [1998] proves that this model is nested in the

1See Bauwens et al. [2006].
2See Harvey et al. [1994].
3For multivariate SV models within the factor approach, see Chib et al. [2006].
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previous by Diebold and Nerlove. Harvey et al. [1992] build a modified version of the Kalman
filter for models with unobservable heteroskedastic factors; among the possible applications
of the filter, they consider also the case of a dynamic factor model, which is called Structural
ARCH (STARCH), and the aforementioned latent factor model by Diebold and Nerlove [1989].
The modified version of the Kalman filter is used by King et al. [1994], who build a static
factor model with both observed and unobserved components. Such model is allowed to have
a diagonal time-varying conditional covariance matrix of the idiosyncratic components, and is
estimated by a two-step procedure in which factor loadings are first found by means of prin-
cipal component analysis, while the static factors and their conditional covariances are next
estimated by the modified Kalman filter with maximization of the likelihood function. More
recently, the Orthogonal GARCH model by Alexander [2001], typically used for Value-at-Risk
modelling, provides a method for obtaining large positive semi-definite conditional covariance
matrices by modelling the principal components of the financial returns’ unconditional co-
variance matrix as univariate GARCH processes. The GO-GARCH model by van der Weide
[2002] generalizes the Orthogonal GARCH approach by allowing for the linear map that links
components and observed data to be non orthogonal; a three-step estimation procedure has
been proposed by van der Weide [2004].

We suggest a Dynamic Factor GARCH (DF-GARCH) model that might be able to explain
and forecast the conditional covariances of a large number of series by means of a relatively
small number of parameters. We assume that each series is composed of a common part,
which depends on some dynamic factors, and an idiosyncratic part. We also assume that
dynamic factors and idiosyncratic parts are conditionally heteroskedastic, where both het-
eroskedasticities evolve according to a GARCH rule. Our aim is predicting the conditional
covariance matrix of all the series for the first out-of-sample period. Whenever a factor struc-
ture lies behind observable data, the conditional variances and covariances of the observable
series do not depend only on idiosyncratic elements, but partially derive from the conditional
heteroskedasticity of the common factors. As a consequence, we can model the evolution of
the conditional covariances of observable series by simply modelling the evolution of the con-
ditional covariances of few factors, thus using a small number of parameters. Moreover, if the
factors are dynamic, that is their influence on observable data is not only contemporaneous,
the number of factors can be further reduced, and the number of parameters required for the
estimation and forecast of conditional variance-covariance becomes even smaller. This feature
of our model acquires more and more importance as the cross-dimension of the dataset be-
comes larger, because the number of parameters required by a multivariate GARCH to model
and forecast conditional covariances would be overwhelming. At the same time, the existence
of a factor structure that drives the movements of data cannot be ignored when predicting the
conditional volatility of each observable series, as the common and the idiosyncratic parts of
each series should be modelled separately.

For the estimation of the Dynamic Factor GARCH model, we propose a two-step method-
ology that takes the same approach to factor analysis as in Giannone et al. [2004]. Indeed,
we mix a first step based on non-parametric procedures, that provides an estimate of the pa-
rameters governing the factor dynamics, with a second step in which a Kalman filter corrects
the estimate of dynamic and static factors. The framework has already been extended by Doz
et al. [2005], who test the estimation consistency of a similar two-step procedure, and by Gian-
none et al. [2006], who apply the procedure to macroeconomic data for nowcasting GDP and
inflation. The difference of our methodology lies in the explicit consideration we take of the
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dynamic factor conditional heteroskedasticity. Such conditional heteroskedasticity, which is
not unlikely in finance, can be modelled and used in order to forecast conditional variances and
covariances of a large number of series, when the dynamics of our dataset depends on a small
number of dynamic factors. We first operate an initial division of each series into common and
idiosyncratic part by applying the Generalized Dynamic Factor Model (GDFM) by Forni et al.
[2000]. The GDFM generalizes on the one hand the dynamic factor model proposed by Sargent
and Sims [1977] and Geweke [1977] by allowing for mildly correlated idiosyncratic components;
on the other hand the approximate factor model by Chamberlain [1983] and Chamberlain and
Rothschild [1983] which is static. In the same stream of literature, Stock and Watson [2002]
deal with forecasting issues, although in a macroeconomic context, by means of an approxi-
mate dynamic factor model which is estimated in a static way. Here the GDFM is initially
applied through the one-sided estimation method by Forni et al. [2005], that provides us with
an initial estimate of the static factors and of the common components of the observed se-
ries. We then apply a procedure that draws on Giannone et al. [2004] to obtain an estimate
of the parameters that govern the links among dynamic factors, static factors and observed
data; we also get a first estimate of the dynamic factors. By univariately modelling the id-
iosyncratic parts, we find their conditional means and variances. By multivariately modelling
the estimated dynamic factors, we find the GARCH parameters linking them. We then run
a modified Kalman filter on data series; this filter will use the parameters obtained up to
this point, and the conditional variances of the idiosyncratic parts obtained by the previous
univariate models. We thus get a new estimate of the dynamic factors. Once we retrieve
the dynamic factors and their conditional covariances for the last period T of the sample, it
is easy to build a prediction for the conditional covariance matrix of original series at time T+1.

In the next section we describe the DF-GARCH model. Section 3 is devoted to the esti-
mation of the model. Section 4 presents a modified Kalman filter useful for forecasting, here
we concentrate on the Kalman filter correction which takes into account the GARCH evolu-
tion of the dynamic factors’ conditional covariance matrix and allows to provide a multivariate
prediction (details are in the Appendix). In section 5 we illustrate some results obtained when
applying the estimation to simulated panels. In section 6 our method is applied to a financial
dataset and the assumptions of the DF-GARCH are tested. Section 7 and 8 compare volatility
and covolatility predictions for different specifications of the DF-GARCH and, in the case of
volatility, for a univariate GARCH. A discussion of the results and some final remarks are
reported in section 9. Sometimes we use the word “returns” when referring to the original
data series and “(co)-volatilities” when referring to their (co)-variances, as finance is the first
field of application for our method.

2 The model

We denote as xt = (x1t . . . xNt)
′ an N -dimensional vector process. Each of the series is covari-

ance stationary, standardized and the second order moments Γk = E[xtx
′
t−k] exist finite for

all k ∈ N. In the Generalized Dynamic Factor Model (GDFM), as proposed by Forni et al.
[2005], it is assumed that each series xit can be written as the sum of two mutually orthogonal
unobservable components, the common component χit and the idiosyncratic component ξit.
The common component is driven by a q-dimensional vector of dynamic common factors (or
shocks) ut = (u1t . . . uqt)

′, and usually, in empirical applications, q << N . Each factor is
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loaded with possibly different coefficients and lags. Formally in vector notation

xt = χt + ξt = D(L)ut + ξt . (1)

By assumption ut is an orthonormal white noise and ξt has zero mean and is stationary.
Moreover, ξit is orthogonal to ujt−k for all integers k, i and j. The entries of D(L) are square-
summable polynomials in the lag operator dij(L). They are one-sided filters, and, in principle,
of infinite order. We assume that the q largest eigenvalues of the spectral density matrix of
the common component, Σχ(θ), diverge almost everywhere, for θ ∈ [−π, π], as the number
of series goes to infinity, while the largest eigenvalue of the spectral density matrix of the
idiosyncratic component is uniformly bounded. This last condition, in other words, relaxes
the assumption of mutual orthogonality of idiosyncratic components by allowing for a limited
amount of cross-sectional correlation. Both these assumptions on the eigenvalues of the spec-
tral density matrices are necessary to guarantee the identification of the common component.

Throughout the paper, we focus on the particular case in which dynamic factors are het-
eroskedastic and conditionally distributed as

ut| It−1 ∼ N (0, Qt) ,

Qt being a non-diagonal matrix changing over time, and where It contains all the information
available at time t. In the rest of the paper we assume that the conditional variance of the
dynamic factors is governed by

Qt = C ′
0C0 + C ′

1ut−1u
′
t−1C1 + C ′

2Qt−1C2 . (2)

This is the full BEKK representation of multivariate GARCH models as in Engle and Kroner
[1995]. As we said above, in empirical cases the number of dynamic factors is very small.
Alternatively, Qt could be modelled according to the Dynamic Conditional Correlation (DCC)
specification as in Engle [2002b]. The main advantage of the DCC formulation is that it always
requires the estimation of only two parameters when considering a multivariate GARCH of
order one.This might lead to think that many series could be handled by doing without a
factor decomposition. However, this is not true, two parameters are too few to describe the
whole dynamics of conditional correlations when the number of series is large. Moreover, the
estimation of a DCC model would require the inversion of a N × N matrix which may be
computationally very slow. This is the practical reason for applying a factor decomposition
before estimating a multivariate GARCH even with a DCC representation. Given that with
few series it is feasible to estimate also a full BEKK, we consider both possibilities in the
empirical applicaton, but focus on the BEKK representation in the next section. Concerning
the BEKK representation (2), notice that as in the case of univariate GARCH we have E[Qt] =
E[utu

′
t] = Iq. Hence the additional condition C ′

0C0 = Iq − C ′
1C1 − C ′

2C2 on the coefficients
applies.
We assume that idiosyncratic parts evolve according to a univariate ARMA-GARCH model

ξt| It−1 ∼ N (µt, Rt) ,

where, for each point in time, Rt is a diagonal matrix containing the conditional variances of
each idiosyncratic series

Riit = ρ0i + ρ1iξ
2
it−1 + ρ2iRiit−1 i = 1, . . . , N . (3)
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Since in a factor model the bulk of the dynamics of the series is usually concentrated in the
common part, we do not look for a way to model conditional covariances between idiosyncratic
parts, and we limit ourselves to modeling only the conditional variances. Moreover, we do not
define a particular structure of the ARMA process governing the conditional mean of ξt. In-
deed, as our empirical application deals with financial returns, whose idiosyncratic parts are
unlikely to have strong dynamics, we do not consider any ARMA structure of the idiosyncratic
components in what follows (i.e. µt = 0). However, notice that the general description of our
procedure allows also for this possibility.

