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Abstract

This paper demonstrates how both quantitative and qualitative results of general,
analytically tractable asset-pricing model in which heterogeneous agents behave consis-
tently with a constant relative risk aversion assumption can be applied to the particular
case of “linear” investment choices. In this way it is shown how the framework developed
in Anufriev and Bottazzi (2005) can be used inside the classical setting with demand
derived from utility maximization. Consequently, some of the previous contributions of
the agent-based literature are generalized.

In the course of the analysis of asymptotic market behavior the main attention is
paid to a geometric approach which allows to visualize all possible equilibria by means
of a simple one-dimensional curve referred as the Equilibrium Market Line. The case
of linear (particularly, mean-variance) investment functions thoroughly analyzed in this
paper allows to highlight those features of the asymptotic dynamics which are common
to all types of the CRRA-investment behavior and those which are specific for the linear
investment functions.
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1 Introduction

In recent years a number of theoretical models exploring the consequences of heterogeneity of
traders for the aggregate price dynamics of a speculative financial market have been developed.
Among many examples, let us mention the models of Day and Huang (1990), DeLong, Shleifer,
Summers, and Waldmann (1991), Chiarella (1992), Lux (1995), Brock and Hommes (1998)
and Chiarella and He (2001). These and other “Heterogeneous Agent Models” (HAMs) have
been recently reviewed in Hommes (2006). Inside the “agent-based” literature, HAMs can be
seen as an important branch of studies supplementary to the numerous simulation models.
Indeed, one of the problems with the simulation approach is that the systematic analysis of
such models is made practically impossible by the enormous number of degrees of freedom. It
is usually not clear which assumptions are responsible for generated patterns and, as a result,
robustness of the models is difficult to investigate. HAMs have appeared as a response to this
problem and, consequently, are built in such a way to make analytic investigation possible.
It is not surprising, therefore, that heterogeneous agent models usually incorporate only few
types of agents which differ in the ways they predict the future price but homogeneous in all
other respects, i.e. in functional form of demand, available information, etc.

Even if analytic models have already answered a lot of theoretical questions concerning the
consequences of behavioral heterogeneity for the market dynamics, they suffer some important
drawbacks. First, most of the contributions are built inside the constant absolute risk aversion
(CARA) framework, that is under the assumption that demand is independent of wealth. This
leads to simplification in the analysis, because otherwise the wealth of each individual portfolio
along the evolution of the economy has to be taken into account. However, this assumption is
rather unrealistic if compared with other possible behavioral specification, e.g. with constant
relative risk aversion (CRRA), see Levy, Levy, and Solomon (2000) or Campbell and Viceira
(2002) for a discussion. Second, the majority of the models consider only few types (or classes)
of behavior, thus substantially reducing the realistic level of heterogeneity1. Third, the tests
for the robustness of the results with respect to the change of simple behavioral assumptions
are very difficult to perform inside such models. For example, in order to understand the
consequences of the entry of an agent with a new type of behavior in the market, one has
to analyze completely new model from scratch. Summarizing, one can say that at this mo-
ment HAMs lack a general framework, flexible enough to incorporate different realistic agents’
specifications.

An important step in the direction of a general framework has been made in Anufriev,
Bottazzi, and Pancotto (2006) and Anufriev and Bottazzi (2005), where some analytic results
are obtained for a market populated by an arbitrarily large number of technical traders whose
possible demand functions belong to a relatively large set. The only imposed restriction on
the individual demand functions is that they have to be proportional to the current wealth.
This requirement is consistent with the constant relative risk aversion (CRRA) framework.
Consequently, the price and agents’ wealth are determined at the same time and both price
and wealth dynamics are intertwined. To model the agents’ behavior, Anufriev and Bottazzi
(2005) introduce deterministic investment functions which map the past history of returns into
the fraction of wealth which is invested into the risky security. These investment functions

1For instance, DeLong, Shleifer, Summers, and Waldmann (1991) consider two types of investors, the model
of Day and Huang (1990) is populated by three types of traders, while Brock and Hommes (1998) provide
a number of examples with two, three and four different types. One recent exception from this rule is the
model of Brock, Hommes, and Wagener (2005) where the low-dimensional Large Type Limit with the number
of types converging to infinity is introduced.
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are left unspecified, so that the obtained results are very general.
The purpose of the current paper is to provide an illustration of how this general, analyti-

cally tractable agent-based model can be applied to important particular classes of investment
behavior. Our main interest is focused on the functions which can be derived from opti-
mization principle and, therefore, can be considered as “rational”. According to conventional
economic wisdom such optimizing behavior is a characteristic of the majority of the agents in
financial markets, and therefore corresponding investment functions deserve a special analysis.
We consider the investment functions derived from two types of rational choice procedures,
expected utility (EU) maximization and mean-variance utility (MVU) maximization.

It is a well-known problem of the EU maximization framework with CRRA-traders that
the resulting demand functions cannot be computed explicitly. In order to overcome this
obstacle we will use the “Equilibrium Market Line” (EML), a geometric curve introduced in
Anufriev and Bottazzi (2005) which allows to characterize both the location of all possible
equilibria and (partially) the conditions of their stability independent of the specification of
the traders’ demands. In this way we obtain some predictions of equilibrium dynamics with
EU maximizers even without explicit knowledge about their investment functions.

As opposite to the EU framework, the solution of the MVU optimization problem can be
derived explicitly. The resulting demand depends on the agent’s expectations about mean
and variance of the return for the next period. It turns out that for some large class of these
expectations, the investment functions become “linear” in the sense which will be clarified
later. Since different types of expectations can still lead to different investment functions,
we keep the discussion as general as possible and investigate the dynamics in the market
with “linear” investment functions. In particular, we demonstrate that the phenomenon of
multiple stable equilibria cannot emerge in such market. This is an important limitation of the
“rational” framework with respect to the general case, especially if one believes that optimal
behavior should not prevail in the market.

The analysis of the linear investment functions brings us to another goal of this paper.
We show that one of the first analytic models developed in CRRA framework, namely the
model of Chiarella and He (2001), can be easily understood and generalized, when considered
inside the general framework of Anufriev and Bottazzi (2005). As a direct consequence, we can
discuss the validity and limits of the “quasi-optimal selection principle” originally formulated
by Chiarella and He. Through the re-consideration of the examples analyzed in that paper, we
show that the so-called “quasi-optimal selection principle” introduced there was a consequence
of a peculiar market ecology. For general behavior this principle does not hold and only local
optimal selection principle formulated in Anufriev, Bottazzi, and Pancotto (2006) is valid.

The rest of the paper is organized as follows. In the next Section we give a brief description
of the general model of a speculative market in the CRRA framework together with the
most important results. In Section 3 we introduce two important special cases of investment
behavior: one which is based on expected utility maximization, and another which is derived
from mean-variance optimization. While in the former case only qualitative results can be
discussed, in the latter case a rigorous analysis is feasible. We start this analysis in Section 4,
where the case of a single agent with “linear” investment function is considered in detail. In
Section 5 we come back to the mean-variance type of behavior and consider those investment
behaviors which were introduced in Chiarella and He (2001). Some final remarks are given in
Section 6.
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2 Equilibria in a Market with Generic Traders

In this Section we present the general analytic model of a speculative market in which the
individual demand functions are proportional to wealth. For the derivation and complete
discussion of the results provided below the reader is referred to Anufriev and Bottazzi (2005).
We stress that all the results are obtained without a precise specification of the demand
functions. It implies, of course, that the results are incomplete. For example, we find that
all equilibria belong to a one-dimensional curve, but the precise location of the equilibria still
depends on the unknown investment functions. We start this Section with a brief review of
the general framework and then present the results of equilibrium and local stability analysis.

2.1 General Setup

We consider a simple pure exchange economy, populated by a fixed number N of traders,
where trading activities take place in discrete time. The economy is composed of a riskless
asset yielding in each period a constant interest rate rf > 0 and a risky asset paying a random
dividend Dt at the beginning of each period t. The riskless asset is considered the numéraire
of the economy and its price is fixed to 1. The ex-dividend price Pt of the risky asset is
determined at each period through a market-clearing condition, where the outside supply of
the asset is constant and normalized to 1.

Let xt,n stand for the fraction of the wealth Wt,n which, at time t, agent n (n ∈ {1, . . . , N})
invests in the risky asset. We assume that individual demand is proportional to the current
wealth, which means that xt,n is independent of Wt,n. Thus, we confine ourselves to the CRRA
framework. Furthermore, xt,n is also independent of the current price, since investment deci-
sion at time t has to be made before fixing the price. The evolution of economy is described by
the following system containing the individual wealth dynamics and market-clearing condition:

Wt,n = (1 − xt−1,n) Wt−1,n (1 + rf ) +
xt−1,n Wt−1,n

Pt−1

(Pt + Dt) ,

Pt =
N

∑

n=1

xt,n Wt,n .

