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Abstract

Social choice models usually assume that choice is among pre-defined, uni-dimen-
sional and “simple” objects. Very often, on the contrary, choice is among multi-
featured and “complex” objects: a candidate in an election stands for an electoral
programme which is a complex bundle of many interdependent political positions
on a wide variety of issues. Also in committees and organizations of various sorts
collective choices are most often made among policy “bundles” and authorities
can act upon the pre-choice stage of construction of such bundles. This pre-choice
power of alternatives construction may grant authorities a highly effective device
to influence the outcome of social choice even when the latter is totally free and
democratic.
In this paper we propose a model which investigates within a simple majority
vote framework the role of the object construction power, an analogous to the
agenda power. Even when object construction is simply defined as the possibility
of assembling and dis-assembling a fixed set of choice components into bundles, we
show that, under rather general condition, it can radically change the outcome of
the majority voting process. In particular we show that any set of bundles (that
we call “choice modules”) is associated to a set of possible social outcomes which
can be attained depending upon the initial conditions. Moreover we shows that
also Condorcet-Arrow cycles can appear or disappear depending upon which set
of modules is chosen.

∗This paper was originally prepared for the 46th Annual Meeting of the Italian Eco-
nomic Association, Naples, 21-22 October 2005. We thank the Conference participants,
Giovanni Dosi, Marco Faillo and Matteo Ploner for useful comments and suggestions. The
usual caveats apply.
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1 Introduction

In the 60th paragraph of his Philosophical Investigations, Ludwig Wittgen-

stein considers the following problem:

When I say: “My broom is in the corner”, is this really a statement about
the broomstick and the brush? [...] Well, if the broom is there, that surely
means that the stick and brush must be there, and in a particular relation
to one another; [...] Then does someone who says that the broom is in the
corner really mean: the broomstick is there, and so is the brush, and the
broomstick is fixed in the brush? [...] Suppose that, instead of saying “Bring
me the broom”, you said “Bring me the broomstick and the brush which is
fitted on to it.” Isn’t the answer: “Do you want the broom? Why do you
put it so oddly?”

Wittgenstein expresses - among other things - that there is a level of

analysis of the world and of objects within the world, upon which people

talk, live, discuss and choose: going any further in analyzing objects in their

constituent parts amounts to “putting things oddly”.

Thus, according to this passage - even at a probably very superficial read-

ing of it - a distinction can be recognized between an “odd” level of analysis

and one that does effectively serve mutual understanding, between an atom-

istic logical level of analysis and one that might be further refined.

But what is the social relevance of distinguishing between parts of things

and things as wholes? Who does perform the distinction? What is the

effect of adopting a specific level of analysis with respect to individual and

social choice? What is the effect of different compositions/decompositions of

objects in their constituent parts with respect to the expression of individual

and social preferences?

An apparently trivial fact is that a wide range of social activities such as

communication and choice only take place once objects have been defined

e.g. in terms of their component parts. That is, once someone has declared:

“this is not a broomstick plus a brush: this is a broom and we treat it as

such in talking and acting upon it: as a non furtherly separable object.”

Brooms thus become objects of choice as wholes. In this sense, one can

only express his preferences on brooms as opposed to, say, hammers but not

on broomsticks and brushes as separate objects. It would thus follow that

preferences on possible features of the brush or of the broomstick (e.g. color,

shape, material, etc.) cannot play any role in the choice process even if an

agent might have a preference structure defined on them.
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Our point here is that every act of choice takes place once a choice set and

its members are defined. That is: objects must be constructed and presented

to an agent before he can actually choose among them. The key point we

will address is that, far from being unstructured points, objects of choice are

very much like Wittgenstein’s broom: they are composed of different parts

and traits that can be variously combined with one another.

According to classical choice theory, objects of choice are described as

one-dimensional entities whose most direct representation is a set of points

which can be arranged on a line from most to the least preferred. However,

unlike what it is usually assumed, the alternatives among which a society has

to choose are often not “simple” one-dimensional objects: they are rather

formed by multiple dimensions that possibly generate complex trade-offs.

According to this perspective, we shall try to model how objects populating

choice sets are constructed, how the construction of objects interacts with

choices and how choosers’ preferences interact with objects’ constructions.

The main issue at hand is that interesting dynamics can emerge from

possible clashes between different ways of clustering sets of traits into wholes

and more or less separable preferences on the part of agents. For instance,

in the “broom” example agents are not allowed to separately express their

preferences on the brush or the stick as these can only be jointly considered

under the composite category or label “broom”.

We believe that a fundamental though neglected part of social choice is

the process of building alternatives’ sets and thus of categorizing objects in

the world. These two fundamental activities, as we will try to show, grant

the power to influence and to some extent direct the outcomes of individual

and social choice and they appear to be at least as important as the power

of setting the agenda according to which alternatives are compared.