In the static representation the common part of the factor model is made of r < N com-
mon static factors Ft, thus the factor model is written as

xt = ΛFt + ξt , (4)

where Ft = (F1t . . . Frt)
′ is the r-dimensional vector of common factors and Λ is an N × r

matrix of loadings. We assume that Ft is driven by q < r common shocks and it has the
VAR(1) representation

Ft = AFt−1 + But , (5)

where ut is the vector of common shocks, A is r × r and B is r × q. According to the static
representation of the dynamic factor model, the common shocks are precisely the dynamic
factors that we want to estimate. Indeed the static model of equation (4) contains a special
case of the usual dynamic factor model (see Forni et al. [2006] and Bai and Ng [2005]). By
inverting equation (5) and using the lag operator L, the static factors are an MA(∞) of the
dynamic factors, namely

Ft = (I − AL)−1But .

We are then back to the dynamic representation of the factor model

xt = Λ(I − AL)−1But + ξt ,

where the loadings of (1) are now

D(L) =

∞
∑

k=0

DkL
k =

∞
∑

k=0

ΛAkBLk ,

It is clear that a VAR(1) representation of the static factors is general enough for the common
part to be an MA(∞) representation. This allows for both MA and AR loading of the dynamic
factors, which is an important generalization with respect to the static model by Stock and
Watson [2002]. Usually we truncate the infinite summation at a maximum lag s such that
we have a number of static factors r = q(s + 1). This is equivalent to assume that the static
factors are just the dynamic factors with all their lags: Ft = (u′

t, u
′
t−1 . . . u′

t−s)
′.

3 Estimation

For the estimation of the GDFM, we follow the two-step procedure proposed in Forni et al.
[2005]. In the first step the spectral density matrix of xt, Σ̂x(θ), is estimated by applying
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the Fourier transform to the contemporaneous and lagged sample covariance matrices Γ̂x
k.

4

Then the dynamic principal component decomposition is applied, thereby selecting the first
q largest eigenvalues of Σ̂x(θ) and the corresponding eigenvectors, with which we compute
Σ̂χ(θ) and Γ̂χ

k , using the inverse Fourier transform. The estimate of the covariance matrix of

the idiosyncratic part, Γ̂ξ
k, is then obtained by difference.

In the second step of the procedure we move to a static representation of the model in which
we estimate the r largest generalized eigenvectors Z = (z(1) . . . z(r)) of Γ̂χ

k with respect to Γ̂ξ
k.

The common component is finally estimated as

χ̂t = Γ̂χ
0Z(Z ′Γ̂χ

0Z)−1Z ′xt .

We obtain the idiosyncratic component simply as difference between the original series xt and
the estimated common component. It is worth noticing the key difference between this dy-
namic approach and the static principal component method used by Stock and Watson [2002].
Indeed, while the first exploits the information contained in lagged covariance matrices, the
latter makes use of contemporaneous covariances only.

Using the one-sided estimator proposed by Forni et al. [2005] we have an estimation of the
common part and also an estimation of the r static common factors Ĝt = Z ′xt. These are
identified only up to an orthogonal transformation, i.e. we actually estimate the generalized
principal components Ĝt = ΩF̂t with ΩΩ′ = I. Hereafter we suppose that Ω = I, since F̂t and
Ĝt span the same space and we are not interested in recovering the “true” static factors. In-
vestigating the influence that a factor rotation would have on our estimation procedure is left
to further research. Notice however that, as shown by Forni et al. [2005], the space spanned
by the static factors and the common component are always identified. As a consequence, also
the conditional covariance matrix of χt is identified.
From (4), given a sample length T , we also have

Λ̂ = Γ̂x
0Z

(

Z ′Γ̂x
0Z

)−1

.

We thus have an estimate of equation (4).

In order to estimate also equation (5) we need estimates of A and B. Following Giannone
et al. [2004] and Forni et al. [2006], we have

Â = Z ′Γ̂x
1Z

(

Z ′Γ̂x
0Z

)−1

, (6)

and we can also estimate the covariance of But which is given by

Γ̂Bu
0 =

1

T − 1

(

Z ′Γ̂x
0Z − ÂZ ′Γ̂x

0ZÂ′
)

.

The estimation of A, as given by (6), is not efficient. Indeed, equation (5) not only represents
an autoregression of the dependent variable, but also shows an error term But which is a linear

4Hereafter we consider the estimates

Γ̂x
k =

1

T − 1

T
∑

t=1

xtx
′

t−k .

With hatted symbols we always denote estimates.
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combination of GARCH processes; as a consequence, the autoregression of the static factors
Ft involves a weak GARCH evolution of the error (see Nijman and Sentana [1996]). However,
the unbiasedness of this estimation and the limit we must impose to the number of parameters
drive us towards the decision of using equation (6). Consider now the matrix S, that has the
q largest eigenvalues of Γ̂Bu

0 on its diagonal, while the corresponding eigenvectors are in the
matrix M . Then

Γ̂Bu
0 = E[Butu

′
tB

′] = BB′ = MSM ′ = MS1/2S1/2M ′ ,

from which we get
B̂ = MS1/2 . (7)

Finally, by inverting (5) and using the estimates for Ft, A, B and Λ we have an estimate of
the dynamic factors

ût = S−1/2M ′(I − ÂL)F̂t .

We now take into account the hetroskedasticity of the idiosyncratic part and of the dynamic
factors. We apply a univariate GARCH model to each series ξit as in (3), and so we obtain
the conditional variance matrix of the idiosyncratic component R̂t. As in the estimation of
the GDFM we do not consider out-of-diagonal elements of the covariance matrix of the id-
iosyncratic part (see Forni et al. [2005] for a justification in the unconditional case). If we
model also the conditional mean of the idiosyncratic part then also an ARMA model should
be estimated for each series, in order to obtain an estimate of the conditional mean µ̂t. On
the other side, we apply a multivariate GARCH model to the estimate of the dynamic factors
ût obtained previously, that is we apply the model described by (2) and we get maximum like-
lihood estimates of the parameters Ĉ0, Ĉ1, Ĉ2 as well as of the dynamic factors’ conditional
covariances Q̂t.

Summing up, from the estimates of equations (4), (5), (2), and (3), we have the estimated
DF-GARCH model written in state-space form as

xt = Λ̂F̂t + ξ̂t measurement equation ,

F̂t = ÂF̂t−1 + B̂ût transition equation ,

(8)

where
ξ̂t| It−1 ∼ N (µt, R̂t) R̂iit = ρ̂0i + ρ̂1iξ̂

2
it−1 + ρ̂2iR̂iit−1

ût| It−1 ∼ N (0, Q̂t) Q̂t = Ĉ ′
0Ĉ0 + Ĉ ′

1ût−1û
′
t−1Ĉ1 + Ĉ ′

2Q̂t−1Ĉ2 .

(9)

The dynamics of xt is specified through an unobserved component model as in (8), while the
conditional heteroskedasticity of xt comes into the model through (9). Q̂t is the conditional
covariance matrix estimated from a multivariate GARCH on the dynamic factors, while R̂t

has been obtained by from a univariate GARCH estimated on the idiosyncratic component.
All other parameters (Λ̂, Â and B̂) have been obtained by the one-sided estimation and the
subsequent operations we have already described.