(2.1)

Since price and wealth are determined at the same time, these equations give the evolution
of the state variables Wt,n and Pt only implicitly. Under suitable conditions this implicit
dynamics can be made explicit. Let us, first, introduce

〈

a
〉

t
as a notation for the wealth

weighted average at time t of some agent-specific variable an

〈

a
〉

t
=

∑

n

an ϕt,n , where ϕt,n =
Wt,n

∑

m Wt,m

. (2.2)

In order to eliminate from the dynamics (2.1) an exogenous expansion due to continuous
injection of new shares of the riskless asset we can rescale variables as follows

wt,n =
Wt,n

(1 + rf )t
, pt =

Pt

(1 + rf )t
, et =

Dt

Pt−1 (1 + rf )
. (2.3)

Then, it is easy to show that the price growth rate rt+1 = pt+1/pt − 1 evolves as

rt+1 =

〈

xt+1 − xt

〉

t
+ et+1

〈

xt xt+1

〉

t
〈

xt (1 − xt+1)
〉

t

, (2.4)
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while the evolution of the wealth shares ϕt,n reads:

ϕt+1,n = ϕt,n

1 + (rt+1 + et+1) xt,n

1 + (rt+1 + et+1)
〈

xt

〉

t

∀n ∈ {1, . . . , N} . (2.5)

Notice that the dynamics in (2.4) and (2.5) do not depend on the price level directly, but,
instead, are defined in terms of price return and dividend yield. In compliance with intuition,
in the CRRA framework the equilibria can be identified as states of steady expansion (or
contraction) of the economy.

In order to close the system defined by (2.4) and (2.5) one has to provide the stochastic
(due to random dividend payment Dt) yield process {et} and specify the set of investment
shares {xt,n}. Concerning the former we make the following

Assumption 1. The dividend yields et are i.i.d. random variables obtained from a common
distribution with positive support and mean value ē ∈ (0, 1).

This assumption is common to a number of studies in the literature, see e.g. Chiarella and
He (2001, 2002), and also roughly consistent with the real data. We assume that the structure
of the yield process is known to everybody. Consequently, the information set available to
traders at round t reduces to the sequence of past realized returns It−1 = {rt−1, rt−2, . . . }. On
the basis of this set agents determine the investment shares, as we describe in the following

Assumption 2. For each agent n there exists a finite memory time span L (which, without loss
of generality, can be assumed to be the same for all the agents), and differentiable investment
function fn which maps the present information set consisting of the past L available returns
into an investment share of the agent:

xt,n = fn(rt−1, . . . , rt−L) . (2.6)

The function fn on the right-hand side of (2.6) gives a complete description of the in-
vestment decision of agent n. The knowledge about the fundamental dividend process is not
inserted into the information set but embedded in the function fn itself. Investment decisions
of each agent xt,n evolve taking into consideration past market performance.

To summarize, we have considered the evolution of a speculative market where demand is
proportional to agent’s wealth. The proportionality coefficient, the investment share, is agent-
specific and modeled in a general way by means of the investment function. The corresponding
dynamics is derived in terms of price returns and agents’ wealth shares. It is important to
keep in mind that all analysis below will be performed in terms of the rescaled variables (2.3).
The return of the unscaled price Rt = Pt/Pt−1 − 1 is linked with the return rt of the rescaled
price through the relation 1 + Rt = (1 + rt) (1 + rf ). Thus, zero rescaled price return rt = 0
corresponds to the risk free interest rate in terms of unscaled price return Rt = rf .

2.2 Location of Equilibria

Anufriev and Bottazzi (2005) study the asymptotic properties of the dynamics introduced
above for arbitrary investment functions fn. They substitute the realization of the yield
process by its mean value ē and consider the deterministic skeleton of a multi-dimensional
system composed by (2.4), (2.5) and (2.6). Let us denote the fixed point of the skeleton as
x

∗. It is composed of the (rescaled) price return r∗, the equilibrium investment shares of all
the agents x∗

n, and the relative wealth shares of the agents ϕ∗

n.

5



Before presentation of the formal results we introduce three definitions. First of all, fixed
point of the system should generate positive prices. It motivates the following

Definition 2.1. The equilibrium x
∗ with positive initial price p0 and return r∗ > −1 is called

feasible. Otherwise, x
∗ is an unfeasible equilibrium.

Second, we need the deterministic version of the concepts of survival and dominance used
in DeLong, Shleifer, Summers, and Waldmann (1991):

Definition 2.2. Agent n is said to “survive” in x
∗ if his wealth share is strictly positive,

ϕ∗

n > 0. Agent n is said to “dominate” the economy, if he is the only survivor, so that ϕ∗

n = 1.

Finally, let us introduce the special geometric locus which will play the main role for the
characterization of the equilibria.

Definition 2.3. The Equilibrium Market Line (EML) is the function l(r) defined as

l(r) =
r

ē + r
. (2.7)

The following statement characterizes all possible equilibria of the underlying system

Proposition 2.1. Let x
∗ be a fixed point of the deterministic skeleton of the system defined

by (2.4), (2.5) and (2.6). Then

x∗

n = fn(r∗, . . . , r∗) ∀n ∈ {1, . . . , N} , (2.8)

and the following three mutually exclusive cases are possible:

(i) Survival of a single agent. In x
∗ only one agent survives and, therefore, dominates

the economy. Without loss of generality we can assume this agent to be agent 1 so that
ϕ∗

1 = 1, while all other equilibrium wealth shares are zero. The equilibrium return r∗

satisfies the following equation

l(r∗) = f1

(

r∗, . . . , r∗
)

. (2.9)

(ii) Survival of many agents. In x
∗ more than one agent survives. Without loss of

generality we can assume that the survivors are the first k agents (with k > 1) so that
the equilibrium wealth shares satisfy

{

ϕ∗

n ∈ (0, 1) if n ≤ k ,

ϕ∗

n = 0 if n > k
,

k
∑

n=1

ϕ∗

n = 1 . (2.10)

The equilibrium return r∗ satisfies the following k equations

l(r∗) = fn

(

r∗, . . . , r∗
)

∀n ∈ {1, . . . , k} , (2.11)

so that the first k agents possess, at equilibrium, the same investment share x∗

1�k = l(r∗).

(iii) “No risk premium” with many survivors. In x
∗ the investment shares and wealth

shares of the agents satisfy

N
∑

n=1

x∗

n ϕ∗

n = 0 and
N

∑

n=1

ϕ∗

n = 1 , (2.12)

while equilibrium return r∗ = −ē.
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This Proposition shows that depending on the investment functions present in the market,
three types of equilibria are possible. At the aggregate level, the main feature of the last type
is that the investment and wealth shares of the agents are balanced in such a way that the
capital gain and the dividend yield of the risky asset offset each other. Consequently, we call
such equilibria “no risk premium”, since the risky asset has the same return as the riskless
one. In other types of equilibria the returns of the two assets are different. The EML allows to
identify all such equilibria, and in this respect the first and second equilibria types are similar2.
However, they are different, at least, in two aspects: in geometric nature and in generality.

From a geometric point of view, while the equilibrium x
∗ with single survivor identifies a

precise value for each component of x
∗, when many agents survive there is a residual degree

of freedom in the definition of the equilibrium, since the only requirement on the equilibrium
wealth shares of the survivors is the fulfillment of the second equality in (2.10). Therefore, if
one equilibrium with k survivors exists, then there exist a k − 1-simplex of equilibria with k
survivors. In other words, Proposition 2.1(ii) does not define a single equilibrium point, but
an infinite set of equilibria. Another difference between the first two types of equilibria is due
to the fact that in the second type all the investment shares x∗

1, . . . , x
∗

k must at the same time
be equal to a single value x∗

1�k, while in the first case no requirements are imposed. Thus,
the equilibrium with k > 1 survivors exists only in the particular case in which k investment
functions f1, . . . , fk satisfy this restriction. Thus, many survivors equilibria are non-generic.

Instead, “no risk premium” equilibria are generic equilibria with many survivors. It is easy
to check that the only requirement for the existence of such equilibrium is the co-existence of
two agents in the market, one with positive and one with negative investment share. Conse-
quently, “no risk premium” equilibria do not exist in the market with a single agent.

The geometric interpretation of the market equilibria can be presented on a single two-
dimensional plot with the aid of the EML. The key reason for the existence of such a simple
illustration is that the agent’s memory span L is irrelevant for the question of the existence
and location of equilibria: only the restriction of the investment function f on the plane
rt−1 = · · · = rt−L is relevant. As an example, let us consider the left panel in Fig. 1. Two
functions shown there as the thick curves constitute investment functions (or, more precise,
“symmetrizations” of some investment functions), while the hyperbolic curve shown as the thin
line represents the EML defined in (2.7). Notice that the EML consists of two branches sep-
arated by a vertical asymptote at −ē. This asymptote corresponds to the “no-risk-premium”
equilibria described in Proposition 2.1(iii). In this example there exist one such equilibrium
which can be represented by the two points A1 and A2 showing the corresponding investment
shares of the agents. The equilibrium wealth shares can be derived from (2.12).