In other words, we take the following stance: agents might indeed have

well defined preferences on the objects of their choice once objects are given

but still how objects are defined and constructed is a crucial as much as a

neglected point. Very often, framing a choice set in terms of one-dimensional

points have very little meaning as alternatives within the set might be broad

and grossly underdefined labels for wide classes of very different (and differ-

ently attractive) alternatives. One might, for instance, imagine thousands of

different brushes (as to color, shape, material, weight...) and broom-sticks

(as to length, weight...) and, on the other hand, agents endowed with com-

plete preference structures on each of these possibilities. Notwithstanding
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this, given that agents are compelled to choose on a given object-like catego-

rization of sets of features, (i.e. they are called upon to make their choices on

brooms as non separable objects), none of his single-feature preferences will

be reflected in his choice as such. Given this, it follows that it might have

very little sense to talk about the choice between a broom and a hammer

as this might be grossly underdefined labels for wide classes of very different

(and differently attractive) alternatives.

Our approach here focuses on the way that object construction works

as an institution with respect to selecting subsets of feasible outcomes. In

particular, we view an institution as essentially characterized by a set of cat-

egories. Under this respect, our fundamental question deals with the extent

to which category construction can lead to specific social outcomes through

the selection and categorization of appropriate features sets. Our main fo-

cus is on the relations between objects structures and individual preference

structures and our main question is about the measure in which specific ob-

jects’ constructions drive and constrain individual preferences with respect

to their satisfaction.

As a matter of fact, there appears to be a category-formation analogue

of “agenda power” which is not just given by the power of setting the order

in which alternatives are voted but the power of constructing the alterna-

tives when the latter are bundles of different traits or features. As to this

point, we ask what is the extent to which, by appropriately forming such

bundles, one can influence the social outcome. Further, if alternatives are

categorized bundles of features, individual preferences might not be sepa-

rable in each component and interdependencies might show up. Or, on the

contrary, agents may have some areas of indifference on some features. Thus,

by exploiting interdependencies and indifference, institutions with the power

of categorization can influence a social choice by selecting a specific outcome

out of a multitude of possible ones. As to this point, we ask to what extent

categorization is able to select social outcomes.

In what follows we develop a simple model of majority voting whereby

a plurality of individual agents possess heterogeneous individual orderings

which have to be aggregated in a collective outcome. A well established

literature shows that the aggregation of elements into a collective choice is

not always straightforward. Arrow (1951) shows that no universal voting

procedure exists that aggregates individual preferences into social orderings

that satisfy a set of minimal conditions. McKelvey (1979) has proved that
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under majority rule the stake of agenda manipulation can encompass the

entire range of feasible outcomes however individual preferences are defined.

Far from being seen as simple sums of components, aggregation processes do

have the potential for unstable, arbitrary, intransitive and chaotic behavior.

Our approach here focuses on the way that object construction - rather

than agenda manipulation - works as an institution with respect to selecting

subsets of feasible outcomes. In our model, an institution proposes instances

(i.e. choice configurations) to agents based on its category set. Agents vote

according to their preferences and following the majority rule. In doing

so, a topological space is generated which we call a social decision surface:

the voting procedure determines a walk on such a surface, whose outcome

depends – generally speaking – on the starting point, on the sequence through

which alternatives are presented, and, especially, on how components are

aggregated into what we call decision modules.

We ask: given the total surface, does it present a single global optimum,

many local optima or cycles? We show that under general conditions (notably

if preferences are not fully separable) the answers to the previous questions

are entirely dependent upon the decision modules. We show algorithmically

that – given a set of individual preferences – by appropriate modifications

of the decision modules we can obtain all the three outcomes, i.e. a single

global optimum, multiple local optima or cycles. Thus the chosen modules

determine the dynamics and outcome of the voting procedure. In the case

of many local optima, by appropriately selecting the decision modules and

the starting point any of the local optima can be obtained. Finally we show

that cycles à la Condorcet-Arrow (de Caritat Marquis de Condorcet 1785,

Arrow 1951)1, may also appear and disappear by appropriately modifying

the decision modules.

Finally, note that we show these results in a setting in which there is a

given and finite set of components and in which the set of decision mod-

ules always covers such a set entirely. Different decision modules are simply

different decompositions (not necessarily partitions) of such a set, and the

results we obtain show that different decompositions can generate vastly dif-

ferent outcomes. Thus what we show has nothing to do with the correct

but trivial observation that there exist an obvious “issue raising” power, i.e.

that in world in which there exist potentially infinite choices to be made, a

1 This is a well known result for which even in the presence of transitive individual
preferences, social preferences expressed through some voting rule may be cyclical.
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primary and fundamental power is exerted in focussing the social attention

on some issues and neglecting others. In our finite setting all possible issues

are always decided upon.

We believe that categorization and framing are important parts of social

choice and that building alternatives based on particular categories confer -

to some extent - the power to determine, influence and direct the selection

of specific social outcomes. This point seems to be very consonant in spirit

with some recent work of George Lakoff on the use of frames and metaphors

in politics. According to Lakoff (2004):

Frames are mental structures that shape the way we see the world.