From (8), we have a complete specification of the dynamics of the static factors, whose first
two conditional moments are

E[F̂t| It−1] = ÂF̂t−1 , (10)
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and
E[(F̂t − E[F̂t| It−1])

2| It−1] = B̂Q̂tB̂
′ . (11)

Therefore the estimated conditional variance of the common component is

Γ̂χ
t = Λ̂B̂Q̂tB̂

′Λ̂′ . (12)

In the empirical application that follows we are interested only in equation (11), because
when dealing with financial data we usually do not specify any conditional mean model. Nev-
ertheless the DF-GARCH is able to provide joint estimates of both the first two conditional
moments of large datasets that may be useful in other applications different from finance (e.g.
with macroeconomic data). Although an estimate of χt is already available from the one-sided
estimator by Forni et al. [2005], the conditional mean model specified in (10) turns out to be
very useful when forecasting the level of a series (see Giannone et al. [2004] and Barigozzi and
Capasso [2007]). The conditional covariance matrix of xt is obtained by adding to (12) the
conditional covariance matrix of the idiosyncratic part. Once again, notice also that usually
we do not specify a conditional mean model for the idiosyncratic part, as it is almost always
the case in financial applications. If we would like to impose an ARMA model on the idiosyn-
cratic part, then the conditional mean of xt should take it into account.

Finally, notice that (11) holds if Ft where observed, otherwise an additional term express-
ing the uncertainty in the estimate F̂t should be added. This term will be considered in the
Kalman filter step presented in the next section, when a new estimate F̃t will be compared
with F̂t. This term however is very small given that the Kalman filter operates in order to
minimize it.

4 Forecasting with Kalman filter

The estimation method presented in the previous section can be straightforwardly applied also
when forecasting. However, in this case we propose an additional estimation step based on a
modified Kalman filter that provides us with new, and theoretically better, estimates of the
most recent realizations of static and dynamic factors. Indeed, we need a safer estimation for
the static and dynamic factors (and consequently of their conditional covariances), because our
prediction strongly depends on their estimation for the last period of our sample. That is why
we run a modified version of the Kalman filter and obtain new estimates of static and dynamic
factors for each period of the sample. While the factors, together with their conditional co-
variances, are re-estimated by the filter, the parameters of the linear part of the model remain
fixed. Therefore, the Kalman filter operates without a final likelihood maximization. The fil-
ter can only be quasi-optimal because, at each step, past disturbances are not observable, and
therefore we are not sure that the distribution of current disturbances is conditionally Gaus-
sian (see the comments by Harvey et al. [1992] about a different modification of the Kalman
filter). At this point, one could implement an EM algorithm as in Doz et al. [2006], by using
the new estimate of static factors as a starting point for re-applying the procedure described
in the previous section. The empirical test of our methodology avoids such implementation in
order to focus the attention on just the main intuitions of our procedure. In the Appendix we
explain in detail how our modification of the Kalman filter works.
In order to concentrate on the heteroskedastic process governing the common part of each
series of returns, if the ARMA model for the idiosyncratic parts is specified, we do not use the
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return xt as such as the observable variable of the model, but we use a new variable x∗
t = xt−µt

that is obtained as the original series minus the conditional mean of the idiosyncratic part. As
a consequence, the error term ξt of the model (8) is replaced by a new term ξ∗t , whose process
has zero conditional mean.

Once the Kalman filter estimation is completed, we have a new estimate of the static fac-
tors F̃t, of the dynamic factors ũt, and of their conditional covariance matrix Q̃t. We therefore
have new estimates of the common and of the idiosyncratic parts: χ̃t and ξ̃t.

5 The predicted
covariance matrix for the dynamic factors, Q̃T+1|T , is obtained by applying the prediction
steps to the smoothed estimations of last period T (see equation (21) in the Appendix for de-
tails). The predicted diagonal covariance matrix R̃T+1|T of the idiosyncratic part is obtained

by applying to ξ̃T the parameters of the univariate GARCH models that we have estimated
before the Kalman filter. Given the assumed orthogonality of common and idiosyncratic part,
and given (12), we get the one-step-ahead out-of-sample forecast of the conditional covariance
of the common part and of the observable data series as

Γ̃χ
T+1|T = Λ̂B̂Q̃T+1|T B̂′Λ̂′ ,

Γ̃x
T+1|T = Γ̃χ

T+1|T + R̃T+1|T . (13)

Notice that this conditional covariance matrix is positive definite by construction. Indeed R̃t

and and Q̃t come respectively from N univariate GARCH and a BEKK multivariate GARCH,
and the first term of (13) is clearly a quadratic form.

A forecast for the terms of the conditional correlation matrix can now be obtained as

ρ̃x
ij,T+1|T =

Γ̃x
ij,T+1|T

√

Γ̃x
ii,T+1|T Γ̃x

jj,T+1|T

. (14)

The off-diagonal terms of Γ̃x
T+1|T as computed in (13) do not consider the mild correlations

(and conditional correlations) among the idiosyncratic terms. Correlation estimations given
by (14) might thus be biased. For instance, conditional correlations are often underestimated
in a dataset for which the conditional covariance among idiosyncratic parts is often positive.
We do not face this problem if we are just interested in the conditional correlations arising
from the common factor dynamics. In this case, conditional correlations are computed by
using just the conditional covariances of the common part, without the second term on the
right-hand-side of (13).

5 Simulation results

In order to assess the validity of our model, we apply our estimation method to simulated panels
that differ in the cross and time dimension, in the number of dynamic and static factors and in
the amount of variance explained by the common part with respect to the total. As possible

5If we consider also the conditional mean of the idiosyncratic part, the new estimate of the common part
is χ̃∗

t , and by difference we obtain a new idiosyncratic part ξ̃∗t = xt − χ̃∗

t different from ξ̃t. We assume that ξ̃∗t
are the realizations of a process having the conditional variances R̃t and as conditional mean the previously
estimated µ̂t.
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values we choose N = 75, 150 and T = 250, 500, 750 and for every possible combination we take
2 or 3 dynamic factors, loaded with 2 or 4 lags, and an average variance ratio (VR) between
idiosyncratic and common parts of 0.3 or 0.5. We simulate ut as a multivariate GARCH
follwing the full BEKK as in (2). Idiosyncratic parts are simply simulated as univariate
GARCH(1,1) as in (3).6 Parameters of GARCH and BEKK are extracted from uniform
distributions with range determined, according to usual empirical estimates, as follows:

1. C1 has diagonal elements in [0.1, 0.5] and off-diagonal elements in [−0.2, 0.2];

2. C2 has diagonal elements in [0.8, 0.95] and off-diagonal elements in [−0.15, 0.15];

3. ρ1 has values in [0, 0.1] and ρ2 has values in [0.8, 0.95].

At each extraction of the parameters, positive definiteness of the simulated conditional vari-
ances has been checked before proceeding.
We prefer to simulate the GDFM as in (1) instead of simulating it in its static form (4).
Indeed, (1) is the real way in which dynamic factors are loaded, while (4) and (5) are just a
possible way to represent the data, which is necessary for estimation. Such a choice avoids
also the need of simulating the static factors. Therefore, for every model considered, we do not
extract values for Λ, A, and B, but we instead simulate the loadings D(L) by extracting them
from a standard normal distribution. These loadings are then renormalized in such a way that
on average xt has unit variance and zero mean, and the chosen VR is on average respected.
Although in principle each series in the factor model should have exactly unit variance, we
prefer not to standardize data before the estimation to avoid an additional step.

A first visual proof of the goodness of our estimation method is given in figure 5, when
considering the confidence interval at 90% level. Figures 2.1, 2.2, 3.1 and 3.2 show four exam-
ples of estimated and simulated conditional variances and covariances, with remarkably good
performance of our estimation method.

For each simulated dataset we repeat the procedure 250 times. At every replication, in order
to compare our estimation of χt with the results obtained in the same way by Forni et al.
[2005], we compute

H1 =

∑N
i=1

∑T
t=1(χ̂it − χit)

2

∑N
i=1

∑T
t=1 χ2

it

. (15)

We also compute an analogous measure for the elements of the conditional covariance matrix
of the common part

H2 =

∑N
i=1

∑T
t=1(Γ̂

χ
iit − Γχ

iit)
2

∑N
i=1

∑T
t=1(Γ

χ
iit)

2
. (16)

Concerning H2, we consider only the diagonal elements of the conditional covariance matrix,
thus obtaining a measure of the error made when estimating volatilities. We then consider
only the out-of-diagonal elements in the upper-triangular part of the conditional covariance
matrix, in order to measure the error made when estimating covolatilities. We thus compute
the analogue of H2 when summing over all the N(N − 1)/2 elements of the upper-triangular
part of Γ̂χ

t . In tables 1 and 2 we report the mean values and the standard errors of H1 and

6All computations and simulations in this paper have been performed by using the standard Matlab software
packages (v.7.0) plus the freely available toolboxes MATNEM by Christian T. Brownlees and ucsd_garch by Kevin
K. Sheppard; the code used in the next section has been kindly provided by Roman Liška.
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Figure 1: Estimated confidence interval for N = 150, T = 500, q = 2, s = 4, and VR= 0.3.
Simulated χt: solid line. Estimated 5th and 95th conditional percentiles: dashed line.

the two H2’s across the 250 replications. Results are shown for the case in which we do not
perform the Kalman filter step and for the last quarter of the sample when performing also
the Kalman filter step. Concerning the common component, we find results that are similar to
the ones obtained by Forni et al. [2005]. It is evident the improvement on the last observations
when using the Kalman filter.