According to Proposition 2.1 all other possible equilibria can be found as the intersections
of the investment functions with the EML (cf. (2.9) and (2.11)). Moreover, since these two
functions do not possess common intersections with the EML, the equilibria of the second type,
identified in item (ii), are impossible in this example. There exist, however, four equilibria
with a single survivor. In two of them (S1 and U1) the first agent, with non-linear investment
function, survives, so that ϕ∗

1 = 1. In the other two equilibria (S2 and U2) the second agent,
with linear investment function, survives, and ϕ∗

1 = 0. In each equilibrium, the intersection of
the investment function of the surviving agent with the EML gives both the equilibrium return
and the equilibrium investment share of the survivor. The equilibrium investment share of
the non-surviving agent can be found, in accordance with (2.8), as the intersection of his own
investment function with the vertical line passing through the equilibrium return.

2Moreover, Proposition 2.1(i) can be considered as a particular case of Proposition 2.1(ii).
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Figure 1: Equilibria and their stability for the many agent system. Left panel: Generic
situation with 2 agents operating in the market. Four single survivor equilibria S1, S2, U1 and U2 are
defined as the intersections of the “symmetrizations” of the investment functions (thick lines) with
the EML (thin line). The only “no risk premium” equilibrium is represented by points A1 and A2.
Region where investment shares of non-surviving agents satisfy to the stability conditions (2.15) is
shown in gray. Right panel: Equilibrium stability region (gray) and the bifurcation types for the
single agent case with L = 1 in coordinates r∗ and f ′(r∗)/l′(r∗).

In order to confine the analysis only to feasible equilibria, one has to exclude from the
EML those points where the equilibrium return r∗ ≤ −1. Corresponding part of the EML is
separated by point F in the left panel of Fig. 1 and shown by the dashed line. We remind
that the analysis is performed with respect to the rescaled variables as defined in (2.3). Thus,
negative return r∗ corresponds to the return less than rf in terms of the unscaled variables.

2.3 Stability Analysis of Equilibria

This Section completes the presentation of the general results with the stability conditions
of the equilibria of the system defined in Section 2.1. We present these conditions for the
non-generic equilibria with many survivors found in Proposition 2.1(ii). As a particular case,
we also find the stability conditions for the generic case of one single survivor described in
Proposition 2.1(i). Finally, we discuss some general implications of the results. The proof
of the proposition, more detailed discussion, and also the stability conditions for “no risk
premium” equilibria can be found in Anufriev and Bottazzi (2005).

The stability conditions are derived from the analysis of the roots of the characteristic
polynomial associated with the Jacobian of the corresponding system computed at equilibrium.
The characteristic polynomial, in general, depends on the behavior of the individual investment
function f in an infinitesimal neighborhood of the equilibrium x

∗. This dependence can be
summarized with the help of the following

Definition 2.4. The stability polynomial P (µ) of the investment function f in x
∗ is

Pf (µ) =
∂f

∂rt−1

µL−1 +
∂f

∂rt−2

µL−2 + · · · + ∂f

∂rt−L+1

µ +
∂f

∂rt−L

, (2.13)

where all the derivatives of f are computed in point (r∗, . . . , r∗).
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Using the previous definition, the stability conditions can be formulated in terms of the
equilibrium return r∗, and of the slope of the EML in equilibrium, l′(r∗) = ē/(ē + r∗)2.

Proposition 2.2. Let x
∗ be a fixed point of the deterministic skeleton of system (2.4), (2.5)

and (2.6), found in Proposition 2.1(ii), where the first k agents survive, so that (2.10) holds.
Let Pfn

(µ) be the stability polynomial of investment function fn. The equilibrium x
∗ is

(locally) stable if the two following conditions are met:
1) all the roots of polynomial

Q1�k(µ) = µL+1 − (1 + r∗) µ − 1

r∗ l′(r∗)

k
∑

n=1

ϕ∗

n Pfn
(µ) , (2.14)

are inside the unit circle.
2) the equilibrium investment shares of the non-surviving agents satisfy the relations

−2 − r∗ < x∗

n (r∗ + ē) < r∗ , for k < n ≤ N . (2.15)

In particular, if k = 1 and equilibrium x
∗ is described by item (i) of Proposition 2.1, then

these two conditions are sufficient for (local) asymptotic stability.
If k > 1 and the equilibrium x

∗ is described by item (ii) of Proposition 2.1, then the fixed
point x

∗ is never hyperbolic, and, consequently, is never (locally) asymptotically stable. Its
non-hyperbolic submanifold is the k − 1-simplex defined by the second part of (2.10).

To understand this result notice that condition 1) is independent of the behavior of non-
survivors. Thus, it says that the equilibrium should be “self-consistent”, i.e. it should remain
stable even if any non-surviving agent would be removed from the economy. This is however
not enough. A further requirement comes from the inequalities in (2.15). In particular, in
those equilibria where r∗ > −ē the surviving agents must be the most aggressive, i.e. invest
the highest wealth share among all agents in the risky asset. In those equilibria where r∗ < −ē
the survivors have to be the least aggressive investors.

The stability of the single survivor equilibrium is the special case of the last Proposition.
In this case the polynomial (2.14) can be simplified and reads:

Q1(µ) = µL+1 − (1 + r∗) µ − 1

r∗ l′(r∗)
Pf1

(µ) . (2.16)

If this agent with investment function f1 is alone in the market, the condition 2) disappears
and the only requirement for local asymptotical stability is the fulfillment of condition 1) with
polynomial (2.16). In the market with many agents, item 2) plays a role and condition (2.15)
is necessary for stability.

In the left panel of Fig. 1 we report in gray those regions where condition (2.15) is sat-
isfied. Let us assume that S1 and S2 are stable equilibria when the first and second agents,
respectively, are present alone in the market (i.e. that condition 1) in Proposition 2.2 holds).
Then, S1 is the only stable equilibrium of the system with two agents. Notice, indeed, that in
the abscissa of S1, i.e. for the equilibrium return, the linear investment function of the non-
surviving agent passes below the investment function of the surviving agent and belongs to the
gray area. On the contrary, in the abscissa of S2, the investment function of the non-surviving
agent has greater value and does not belong to the gray area. Consequently, this equilibrium
is unstable.
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The stability conditions for equilibria with many survivors have a similar interpretation.
The only difference is due to the weighted structure in the polynomial Q1�k(µ). The non
hyperbolic nature of such equilibria is a direct consequence of their non-unique specification in
Proposition 2.1(ii). The motion of the system along the k−1 dimensional subspace consisting
of the continuum of equilibria leaves the aggregate properties of the system unaltered, however.

Case of L = 1. The analysis of the roots of Q(µ) can be used to reveal the role of the different
parameters in stabilizing or destabilizing a given equilibrium. For illustrative purposes, let us
consider the simplest case3 in which L = 1. The expression in (2.16) reduces to a polynomial
of second degree and one can easily derive the following inequalities sufficient to satisfy the
conditions 1) of Proposition 2.2:

f ′(r∗)

l′(r∗)

1

r∗
< 1 ,

f ′(r∗)

l′(r∗)
< 1 and

f ′(r∗)

l′(r∗)

2 + r∗

r∗
> −1 . (2.17)

The region where these three inequalities are satisfied is shown in the right panel of Fig. 1 in
coordinates r∗ and f ′(r∗)/l′(r∗). The second coordinate is the relative slope of the investment
function at equilibrium with respect to the slope of the EML. If the slope of f at the equilibrium
increases, the system tends to lose its stability. In particular, in the stable equilibrium the slope
of investment function is smaller than the slope of the EML. Let us consider, for example, the
left panel of Fig. 1 and suppose for the moment that these are the functions of the agents with
memory span equal to 1. One can immediately see that equilibria U1 and U2 are unstable, due
to the violation of the second inequality in (2.17). On the contrary, the slope of the nonlinear
investment function in S1 is very small, so that, presumably, this equilibrium is stable.

Selection in the Equilibrium. Let us briefly discuss another important implication of
Proposition 2.2. We consider a stable many agents equilibrium with price return r∗. According
to the results of the stability analysis, the wealth return of all survivors is equal to r∗, so that
r∗ is also the asymptotic growth rate of the total wealth. At the same time, the wealth
growth rates of the non surviving agents are lower than r∗. Then, if they were surviving, and
consequently were affecting the dynamics of the total wealth, the whole economy would grow
at a lower rate. To put the same statement in negative terms, the economy will never end
up in an equilibrium where its growth rate is lower than it would be if the survivor(s) were
substituted by some other agent(s). One could see in this result an optimal selection principle
since it suggests that the market endogenously selects the best aggregate outcome.

This result is in line with the intuitive idea that in a model with endogenous wealth dy-
namics, the agent who invests more in the growing asset increases his influence and, eventually,
dominates those traders who invest less. Our analysis confirms in part this intuition, but also
highlights two important limitations. First, the optimal selection principle does not apply to
the whole set of equilibria, but only to the subset formed by the equilibria associated with
stable fixed points in the single agent case. For instance, the market shown in the left panel
of Fig. 1 will never end up in U1 or U2, even if these are the equilibria with the highest re-
turns. Second, the possibility of having multiple stable equilibria, even with one single trader,
implies that the optimal selection principle has only a local character: the economy does not
necessarily converge to the stable equilibrium with the highest possible return.