As a result, they shape the goals we seek, the plans we make, the

way we act and what counts as a good or a bad outcome of our

actions. In politics our frames shape our social policies and the

institutions we form to carry out policies. To change our frames

is to change all of this. Reframing is social change.

The paper is organized as follows. In the following section 2 we illustrate

our main points by means of a simple example. Section 3 presents our formal-

ism, which we use in order to present, in section 4 presents some “possibility”

examples, i.e. we provide examples in which social outcomes depend upon

categorization both in that the number and location of social optima depend

upon categories and in that the presence of cycles depend upon them. In

section 5 instead we discuss the likelihood of such phenomena in randomly

generated social decision problems. In particular we show that in general

cycles are very likely and their likelihood can be reduced by refining cate-

gories, but this increases the number of different social outcomes which can

be achieved depending upon categories. Decidability seems therefore to be

linked to the alternative setting power and the agenda power. Finally, in

section 6 we draw some conclusions.

2 An example

Let us imagine and describe two possible objects of choice such as spending

an evening out and staying home. We shall call these objects going out and

staying home. As such - i.e. with no further specification - both objects are

largely underdetermined objects that can be instantiated in a variety of ways

depending on how different traits relative to the object itself are defined. In
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this sense, the category “evening out” derives its attractiveness from how

the traits within it are actually instantiated. We might imagine, as a first

approximation, that going out is defined by a place to go (e.g. restaurant,

disco, pub, rave) and a set of people to spend the evening with. While the

object staying home is defined by what we will do (e.g. talking, watching a

movie, working) and who we will do it with.

Any agent called to express his preferences and choose one of the two

objects, will possibly have preferences defined on each single dimension of the

object and preferences defined on their possible combination/categorization.

Consider the following “narrative”: shall we go to a restaurant? Shall we

choose an Arab restaurant or an Italian one? Well, we would really like to

head for an Arab if the restaurant is “Shawarma Station” and if we are going

there at eight sharp with Françoise and Mara but we would really prefer

an Italian place if the restaurant is “Pommidoro” and we are having dinner

at ten with Giovanni and Gabriele. Are we rather going to the cinema?

That sounds great if our movie will be the latest Lars Von Trier’s “Dogma”

masterpiece and the theater is close to our place so that we might invite

Matteo and Cecilia. However we would prefer to invite some people at our

place for a drink if it is too late for the movies and parking is too dark a

nightmare after nine in the city center. Shall we invite Giovanni to join us?

He is a real friend and a nice guy but he will almost certainly come along with

Paola whom we can hardly stand and, besides, she doesn’t like the company

of Claudio and Stefano which we really like. . . . . .

If we view going out tonight as an object, we can imagine it as being

constructed by a set of traits whose union results in a different construction

and, in turn, in a different object. Let us imagine going out tonight as

constructed by the bundle of three traits: {where, who-is-coming, when}. If

we suppose that each of these traits may assume different values (i.e. the

where might be {cinema, restaurant, pub, . . . }, the who might be {Giovanni,

Marco, Paola, . . . }) then a whole set of different instances of going out

tonight based on the specific value assumed by each of its traits. Some

possible instances of going out tonight might be: {restaurant, Giovanni and

Paola, 8 sharp}, {cinema, Françoise, 10 pm}, {pub, Cecilia and Gabriele, 9

pm} and so on.

Let us now suppose that another object is introduced and call it stay

at home. In turn, this object will be constructed as a bundle of different

traits each with its own specific value out of a class of possible ones. Let us
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imagine that stay at home = {who-is-coming, when, to-do-what} and that

each of these traits might assume different values. Possible instances of stay

at home might be: {Nicole Kidman, 8 pm, see what happens}, {Naomi Klein,

6 am, talk about globalization}, {Matteo, 10 pm, have a beer}.
Were one supposed to choose what to do tonight facing the two alterna-

tives going out and staying at home, he will certainly choose according to

his preferences. It is however reasonable that individual preferences and the

choice resulting from them be largely dependent on how the two alternatives

are constructed i.e. on how the objects populating them are constructed. It

might well be possible that one is enthusiastic about Françoise as a table-

companion (she’s a brilliant talker) but totally dislikes her as a movie fellow

(she can’t stop laughing during love scenes) or that one prefers Nicole Kidman

if he is supposed to talk about globalization issues but values Naomi Klein far

more if the to-do-what issue is see what happens. On the other hand it might

happen that one wishes to enjoy Giovanni’s company no matter what we are

supposed to do and that I will choose any situation whatsoever provided that

the who-is-coming issue contains Giovanni.

3 Social decision surfaces

We assume that choices are made over a set of N elements or features F =

{f1, f2, . . . , fN}, each of which taking a value out of a finite set possibilities.