Finally, we run Mincer and Zarnowitz [1969] in-sample regressions. At each replication and
for each series i, we consider all the estimates we have computed we run a regression based
upon simulated and estimated conditional variances

Γχ
iit = b0 + b1 Γ̂χ

iit + eit i = 1, . . . , N .

We run similar regressions for the N(N − 1)/2 conditional covolatilities series. Should a
model be correctly specified, we would obtain values of b̂0 and b̂1 that are close to 0 and 1,
respectively. However, estimates are necessarily affected by estimation errors and downward
biases in the estimation of b1 (see e.g. Chow [1983]). Let us then focus upon the coefficient of
multiple determination R2, which roughly measures the amount of variability of the estimated
conditional covariance that can be explained by the model, thus giving a general idea of its
potentialities. Tables 4 and 3 report the average R2 over all series and over all 250 replications,
Once again notice the improvement achieved on the estimate of the last in-sample observations,
when using the Kalman filter. This supports our suggestion of running a modified Kalman
filter when we are interested in making accurate out-of-sample forecasts. Finally notice from
both tables that, as T increases, the estimation greatly improves.
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2.1: N = 150, T = 500, q = 2, s = 4, and VR= 0.3.
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2.2: N = 150, T = 250, q = 3, s = 2, and VR= 0.3.

Figure 2: Conditional variances. Simulated: solid line. Estimated: dashed line.
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3.1: N = 150, T = 500, q = 2, s = 4, and VR= 0.3.
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3.2: N = 150, T = 250, q = 3, s = 2, and VR= 0.3.

Figure 3: Conditional covariances. Simulated: solid line. Estimated: dashed line.
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No Kalman Kalman

N T q r VR H1 H2 H1 H2

vol covol vol covol

75 250 2 2 0.3 0.0306 0.0567 0.0812 0.0222 0.0513 0.0747
0.0114 0.0294 0.0366 0.0087 0.0225 0.0287

75 250 2 2 0.5 0.0542 0.0699 0.1028 0.0398 0.0652 0.0970
0.0168 0.0337 0.0426 0.0130 0.0309 0.0400

75 250 2 4 0.3 0.0481 0.0729 0.1066 0.0324 0.0684 0.1006
0.0128 0.0331 0.0433 0.0122 0.0330 0.0425

75 250 2 4 0.5 0.0917 0.0880 0.1354 0.0663 0.0806 0.1256
0.0316 0.0400 0.0500 0.0297 0.0380 0.0468

75 250 3 2 0.3 0.0335 0.0746 0.1330 0.0250 0.0682 0.1258
0.0039 0.0309 0.0463 0.0034 0.0289 0.0460

75 250 3 2 0.5 0.0592 0.0883 0.1591 0.0445 0.0807 0.1500
0.0093 0.0336 0.0495 0.0081 0.0306 0.0469

75 250 3 4 0.3 0.0562 0.0922 0.1668 0.0393 0.0866 0.1592
0.0081 0.0331 0.0474 0.0096 0.0340 0.0490

75 250 3 4 0.5 0.1069 0.1203 0.2260 0.0831 0.1107 0.2138
0.0218 0.0426 0.0597 0.0226 0.0390 0.0575

150 250 2 2 0.3 0.0193 0.0576 0.0835 0.0144 0.0519 0.0773
0.0048 0.0246 0.0316 0.0039 0.0242 0.0317

150 250 2 2 0.5 0.0323 0.0659 0.0979 0.0239 0.0591 0.0904
0.0062 0.0295 0.0370 0.0047 0.0261 0.0345

150 250 2 4 0.3 0.0325 0.0700 0.1021 0.0216 0.0638 0.0951
0.0076 0.0285 0.0373 0.0053 0.0281 0.0364

150 250 2 4 0.5 0.0534 0.0847 0.1252 0.0355 0.0752 0.1139
0.0115 0.0487 0.0461 0.0081 0.0474 0.0426

150 250 3 2 0.3 0.0213 0.0672 0.1217 0.0167 0.0626 0.1161
0.0026 0.0240 0.0371 0.0025 0.0231 0.0357

150 250 3 2 0.5 0.0387 0.0804 0.1452 0.0306 0.0749 0.1386
0.0061 0.0348 0.0489 0.0050 0.0349 0.0485

150 250 3 4 0.3 0.0372 0.0809 0.1462 0.0269 0.0775 0.1420
0.0061 0.0285 0.0413 0.0063 0.0298 0.0422

150 250 3 4 0.5 0.0740 0.1074 0.2008 0.0563 0.1030 0.1942
0.0146 0.0362 0.0517 0.0136 0.0366 0.0518

Table 1: Mean and standard errors of H1 and H2.
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No Kalman Kalman

N T q r VR H1 H2 H1 H2

vol covol vol covol

75 500 2 2 0.3 0.0274 0.0382 0.0545 0.0174 0.0341 0.0496
0.0052 0.0213 0.0266 0.0036 0.0202 0.0251

75 500 2 2 0.5 0.0461 0.0425 0.0618 0.0293 0.0366 0.0552
0.0076 0.0265 0.0306 0.0054 0.0177 0.0235

75 500 2 4 0.3 0.0453 0.0480 0.0682 0.0255 0.0420 0.0613
0.0084 0.0268 0.0301 0.0056 0.0209 0.0242

75 500 2 4 0.5 0.0774 0.0651 0.0932 0.0464 0.0558 0.0825
0.0157 0.0368 0.0416 0.0119 0.0285 0.0335

75 500 3 2 0.3 0.0406 0.0638 0.1087 0.0258 0.0588 0.1026
0.0061 0.0328 0.0441 0.0042 0.0309 0.0424

75 500 3 2 0.5 0.0680 0.0744 0.1274 0.0433 0.0676 0.1189
0.0106 0.0375 0.0505 0.0073 0.0350 0.0480

75 500 3 4 0.3 0.0667 0.0775 0.1320 0.0404 0.0712 0.1238
0.0105 0.0318 0.0414 0.0081 0.0315 0.0414

75 500 3 4 0.5 0.1115 0.1087 0.1830 0.0747 0.0971 0.1693
0.0156 0.0481 0.0579 0.0147 0.0456 0.0561

75 750 2 2 0.3 0.0190 0.0325 0.0438 0.0120 0.0310 0.0424
0.0034 0.0215 0.0251 0.0027 0.0221 0.0259

75 750 2 2 0.5 0.0325 0.0383 0.0527 0.0208 0.0355 0.0496
0.0063 0.0208 0.0245 0.0049 0.0220 0.0254

75 750 2 4 0.3 0.0309 0.0441 0.0583 0.0172 0.0414 0.0554
0.0053 0.0288 0.0325 0.0038 0.0297 0.0333

75 750 2 4 0.5 0.0548 0.0557 0.0773 0.0337 0.0508 0.0719
0.0145 0.0298 0.0338 0.0131 0.0298 0.0340

75 750 3 2 0.3 0.0378 0.0468 0.0817 0.0253 0.0462 0.0802
0.0045 0.0243 0.0349 0.0035 0.0256 0.0359

75 750 3 2 0.5 0.0707 0.0615 0.1088 0.0487 0.0621 0.1082
0.0185 0.0286 0.0385 0.0192 0.0316 0.0418

75 750 3 4 0.3 0.0648 0.0613 0.1064 0.0427 0.0604 0.1041
0.0082 0.0296 0.0394 0.0103 0.03096 0.0406

75 750 3 4 0.5 0.1231 0.0887 0.1608 0.0963 0.0857 0.1553
0.0271 0.0493 0.0669 0.0382 0.0498 0.0671

Table 2: Mean and standard errors of H1 and H2.
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No Kalman Kalman

N T q lags VR χt Γ
χ
iit Γ

χ
ijt χt Γ

χ
iit Γ

χ
ijt

75 250 2 2 0.3 0.9673 0.5775 0.5616 0.9754 0.6344 0.5970
0.0145 0.2169 0.2252 0.0113 0.2040 0.2194

75 250 2 2 0.5 0.9436 0.5733 0.5504 0.9562 0.6234 0.5823
0.0187 0.2049 0.2084 0.0158 0.1949 0.2032

75 250 2 4 0.3 0.9509 0.5157 0.4930 0.9661 0.5687 0.5266
0.0130 0.2292 0.2312 0.0136 0.2276 0.2330

75 250 2 4 0.5 0.9091 0.5067 0.4806 0.9299 0.5630 0.5178
0.0301 0.2078 0.2100 0.0326 0.2011 0.2081

75 250 3 2 0.3 0.9653 0.4922 0.4689 0.9734 0.5316 0.4889
0.0040 0.1763 0.1800 0.0038 0.1720 0.1815

75 250 3 2 0.5 0.9398 0.4695 0.4397 0.9524 0.5069 0.4587
0.0094 0.1707 0.1729 0.0088 0.16846 0.1756