3One of possible interpretations of this example is that an agent has a näıve forecast of the future return
and uses his investment function to transform this forecast to the investment share. The more general case,
when agents use the exponential weighted moving averages to estimate the mean and variance of the next
period return is discussed in Anufriev, Bottazzi, and Pancotto (2006).
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3 Investment Functions of Optimizing Traders

All the results presented in the previous Section are stated in terms of general investment
functions. Here we provide some examples of the agents’ behavior which can be modeled by
means of such functions. These examples originate from a classical, utility-maximization choice
theory. Therefore, all investment functions which are derived in this Section can be referred
as “rational”. We stress that this agents’ rationality has nothing to do with rationality in
expectations4. Using terminology of Herbert Simon (see e.g. Simon (1976)), the traders which
we have modeled in Assumption 2 were procedurally rational, while now we will confine our
attention only on the substantively rational traders.

3.1 Expected Utility Maximization

3.1.1 Expected Utility of the Wealth

It is well known that expected utility (EU) maximization with power utility function of wealth

U(W ; γn) =
W 1−γn − 1

1 − γn

, γn > 0 , (3.1)

results in the demand function proportional to wealth. The equivalent optimization problem
in terms of the rescaled variables reads

max
xt

E[U(wt+1; γ)] s.t. wt+1 = wt

(

1 + xt (rt+1 + et+1)
)

, (3.2)

and it is straight-forward to see that solution x∗

t of this problem is independent of the agent’s
wealth. This solution will depend on the risk aversion coefficient γn and also on the agent’s
expectation about distribution of future total return

yt+1 = rt+1 + et+1 .

The agent’s expectation should be based either upon the commonly available distribution of
the dividend yield, or upon the previous return history, or both. Thus, independent of how an
agent forms his expectations, a “rational” investment function can be defined and the analysis
of the previous Section can be applied.

Unfortunately, the explicit functional shape of the solution x∗ of (3.2) with power utility
(3.1) cannot be derived for all reasonable (e.g. log-normal) continuous distributions. Conse-
quently, the investment functions for EU maximization are not defined explicitly. The most
common way to resolve this problem is to analyze some approximation of the solution. We
discuss this approach below, and then demonstrate that our general framework allows to get
some conclusions without relying on the approximation.

Approximation of the Solution. Since an analytic derivation of the investment function
resulting from the EU maximization with power utility is impossible, different approximations
of the solution can be considered. For instance, Chiarella and He (2001) use the continuous-
time approximation and derive5 the following approximated solution of (3.2):

xt =
1

γ (1 + rf )

Et−1 [rt+1 + et+1]

Vt−1 [rt+1 + et+1]
, (3.3)

4Indeed among our “rational” agents some will be fundamentalists, and some will be chartists.
5The corresponding derivation in terms of unscaled price return can be found in Appendix A.1 of Chiarella

and He (2001). Applying definitions (2.3) of the rescaled variables we get the result reproduced here.
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where Et−1[rt+1 + et+1] and Vt−1[rt+1 + et+1] stand for the agent’s expectations about total
return and its variance, respectively. The subscript t−1 stresses the fact that the expectations
are based on the information set It−1 available before period t. Approximation (3.3) is derived
under the assumption of normal distribution of the return, whose first two moments should
be substituted into the above expression.

Many other approximations are also possible. It leads us to the problem of precision of
any particular approximation and, therefore, to the reliability of such an approach. Usually,
no estimation of the error incurred in the approximation is provided. However, even if the
approximation (3.3) should be precise in the limit when the time unit converges to zero, the
error of the approximation for actual time scale can be large. Incidentally notice that Campbell
and Viceira (2002) derive another continuous-time approximation which differs from (3.3) on
the constant term6. Furthermore, it may happen that the additional specific assumptions
imposed on the return distribution (necessary to derive the approximation) are in contradiction
with the realized dynamics. In this case the approximation is not justified anymore.

Properties of the Actual Solution. The framework reviewed in Section 2 allows to over-
come the abovementioned problems with the approximate solutions. The EU maximization
problem (3.2) with power utility (3.1) leads to an investment function which depends on the
risk aversion coefficient γn and on the agent’s belief about distribution of future return yt+1.
Let us denote this perceived distribution as g(y), the expected value of the total return as ȳ,
and the corresponding investment function as fEP

(

γ, g(y)
)

. Then the following applies

Proposition 3.1. Let fEP
γ stand for the partial derivative of the investment function fEP

with respect to the risk aversion coefficient γ. Then it is:

If ȳ T 0 , then fEP T 0 and fEP
γ S 0 .

Proof. See appendix A.

This Proposition together with the general results of Section 2 allows us to discuss some of
the equilibrium properties of the market with EU maximizers even without complete knowledge
of their investment functions.

Let us consider, for example, the population of EU maximizers with homogeneous expec-
tations about the next period return and assume that these expectations do not depend on
past returns. This assumption implies that the investment functions are horizontal. We call
such investors fundamentalists, since their demand is unaffected by the past market history.
Notice that condition 1) of Proposition 2.2 is always satisfied for fundamentalists.

We assume that agents expect a positive total rescaled return, i.e. ȳ > 0. Combining the
results of Proposition 3.1 with general analysis, one goes to the conclusion that in such market
three different scenarios are possible. First, if all the agents are moderately risk-averse so that
their investment shares are less than 1, then only the agents with the smallest risk aversion
survive in the stable equilibrium Sp belonging to the lower-right branch of the EML. This case
is illustrated in the left panel of Fig. 2. Second, if the agents have very small risk-aversion
coefficients so that their investment shares are greater than 1, then only those with the highest
risk aversion coefficient survive. The equilibrium in this case belongs to the upper-left branch
of the EML. Third, if some agents have investment share greater than 1, and some not, then

6See formula (2.25) in Campbell and Viceira (2002), which can be written as x′

t = xt + 1/(2γ), where xt is
given by (3.3).
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Figure 2: Equilibria in the market with EU maximizing fundamentalists. Left panel: If the
positive return is expected, either the agents with the smallest risk aversion survive in the only stable
equilibrium Sp, or stable equilibrium does not exist. Right panel: If the negative return is expected,
the agents with the highest risk aversion survive in the only stable equilibrium Sn.

there is no stable equilibrium in the market. Notice, however, that assumption of positive ȳ
implies that Et−1[rt+1] > −ē and, therefore, only the first scenario is consistent with the sign
of the agents’ expectations.

Analogously, if homogeneous fundamentalists believe that ȳ < 0, the agents with the
highest risk aversion will survive in the stable equilibrium Sn as we show in the right panel
of Fig. 2. However, in this equilibrium r∗ > −ē, which is inconsistent with the expectations.
Finally, the “no risk premium” equilibria can emerge in such a market if and only if some
of the agents expect positive total return and some of the agents expect the negative return.
Since the actual return is zero in “no risk premium” equilibrium, all the investors would make
systematic mistakes in the simple forecast of the average return.

Proposition 3.1 can also be applied to the cases with more sophisticated EU maximizers,
even if such application can be more involved due to the complexity of the stability conditions.
In any case, Proposition 3.1 says that, independently of the agent’s perceived distribution of
the next period return, an increase in the risk aversion will result in a downward movement of
those parts of the investment functions which lie above the horizontal axes and in an upward
movement of those parts which are below the axes.

3.1.2 Expected Utility of the Return

Our general framework can also be applied to the setting in which agents solve the EU maxi-
mization problem with respect to the return of their wealth with exponential utility function:

U(ρt+1,n; βn) = −e−βn ρt+1,n = −e−βn xt,n (rt+1+et+1) ,

where ρt+1,n = wt+1,n/wt,n − 1 denotes the return of the agent’s (rescaled) wealth. Straight-
forward computations show that if perception of the agents is such that the total return
yt+1 = rt+1 + et+1 is normally distributed with expected value Et−1[rt+1 + et+1] and variance
Vt−1[rt+1 + et+1], then the solution of the corresponding EU maximization reads:

xt =
1

2 β

Et−1 [rt+1 + et+1]

Vt−1 [rt+1 + et+1]
. (3.4)
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As usually, the substitution of any rule of the expectation formation in the right-hand side of
this expression leads to the properly defined investment function.

3.2 Mean-Variance Utility Maximization

Another class of the investment functions in the CRRA framework can be obtained through
the solution of the following mean-variance (MV) optimization problem:

max
xt

{

Et−1[wt+1] −
γ

2 wt

Vt−1[wt+1]

}

s.t. wt+1 = wt

(

1 + xt (rt+1 + et+1)
)

, (3.5)

where γ is some positive constant. As opposite to the standard MV framework, the coefficient
which measures the sensitivity of the agent’s utility to the risk decreases with wealth. Simple
computation shows that the solution of (3.5) is provided by

xt =
1

γ

Et−1[rt+1 + et+1]

Vt−1[rt+1 + et+1]
, (3.6)

and does not depend on the current wealth. Notice that the derivation is performed without
any specific assumption about the distribution of the price return and dividend yield. When
such assumption is made, the beliefs of the agent about expected return and its variance can
be plugged into the right-hand side of (3.6). The resulting expression will represent some
investment function.