For simplicity and without loss of generality we make the assumption that

such a set is the same for all elements and contains two values that we label

respectively 0 and 1: fi ∈ {0, 1}. Thus the space of possibilities is given by

2N possible choice configurations: X = {x1, x2, . . . , x2N}.
In the “what-to-do-tonight” example fi can designate a yes or no choice

on each single item at stake and X is the set of virtually possible decisions.

Let us assume now that there exist h individual agents A = {a1, a2, . . . , ah},
each characterized by a (weak) ordering on the set of choice configurations:

given any two configurations xi and xj agent ak can always state whether

xi Âk xj or xj Âk xi or xi ≈k xj. For the time being we make no further

assumption on agents’ preferences: any ranking is allowed. We will obtain

most of our results for random orderings and make some restrictions when

appropriate.2 We call this ranking agent k’s individual decision surface Ωk.

2 In the appendix we will develop a characterization of preferences which can account
for all such restrictions.
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Let us now introduce a social decision rule < : (Ω1, Ω2, . . . , Ωh) 7→ Ω. In

this paper we consider only a simple majority voting: given a status quo xi

and an alternative xj agents truthfully vote according to their preferences.

Agent k votes for xi if xi Âk xj, votes for xj if xj Âi xi and abstains if

xi ≈i xj. The alternative which receives more votes is chosen as the new

status quo, in case of a draw the current status quo is kept. We make the

hypothesis that this process continues until no new alternative wins against

the status quo.

Given an initial configuration and a social decision rule < this process de-

fines a walk on the social decision surface which can either end up on a social

optimum or cycle forever among a subset of alternatives. If voting processes

end up on the same social optimum for all possible initial conditions we call

them ergodic or path-independent, otherwise voting is non-ergodic or path-

dependent. If voting processes are non-ergodic the social outcome depends

upon the initial condition and upon the agenda, i.e. the sequence in which

choice configurations undergo examination and voting. A further problem

may arise from the combinatorial nature of the set of alternatives: the cardi-

nality of the set X is exponential in the number N of features and even for

relatively small values of N the number of alternatives may be so large that

no real life voting process can possibly examine all of them. A fundamental

part of the social decision is the pre-voting generative mechanism3 which is

led by framing and categorization through which alternatives are generated

within the pre-defined categories. The influence of generative mechanisms

upon social outcomes is twofold: on the one hand they define the sequence

of voting, on the other hand they define which subset of alternatives under-

goes examination. As we shall show, different sets of categories may generate

different social outcomes because of these two phenomena: social optima do

– in general – change when categories are different both because the subset

of generated alternative is different (and some social optima may not belong

to many of these subsets) and because the agenda is different (and this may

determine different outcomes). Framing power appears therefore as a more

general phenomenon than agenda power.

3 The reader might recognize a similarity with evolutionary thinking, in which evolution
is normally considered as the outcome of the interaction between selection and variation,
whereby the latter provides the variety upon which selection operates and – in many
cases – may heavily limit the power of selection. In our approach social outcomes are the
product of the interaction between social selection, here represented by majority voting,
and alternative generation.
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3.1 Walking on social decision surfaces

We assume that voting occurs among bundles of features, whereby one bundle

may contain any number of features between 1 and N , that we call decision

modules. Decision modules are kinds of categories or templates through

which decision alternatives are generated and compared. Thus they can

strongly influence the dynamics and outcomes of the voting process.

Let I = {1, 2, . . . , N} be the set of indexes and let a decision module

Ci ⊆ I be a non-empty subset of it, we call the size of module Ci , its

cardinality |Ci|. We define a a modules scheme as a set of modules:

C = {C1, C2, . . . , Ck}

such that
k⋃

i=1

Ci = I

Note that a decomposition scheme does not have necessarily to be a par-

tition as modules can have non-empty intersections.

Given a choice configuration xi and a module Cj, we call module-configu-

ration xi(Cj) the substring of length |Cj| containing the features of configu-

ration xi belonging to module Cj:

xi(Cj) = f i
j1

f i
j2

. . . f i
j|Cj |

for all jh ∈ Cj.

We also use the notation xi(C−j) to indicate the sub-configuration of

length N −|Cj| containing the components of configuration xi not belonging

to module Cj.

Two module-configurations can be united into a larger module-configura-

tion by means of the ∨ operator so defined:

x(Cj) ∨ y(Ch) = z(Cj ∪ Ch) where zν =

{
xν if ν ∈ Cj

yν otherwise

We can therefore write xi = xi(Cj) ∨ xi(C−j) for any Cj.

We define the size of a decomposition scheme as the size of its largest

defining module:

|C| = max {|C1|, |C2|, . . . |Ck|}
An agenda α = Cα1Cα2 . . . Cαk

over the module set C is a permutation

of the set of modules which states the order according to which modules are

examined.
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Movements on the social decision surface are driven by the social decision

rule <, which, more concretely, we suppose works as follows. We suppose

that an initial choice configuration is (randomly) given4 then the first module

of the agenda is considered and all module configurations are generated. At

every step agents vote the status quo against a new configuration in which

the features of the module under consideration are replaced by the current

module configuration, whereas all other modules are kept constant and equal

to the initial condition. Every time the configuration which obtains the

majority becomes the (new) status quo.