75 250 3 4 0.3 0.9437 0.4558 0.4283 0.9591 0.4991 0.4534
0.0080 0.1681 0.1677 0.0102 0.1694 0.1713

75 250 3 4 0.5 0.8963 0.3865 0.3519 0.9134 0.4340 0.3788
0.0201 0.1668 0.1608 0.0246 0.1624 0.1602

150 250 2 2 0.3 0.9792 0.5535 0.5300 0.9838 0.5561 0.5327
0.0043 0.2443 0.2424 0.0035 0.2454 0.2435

150 250 2 2 0.5 0.9653 0.5182 0.4902 0.9728 0.5227 0.4944
0.0067 0.2342 0.2331 0.0056 0.2353 0.2340

150 250 2 4 0.3 0.9666 0.5350 0.5110 0.9768 0.5401 0.5159
0.0076 0.2384 0.2358 0.0057 0.2400 0.2373

150 250 2 4 0.5 0.9467 0.4973 0.4686 0.9623 0.5045 0.4755
0.0106 0.2308 0.2272 0.0081 0.2338 0.2297

150 250 3 2 0.3 0.9774 0.5208 0.4942 0.9816 0.5640 0.5166
0.0028 0.1811 0.1824 0.0027 0.1736 0.1803

150 250 3 2 0.5 0.9592 0.5228 0.4900 0.9663 0.5655 0.5116
0.0067 0.1556 0.1584 0.0057 0.1542 0.1601

150 250 3 4 0.3 0.9622 0.4913 0.4618 0.9715 0.5347 0.4847
0.0063 0.1678 0.1654 0.0069 0.1649 0.1651

150 250 3 4 0.5 0.9265 0.4418 0.4056 0.9405 0.4827 0.4291
0.0143 0.1571 0.1527 0.0146 0.1536 0.1528

Table 3: Mean and standard errors for R2 of the Mincer-Zarnowitz regressions.
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No Kalman Kalman

N T q lags VR χt Γ
χ
iit Γ

χ
ijt χt Γ

χ
iit Γ

χ
ijt

75 500 2 2 0.3 0.9717 0.6696 0.6484 0.9814 0.7117 0.6753
0.0055 0.2152 0.2189 0.0039 0.2056 0.2151

75 500 2 2 0.5 0.9535 0.6156 0.5939 0.9690 0.6222 0.6006
0.0074 0.2368 0.2383 0.0058 0.2390 0.2402

75 500 2 4 0.3 0.9551 0.6413 0.6176 0.9748 0.6898 0.6506
0.0075 0.2131 0.2132 0.0049 0.2022 0.2101

75 500 2 4 0.5 0.9255 0.6058 0.5765 0.9550 0.6194 0.5900
0.0137 0.2094 0.2123 0.0120 0.2128 0.2154

75 500 3 2 0.3 0.9594 0.5951 0.5558 0.9732 0.6265 0.5731
0.0058 0.1651 0.1680 0.0043 0.1568 0.1653

75 500 3 2 0.5 0.9341 0.5655 0.5233 0.9554 0.6016 0.5445
0.0093 0.1658 0.1656 0.0073 0.1565 0.1627

75 500 3 4 0.3 0.9355 0.5522 0.5135 0.9608 0.5932 0.5382
0.0094 0.1760 0.1768 0.0076 0.1705 0.1773

75 500 3 4 0.5 0.8968 0.5096 0.4631 0.9295 0.5515 0.4892
0.0129 0.1646 0.1630 0.0137 0.1612 0.1639

75 750 2 2 0.3 0.9805 0.8232 0.7963 0.9875 0.8500 0.8127
0.0036 0.1453 0.1615 0.0028 0.1288 0.1525

75 750 2 2 0.5 0.9668 0.8109 0.7831 0.9782 0.8404 0.8022
0.0062 0.1539 0.1627 0.0051 0.1368 0.1534

75 750 2 4 0.3 0.9689 0.7829 0.7566 0.9830 0.8172 0.7786
0.0052 0.1729 0.1818 0.0037 0.1511 0.1706

75 750 2 4 0.5 0.9459 0.7756 0.7455 0.9671 0.8095 0.7689
0.0142 0.1500 0.1595 0.0149 0.1362 0.1525

75 750 3 2 0.3 0.9623 0.6456 0.6011 0.9740 0.6765 0.6149
0.0045 0.1577 0.1699 0.0037 0.1527 0.1705

75 750 3 2 0.5 0.9312 0.6326 0.5811 0.9499 0.6650 0.5968
0.0166 0.1503 0.1550 0.0196 0.1425 0.1523

75 750 3 4 0.3 0.9372 0.6190 0.5747 0.9586 0.6528 0.5917
0.0077 0.1565 0.1611 0.0107 0.1520 0.1602

75 750 3 4 0.5 0.8855 0.5423 0.4907 0.9065 0.5812 0.5115
0.0228 0.1626 0.1630 0.0381 0.1580 0.1627

Table 4: Mean and standard errors for R2 of the Mincer-Zarnowitz regressions.
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6 Hypothesis testing on a real dataset

6.1 The data

The dataset we use for the empirical investigation includes all the transaction prices of the
89 stocks traded on the London Stock Exchange and participating in the construction of the
FTSE100 index for the whole considered time span, that is from 1st October 2001 to 31st

July 2003 (457 working days). Transaction prices have been cleaned from outliers by using
the procedure described in Brownlees and Gallo [2006]; we choose respectively 60 and 0.02
as neighborhood and granularity parameters. Returns have been computed by using the last
transaction recorded each day before the closing time of the LSE. Daily realized volatilities
and covolatilities for out-of-sample evaluation are computed on a 5-minute frequency after re-
moving the first 15 minutes of each day, as Barndorff-Nielsen and Shephard [2005] have done
on LSE data in order to avoid open effects. When computing realized covolatilities, we do not
use leads and lags of intra-daily returns, as the 5-minute frequency should be low enough to
avoid the non-sinchronicity bias (see Martens [2004]).

Firstly, we verify that our dataset does fulfill GDFM assumptions on the eigenvalues λi(θ)
of the spectral density matrix of xt. According to Brillinger [1981], we define the variance
explained by the ith factor as

EVi =

∫ π

−π
λi(θ)dθ

∑N
j=1

∫ π

−π
λj(θ)dθ

. (17)

We require that, as N −→ ∞,

⎧

⎨

⎩

EVi −→ ∞ for i = 1, . . . , q

∃ M ∈ R
+ s.t. EVq+1 ≤ M .

(18)

Indeed, as shown for example in figure 4.1 for the subsample including only the first 350
observations, this is the case. Figure 4.2 shows the cumulated explained variance relative to
the first two eigenvalues for the same sample.
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4.1: Explained variance.
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4.2: Cumulated explained variance.

Figure 4: Plots of diverging variances as N → ∞.
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5.1: Hallin-Liška criterion.
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5.2: IC1 criterion.

Figure 5: Determining the number of factors.

6.2 The number of dynamic factors

We do not rely only on the intuition coming from figures 4.1 and 4.2 for determining the
number of dynamic factors to include in the model. We thus apply the Hallin and Liska
[2007] information criterion for determining the minimum number of dynamic factors that
satisfy the hypotheses of GDFM. The criterion by Hallin and Liška exploits the relation in the
GDFM between the number of dynamic factors and the number of diverging eigenvalues of the
spectral density matrix of the observations; we choose the logarithmic form of the covariogram-
smoothing version of the criterion.7 For given N and T , it consists in choosing the number of
factors q̂ that minimizes the variance explained by the remaining N − q̂ factors. In principle,
the maximum number of factors allowed qmax is the number of series in the dataset. Therefore,
we introduce a penalty function to avoid overestimation of q̂, but at the same time it should
not overpenalize. Multiplying the penalty function by a positive constant c is a way to tune
the penalizing power.
Hallin and Liška propose a procedure for selecting q̂ which basically explores the behavior of
the variance of the selected q for the whole region of values of the constant c for N and T
going to infinity. What we seek is the first stability region compatible with q̂ < N . In figure
5.1, relative to the subsample of the first 350 daily returns of the 89 stocks, the solid lines
indicate the value of q while the dashed lines represent its variance when varying the sample
size and the time length of the dataset. We are looking for stability intervals. In other words,
q̂ corresponds to the plateau of the solid line associated with the second flat zero-level dashed
line.8 This procedure, suggested by Hallin and Liška, indicates the existence of two common
dynamic factors.

6.3 The number of static factors

In order to find the number r of static factors, some criteria are available (e.g. see Bai and Ng
[2002] and Onatski [2006]). We first implement the six consistent criteria by Bai and Ng [2002]
which look for the number of static factors that minimizes the mean squared distance between
observed data and their common part as estimated by a static principal component analysis.

7Hallin and Liška suggest that this form has better finite sample performance.
8Notice that the first stability interval always corresponds to qmax
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Figure 6: Evidence of dynamics in asset returns.