Approximated solution (3.3) of the EU maximization of the wealth with power utility
function, exact solution (3.4) of the EU maximization of the return with exponential utility
function and, finally, exact solution (3.6) of the MV optimization are identical up to constant
factor in the risk aversion coefficient. It is easy to see that all the corresponding investment
functions satisfy the same property which we derived in Proposition 3.1 for the exact solution
of the EU maximization with power utility of wealth. In particular, when the expected mean
of the total return is positive, the investment functions of the agents with smaller risk aversion
are above the investment functions of the agents with higher risk aversion.

In order to investigate the properties of these investment functions further, we have to
specify the agents’ beliefs about the first two moments. Since, the framework of Chiarella and
He (2001) is identical to the one outlined in Section 2.1 (in particular, the market structure is
the same and Assumption 1 holds), it will be informative and useful for illustrative purposes
to work with the same specification of the expectations as in that paper. Chiarella and He
work with unscaled variables and consider the following specification of the expectations with
respect to the total (unscaled) return RT

t+1 = (Pt+1 − Pt + Dt+1)/Pt:

Et−1[R
T
t+1] = rf + δ + dmt , (3.7)

Vt−1[R
T
t+1] = σ2

(

1 + b (1 − (1 + vt)
−ξ)

)

, (3.8)

where mt and vt denote the sample estimates of the average return and its variance computed
as equally weighted averages of the previous L observations

mt =
1

L

L
∑

k=1

RT
t−k and vt =

1

L

L
∑

k=1

(RT
t−k − mt)

2 . (3.9)
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Chiarella and He refer the reader to the contribution of Franke and Sethi (1998) for the jus-
tification of the choice (3.8) for the variance forecast. However, this choice and, in particular,
positive parameters b and ξ are irrelevant for the equilibrium analysis, as we will see below.
The specification of the expected conditional return (3.7) is important, however. It is defined
as the risk free rate rf plus the excess return. The latter is composed of a constant component
representing a risk premium, δ ≥ 0, and a variable component, dmt. The parameter d repre-
sents the way in which agents react to variations in the history of realized returns and can be
used to distinguish between different classes of investors. A trader with d = 0 will ignore past
realized returns and, consequently, can be thought as a fundamentalist 7. If d > 0 the agent
can be considered a trend follower, if d < 0 he can be considered a contrarian.

Estimates mt and vt depend on the previous L total unscaled returns or, equivalently, on
the past L rescaled price returns. Let fCH stand for the investment function obtained after
corresponding substitutions of (3.7), (3.8) and (3.9) into the right-hand side of (3.6). This
function reads:

fCH
(

rt−1, . . . , rt−L

)

=
1

γ

δ̃ + d̃mt

1 + b
(

1 − (1 + vt)−ξ
) , with δ̃ =

δ

σ2
, d̃ =

d

σ2
. (3.10)

Investment function fCH represents one of numerous special examples of the optimizing in-
vestment behavior compatible with our framework. This example is quite specific, however,
because investment function fCH becomes linear for the constant return history. Indeed, when
the restriction r = rt−1 = · · · = rt−L is imposed, one gets mt = RT and vt = 0. Thus, such
“symmetrization” is linear with respect to RT . Applying the rescaling (2.3), one gets linearity
of the “symmetrization” also with respect to r.

In the previous Section it was shown that the long-run outcome in the framework with
CRRA trading behaviors crucially depends on the ecology of the traders present in the market.
Therefore, the property of the linearity of the investment function under the constant return
history can somehow limit the range of possible market dynamics. We will investigate this
question in the next Section for the investment functions with linear “symmetrization” and
without any additional restriction. This analysis will, first, prepare the ground for the re-
investigation of the Chiarella and He model, and, second, provide quite extensive illustration
of how our geometric machinery can be applied.

4 Equilibria for the Linear Investment Functions

Let us assume that investment function f is such that its restriction to the subspace defined
as r = rt = rt−1 = · · · = rt−L+1, is a linear function of r. With some abuse of language
we will refer on the investment functions with such “linear” symmetrization as on the “linear
investment functions”. It will be convenient to use the following parameterization of them:

f(r, . . . , r) =
(

A + 1
)

+ B
(

r + ē
)

. (4.1)

Two parameters are involved in the description of this class of investment functions. B stands
for the slope of the function, while A+1 gives the value of this function in the point −ē. This
parameterization is illustrated in the left panel of Fig. 3. Obviously, any investment function
whose “symmetrization” is linear can be represented according to (4.1) with some A and B.

7This definition is consistent with our own definition of fundamentalists introduced in Section 3.1.1.
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Figure 3: Left Panel: Examples of the linear investment functions (4.1) for different parameter
pairs (A, B). Right Panel: Equilibria for constant investment functions.

In particular, the investment behavior (3.10) considered in Chiarella and He (2001) can be
described by (4.1) with coefficients defined as

ACH =
δ̃ + d̃ rf

γ
− 1 and BCH =

d̃

γ
(1 + rf ) . (4.2)

4.1 Location of Equilibria for a Single Linear Investment Function

The equilibrium analysis performed in Section 2.2 can be easily applied for the linear invest-
ment functions (4.1). We consider here the case when one single agent operates in the market.
It is clear from Proposition 2.1 that the properties of all multi-agent equilibria (except “no
risk premium”) can be easily understood from studying the single agent case.

From the geometric plot of the EML it is clear that depending on the values of A and B
there exist at most two equilibria for any linear investment function. Simple computations
confirm this inference. One has the following

Proposition 4.1. Consider equilibria of the market with single survivor possessing the invest-
ment function with linear “symmetrization” (4.1). Then the following cases are possible:

(i) Constant function: B = 0. For A = 0 there are no equilibria. If A 6= 0 there exist
one equilibrium with return

r∗ = − ē

A
− ē . (4.3)

which is feasible, i.e. it generates positive price, when A < 0 and when A > AF = ē
1−ē

.

(ii) Non-constant function: B 6= 0.

Consider D = A2 − 4Bē. Then if D < 0, then there are no equilibria. Otherwise, when
D ≥ 0, there are two equilibria (coinciding when D = 0) with the following returns:

r∗1 =
−A −

√
A2 − 4Bē

2B
− ē , r∗2 =

−A +
√

A2 − 4Bē

2B
− ē . (4.4)

The equilibrium is feasible, i.e. it generates positive price, if the return exceeds −1.
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to the regions in Fig. 5. See text for explanation.
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Figure 5: Stratification of the parameter space (A, B) according to the number of feasible equilibria.
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Proof. See appendix B.

This Proposition provides all possible equilibrium values of the return for different linear
investment functions (4.1). When B = 0 the agent’s investment does not depend on the past
information and his function represents the horizontal line as it is shown in the right panel
of Fig. 3. If A > 0, in addition, the only equilibrium belongs to the upper-left branch of the
EML and r∗ < −ē. Obviously, this equilibrium is not feasible when A < AF . When A < 0
the equilibrium generated by constant investment function belongs to the lower-right branch
of the EML, so that r∗ > −ē and it always generates positive prices.

When B 6= 0 one can distinguish between two cases. If the investment function is de-
creasing, so that B < 0, it is always the case that D > 0 and, therefore, two equilibria exist,
as in example in the left panel of Fig. 3. From (4.4) it follows that r∗1 > −ē > r∗2 in this
case. Therefore, the first equilibrium belongs to the upper-left branch of the EML (and may
be unfeasible), while the second equilibrium is always feasible and belongs to the lower-right
branch of the EML. In the opposite case, when B > 0, the investment function increases and
can have 0, 1 or 2 equilibria. In the latter situation, which is also illustrated in the left panel
of Fig. 3, r∗1 < r∗2 and both equilibria belong to the upper-left (lower-right) branch of the EML
when A > 0 (A < 0).

In Fig. 4 we provide a geometric illustration of all possibilities described in the last Propo-
sition. Two upper panels represent examples of decreasing investment functions. In both
cases two equilibria exist, either both feasible (the left panel, first row), or one feasible and
one unfeasible (the right panel, first row). The second and third rows of panels provide four
examples when both parameter A and slope B are positive. If two equilibria exist, then only
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the largest of them may be feasible (the left panel, second row). For higher values of B,
i.e. steeper investment function, both equilibria become feasible (the right panel, second row).
It is also possible that there exist no equilibrium (the left panel, third row), or that there exist
no feasible equilibrium (the right panel, third row). Finally, two equilibria in the lower-right
branch of the EML coexist when slope is positive but A is negative (the left panel, the last
row). With increase of A or B, these two equilibria r∗1 and r∗2 approach each other and, even-
tually, coincide in the non-generic situations of tangency of the investment function and the
EML (the right panel, the last row). With sufficiently high A both equilibria reappear through
the tangency again. Such tangency scenario happens when D = 0 in Proposition 4.1(ii).

In Fig. 5 we show the stratification of the parameter space (A,B) according to the number
of feasible and unfeasible equilibria. For the parameter pairs from the white area there are no
feasible equilibria, for those pairs which belong to the light gray area only one feasible equi-
librium exist, and, finally, if parameters belong to the dark gray area there exist two different
feasible equilibria. Three important loci which are important for more detailed stratification
of the parameter space are shown by the thick curves and divide the space on seven different
regions marked by the Roman numerals8. The first locus is a horizontal straight line corre-
sponding to B = 0. In this case the investment function is horizontal and one equilibrium
exist. Any change of B leads to the appearance of the second equilibrium which can be unfea-
sible, though. The curve with parabolic shape contains the points with A2 = 4Bē, i.e. those
parameters for which the equilibrium is unique due to the tangency between the EML and
the straight line (4.1). This parabola, therefore, separates the parameters for which there are
no equilibria (region V) from those points for which two equilibria exist. We call this locus
“tangency curve”.