When all modules configurations have been examined for the first module

in the agenda, the same procedure is repeated for the second, third, . . . ,

k − th module in the agenda. As to the stopping rule we can consider two

possibilities:

1. modules which have already been settled cannot be re-examined

2. modules which have already been settled can be re-examined and if

new social improvements have become possible

Normally we will use the latter stopping rule, as it is more general and

limits the role of the agenda, though – as we shall see – does not eliminate

agenda power. In fact even is modules can be re-examined over and over

again until some social improvement keeps being possible, widespread path

dependency generally implies that the order in which modules are examined

is often relevant in determining the social outcome.

More precisely, we will use the following algorithmic implementation of

majority voting:

1. repeat for all initial conditions x = x1, x2, . . . , x2N

2. repeat for all modules Cαi
= Cα1 , Cα2 , . . . , Cαk

until a cycle or a local

optimum is found;

3. repeat for j=1 to 2|Cαi |

• generate a module-configuration Cj
αi

of module Cαi

• vote between x and x′ = Cj
αi
∨ x(C−αi

)

• if x′ º< x then x′ becomes the new current configuration

4 In what follows we actually find properties for all possible initial choice configurations.
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A module scheme is therefore a sort of template which determines how

new choice configurations are generated and can therefore undergo selection

by the social rule <.

Given a module scheme C = {C1, C2, . . . , Ck}, we say that a configuration

xi is a preferred neighbor of configuration xj with respect to a module

Ch ∈ C if the following three conditions hold:

1. xi º< xj

2. xi
ν = xj

ν ∀ν /∈ Ch

3. xi 6= xj

Conditions 2 and 3 require that the two configurations differ only by

components belonging to module Ch. According to the definition, a neighbor

can be reached from a given configuration through voting on a single module.

We call Hi(x,Ci) the set of neighbors of a configuration x for module Ci.

A path P (xi, C) from a configuration xi and for a module scheme C is a

sequence, starting from xi, of preferred neighbors:

P (xi, C) = xi, xi+1, xi+2, . . . with xi+m+1 ∈ H(xi+m, C)

A configuration xj is reachable from another configuration xi and for

decomposition C if there exist a path P (xi, C) such that xj ∈ P (xi, C).

A path can end up either on a social (local) optimum, i.e. a configuration

which does not have any preferred neighbor, or in a limit cycle, i.e. a cycle

among a set of configurations which are preferred neighbors to each other.

The latter is the well known case of intransitive social preferences.

The set of best neighbors Bi(x,Ci) ⊆ Hi(x,Ci) of a configuration x for

block Ci is the set of the socially most preferred configurations in the set of

neighbors:

Bi(x,Ci) = {y ∈ Hi(x,Ci) such that y º< z ∀z ∈ Hi(x, Ci)}

By extension from a single module to the entire module scheme, we can

give the following definition of the set of neighbors for a module scheme as:

H(x,C) =
k⋃

i=1

Hi(x,Ci)
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A configuration x is a local optimum for the decomposition scheme C

if there does not exist a configuration y such that y ∈ H(x,C) and y Â< x.

Suppose configuration xj is a local optimum for decomposition C, we call

basin of attraction of xj for decomposition C the set of all configurations

from which xj is reachable:

Ψ(xj, C) = {y, such that ∃P (y, C) with xj ∈ P (y, C)}

A limit cycle is a set X0 = {x1
0, x

2
0, . . . , x

j
0} of configurations such that

x1
0 Â< x2

0 Â< . . . Â< xj
0 Â< x1

0 and that for all x ∈ X0, if x has a preferred

neighbor y ∈ H(x,C) then necessarily y ∈ X0. In other words if we have

a cycling set but at least a reachable configuration which is outside this set

and is a preferred neighbors of its element, sooner or later the voting process

will exit the cycle.

4 Local optima and cycles on social decision surfaces

Having defined the basic characteristics of the walks on social decision sur-

faces which are generated by voting processes, we are ready to discuss their

fundamental properties and, in particular, the social outcomes they may de-

termine. Our algorithmic approach allows to trace all the possible paths

on a social decision surface and characterize all possible outcomes for ev-

ery initial condition. We elaborate on previous work: Marengo and Dosi

(2005) and Marengo, Pasquali and Valente (2005) provide a methodology for

mapping every modules scheme into possible outcomes in the case in which

all modules can be re-examined endlessly until no further improvements can

be made, while Page (1996) offers similar results in the case in which once

decided a module cannot be re-examined even if improvement become later

possible.5 As already mentioned, in this paper we will discuss only the more

general case in which all modules can be always re-examined until no further

social improvement whatsoever becomes possible.