The mean squared distance is computed for all the possible numbers of static factors between
0 and rmax, and is counterbalanced by a penalty function in order to avoid the criterion to
point a number of static factors higher than the true one. Although both PC and IC criteria
need a maximum number of factors rmax as an input, only PC criteria explicitly take into
account its resulting minimum squared distance. However it is recognized by the literature
(e.g. see Forni et al. [2006]) that these criteria highly depend on rmax. Indeed, when applied
to the first 350 multivariate observations of our sample, some criteria show difficulties in
finding convergence or are sensitive to variations in the maximum number of factors fed to
the algorithm. Therefore we apply our modification of the original criteria by Bai and Ng
[2002] that simply introduces a positive constant c in the penalty function. The procedure
to determine the number of static factors r̂ for given N and T is similar to the one used in
determining the number of common dynamic factors (for details on this criterion see Alessi
et al. [2007]). In figure 5.2 we show the plots for the modified Bai-Ng’s IC1 criterion and once
again we are looking for the second stable region (i.e. dashed line equal to zero) corresponding
to a plateau in the number of factors. With this procedure we find 5 static factors. The same
result holds also for IC2 and IC3, and all PC criteria.
A heuristic argument is based on the explained variance by the first q factors. We need as

many static factors as it is necessary to explain the same amount of variance which is explained
by the selected common dynamic factors (in our case 44% of the total sample variance). If we
look at the eigenvalues of the sample variance-covariance matrix, two static factors would be
able to explain only 38% of the total sample variance, while we would need between 5 and 6
static factors to explain the same percentage of variance that is explained by the two dynamic
factors. This result is consistent with the one suggested by our criterion and therefore we
choose r = 6.

6.4 A comment on the dynamics of asset returns

In figure 6.1 we plot the five largest dynamic eigenvalues at different frequencies. It is clear
that the first dynamic eigenvalue explains the bulk of the variance (precisely 36%) but at
least at low frequencies (i.e. in the long run) a second factor gives an appreciable contribute.
In what follows we therefore assume that q = 2 for a total explained variance of 44% cor-
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responding to an average variance of the common part of 44% (with a maximum of 75%).
Moreover, given that r = q(s + 1) and given the result of previous section, we choose s = 2.
Although it is usually assumed that asset returns have no appreciable dynamics (they are often
modelled as white noise), we decide to adopt a dynamic factor model for at least two good
reasons. First, the pattern of peaks and troughs followed by the first eigenvalue at different
frequencies indicates the high influence that the factors exert on returns at different specific
frequencies, thus supporting the idea that the factors are really dynamic. Second, figure 6.2
shows the spectral density of the common part of one return series from our dataset. Such
common part is computed by using the two largest eigenvalues of the spectral density matrix
of the whole sample. At each frequency, the spectral density of the common part has been
divided by the total spectral density of the series, in order to plot relative values. We can
easily show that the spectral density of the common part would be flat if the factors were
not truly dynamic. Suppose that all the common components corresponding to the different
return series of the dataset depend on just one factor. If there is dynamics in returns then the
factor is loaded with its lags, and we have χt = D(L)ut. In this case, the spectral density is
Σχ(θ) = D

(

eiθ
)

Σu(θ)D
(

e−iθ
)′

. Notice that actually Σu(θ) is constant as ut is assumed to be
white noise, but D

(

eiθ
)

cannot be constant over the frequency domain if the factor is loaded
dynamically; therefore, the eigenvalues of Σχ(θ) cannot be constant either. On the other
hand, if the factor is loaded with no lags, i.e. it is a static factor, the common part becomes
χt = Dut, where D is a fixed parameter matrix that does not include any lag operator. In this

case, the spectral density of χt is equal to a matrix D
σ2

ut

2π
D′ that is constant over the frequency

domain. Extending this result to a multi-factor framework, non-constancy over the frequency
domain of the eigenvalues of the spectral density matrix suggests common factors’ dynamics.

Notice that our model includes also the static case that is obtained just by imposing s = 0. In
what follows, results obtained by performing the DF-GARCH estimation in a static way, thus
with only two static factors, is used as a benchmark for evaluating the prediction accuracy of
the DF-GARCH with two dynamic factors and two lags. The other benchmark is represented
by the traditional univariate GARCH model. Moreover the DF-GARCH is estimated using
either a full BEKK and a DCC model for the dynamic factors.

6.5 Testing for conditional heteroskedasticity

The main hypothesis of the DF-GARCH is the conditional heteroskedasticity of the common
dynamic factors. In order to test this assumption, we employ the usual ARCH test up to 10
lags. As shown in table 5, for the first in-sample used we find that one of the two dynamic
factors is highly heteroskedastic. In particular, this happens for the most important of the two
factors, as it is shown in the same table when estimating the model with only one dynamic
factor. The same result holds for different in-samples considered. The most important factor
determines the conditional heteroskedasticity of asset returns. Good news for our model since
having at least one conditionally heteroskedastic dynamic factor justifies our assumptions.
Notice that the model itself is flexible enough to accomodate cases with some conditionally
heteroskedastic and some conditionally homoskedastic dynamic factors.
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ARCH order 1 2 3 4 5 6 7 8 9 10

Case q = 2

u1t 0.71 47.67* 72.44* 72.86* 81.43* 87.68* 88.04* 92.71* 93.18* 93.06*
u2t 2.54 2.53 3.44 8.13 9.03 11.26 11.59 12.78 12.41 12.62

Case q = 1

ut 0.24 47.26* 75.35* 75.74* 85.02* 88.60* 88.77* 92.75* 96.22* 95.98*

Table 5: ARCH-test on ut for heteroskedasticity (* significant at 99%). Observations from
t = 1 to t = 350, i.e. first in-sample.

Model Prob
{

|xit| > 1.65Γ̂x
ii,t

}

Prob
{

xit < −1.65Γ̂x
ii,t

}

GARCH 0.0881 0.0458
DF-GARCH (BEKK)(2 lags) 0.0986 0.0507
DF-GARCH (DCC)(2 lags) 0.0972 0.0499

Table 6: Interval predictions. Average results.

7 Empirical estimation and prediction of volatility

7.1 In-sample performance

We estimate the DF-GARCH with 2 dynamic and 6 static factors and a univariate GARCH
using the first 350 observations (the in-sample window) and we look at the confidence in-
tervals at 90% significance level under the assumption of normality.9 Figure 7.1 shows the
results for four asset returns. The two models have qualitatively a similar performance. If
the estimation is good 10%, of the observations of series xit should lie outside the interval
[−1.65Γ̂x

ii,t, +1.65Γ̂x
ii,t]. Moreover, given that we are dealing with financial data we consider

the 95% confidence level Value-at-Risk (VaR) prediction for each series, which is simply the
5-th conditional percentile of the distribution of returns. Therefore, under the assumption of
normality of the retruns, we should check that Prob{xit < −1.65Γ̂x

ii,t} = 5%. VaR is consid-
ered as a measure of risk in financial applications, given that it concentrates only on the lower
tail of the distribution. Table 6 reports the results averaged on the 89 series. The DF-GARCH
has a comparable and sometimes even better performance than the univariate GARCH. These
are encouraging results concerning the in-sample properties of our estimation method. We
now move to a forecasting exercise which we believe to be the real test for the performance of
a model.

7.2 Out-of-sample performance

We want to compare the accuracy of the Dynamic Factor GARCH model and of the tradi-
tional GARCH (1,1) in predicting the conditional variance of all the series. The DF-GARCH
is used both in the proper way (two dynamic factors and two lags) and in a static way (two
dynamic factors corresponding to just two static factors with no lags) using both the full
BEKK and the DCC specification. Whenever we name just “DF-GARCH”, we refer to the

9Notice that we do not model the conditional mean of returns as it is always the case with financial data.
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7.1: British Airways.
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7.4: Vodafone.