Finally, the third locus is represented by the increasing line A = ē/(1 − ē) − B(ē − 1),
corresponding to the parameter pairs for which linear symmetrization (4.1) passes through the
point F of the upper-left branch of the EML. With the crossing of this locus, which we call
“feasibility curve”, one feasible equilibrium is lost. If B is negative, the equilibrium on the
upper-left branch of the EML disappears with decrease of A, so that two regions I and II are
determined. If B > 0 and A < 0 then, as we mentioned above, both equilibria (if exist) belong
to the lower-right branch of the EML and both are feasible, so that area VII is determined.
Finally, if both A and B are positive, let us denote as (A∗, B∗) the parameter pair defining the
investment function which passes through F and, at the same time, is tangent to the EML.
In region III only the equilibrium with the smallest return r∗1 is feasible. When A decreases
there are two possible options: either r∗1 also becomes infeasible or r∗2 becomes feasible. From
the EML plot it is easy to see that the first case happens for B < B∗, i.e. when in the point F
the investment function is flatter than the tangency line. In this case from region III we move
to region VI. Respectively, the second case happens when B > B∗ and we move from region
III to IV.

The EML can be effectively used to study the effects of change of different parameters.
For instance, if the value of A is fixed, then increase of B from −∞ to +∞ corresponds to
the counter clock wise rotation of the vertical line r = −ē around the point with the ordinate
A+1 on the graph in Fig. 3. One can easily sketch the graphs of the roots behavior like we do
in Fig. 6. These four graphs can, alternatively, be understood from the stratification diagram
in Fig. 5. We fix abscissa A and move up vertically through this figure (see the arrows in the
down part of the picture). Four different scenarios simply correspond to the different order of
the points of intersection with the “tangency curve”, “feasibility curve” and curve B = 0.

8Each of the first seven panels in Fig. 4 gives the example for the corresponding region in Fig. 5.
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Figure 6: Equilibria r∗1 and r∗2 computed in Proposition 4.1 as functions of the slope B of the linear
investment function for four different levels of A. Upper Panel: A > A∗ (left) and A∗ > A > AF

(right). Lower Panel: AF > A > 0 (left) and A < 0 (right). Qualitative behavior can be easily
understood from the EML, see text for explanation. These graphs can be also explained from the
stratification diagram in Fig. 5 in the following way. For example, in the last scenario with A < 0
with increase of B we consequently go through the regions I, II, VII and V on the stratification
diagram, first crossing the “feasibility” line in B = BF , then the “fundamental” line in B = 0 and
finally the “tangency” line in B = BT .

4.2 Stability of Equilibria for L = 1 Case

We address in this Section the question of stability of the equilibria for the single agent case.
Recall from the general analysis of Section 2.3 that these conditions are also necessary for the
stability of equilibria in the multi-agent case with one survivor. Notice that they are also the
same in the case with many survivors for the corresponding weighted average of the survivors’
investment functions (see condition 1) of Proposition 2.2).

Unfortunately, the general conditions cannot be simplified with the use of the only assump-
tion that the investment function possesses a linear symmetrization. One problem here is that
such assumption does not provide any information about L partial derivatives of function f
in equilibrium, which appear in the stability conditions through the stability polynomial Pf

defined in (2.13). Even if this polynomial is simplified somehow, there is another problem to
make explicit the requirement for its roots to be inside the unit circle.

The stability conditions can be obtained in explicit form for the case L = 1 as we showed
above in page 10. Therefore, we strengthen here the assumption about the linear form (4.1)
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for the “symmetrization” of the investment function and assume that the investment function
itself is linear:

f(r) =
(

A + 1
)

+ B
(

r + ē
)

. (4.5)

Linear investment choice based on a näıve forecast of the future return represents one possible
interpretation of such behavior.

The stratification in Fig. 5 showed the number of different equilibria, in general, and feasible
equilibria, in particular. The question about their stability leads to the following conditions:

B − l′(r∗) r∗

r∗
< 0 , B − l′(r∗) < 0 and

B(2 + r∗) + l′(r∗)r∗

r∗
> 0 , (4.6)

where r∗ stands for the equilibrium return. Corresponding values of the return were computed
in Proposition 4.1. In the case when the investment choice is constant and investment function
is horizontal, the unique equilibrium has return r∗ provided by (4.3). When investment func-
tion is not horizontal, two equilibria returns are given by (4.4). Plugging the corresponding
values of the returns in (4.6), one can express stability conditions and bifurcation loci through
parameters A and B. The resulting expressions are quite cumbersome, so we provide only
their geometric illustration.

In Fig. 7 we consider the parametric space (A,B) and produce its stratification in accor-
dance to the validity of the stability conditions for both equilibria found in Proposition 4.1.
More precisely, in each point of the space we compute the corresponding equilibrium (if it
exists) and check whether each of the three inequalities (4.6) holds. In the gray regions the
corresponding equilibrium exists, it is feasible and stable. Otherwise, the parameter couple
belongs to the white region. Apart from the “tangency” and “feasibility” curves shown as
thick curves, we show in Fig. 7 different bifurcation loci as dotted thick lines. They corre-
spond to the points where one of the inequalities (4.6) change its sign. For example, the
convex parabola corresponds to those points where the first inequality changes its sign. In
these points the system exhibits the Neimark-Sacker bifurcation. Analogously, the concave
parabola in the left panel and another concave parabola in the right panel represents points
of flip bifurcations, where the third inequality (4.6) changes its sign.

Fig. 7 allows to understand the effects of different parameters on the stability of equilibria
in a straight-forward way. One can, for example, repeat the same procedure as we applied
to Fig. 5 when we studied four different scenarios, emerging when intersection A is fixed and
slope B is changing. For instance, it is immediate to see that in the first three scenarios,
where A > 0 and which were represented by the first three panels of Fig. 6, equilibrium r∗

1

is unstable for any value of B, while equilibrium r∗2 is stable when the absolute value of B
is small enough. Furthermore, in the latter case, if B increases, the equilibrium exhibits a
flip bifurcation, while when B decreases there is a Neimark-Sacker bifurcation. In the fourth
scenario with negative A, equilibrium r∗2 is unstable, while r∗1 is stable for B close to zero.

Fig. 7 suggests that even if two feasible equilibria can coexist for linear investment func-
tions, at least one of them will be unstable. For the case of increasing linear investment
functions it is, indeed, obvious from the EML plot. If such function intersects the EML twice
as in Fig. 4 for regions IV and VII, then in one of these intersections the slope B is greater
than the slope of the EML, and, therefore, the second inequality in (4.6) is violated. Generally
we have the following

Proposition 4.2. There is at most one feasible stable equilibrium in the market with single
linear investment function (4.5).

21



Sl
op

e 
B

Intersection A

0

0

C
H

 s
ce

na
rio

Sl
op

e 
B

Intersection A

0

0

C
H

 s
ce

na
rio

Figure 7: Stratification of the parameter space (A, B) according to the stability of equilibria. Left

panel: stability of the first root r∗1. Right panels: stability of the second root r∗2. Corresponding
root is stable if parameters belong to the gray area.

Proof. See appendix C.

This Proposition is the main result of this Section. It shows that the restriction of the
analysis on the market populated by the agents with linear investment functions (in particular,
those who derive their demand through the MV optimization) leads to the impossibility to have
the phenomenon of multiple stable equilibria in the single agent case. If non-linear investment
functions were allowed, many stable equilibria could co-exist as we show geometrically in the
left panel of Fig 8.

As a consequence of this limitation, the range of possible market dynamics can be over-
simplified if only “linear” behaviors are considered. This is clear in the single agent case.
Furthermore, it can also be the case in the market with many agents, since the equilibria
and their stability in such market are characterized through the equilibria and stability of the
single agent equilibria. For instance, one can be easily convinced9 that the market with many
agents having linear investment functions cannot possess more than one stable equilibrium
with r∗ > −ē. Another example will be discussed in the next Section.

It is important to stress that Proposition 4.2 does not, in general, hold in the market with
many linear investment functions. It can be seen from the situation depicted in the right panel
of Fig 8, where the market possesses one stable equilibrium S with one surviving agent and
also another “no-risk-premium” equilibrium where two agents survive (cf. Proposition 2.1(i)
and (iii)). Both equilibria are asymptotically stable, since investment functions are horizontal.