In this section we show that, in general, social outcomes depend upon

the adopted modules scheme and that by appropriately modifying it one can

obtain different social outcomes or even the appearance or disappearance of

intransitive limit cycles. In this section we basically provide “possibility”

5 Because of interdependencies it may in fact happen that a module for which no further
improvement is presently possible given the configuration of the other modules can become
improvable once other modules have been subsequently modified.
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results, i.e. we show examples of occurrences of such phenomena, in the next

section we will attempt a discussion of their generality and likelihood.

We first show that different modules schemes can produce different social

outcomes.

Proposition 1: Social outcome are, in general, dependent upon the modules

scheme.

Consider first a very simple example in which 5 agents have a common

most preferred choice. The following table presents such an example of in-

dividual preferences, ranked from the most to the least preferred for each

agent:

Order Agent1 Agent2 Agent3 Agent4 Agent5

1st 011 011 011 011 011
2nd 111 000 010 101 111
3rd 000 001 001 111 000
4th 010 110 101 110 010
5th 100 010 000 100 001
6th 110 111 110 001 101
7th 101 101 111 010 110
8th 001 100 100 000 100

Modules and social outcomes

It is easy to show that if voting is based upon the modules scheme C =

{{f1, f2, f3}} the only local optimum is the global one 011 whose basin of

attraction is the entire set X.

If instead voting is based upon the modules scheme C = {{f1}, {f2}, {f3}}
we have the appearance of multiple local optima and agenda-dependence.

If for instance the agenda is the sequence {f1}, {f2}, {f3} then 000 is the

local optimum whose basin of attraction contains half the possible initial

configurations. For instance, if we start from 110, three out of five agents will

vote for changing the first feature into a 0: 010 is in fact the best neighbor of

110 for module {f1}. Then module {f2} is considered and again the majority

(3 out of 5) decide to move to 000. Then no other change can get the majority.

If instead the agenda is the sequence {f3}, {f2}, {f1} it is easy to check that

the same initial condition 110 will lead to the global optimum 011.
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All in all, both multiplicity of social outcomes and agenda-dependence

appear to be linked to the specific set of modules which voting is based

upon.

Another reason why voting processes can be path-dependent and sub-

optimal is because of the well-known voting paradox (de Caritat Marquis de

Condorcet (1785), Arrow (1951))6: even in the presence of transitive indi-

vidual preferences, social preferences expressed through some voting rule can

be cyclical. In our model this is reflected by the fact that the order through

which choice configurations are presented matters in determining the social

outcome. However the manipulation of modules may avoid cycling and path

dependency even in the case of intransitive social preferences. This result is

stated in the next proposition:

Proposition 2: Suppose that for a module Ci social preferences cycle and the

outcome of voting processes is path-dependent. A redefinition of module Ci

which splits its composing features and suitably aggregates them to other

modules can make path dependence disappear.

Discussion: we explain this proposition by providing an example which is

a translation in our formalism of the standard textbook case. Consider the

case of three agents and three objects with individual preferences expresses

by the following table:

Order Agent 1 Agent 2 Agent 3

1st x y z
2nd y z x
3rd z x y

Cycles in social preferences

It is easy to verify that with these individual preferences, social preferences

expressed through majority rule are intransitive and cycle among the three

objects: x Â< y and y Â< z, but z Â< x.

Suppose now that x,y,z are three-features objects which we encode ac-

cording to the following mapping:

x 7→ 000, y 7→ 100, z 7→ 010

6 It is worth pointing out that there is no voting paradox in the previously presented
example, where path-dependence is only the outcome of finer than optimal modules.
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All other combinations of features are dominated by x,y and z for all agents

and we suppose, for simplicity, that preferences over them are identical across

agents. All in all, individual preferences are given by the following table:

Order Agent 1 Agent 2 Agent 3

1st 000 100 010
2nd 100 010 000
3th 010 000 100
4th 110 110 110
5th 001 001 001
6th 101 101 101
7th 011 011 011
8th 111 111 111

Modules and intransitivity: 1

It is easy to verify that if voting is based upon the unique module C =

{{f1, f2, f3}} the voting process always ends up in the limit cycle among

x,y and z. The same happens is each feature is a separate module: C =

{{f1}, {f2}, {f3}}.
However, if the modules schemes

C = {{f1}, {f2, f3}} or C = {{f1, f3}, {f2}}

are employed, voting always produces the unique global social optimum 010

in both cases. The latter outcome is the most preferred one by agent 3, who

can therefore try to have one of these frames adopted. All other modules

schemes always determine cycles: the social outcomes 000 and 100 which are

the one most preferred by, respectively, agents 1 and 2 cannot be obtained

as social optima by any re-framing. They could however with a different

encoding.