Figure 7: Confidence intervals. Univariate GARCH confidence interval: thick dashed line.
DF-GARCH (BEKK) confidence interval: thick solid line. Return series: thin solid line.

proper dynamic estimation of the model independently of the chosen multivariate GARCH
specification. Returns are taken from 350 consecutive working days to infer a one-step-ahead
volatility forecast. We follow a rolling scheme, for which our in-sample time span is fixed, while
the forecast evaluation period includes the observations 351 up to 450 of the original dataset
(100 one-step-ahead predictions). At each iteration, the DF-GARCH uses all the in-sample
information to forecast the conditional variance-covariance matrix of the first out-of-sample
day, while a traditional GARCH is applied univariately on each series (always reestimating
the parameters) to generate N univariate volatility forecasts. Indeed, at each iteration both
models reestimate the parameters, but the number of dynamic and static factors of the DF-
GARCH is kept fixed according to what we have already found for the first 350 working days of
our sample. As for the volatility proxy we always use realized volatilities (see section 7.1), but
results are robust when we compare our predictions with other proxies as the naïve squared
returns or the more sophisticated squared adjusted range.10

Following Andersen et al. [2003], we evaluate the volatility forecasts of our model by run-

10We report only average results and only compared to realized volatility. Detailed results for all proxies
and all series are available upon request.
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Model b̂0 b̂1 R2

GARCH 0.0026 0.3995 0.0780
DF-GARCH (BEKK)(no lags) 0.0002 1.6064 0.1084
DF-GARCH (BEKK)(2 lags) 0.0002 1.6715 0.1100

DF-GARCH (DCC)(no lags) 0.0000 1.9384 0.0981
DF-GARCH (DCC)(2 lags) 0.0000 2.0188 0.1000

Table 7: Volatilities. Average results for MZ regressions.

ning a Mincer-Zarnowitz regression. For each series i, we consider all the predictions we have
computed at each iteration of our rolling scheme and we run a regression based upon real and
predicted conditional variances:

ViT+k+1 = b0 + b1 Γ̂x
iiT+k+1 + eiT+k+1 k = 0, . . . , 99 ,

where T is the last period of the first in-sample considered (i.e. T = 350) and the volatility
proxy ViT+k+1 is the realized volatility at time T +k+1 for series i. On the other side, Γ̂x

iiT+k+1

represents the one-step-ahead volatility forecast at time T +k+1, as predicted at time T +k, for
series i. We focus upon the coefficient of multiple determination R2, which roughly measures
the amount of variability of the ex-post volatility that can be explained by the model, thus
giving a general idea of its potentialities. Table 7 presents a summary of the results, obtained
by averaging the results of all N regressions. The model forecasts are obtained without mean
predicting. For 71 series (i.e. 80% of the total number of series) the DF-GARCH with full
BEKK specification obtains a higher R2 coefficient than the traditional GARCH model, whose
performance is consistent with the empirical results found in the literature. If we use the DCC
specification the performance is slightly worse and the DF-GARCH has a higher R2 than the
univariate GARCH for 64 series (i.e. 72% of the total). The static application of DF-GARCH
also performs better than the univariate GARCH with results similar to the dynamic case.

To have a comparative performance evaluation for each series, we take the prediction of the two
models and compute one-step-ahead Root Mean Squared Errors (RMSE) against the realized
volatility Vit. For each series i, we compute

RMSEi =

√

√

√

√

1

K

K−1
∑

k=0

[

Γ̂x
iiT+k+1 − ViT+k+1

]2

K = 100 i = 1, . . . , N ,

where Γ̂x
iiT+k+1 is the one-step-ahead volatility forecast of the considered model for series i at

iteration k. We then compute the ratio between the RMSE obtained by the DF-GARCH and
the RMSE obtained for the same series using the traditional GARCH model. Average results
are listed in table 8, together with three other statistics:

1. P corresponds to the percentage of series for which the DF-GARCH outperforms the
univariate GARCH, i.e. the percentage of the cases for which

RMSEi(DF-GARCH)

RMSEi(GARCH)
< 1 i = 1, . . . , N .
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For the majority of the series in the sample, the DF-GARCH using full BEKK turns
out to be a better predictor than the traditional GARCH. For our sample, P is equal to
82.02%; when DF-GARCH is estimated in a static way, P is slightly lower (80.90%).

2. Q is the geometric mean of the RMSE ratios:

Q =

(

N
∏

i=1

RMSEi(DF-GARCH)

RMSEi(GARCH)

)1/N

.

Q is smaller than one, that is the average prediction accuracy of our method turns out to
be better than the benchmark. In other words, the quantity (1−Q) is a measure of the
average gain obtained by using the DF-GARCH model with our estimation method. For
our sample and with full BEKK specification, Q is equal to 0.9798; when the DF-GARCH
is estimated in a static way, Q becomes 0.9823.

3. In order to compare the out-of-sample performance with the results obtained from sim-
ulations we also compute a statistics that is the analogous of (15) for out-of-sample
predictions. Namely, for each iteration we compute

H3 =

∑N
i=1(Γ̂

x
iiT+1 − ViT+1)

2

∑N
i=1

∑T
t=1 V 2

it/T
. (19)

In table 8 we report the value of H3 averaged on all the 100 iterations.

Model RMSE H3 P Q

GARCH 3.4938 10−3 0.6807 n.a. n.a.
DF-GARCH (BEKK)(no lags) 3.3988 10−3 0.5994 80.899 0.9823
DF-GARCH (BEKK)(2 lags) 3.3935 10

−3 0.5998 82.022 0.9798

DF-GARCH (DCC)(no lags) 3.4088 10−3 0.6007 77.528 0.9862
DF-GARCH (DCC)(2 lags) 3.4021 10−3 0.6007 79.755 0.9839

Table 8: Average RMSEs, average H3, P and Q with respect to the univariate GARCH.

7.3 Testing for equal predictive accuracy

We evaluate the performance of the DF-GARCH by means of two different tests of predictive
accuracy. In table 9 we show the results of the usual Diebold and Mariano [1995] test of equal
predictive accuracy. Given the predictions of a variable y from two competing models (say a
and b) we compute the difference dt = E[(ya

t+h|t−yt+h)
2− (yb

t+h|t−yt+h)
2] between the squared

errors obtained with the two models and we test for dt = 0. If the computed statistic is signif-
icantly larger than zero, model b has a better forecast performance than model a. Viceversa,
if the statistic is significantly smaller than zero then model a is better than model b. Notice
that, although some of the models we are comparing may be considered as nested, this test
is already useful to make a first distinction between them. When the null hypothesis of equal
predictive accuracy is rejected with high significance levels, then, no matter if the models are
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nested, we already have an indication of which one is better.

In order to test the significance of the difference between the RMSEs of two models when
one of the models nests the other, Clark and West [2007] show that a correction is needed on
the RMSE of the DF-GARCH to account for the possible errors made in estimating more pa-
rameters. The univariate GARCH could be considered as a model nested in the DF-GARCH
when N = 1 and q = 1. In particular, the following difference must be computed for each
time t and each series i

f̂it =
(

Vit − Γ̂x
iitG

)2

−

[

(

Vit − Γ̂x
iitDF

)2

−
(

σ̂2
itG − Γ̂x

itDF

)2
]

, (20)

where Vit represents the realized volatility at time t and Γ̂x
iit represents the volatility forecast

at time t, as predicted at time t− 1 by the simple GARCH (subscript G) or the DF-GARCH
(subscript DF ), for series i. We then test for equal mean square prediction error by regressing
f̂i on a constant and using the resulting t-statistic for a zero coefficient. In table 9 we show
a summary of our results of the tests by Diebold and Mariano [1995] and Clark and West
[2007] both for the the case of DF-GARCH estimated with two lags and for the case of DF-
GARCH estimated in a static way, against the traditional univariate GARCH model. At 10%
significance, the DF-GARCH with BEKK specification and estimated with two lags performs
better than the traditional GARCH for 70 series (79% of total).

DF-GARCH

2 lags BEKK

DF-GARCH

0 lags BEKK

DF-GARCH

2 lags DCC

DF-GARCH

0 lags DCC

Diebold-Mariano Test

number of series for which 53 58 50 52
DF-GARCH outperforms GARCH
at 10%

number of series for which 41 40 41 41
DF-GARCH outperforms GARCH
at 5%

Clark-West Test

number of series for which 70 70 68 67
DF-GARCH outperforms GARCH
at 10%

number of series for which 58 60 55 56
DF-GARCH outperforms GARCH
at 5%

Table 9: Diebold-Mariano and Clark-West tests results against traditional univariate GARCH.

8 Empirical prediction of covolatility

We now build the same statistics for the off-diagonal elements of our prediction, i.e. for the
predicted conditional covariances. A comparison with traditional univariate GARCH is not
possible; we therefore do not compute root mean square errors, but just limit our attention
to Mincer-Zarnowitz regressions. For each couple of different series, we regress the vector
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of realized covolatilities onto the vector of one-step-ahead predicted conditional covariances,
following the same rolling scheme and time span of the previous subsections. These vectors are
obtained by stacking all the N(N − 1)/2 covariances. Results averaged over the whole sample
are shown in table 10. The coefficient b̂1 of proportionality between predictions and real proxies
is low (about 0.2), witnessing a tendency of our predictor to overshoot the real conditional
covariance as well as an amount of cases (about 28% of total) in which the DF-GARCH has
predicted the wrong sign of the conditional covolatility. Another possible explanation of this
low value involves the mild correlation among the idiosyncratic parts: should this correlation
be somehow not negligible in practice, it should be added to the conditional covariance we
predict for the common parts. However, the coefficient of multiple determination R2 is always
higher than in the previous case of conditional variance prediction, being slightly better for
the static model. Moreover, the average RMSE is now an order of magnitude lower than the
RMSE obtained when forecasting the conditional variances.