5 Mean-Variance Investment Functions

Geometric interpretation of the equilibria and investigation of particular case with linear
investment functions developed in the previous Section can now be straight-forwardly applied
to the analysis of the market with “rational” behavior derived from the MV optimization
and introduced in Section 3. Such analysis has been performed in Chiarella and He (2001),

9Consider the lower-right branch of the EML and recall that the equilibrium will be unstable in any of
two following cases. First, if there exist more aggressive investor in this equilibrium. Second, if the increasing
investment function intersects the EML from below.
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Figure 8: Left panel: In the market with single agent multiple stable equilibria can be generated
by non-linear investment function. SH and SL are stable while U is unstable. Right panel: In the
market with two agents multiple stable equilibria can be generated with linear investment functions.
S is stable with one survivor. (A1, A2) generates unique stable equilibrium where both agents survive.

henceforth CH. We, first, review the results of this model, and then explain them using the
geometric tool of the EML.

5.1 Model of Chiarella and He: Review of the Results

CH consider agents with investment function fCH given in (3.10). All these agents have the
same risk aversion coefficient γ = 1, i.e. the same demand functions. Two different cases
are analyzed. The first case is the model with homogeneous expectations. In this model the
realized demand functions of all agents are identical. They are characterized by the (rescaled)
risk premium δ̃ ∈ (0, 1). Accordingly with the sign of the extrapolation parameter d̃ the
situations of fundamental, trend-following or contrarian behavior as described in Section 3.2
are possible. CH provide complete equilibrium analysis in each of these cases (Proposition
3.1). Stability analysis is performed for the case d̃ = 0, when the unique equilibrium is
asymptotically stable and for the case when d̃ 6= 0 and L = 1 when sufficient conditions for
stability are derived (Corollary 3.3). For larger “memory span” L the numerical approach
is exploited which shows that the stability can be brought to the system through increase
of the memory span. The qualitative aspects of the equilibrium and stability analysis of the
single-agent case are summarized in Figure 1 of that paper.

After the analysis of the homogeneous expectations case, CH proceed to the market with
two investors and consider four different scenarios. In the first scenario there are two fun-
damentalists with different risk premium. The equilibrium analysis shows that there are two
equilibria in such market (Proposition 4.2), however only one of them is stable (Corollary 4.3).
It leads to “optimal selection principle” for this scenario, which states that the investor with
the higher risk premium will survive.

The second scenario corresponds to the market with one fundamentalist and one contrarian.
There exist three steady-states for such market, but (unscaled) price return is positive in only
two of them (Proposition 4.4). The fundamentalist dominates the market in one of these
two steady-states and contrarian dominates the market in another one. The stability analysis
can be performed analytically only for the former steady-state (Corollary 4.5). As a result of
numerical analysis of the stability of the latter steady-state, CH conclude that the long-run
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return dynamics depends on the relative levels of the returns in these two steady-states and
follows a similar optimal selection principle. Namely, the steady-state is stable if it generates
the highest return.

In the third example of heterogeneous market fundamentalist meets trend-follower. Such
market has one equilibrium where fundamentalist survives. It also can have zero, one or two
equilibria with surviving trend-follower (Proposition 4.6). Similar to the previous example,
the stability conditions for the latter equilibria are obtained through the numerical investiga-
tion. It is found that for small extrapolation rates (i.e. for relatively small value of d̃ of the
trend-follower) there exist two equilibria where trend-follower survives. The highest return is
generated in one of these equilibria which is, however, unstable. Between the two remaining
equilibria “the stability switching follows a (quasi-)optimal selection principle”, depending
where the return is higher.

Finally, in their last example CH consider the market with two chartists. In this case there
exist multiple steady states. If traders extrapolate strongly (i.e. in particular they both are
trend-followers) none of the steady-states is stable. For weak extrapolators, “the stability of
the system follows the (quasi-)optimal selection principle – the steady-state having relatively
higher return tends to dominate the market in the long run”.

To summarize, Chiarella and He have found quasi-optimal selection principle which allows
to predict a long-run market dynamics in the case, when there are multiple equilibria. Com-
paring this principle with optimal selection principle which we formulated in Section 2.3, one
see an important difference.

The principle in CH has a global character. When the ecology of the traders is fixed, it can
be applied to the market, so that unique possible outcome is predicted. Our optimal selection
principle has a local character, instead. For a given traders’ ecology there can be different
possibilities of the market long-run behavior, i.e. multiple equilibria. The final outcome de-
pends on the initial conditions and, in the stochastic case, on the yield dynamics, and cannot
be predicted a priori. However, independently of the realized equilibria, the survivors will be
chosen in “optimal” way: to allow the highest possible growth rate of the economy in this
point. In some sense, our principle selects among investment functions, while principle in CH
chooses among equilibria.

5.2 Model of Chiarella and He: Geometric Approach

Let us show that cumbersome analytic results in Chiarella and He (2001) may become much
more clear if one uses the geometric tools. We have already computed the coefficients (4.2)
which, in terms of parameterization (4.1), define the investment functions from CH. Now we
use these relations to study the impact of different parameters on equilibria and their stability.

We start with the single agent situation. On the stratification diagram of Fig. 5 all CH
investment functions with fixed risk premium δ̃ and risk-free interest rate rf can be represented
as the straight line with positive slope which we label as “CH scenario”. The bottom-up
movement along this line corresponds to increase in the extrapolation parameter d̃. This
parameter reaches the zero value in the point B = 0. The results of equilibrium analysis of
Proposition 3.1 in CH can now be reproduced straight-forwardly.

Indeed, the dotted line “CH scenario” subsequently intersects regions I, II, VII, V and
IV in Fig. 5. When the rate of extrapolation of the contrarian is high (in absolute value),
parameters belong to the region I and, therefore, two feasible equilibria coexist. With increase
of extrapolation parameter, the “feasibility line” is intersected for some d̃ = dF . At this point
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Figure 9: The case of homogeneous agents in the model of Chiarella and He (2001). Left panel:

Equilibria as function of extrapolation parameter d. (Cf. Figure 1 from the original paper.) Right

panel: Investment functions for the contrarian, fundamentalist and trend-follower.

one of two equilibria becomes unfeasible. The remaining feasible equilibrium is unique for all
d̃ ∈ (dF , 0]. When d̃ > 0, the agent is trend-follower and parameters belong to region VII. Here
again there are two coexisting equilibria. With further increase of the rate of extrapolation,
the “tangency line” is intersected for some d̃ = dL and both equilibria disappear. In region V
there exist no equilibria, but when extrapolated parameter is very high, i.e. agent extrapolates
strongly, the “tangency line” is intersected again in some point d̃ = dU . After this intersection
two equilibria coexist. As a result of such consideration, we reproduce (and improve) Figure
1 from Chiarella and He (2001) in the left panel of Fig. 9.

Alternative, and more explicit way to understand the last graph is to exploit the EML.
Notice that symmetrization (4.1) of function fCH always passes through the point

M =
(

rM , δ̃
)

, where rM = −ē − rf

1 + rf

, (5.1)

which does not depend on d̃. The slope of the symmetrization is equal to d̃ (1 + rf ). Three
typical behavior are presented in the right panel of Fig. 9. The horizontal investment function
corresponds to d̃ = 0, i.e. to the fundamentalist type of behavior. Analogously, any trend-
follower possesses an increasing investment function, while the chartist’s function is decreasing.
Notice also that return rM in (5.1) corresponds to the zero level of gross unscaled return.

Counter-clockwise rotation of the straight vertical line passing through point M imme-
diately explains the left panel of Fig. 9. In particular, notice that dF represents the value
of the extrapolation parameter, when the corresponding investment function of contrarian
passes the point F of the upper-left branch of the EML. Values dL and dU correspond to the
trend-followers whose investment functions are tangent to the EML.

Stability analysis which CH performed for the case L = 1 can be easily illustrated in
Fig. 7. In particular, any horizontal (fundamental) investment function is stable, and such
equilibrium remains to be stable for d̃ close to 0. Moreover, equilibrium r∗1 is stable for very
small negative d̃, while equilibrium r∗2 is stable for very large positive d̃.

Further advantages of the geometrical application of the EML can be seen in the case
of market with N agents. In Section 5.1 we described four different scenario considered in
CH for two-agents case: two fundamentalists with different risk premium, fundamentalists
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vs. contrarian, fundamentalists vs. trend-follower, and two chartists with different extrapola-
tion coefficients. We illustrate all these possibilities in Fig. 10 and discuss below how all the
results of CH can be re-obtained geometrically.

Consider, first, the case of two fundamentalists with different risk premium δ̃1 > δ̃2 (the left
panel, first row). These traders have horizontal investment functions passing through points
M1 and M2 defined in (5.1). From the assumption on the risk premium it follows that M1 is
above M2. There are two equilibria in such market: S and U . Each of these equilibria would
be stable if the corresponding agent would operate alone. When two agents operate together,
then equilibrium S with the highest risk premium is stable, while U is unstable. Notice that
this result can be immediately generalize for the arbitrary number of fundamentalists.