Consider for instance the following encoding for x, y, z:

x 7→ 100, y 7→ 010, z 7→ 001

and the following table of individual preferences:
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Order Agent 1 Agent 2 Agent 3

1st 100 010 001
2nd 010 001 100
3th 001 100 010
4th 000 000 000
5th 110 110 110
6th 101 101 101
7th 011 011 011
8th 111 111 111

Modules and intransitivity: 2

Once again we obtain cycles when voting is based upon the unique module

C = {{f1, f2, f3}}, if instead each feature is voted as a separate module:

C = {{f1}, {f2}, {f3}} we have three local optima: 100, 010, 001 whose basins

of attraction depend, both in size and location, upon the agenda. With the

modules scheme C = {{f1}, {f2, f3}} we have only the two local optima 100

and 010, while C = {{f1, f3}, {f2}} produces the two local optima 010 and

001 and C = {{f1, f3}, {f2}} produces the two local optima 100 and 001.

Another interesting issue that we can analyze concerns the time required

to reach the social outcome. When the space of alternatives is large, an

exhaustive voting process which compares every alternative against all the

others can be time-consuming, costly or even unfeasible in any reasonable

time scale. In such cases the voting process must necessarily consider only

a subset of the conceivable alternatives and there is no certainty that such

a subset contains the most desirable alternatives. A trade-off may arise be-

tween the time required to make the choice and the social quality of the

choice itself. Decision modules define a balance in this trade-off: the smaller

the modules the faster a the social outcome is reached. In fact the number

of alternatives examined is exponential in the size of the largest module in

the modules scheme. Moreover, as we will show in the next section, exten-

sive voting based upon large modules has a high probability of generating

intransitive cycles, whereas this probability decreases with smaller decision

modules. Thus smaller decision modules make decisions possible (as they

tend to reduce the chances of cycles) and faster (as they reduce the number

of comparisons between pairs of alternatives) but they do so at the cost of

creating a power of determination of the social outcome.

It is easy to show that only under very restrictive assumptions of sep-

arability of preferences for all agents does this power vanishes and social
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outcomes are independent of the choice of the decision modules.

5 Majority voting with random preferences

In the previous section we have shown that by manipulation of decision

modules we can deform the social selection surface in such a way as to modify

the number and location of social optima and as to make some “perverse”

phenomena which have been widely discussed in the literature appear or

disappear. Among such phenomena we have discussed intransitivities and

cycles in social preferences. In other words we have shown the possibility and

dependence upon categorization and framing of non ergodicity, intransitivity,

social preference reversal.

An interesting and related question however is to try and measure how

likely or plausible such phenomena are, that is to ask questions like, e.g.: a)

how many local optima are we likely to encounter? b) how different and/or

distant from each other are such local optima? c) how does the number and

location of local optima change with a modification of categories? d) how

likely are cycles?

Such questions could be addressed either empirically by means for instance

of laboratory experiments or theoretically. In this paper we limit ourselves to

a preliminary investigation of the latter by means of computer simulations.

We simulate in fact the above described voting model for populations of

randomly generated agents, i.e. agents whose order relation over the elements

of the set X is totally random (“. . . de gustibus non est disputandum”). In

this section we present a preliminary set of simulations.

In the first benchmark simulation we consider a set of 8 binary features

and therefore a space 256 configurations, on which a population of 99 random

agents vote following the majority rule. All the results we present here and

below – unless otherwise specified – are averages over 1,000 repetitions of a

simulation all with the same parameters but a different randomly generated

population.

We have tested the following module decompositions:

• C1 = {{1, 2, 3, 4, 5, 6, 7, 8}}

• C2 = {{1, 2, 3, 4}, {5, 6, 7, 8}}

• C4 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
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• C8 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}
The following table presents a summary of results:

Modules N. of cases Average n. of N. of cases Average
with optima social optima with cycles cycle length

C1 47
1

(0)
953

39.61
(13.88)

C2 940
3.93

(1.45)
1000∗

4.67
(1.38)

C4 1000
9.19

(2.33)
1000∗∗

4.03
(1.09)

C8 1000
15.66
(3.05)

318∗∗
3.11

(0.48)

Modules, local optima and cycles

(N=8, N. agents=99, 1000 repetitions)

(∗ indicates that some cases present cycles for some initial conditions and local op-
tima for others; ∗∗ indicates that all cases present cycles for some initial conditions
and local optima for others)

The table shows that for the modules scheme C1, that is a single decision

module containing all the features, we have almost always intransitive cycles

and that these cycles are rather long (almost 40 different choice configuration

on average). Only in about 5% of the randomly generated populations do we

obtain a social decision problem which does present cycles but a single social

optimum, which is obviously always achieved by voting based on C1. All in

all, intransitive social cycles are the rule in all but a small number of cases.

If we instead take the other extreme, i.e. the set of finest modules C8,

in 682 out of 1000 populations we do not observe cycles, but voting ends in

a local optimum. On average there are 15.66 local optima7 (with standard

deviation 3.05). In the remaining 318 cases we observe that voting can end up

either on a local optimum or in a cycle depending upon the initial condition.