Right

Model b̂0 b̂1 R2 Signs % RMSE H3

DF-GARCH (BEKK)(no lags) 0.0000 0.1751 0.1426 72.018 3.4360 10−4 0.0120
DF-GARCH (BEKK)(2 lags) 0.0000 0.1824 0.1417 72.030 3.3067 10−4 0.0110
DF-GARCH (DCC)(no lags) 0.0000 0.1963 0.1204 72.217 3.1075 10−4 0.0097

DF-GARCH (DCC)(2 lags) 0.0000 0.1957 0.1160 72.218 3.1046 10
−4 0.0097

Table 10: Covolatilities. Average results for MZ regressions, percentage of times in which the
predicted sign is the same as the real sign, average RMSEs, and average H3.

9 Discussion and further research

In this paper we have proposed a new method for the estimation and forecast of conditional
covariance when dealing with a large number of series, which we call Dynamic Factor GARCH.
We operate within the framework of a Generalized Dynamic Factor Model in which the dy-
namic factors evolve according to a multivariate GARCH rule, either a full BEKK or a DCC
specification. The model can be considered as a special case of the structural ARCH de-
scribed by Harvey et al. [1992]. The particular assumptions we make about the relationships
among the observable series allow us to build a feasible predictor of a time-varying conditional
covariance matrix when the cross-dimension of the dataset is large with respect to the time-
dimension. Our estimation procedure consists of two parts: in the first step we disentagle
common and idiosyncratic components of the dataset, we build the factor loading matrices
and give a first estimate of static and dynamic factors; in the second step we provide a more
efficient estimate of static and dynamic factors while modelling their conditional covariances
for all in-sample periods. The modification of the Kalman filter contained in the second part
is propaedeutic to the multivariate volatility forecast, obtained by summing up the predicted
conditional variances of the idiosyncratic terms and the conditional variance-covariance fore-
casts of the common part.
This method presents advantages with respect to the existing literature in that it allows for
managing datasets in which the cross-dimension is high and the data present conditionally
heteroskedastic behaviour. Traditionally, these two features jointly cause estimation difficul-
ties due to the number of parameters involved by the conditional covariance dynamics. The
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Generalized Dynamic Factor Model can reduce the complexity of the problem and give room
for a volatility forecast that takes into account all the cross and time relationships within the
entire information set. Results of a Montecarlo experiment on different simulated panels show
the goodness of our estimation method.
We evaluate the predictive performance of the DF-GARCH by applying it onto a dataset of
financial returns. We compare our method’s conditional variance-covariance forecasts with
realized volatilities and covolatilities built upon intra-daily data of the out-of-sample periods.
For the diagonal elements of the conditional covariance matrix, our predictor performs better
than the traditional univariate GARCH model, both in terms of root mean square errors and
in terms of determination coefficients of Mincer-Zarnowitz regressions.
Summing up, the DF-GARCH performs always better than a univariate GARCH and almost
identically in its specification with two lags (as suggested by criteria on factor numbers) or
when using no lags (i.e. using a static specification). This is due to the well known fact that
asset returns show poor dynamics in their levels. However, the model is very flexible compared
to purely static models as the O-GARCH or the GO-GARCH. Notice that a DF-GARCH with
no lags presents almost no differences with respect to a model where the static factors (almost
identical to the dynamic ones) are estimated as static principal components (see Stock and
Watson [2002]). The comparison of the DF-GARCH with all this family of static factor mo-
dels with conditional heteroskedasticity is presently in progress by means of simulations, where
different degrees of conditional heteroskedasticity and dynamics in the returns can be mod-
elled. Finally, concerning the multivariate GARCH model of dynamic factors, the full BEKK
specification yields always better predictions than the DCC specification, independently of the
number of lags used.
We have chosen to empirically test our model on financial data not only because of the growing
interest on return multivariate modelling, but also for the availability of realized measures of
conditional variance and covariance that can be used to evaluate the prediction accuracy of
our procedure. However, the method presented here might be especially useful in predicting
conditional covariances of large datasets when the only available measures of the data refer
to levels and first moments. An ideal application of the DF-GARCH would be on series with
rich dynamics in their levels and high conditional heteroskedasticity. As a consequence, we
are currently involved in integrating the method within a macroeconomic context, in which
the multivariate inflation volatility forecast can be used to evaluate the risk associated with
different policies. Another appealing macroeconomic use is the univariate variance predic-
tion of an aggregate variable (e.g. inflation or GDP) by means of a multivariate analysis on
disaggregated data (a first application is in Barigozzi and Capasso [2007]).
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Appendix - A modified Kalman filter estimator

We explain here in detail the estimation of the state-space model

xt = Λ̂Ft + ξt measurement equation ,

Ft = ÂFt−1 + B̂ut transition equation ,

where
ξt|t−1 ∼ N (0, R̂t) R̂t diagonal ,
ut|t−1 ∼ N (0, Qt) ,

Qt = Ĉ ′
0Ĉ0 + Ĉ ′

1ut−1u
′
t−1Ĉ1 + Ĉ ′

2Qt−1Ĉ2 .

The multivariate GARCH representation considered here is a full BEKK, but the following
procedure can be easily modified to allow for a DCC representation.

Initialization

Initial values are built as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

F1|1 = F̂1

P1|1 sufficiently large
u1|1 = û1

Q1|1 = Q̂1

(u1u
′
1)|1 = u1|1u

′
1|1 + Q1|1 ,

where the variables with the hat have been obtained during the estimation step presented
in section 3, Q̂1 has been obtained by the multivariate GARCH model, and the state initial
covariance matrix P1|1 must represent the high uncertainty about the initial value of the state
vector.

Prediction

The steps described in this and the following section must be repeated together for time
t = 2 . . . T . First we predict the unobserved state vector

Ft|t−1 = ÂFt−1|t−1 ,

and its conditional covariance matrix

Pt|t−1 = ÂPt−1|t−1Â
′ + B̂(utu

′
t)|t−1B̂

′ ,

where
⎧

⎨

⎩

(utu
′
t)|t−1 = Qt|t−1

Qt|t−1 = Ĉ ′
0Ĉ0 + Ĉ ′

1(ut−1u
′
t−1)|t−1Ĉ1 + Ĉ ′

2Qt−1|t−1Ĉ2 .
(21)

The conditional covariance matrix for the state vector is obtained by using the GARCH
estimated parameters Ĉ0, Ĉ1 and Ĉ2; they are applied on the updated conditional covariance
of the transition error

(

ut−1u
′
t−1

)

, which in turn has been obtained by the Kalman update, as
we see in the next step.
The prediction error is given by

ηt|t−1 = x̃t − x̃t|t−1 = x̃t − Λ̂Ft|t−1 ,
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whose conditional covariance is built by using the predicted conditional covariance of the
static factors and the known conditional covariance of the measurement errors, as obtained
previously by univariate modelling of the idiosyncratic parts:

Wt|t−1 = Λ̂Pt|t−1Λ̂
′ + R̂t .

Update

We compute the Kalman gain
Kt = Pt|t−1Λ

′W−1
t|t−1 ,

and we build more accurate inferences, exploiting information up to time t,

Ft|t = Ft|t−1 + Ktηt|t−1 ,

Pt|t = Pt|t−1 − KtΛ̂Pt|t−1 .

By inverting the transition equation and recalling (7), we get

ut|t = S−1/2M ′
(

I − ÂL
)

Ft|t , (22)

and then
(utu

′
t)|t = ut|t u

′
t|t . (23)

Equation (23), when put in the context of the following prediction step (21), is not precise.
As noted by Harvey et al. [1992], a correction term should be added on the right hand side in
order to take the into account the conditional variance of the dynamic factor. However, the
same authors show that, when applied to the factor model by Diebold and Nerlove [1989], the
effect of this correction may be empirically negligible. The differences between their estimation
procedure and ours, including the update passage described in (22), let us prefer avoiding the
estimation of the correction term.

Smoothing

Smoothing would be especially useful when extending our procedure to a higher number of
lags in the GARCH structure of dynamic factors’ conditional covariances. In any case, the
smoothing procedure is recommended for getting a more precise estimate of the common and
idiosyncratic components of the dataset. Following de Jong [1989] and Durbin and Koopman
[2001], the following fixed interval smoother can be applied for t = T, T − 1, . . . , 2 in order
to find more precise in-sample values of the static factors and of dynamic factors’ conditional
covariances. First we compute

rt−1 = L′
trt + Λ′W−1

t|t−1ηt|t−1 ,

Ft|T = Ft|t−1 + Pt|t−1rt−1 ,

where Lt = A (I − KtΛ), rT = 0. At each step, we also find the smoothed state variance
matrix

Pt|T = Pt|t−1 − Pt|t−1Θt−1Pt|t−1 ,

where Θt has been obtained by

Θt−1 = Λ′W−1
t Λ + L′

tΘtLt ,
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with initial value ΘT = 0. At the end of each step, we get smoothed values for the dynamic
factors and their conditional covariances Qt

ut|T = Qt|t−1B
′rt ,

Qt|T = Qt|t−1 − Qt|t−1B
′ΘtBQt|t−1 .
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