Let us now suppose that fundamentalist with risk premium δ̃1 encounters in the market
contrarian with risk premium δ̃2, so that horizontal and decreasing investment functions are
competing. CH distinguish between two cases depending on which of these risk premium is
higher. Geometrically, it corresponds to the location of points M1 and M2. We start with
the case in which δ̃1 ≥ δ̃2, i.e. when point M1 is above M2 (the right panel, first row). With
respect to the previous case we have made a rotation of the lower investment function around
point M2. It is obvious that equilibrium Sf is always stable in this case, while equilibrium Sc

cannot be stable. Thus, the left plot in Figure 3 of CH illustrating the qualitative features of
this situation is obtained10. In the second case, when δ̃1 < δ̃2, there are different possibilities.
If contrarian extrapolates not very strongly, so that an absolute value of δ̃2 is small enough
(left panel, second row), then Sf is, certainly, unstable equilibrium. Therefore Sc remains
to be the only candidate for the stable equilibrium on two-agents market. It will be stable
only when it is stable in the single agent case, which happens for relatively small d̃2 (see the
left panel in Fig. 7). Otherwise, there is no stable equilibria in the market. If, on the other
hand, contrarian extrapolates strongly (the right panel, second row), then Sf is the only stable
equilibrium. Comparing this analysis with the second graph in Figure 3 in CH, we can see that
the situation of possible absence of any stable equilibrium in the market has been overlooked.

In the third example we consider the case when fundamentalist with the risk premium
δ̃1 competes with the trend-follower with the risk premium δ̃2. In this example, we again
distinguish between two cases depending on which of the risk premium is greater. Let us,
first, assume that δ̃1 ≥ δ̃2. There are two possibilities. If the trend follower extrapolates
not too strong, equilibrium St is not stable (the left panel, third row). Equilibrium Sf is
stable in this case. If the trend follower extrapolates stronger, his investment function rotates
and equilibrium Sf looses its stability. St remains to be the only candidate for the stable
equilibrium. If it exist and stable in the market with trend-follower alone, it is also stable in
the two-agents situations (the right panel, third row). Otherwise, there are no stable equilibria
in the market with two agents. It is the case for dU > d̃2 > dL, since in this situation there
is no equilibrium in the market with surviving trend-follower. But it also happens for some
d̃2 lower than dL. Finally, for very strong extrapolation, when d̃2 > dU the market may have
a stable equilibrium, if it exists for trend-follower. In the case when δ̃1 < δ̃2 (the left panel,
fourth row) it is obvious that equilibrium Sf cannot be stable, therefore market will have a
stable equilibrium St whenever it is stable for trend-follower, that is for small enough d̃2. On

10All plots in Chiarella and He (2001) which we mention here and below are just sketches obtained from
the mixture of the analytic and numerical analysis. The advantage of our approach is that these qualitative
sketches can be obtained from the EML plot. Thus, on the one hand, they all become justified on the analytic
basis. On the other hand, they also become more clear and, thus, can be easily generalized for the situations
of three and more agents, and also corrected. For example, notice that in this case the return in equilibrium
Sc does not approach the return in equilibrium Sf when d̃2 → 0.
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the base of this discussion we can immediately see that Figure 4 in CH is not always correct.
Finally, in the right panel of the fourth row of Fig. 10 we consider an example when two

technical traders coexist in the market. We draw the situation when both of them are trend-
followers and have the same risk premium, so that their investment functions pass through
the same point M . It is clear, that the agent with the lowest extrapolation rate will generate
equilibrium S2 which will always be unstable. Instead, equilibrium S1 generated by the second
agent will be stable if and only if it is stable in the single agent market. Comparing it with the
panel (b) in Figure 5 in CH, we notice that with further increase d2 the stable equilibrium (with
growing return) becomes unstable and, eventually, disappears. So that for higher extrapolation
rates market does not have any equilibrium.

6 Conclusion

In this paper we have applied the general model of Anufriev and Bottazzi (2005) to the special
class of agents’ behavior. For the application we have chosen a class which is the most common
in economics, namely the class of optimal behavior and demonstrated that the model have
implications for a very large subset of this class.

The generality of the Anufriev and Bottazzi framework together with the geometric rep-
resentation of their results allowed us to overcome well-known technical difficulties in the
expected utility maximization setting. We have shown, for instance, that investment func-
tions derived in this setting, which are only implicitly defined, shift downward with the risk
aversion. This immediately implies, given the geometric nature of the locus of all possible
equilibria (the Equilibrium Market Line), that the price return will decrease when the risk
aversion coefficient of the agents increases. This result is not new in the economic literature:
if the agents are willing to take a small amount of risk, they will also get a smaller return.
What is new, however, is that we have rigorously obtained this result in the framework with
endogenous price setting.

We have analyzed also the setting where the agents have mean-variance demand. In this
case we have demonstrated that the qualitative results about market dynamics can be easily
obtained using the EML plot. As an application, we have shown that the analytic model
with heterogeneous agents presented in Chiarella and He (2001) can be easily understood and
generalized in many directions. Namely, the analysis can be extended for arbitrarily large
number of agents with arbitrary risk aversion and expectation rules. Probably, the easiest
way to illustrate the advantages of the general approach is to have a look on the stratification
diagrams at Fig. 5 and 7, drawn for a special, “linear” case of the agent’s behavior. Even in
this particular case, the scope of the model of Chiarella and He is represented by the one-
dimensional straight line. Moreover, only small interval of this line is analyzed in that model,
since risk premium is assumed to be bounded inside an interval (0, 1).

In our view, the most interesting implication of this paper is that some features of the long-
run market dynamics, like multiple equilibria, cannot occur in a market with these specific
population ecology. The global, quasi-optimal selection principle of Chiarella and He may
hold when all demand functions are derived from the mean-variance optimization, but it does
not hold in general. In this respect, it seems promising, for the further research, to apply
the general framework from Anufriev and Bottazzi (2005) to another, non-rational, types of
behavior, e.g. to those advocated by the prospect theory or to the behaviors based on the
threshold levels.
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APPENDIX: Proofs of Propositions

A Proof of Proposition 3.1

Let us introduce the following function

h(xt, γ) =

∫

y (1 + xt y)−γ g(y) dy , (A.1)

where g(y) is the perceived distribution of the next period return y. This distribution, in general, depends on
the return history. The value of the investment function fEP , or in other words, the investment share x∗ of
the agent who solves the EU maximization problem (3.2) with power utility function (3.1) is the solution of
the first-order condition (f.o.c.) h(xt, γ) = 0.

Let us, first, assume that x∗ > 0. Then, for both positive and negative y we have y > y (1 + x∗ y)−γ .
Multiplying both parts of this inequality on the function g, integrating with respect to y, and applying the
f.o.c., we get ȳ > 0. Analogously, if x∗ < 0, then y < y (1 + x∗ y)−γ for any y 6= 0, and, therefore, ȳ < 0.
Finally, when x∗ = 0 f.o.c. implies that ȳ = 0. This proves the first part of the statement.

The f.o.c. actually defines x∗ as an implicit function of the risk-aversion coefficient γ. Applying the implicit
function theorem we get that

fEP
γ = − 1

γ

∫

y log(1 + x∗ y) (1 + x∗ y)−γ g(y) dy
∫

y2 (1 + x∗ y)−γ−1 g(y) dy
. (A.2)

Denominator of the last expression is always positive, while numerator is positive when x∗ > 0 and negative,
otherwise. This proves the second part of the statement.

B Proof of Proposition 4.1

In the case B = 0 condition (2.9) implies that A + 1 = l(r), which is a linear equation with respect to r. We
get (4.3) as soon as A 6= 0. If, instead, B 6= 0, then from definition of the EML we get the following quadratic
equation with respect to ē + r

B (ē + r)2 + A (ē + r)2 + ē = 0 . (B.1)

The discriminant of this equation D = A2 − 4Bē. Solving (B.1) in the case when D > 0 one gets (4.4).

C Proof of Proposition 4.2

The constant investment function has one or zero equilibria. For the increasing function consider the second
inequality in (4.6). Substitution of the EML’s slope in equilibrium leads to

B (ē + r∗)2 − ē < 0 ⇔ −A (ē + r∗) − 2ē < 0 , (C.1)

where we used the relation (B.1). Plugging corresponding equilibrium values from (4.4) and simplifying the
resulting inequality, one gets

√

A2 − 4Bē + A < 0 in r∗
1

and
√

A2 − 4Bē − A < 0 in r∗
2

.

When A > 0, the left inequality is violated and therefore r∗
1

is unstable as in the plot for region IV in Fig. 4.
If A < 0 the right inequality is violated and r∗

2
is unstable as in Fig. 4 for region VII.

Consider now the case of decreasing investment function B < 0. Then, as we showed in Section 4.1, the
equilibria are such that r∗

2
< −ē < r∗

1
(see also illustrations for regions I and II in Fig. 4). If the equilibrium

return is negative, the first inequality in (4.6) leads to

B (ē + r∗)2 − r∗ē > 0 ⇔ −A (ē + r∗) − ē(1 + r∗) > 0 , (C.2)

When A ≤ 0, it, obviously, always holds with the opposite sign in feasible r∗
2
, i.e. r∗

2
is always unstable in this

case. Analogously, when r∗
1

is negative it will be unstable when A > 0.
Finally, let us consider the case when A > 0 and r∗

1
is positive. The third inequality in (4.6) leads to

B (ē + r∗)2 (2 + r∗) + r∗ē > 0 ⇔ −A (ē + r∗)(2 + r∗) − 2ē > 0 , (C.3)

which is always violated. Thus, in all cases when two feasible equilibria exist one of them is unstable.
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