In particular, in these cases in which we observe cycles, the latter are the

outcome in – on average – 42.83 (standard deviation 32.58) out of the 256

7 We have also carried out some simulations with 10 and 12 features, where the number
of local optima for the finest modules is around 40 and around 150 respectively. The
number of local rapidly increases with the number of features.
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possible starting conditions. When they appear, cycles are short, consisting

on average in about 3 configurations. All in all, cycles are not very frequent,

but on the other hand we have a considerable number of local optima, whose

selection depends upon the agenda.

With modules scheme C4 we always (all 1000 repetitions) observe the

coexistence of cycles and local optima in the same social decision problem,

depending upon the initial condition. On average, out of the 256 initial

conditions, 128.85 (st. dev. 28.26) lead to a cycle and the remaining to a

local optimum. In the latter event, the average number of local optima is

9.19.

Finally, with modules scheme C2 we observe 60 repetitions in which we

observe only cycles for all 256 initial conditions, whereas in the 940 remaining

case cycles appear on average for 206.53 (dev. st. 28.61) initial conditions.

The other initial conditions lead to one out of about 4 local optima. Also

in this case cycles tend to be short, as they are made on average of 4.67

configurations.

To summarize, we observe a very clear trade-off between the presence of

cycles and the number of local optima. When large modules are employed,

cycles are very likely to occur. The likelihood rapidly drops when finer and

finer modules are employed, but in parallel the number of local optima in-

creases. This implies that a social outcomes becomes well defined (and as

already mentioned can be reached in a shorter time) but which social out-

come strongly depends upon the specific modules employed and the sequence

in which they are examined.

We also have checked whether local optima tend to concentrate in particu-

lar parts of the space, that is if, for a single repetition of the simulation, local

optima are somehow similar, in the sense that they display at least for some

features the same value. All tests reject this hypothesis: the distribution of

local optima in the space of configuration appears as indistinguishable form

a randomly generated one.

If we decrease the number of agents we do not observe any difference for

the one module C1 case, while for finer modules we observe a slow increase

in the number of local optima and a decrease in the frequency of cycles. For

instance with 9 agents and the eight finest modules (C8) the number of local

optima increases on average to 16.89 and cycles appear in 284 repetitions,

and in those cases on average only 34 initial conditions lead to a cycle. With

only three agents the average number of local optima is 20.01 (st. dev. 3.15)
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and cycles appear in 176 out of 1000 repetitions, and in the latter only for

30.52 out of 256 initial conditions.

Less heterogeneity among agents seems therefore to reduce the likelihood

of cycles 8

Finally we can test what happens if we decrease the number of features,

i.e. the “complexity” of the problem. The following table presents the results

of analogous simulations with 99 agents on a “simpler” decision problem with

only four features and the three modules schemes:

• C1 = {{1, 2, 3, 4}}

• C2 = {{1, 2}, {5, 6}}

• C4 = {{1}, {2}, {3}, {4}}

Modules N. of cases Average n. of N. of cases Average
with optima social optima with cycles cycle length

C1 369
1

(0)
631

5.02
(1.78)

C2 932
1.64

(0.69)
702∗

3.87
(1.41)

C4 988
9.19

(2.33)
75∗

3.23
(0.79)

Modules, local optima and cycles

(N=4, N. agents=99, 1000 repetitions)

(∗ indicates that some cases present cycles for some initial conditions and local
optima for others;)

Results are in line with those of the previous table. Of course we observe a

considerable decrease in the number of local optima and length of cycles due

to the vast decrease of the size of the combinatorial search space. We also

observe an overall decrease in the occurrence of cycles for all categorizations.

8 In order to be more precise on the role of heterogeneity we plan to define a measure of
inter-agent heterogeneity and run simulations with more or less heterogenous agents, but
keeping equal their number.
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6 Conclusions

Trying to sum up the results thus obtained, we submit the following tenta-

tive and preliminary conclusions together with some hypotheses for future

research.

1. we believe that our work casts some light and provides some precise

tools to investigate the relation between the possibility of aggregating

individual preferences, their structure and the existence of some cen-

tralized form of power. With respect to this point see the results in

section 5, showing that the possibility of constructing aggregate states

is to some extent founded upon a fairly strong categorization performed

by underlying pre-choice institution. Institutionless choice tends to pro-

duce the impossibility of aggregation. To sum up with a mot d’esprit :

you will not get any society out of a primordial broth of individuals.

2. as a matter of fact, any act of choice takes place within an institution-

ally framed scenario which, at a minimum, constructs a set of alterna-

tives.

3. the very construction process is far from being neutral neither with

respect to individual choice nor to the selection of social outcomes.

4. it thus follows that every social actor fulfilling the social function of

framing decision problems, in the aforementioned sense, enjoys a fun-

damental power of influencing the selection of social outcomes.

We would like to think about our “modest proposal” as a a first step

towards a serious consideration of power as an economic and not merely

political issue.



6 Conclusions 23

References

Arrow, K. (1951) Social choice and individual values, Wiley, New York.

de Caritat Marquis de Condorcet, M. J. A. N. (1785) Essai sur

l’Application de l’analyse aux probabilités de decision rendue à la pluralité
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